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Abstract. Medium-resolution satellite observations show great potential for characterizing seasonal and annual dynamics of 10 

vegetation phenology in urban domains, from local to regional and global scales. However, most previous studies were 

conducted using coarse resolution data, which are inadequate for characterizing the spatiotemporal dynamics of vegetation 

phenology in urban domains. In this study, we produced an annual vegetation phenology dataset in urban ecosystems for the 

conterminous United States (US), using all available Landsat images on the Google Earth Engine (GEE) platform. First, we 

characterized the long-term mean seasonal pattern of phenology indicators of the start of season (SOS) and the end of season 15 

(EOS), using a double logistic model. Then, we identified the annual variability of these two phenology indicators by 

measuring the difference of dates when the vegetation index in a specific year reaches the same magnitude as its long-term 

mean. The derived phenology indicators agree well with in-situ observations from PhenoCam network and Harvard Forest. 

Comparing with results derived from the moderate resolution imaging spectroradiometer (MODIS) data, our Landsat derived 

phenology indicators can provide more spatial details. Also, we found the temporal trends of phenology indicators (e.g., SOS) 20 

derived from Landsat and MODIS are consistent overall, but the Landsat derived results from 1985 offer a longer temporal 

span compared to MODIS from 2001 to present. In general, there is a spatially explicit pattern of phenology indicators from 

the North to the South in cities in the conterminous US, with an overall advanced SOS in the past three decades. The derived 
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phenology product in the US urban domains at the national level is of great use for urban ecology studies for its medium spatial 

resolution (30 m) and long temporal span (30 years). The data are available at https://doi.org/10.6084/m9.figshare.7685645.v5.  

1 Introduction 

Dynamics of vegetation phenology in urban ecosystems play an important role in influencing human activities such as energy 

use and public health. The change of vegetation greening and dormancy affects various ecological and environmental 5 

processes, such as carbon storage, energy use, water cycle, and climate change (Zhou et al., 2016;Keenan et al., 2014;Peng et 

al., 2013;Tang et al., 2016). These influences are amplified in urban ecosystems due to the notably altered urban environment 

by anthropogenic activities. For example, the urban heat island (UHI) results in an earlier start and a longer duration of the 

growing season than surrounding rural areas (White et al., 2002;Zhang et al., 2004b;Jochner et al., 2011). The change of 

vegetation phenology affects the start and duration of pollen season in urban domains, which has become a major concern by 10 

public health authorities for the potential risks of pollen-induced respiratory allergies (e.g., asthma) (Aas et al., 1997;Anenberg 

et al., 2017;Gong et al., 2012;Li et al., 2019b). Furthermore, the rapid pace of urbanization is expected to continue in the future, 

with more than 66% of the world’s population residing in urban areas by 2050 (United Nations, 2018), which will result in a 

more notable effect of urban environment change. Also, changes in the urban environment due to atmospheric, soil, and light 

pollutions will affect the plant phenology (e.g., leaf senescence) (Escobedo et al., 2011), resulting in different phenology 15 

characteristics in urban ecosystems. However, our knowledge about the vegetation phenology response to urbanization under 

different urban morphology scenarios is still unclear, partly because of the difficulties in observing and mapping the dynamics 

of vegetation phenology at medium spatial and temporal resolutions in/around urban areas. Therefore, dynamics of vegetation 

phenology in urban domains is crucial for understanding the response of vegetation phenology to urbanization, and this further 

helps to develop process-based phenology models for prediction under the compound effect of global warming and 20 

urbanization (Jochner and Menzel, 2015;Jochner et al., 2011;White et al., 2002).   

Medium and coarse resolution satellite observations are inadequate to support vegetation phenology studies in urban domains, 

although they have been extensively used for phenology mapping. Relevant studies include using the advanced very high-

resolution radiometer (AVHRR) data (Moody and Johnson, 2001;White et al., 2002;Piao et al., 2006;Cong et al., 2012), and 
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the moderate resolution imaging spectroradiometer (MODIS) data (Zhang et al., 2004b;Zhou et al., 2016;Walker et al., 

2012;Walker et al., 2015;Liu et al., 2016). The primary advantage of these datasets is their long-term observations with a fine 

temporal resolution. However, the relatively coarse (1-8 km) spatial resolution is limited to capture the spatial heterogeneity 

of phenology in urban domains (White et al., 2002;Hogda et al., 2002). In contrast, Landsat observations with a medium spatial 

resolution (30 m) and a long temporal span (since the 1980s) offer the opportunity to overcome this limitation (Zipper et al., 5 

2016;Li et al., 2017b).  

There are few attempts of mapping vegetation phenology in urban domains using Landsat observations at a regional (or global) 

scale due to complex vegetation compositions in urban ecosystems and the large dataset required for analysis. Despite the high 

spatial resolution and long-term record of Landsat, the 16-days revisit frequency and the cloud contamination make it difficult 

to collect adequate observations to composite the time series of vegetation indices for investigating vegetation phenology 10 

dynamics. Therefore, the long-term mean pattern of vegetation phenology using multi-year observations were generally 

investigated in most Landsat-based phenology studies. After that, the annual variability of phenology indicators can be 

identified through measuring the difference of dates when the vegetation index in a specific year reaches the same magnitude 

as its long-term mean (Fisher et al., 2006;Melaas et al., 2013). However, currently this approach was mainly used in natural 

ecosystems (e.g., deciduous forest) or at local scales (Fisher et al., 2006;Melaas et al., 2013;Li et al., 2017b). Therefore, there 15 

lack large-scale applications in urban domains. First, vegetation types and compositions in urban ecosystems are more 

complicated, and the floral species are more abundant in cities than surrounding rural areas (Luz de la Maza et al., 2002). The 

seasonal pattern of vegetation growth varies among different vegetation types, which requires a more generalized approach to 

filter out available Landsat observations for a specific year to measure its gap to the long-term mean (Li et al., 2017b). Second, 

an improved understanding of vegetation phenology in urban areas over different regions require massive Landsat observations 20 

and super-computational power. More than one thousand Landsat scenes need to process for mapping vegetation phenology 

dynamics in a given city, and this number is huge when expanding the mapping area at the national or global scales.   

The advent of Google Earth Engine (GEE) platform provides the possibility to map vegetation phenology dynamics using the 

long-term Landsat data at the regional and global scales. GEE is a start-of-art platform for planetary-scale data analysis, 

mapping, and modelling, owing to free access to numerous global datasets and advanced computational capabilities (Gorelick 25 
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et al., 2017). There are several successful studies built on the GEE platform for mapping long-term dynamics of forest and 

water, using all available Landsat images at the global scale (Hansen et al., 2013;Pekel et al., 2016). It is convenient to 

composite time series data of vegetation index at the pixel level on the GEE, using all clear-sky pixels. Also, the capability of 

cloud-based computation offered by the GEE enables efficient and effective mapping practices at different spatial and temporal 

scales (Xiong et al., 2017).  5 

To better support vegetation phenology studies in urban domains with required spatiotemporal details, for the first time, we 

mapped annual vegetation phenology (1985-2015) using long-term Landsat observations at a high spatial resolution in the US 

and characterized the dynamics of urban vegetation phenology. The remainder of this paper describes the study area and data 

(Section 2), the adopted method for mapping vegetation phenology indicators (Section 3), the results with discussion (Section 

4), and concluding remarks (Section 5).  10 

2 Study area and data 

Our study area includes all urban areas greater than 500 km2 and their surrounding rural areas in the conterminous US. First, 

the urban extent was derived from nighttime light (NTL) observations (2013) (Zhou et al., 2018;Zhou et al., 2014). Then, a 

buffer zone with the same size as the urban area was identified as the surrounding rural area. The near equal size of urban and 

rural areas enables us to explore the response of vegetation phenology to urbanization through characterizing their phenology 15 

differences (Li et al., 2017a). In total, 148 urban clusters with different sizes were identified for deriving phenology indicators 

and their dynamics (Fig. S1). 

Landsat surface reflectance data is the primary dataset used for vegetation phenology mapping. Images obtained from different 

sensors, i.e., Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI), were 

used to composite the time series of the enhanced vegetation index (EVI) of each pixel (Huete et al., 2002). The surface 20 

reflectance data have been corrected for the radiometric and topographic effects.  The correction of atmospheric effect was 

performed using the Landsat ecosystem disturbance adaptive processing system (LEDAPS) (Masek et al., 2006), and clouds 

and shadows were removed using the function of mask procedure (Fmask) (Zhu and Woodcock, 2012) before compositing the 

EVI time series. Thus, all available clear-sky pixels during 1985-2015 were used in our analysis.  
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3 Method 

We developed an automatic approach to map urban vegetation phenology indicators using long-term (1985-2015) Landsat 

images on the GEE platform (Fig. 1). First, we composited the EVI time series using all clear-sky observations at the pixel 

level, ordered by the day of year (DOY). A double logistic model was then applied on the derived EVI time series to obtain 

the long-term mean pattern of phenology indicators (start of season (SOS) and end of season (EOS) in Fig. 1a). Second, we 5 

derived the annual variability of phenology indicators in urban and surrounding rural areas (Fig. 1b), by measuring the 

difference of dates when the EVI in a specific year reaches the same magnitude as its long-term mean (Li et al., 2017b). Details 

of each step are presented in the following sections.  

3.1 Long-term mean phenology indicators 

We composited EVI observations over the years to capture its seasonal change before the implementation of the double logistic 10 

model. First, we used all clear-sky observations of EVI and ordered them by their DOYs. This step allows us to retrieve the 

seasonal pattern of vegetation dynamics using multi-year data because the temporal distribution of Landsat data is uneven due 

to the satellite revisit time and sky conditions. Then, we applied a smoothing procedure using a moving average of continuous 

observations within 2 days to minimize the impact of abnormal observations. This procedure can keep the raw seasonal pattern 

of EVI (Fig. S2), and further helps to reduce the uncertainty of parameter estimation in the double logistic model.  15 

We characterized the seasonal change of vegetation growth using a double logistic model. This model has several advantages 

when compared to other approaches such as the splines and harmonic models (Melaas et al., 2016b;Carrão et al., 2010): (1) it 

captures the green-up and senescence phases using different sigmoid functions; and (2) the physical meaning of parameters is 

related to the vegetation growth and senescence (Fisher et al., 2006;Li et al., 2017b). The derived EVI time series data were 

fitted using the double logistic model as Eq. 1.  20 

𝑓ሺ𝑡ሻ ൌ 𝑣ଵ  𝑣ଶሺ
ଵ

ଵାషభሺషభሻ െ
ଵ

ଵାషమሺషమሻሻ                                                       (1) 

where 𝑓ሺ𝑡ሻ is the fitted EVI value at the day 𝑡; 𝑣ଵ and 𝑣ଶ are the background and amplitude of EVI over the entire year, 

respectively; and 𝑚ଵ & 𝑛ଵ, 𝑚ଶ & 𝑛ଶ are the pair-parameters that capture the trends of green-up and senescence phases of 

vegetation growth, respectively. That is, 𝑛ଵ and 𝑛ଶ are dates with maximum increasing and decreasing rates of green-up and 

senescence in sigmoid curves, and 𝑚ଵ and 𝑚ଶ are the slopes that determine the shape of sigmoid curves.  25 
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We developed a stepwise statistical approach to estimate the parameters of the double logistic model on the GEE platform for 

large-scale applications because currently the GEE platform does not support for optimization of parameters. Calculation of 

these parameters was presented in the Appendix. In general, the performance of this GEE-based double logistic model is robust 

for different land cover types, and the derived results are close to that from the optimization algorithm (Fig. 2). For example, 

although the magnitude of EVIs is relatively low in urban areas with low vegetation cover, a distinctive seasonal pattern of 5 

vegetation growth can be captured by the double logistic model. Also, sigmoid curves during green-up and senescence phrases 

are notably different across different vegetation cover types (e.g., forest and cropland). We evaluated the performance of the 

fitted double logistic model based on the correlation between the fitted and observed EVI observations. Pixels affected by land 

use/cover change during the study period or having weak vegetation signals (e.g., extremely high built-up area or barren land) 

could have a lower fitting performance (e.g., correlation coefficient), and these pixels can be excluded for specific applications. 10 

A more detailed explanation of this procedure is reported in Li et al. (2017b). This stepwise statistical approach can be 

implemented at the pixel level on the GEE platform in a parallel manner, which significantly improved our mapping efficiency 

at the large scale.  

We derived phenology indicators of SOS and EOS using a half-maximum criterion method (Fisher et al., 2006). In this method, 

SOS and EOS were calculated as dates when the first derivative of EVI reaches the maximum increasing and decreasing rates 15 

during the green-up and senescence phases, respectively. Although there are other definitions of SOS and EOS such as 

inflection points (i.e., at the base of sigmoid curve) (Zhang et al., 2003), the criterion used in our study is more temporally 

stable and can be applied to plants with different canopy structures (Fisher and Mustard, 2007). The growing season length 

(GSL) was defined as the difference between EOS and SOS. 

3.2 Annual variability of phenology indicators 20 

We derived the annual variability of vegetation phenology indicators using the developed generalized Landsat phenology 

(GLP) approach (Li et al., 2017b). Considering the temporally uneven distribution of available Landsat observations over the 

years, the annual variability of phenology indicators was measured as the difference of dates when the EVI in a specific year 

reaches the same magnitude as its long-term mean (Fisher et al., 2006;Melaas et al., 2013). Only EVI observations in the 

rational ranges of DOY and EVI (empty circles in shaded frames) in a given year were used in the GLP approach (Fig. 3). 25 
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Observations outside this range (the shaded frames), which are either outliers or beyond the temporal ranges of green-up and 

senescence phases, were not used in calculating the annual variability. In the GLP approach, we also designed a self-adjusting 

strategy to derive the bounds of the shaded frames in the green-up and senescence phases (Fig. 3). For the green-up phase, the 

rational DOY ranges (two points on the long-term mean curve that intersected with the shaded green frame in Fig. 3) were 

defined as the dates when change rates (or derivative) of EVI reach the half-maximum before and after the date of SOS (i.e., 5 

the date with the maximum change rate). Thus, the corresponding EVI ranges were calculated based on the derived DOY 

ranges and the long-term mean curve. The rational ranges for the senescence phase were determined using the similar approach. 

This approach already showed its applications for different vegetation types (e.g., cropland or forest) with varying seasonal 

patterns of EVI. More details about this approach can be found in Li et al. (2017b).  

4 Results and discussion 10 

4.1 Performance of the GEE-based double logistic model  

The performance of the developed GEE-based double logistic model is reasonably good across different latitudes and different 

vegetation cover types in urban ecosystems. Take forest as an example, the seasonal pattern of EVI varies from the South to 

the North in the US, with notably different sigmoid curves for the green-up and senescence phrases (Fig. 4). Our fitting 

approach can well capture the diverse seasonal patterns of EVI for forest across space.  At the city scale, the proposed double 15 

logistic model shows a good performance of fitting EVI time series from urban to rural areas (Fig. 5), where the vegetation 

composition and the seasonal pattern of EVI are more complicated compared to natural ecosystems. For sites in urban center, 

despite their low value of EVIs , a distinctive seasonal pattern of phenology is also captured by the proposed double logistic 

function, with a good fitting was observed.  

4.2 Comparison with PhenoCam data 20 

Overall, the derived phenology indicators (SOS and EOS) are spatially consistent with those from in-situ PhenoCam data at 

the large (e.g., national) scale (Fig. 6). PhenoCam is a regional-scale network of digital cameras that provide high temporal 

resolution vegetation canopy and phenology information (Richardson et al., 2018). The records in PhenoCam are observed 

green chromatic coordinate (GCC), which is used as the indicator of vegetation dynamics. We used all PhenoCam sites in the 
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US and compared the mean SOS and EOS with Landsat derived results. The definition of SOS and EOS we used in the 

PhenoCam data (i.e., the half-maximum criterion) is consistent with our result derived from Landsat data. Overall, correlations 

of the derived SOS and EOS from the Landsat and PhenoCam are 0.66 and 0.43, respectively. Most indicators are around the 

1:1 line, indicating a close correspondence of phenology indicators derived from these two independent datasets. For those 

sites (blue or light blue dots) with large differences, the performance of fitting Landsat EVIs using the double logistic model 5 

is relatively low because these sites are mainly embedded in ecosystems that are dominated by shrubs, evergreen forests, or 

wetlands (Fig. S3). With correlation coefficients lower than 0.85 (worse fitting) excluded as suggested by Melaas et al. (2016b), 

the overall agreements between Landsat and PhenoCam derived results were notably improved to 0.86 and 0.94, for SOS and 

EOS, respectively. Discrepancies between these two sets of phenology indicators derived from Landsat and PhenoCam are 

mainly attributed to factors such as: (1) two different vegetation indices (i.e., EVI and GCC); and (2) the scale effect between 10 

in-situ PhenoCam and Landsat observations (Liu et al., 2017).  

Overall, the annual variability of SOS derived from Landsat observations is consistent with that from the in-situ PhenoCam 

observations (Fig. 7). We selected 11 deciduous broadleaf forest sites for comparison with continuous observations of more 

than five years (Fig. 7a). Landsat pixels located within 500 m of each PhenoCam station were used to ensure adequate samples 

to reflect the vegetation phenology dynamic at the local scale for this comparison (Melaas et al., 2016a). The temporal 15 

dynamics of Landsat derived SOS and EOS generally follow the changes captured by PhenoCam observations (Fig. 7 b-c). A 

detailed illustration of the Acadia site indicates the SOS derived from the two datasets is notably advanced during period 2006-

2010 and their corresponding EOS is delayed after 2011. Although magnitudes of SOS and EOS are different over the years, 

their temporal trends (i.e., advanced or delayed) are relatively consistent. The magnitude differences of SOS from Landsat and 

MODIS are likely attributed to scale effects, which determines different phenology patterns within a particular remotely sensed 20 

pixel. Overall, the annual SOS indicator derived from Landsat shows a better agreement (0.74) with the result obtained from 

in-situ PhenoCam observations (Fig. 7d). The agreement of annual variability of Landsat and PhenoCam EOS is relatively 

weaker (0.26) (Fig. 7e), which is consistent with previous results reported by Melaas et al. (2016a). The main reason for the 

weak agreement of annual variability of EOS is the difference in greening represented by GCC and EVI. That is, in the green-
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up phase, both GCC and EVI are rapidly increasing. While in the senescence phase, the EVI detected by Landsat slightly 

decreases, which is notably different from the pattern reflected by GCC that rapidly decreases once the leaf color changes.  

4.3 Comparison with Harvard Forest phenology data 

Our Landsat derived phenology indicators have a similar temporal pattern with that from the Harvard Forest (HF) over the 

past decades (Fig. 8). The HF data were collected by field observers in spring and fall seasons for more than 25 years 5 

(Richardson et al., 2006). Our Landsat derived indicators were compared with dates of SOS and EOS recorded in the HF data, 

in which SOS and EOS are defined as the dates when the leaf length reaches 50% of its final size and the leaf color reaches 

10% of the color change to the greenest, respectively (Melaas et al., 2016a). Three dominant species of deciduous forest in the 

HF, including red oak (Quercus rubra; QURU), red maple (Acer rubrum; ACRU), and yellow birch (Betula alleghaniensis; 

BEAL) in the HF, were used in our analysis. However, for other vegetation types (e.g., evergreen forest), discernible phenology 10 

patterns can be also captured using the proposed methodology (e.g. Fig. 4, Site 1). Overall, the SOS of the three-dominant 

species in the HF is similar and has a similar temporal trend with SOS derived from Landsat observations (Fig. 8a). The RMSE 

between Landsat SOS and the HF data is 3.5 day, and the correlation coefficient is 0.81 (Fig. 8c), indicating a comparable SOS 

and a relatively consistent temporal pattern. EOS shows a relatively larger gap among species (Fig. 8b), i.e., the EOS of red 

oak is notably later compared to other two species of red maple and yellow birch. The Landsat derived EOS is within the range 15 

of EOS of the three species, and the temporal variability of two data sources are similar, although their magnitudes are different. 

The RMSE between Landsat EOS and the HF data is 3.7 day, and the correlation coefficient is 0.51 (Fig. 8d).  

4.4 Comparison with MODIS data 

Phenology indicators (e.g., SOS) derived from Landsat observations provide more spatial details in/around urban areas and 

are spatially consistent with those from MODIS (Fig. 9). Taking the Chicago metropolitan area as an example, we compared 20 

the Landsat derived SOS with that from MODIS in two ways. First, we estimated SOS from the MODIS EVI (16-day) using 

the same approach for Landsat. Second, we retrieved SOS from the widely used MODIS phenology product (MCD12Q2) 

(Zhang et al., 2003) for comparison with Landsat based SOS. It is worthy to note that the SOS defined in MCD12Q2 is the 

inflection point of EVI growth during the green-up phrase, and this definition is different from our half-maximum criterion 
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(Fisher and Mustard, 2007). Therefore, the SOS of MCD12Q2 is generally earlier than the other two. Also, there might be 

uncertainties in MCD12Q2 in highly urbanized regions with SOS above 180 days (Zhou et al., 2016) (Fig. 9a). Overall, more 

spatial details of SOS can be revealed in results derived from Landsat compared to MODIS (Fig. 9b). In highly urbanized 

regions, Landsat SOS can also capture the seasonal pattern of vegetation growth. Normalized SOSs derived from MODIS and 

Landsat show a relatively consistent trend along the gradient of developed areas (Fig. 9c), although their magnitudes are 5 

different (Fig. 9a).  

Landsat derived phenology indicator of SOS exhibits a consistent temporal pattern compared to MODIS with a longer temporal 

span (Fig. 10). Although the temporal distribution of Landsat is uneven compared to MODIS, the annual variability of 

phenology indicators can be captured well using the clear EVI observations in a given year relative to the long-term mean 

pattern. For example, there is a notable advancement of SOS in 2012, and all three SOSs captured this variability at the pixel 10 

and regional levels (Fig. 10a and 10b). The magnitude difference of derived SOS between Landsat and MCD12Q2 is mainly 

due to their definitions, and the difference of SOS between Landsat and MODIS EVI is likely caused by scale effect (e.g., 

mixed pixels). It is worth noting that SOS derived from the half-maximum criterion in this study is consistently later compared 

to the MODIS product using the criterion of the inflection point. 

4.5 Spatiotemporal patterns of phenology indicators 15 

Phenology indicators (SOS, EOS, and GSL) in urban domains exhibit a spatially explicit pattern from the North to the South 

in the conterminous US, with an overall advanced SOS in the past three decades (Fig. 11). SOS becomes earlier and EOS 

becomes later along the latitudinal gradient, although such spatial difference is more discernible in SOS compared to EOS at 

the national scale. As a result, GSL shows a generally extended trend from the North to the South (Fig. 11a). This spatial 

pattern of latitudinal change of phenology indicators (e.g., SOS) is also confirmed at the city level with more details (Fig. 11b), 20 

benefited from the higher spatial resolution of Landsat data. Meanwhile, the SOS in the last decade (P2: 2005-2015) is 

generally earlier than that in the first decade (P1: 1985-1995), although the temporal trend with an earlier SOS in past three 

decades is not significant for all cities. The spatiotemporal patterns of phenology indicators in the conterminous US reflect the 

response of vegetation phenology to regional differences of elevation, temperature, precipitation, vegetation type, as well as 

the global warming in past decades (Zhang et al., 2004a;Li et al., 2017a). In addition, changes in urban environment such as 25 
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impervious surface, air pollution, and the species compositions can affect the spatiotemporal pattern of vegetation phenology 

in urban ecosystems (Li et al., 2015;Escobedo et al., 2011).  

5 Data availability 

The derived vegetation phenology data in urban domains are available at https://doi.org/10.6084/m9.figshare.7685645.v5.(Li 

et al., 2019a).  5 

6 Conclusions 

This study generated the first national-scale dynamics of annual vegetation phenology in urban domains (all urban areas greater 

than 500 km2 and their surrounding rural areas) using long-term (1985-2015) Landsat observations on the GEE platform. First, 

we mapped the long-term mean seasonal pattern of vegetation dynamics using a double logistic model. In this step, we 

proposed a stepwise statistical approach to estimate parameters in the double logistic model and implemented it on the GEE 10 

platform. Next, we identified annual dynamics of phenology indicators (i.e., SOS and EOS) by measuring the difference of 

dates when the EVI in a specific year reaches the same magnitude as its long-term mean. Finally, we developed the first 

medium spatial resolution (30 m) phenology product in urban areas in the conterminous US, over past three decades (1985-

2015).   

Overall, the Landsat based phenology indicators agree with those derived from independent in-situ observations (PhenoCam 15 

and HF) and another widely used satellite observations from MODIS. Overall, the phenology indicators derived from Landsat 

and PhenoCam are consistent for their long-term mean and annual variability. The comparison with field observations collected 

in the HF suggests the Landsat derived indicators can capture the temporal dynamics of vegetation phenology in this forest 

ecosystem. Besides, the Landsat derived phenology indicators can provide more spatial details in/around urban areas, 

compared to the moderate-resolution MODIS results. Also, the temporal trends of phenology indicator (e.g., SOS) derived 20 

from Landsat and MODIS are consistent overall, and Landsat additionally extends the temporal span than MODIS back to the 

past three decades.  



 

12 
 

The Landsat phenology product in urban areas is of great use in urban phenology studies such as phenology response to 

urbanization. There is a spatially explicit pattern of phenology indicators from the North to the South in US cities, with an 

overall advanced SOS in the past three decades. With this new phenology dataset (with a long temporal coverage and a high 

spatial resolution), the response of vegetation phenology to urbanization (e.g., UHI) can be further investigated, particularly 

for plants in the urban center or suburban areas with notably altered urban environment by anthropogenic activities, where 5 

most people reside (Zhang et al., 2004b;Alberti et al., 2017). This dataset, together with ground-based pollen concentration 

data, is also of help in decision making relevant to pollen-induced allergy diseases (Li et al., 2019b). In addition, the derived 

leaf on/off information in this dataset is potentially useful for many vegetation-air pollution deposition models (Escobedo and 

Nowak, 2009). However, it is worth noting that this dataset is most applicable for deciduous forest type. For grassland and 

evergreen forests in tropical areas, the uncertainty could be high in the derived phenology indicators. In addition, our phenology 10 

algorithm did not specifically consider pixels with land cover changes, which could be further improved when the product of 

annual urban dynamics becomes available. 

Appendix 

The double logistic model used in the GLP approach includes two sigmoid curves indicating the green-up and senescence 

phases of vegetation growth (Eq. A1).  15 

𝑓ሺ𝑡ሻ ൌ 𝑣ଵ  𝑣ଶሺ
ଵ

ଵାషభሺషభሻ െ
ଵ

ଵାషమሺషమሻሻ                                                       A1 

where 𝑓ሺ𝑡ሻ is the fitted EVI value at the day 𝑡; 𝑣ଵ and 𝑣ଶ are the background and amplitude of EVI over the entire year, 

respectively; the first sigmoid (𝑆𝑖𝑔ଵ : 
ଵ

ଵାషభሺషభሻ) with pair-parameters of 𝑚ଵ & 𝑛ଵ captures the green-up phase of vegetation 

growth; and the second sigmoid (𝑆𝑖𝑔ଶ : 
ଵ

ଵାషమሺషమሻ) with pair-parameters of 𝑚ଶ  & 𝑛ଶ  captures the senescence phase of 

vegetation growth (Fig. A1). 20 

We derived six parameters (i.e., 𝑣ଵ, 𝑣ଶ, 𝑚ଵ, 𝑛ଵ, 𝑚ଶ, and 𝑛ଶ) in the double logistic model using a statistics approach on the 

GEE platform. First, we estimated 𝑣ଵ and 𝑣ଶ based on the smoothed EVI time series, with abnormal observations (or noise) 

excluded. We calculated the quantile levels of 5th and 95th as the minimum 𝑣ଵ and maximum EVI 𝑣௫ over the entire DOY 

range, to avoid possible biases caused by extreme values. Thus, 𝑣ଶ can be determined as Eq. A2.  
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𝑣ଶ ൌ 𝑣௫ െ 𝑣ଵ                                                                                A2 

The first part (𝑆𝑖𝑔ଵ) of the double logistic model in the green-up phase (Eq. A3) can be translated to Eq. A4 by using the 

smoothed EVI time series only during the green-up phase before 𝑑𝑜𝑦௫ and converted into a logarithmic form as Eq. A5.  

𝑆𝑖𝑔ଵ ൌ
ሺ௧ሻି௩భ

௩మ
ൌ

ଵ

ଵାషభሺషభሻ                                                                   A3 

௩భା௩మିሺ௧ሻ

ሺ௧ሻି௩భ
ൌ 𝑒ିభሺ௧ିభሻ                                                                     A4 5 

lnሺ
௩భା௩మିሺ௧ሻ

ሺ௧ሻି௩భ
ሻ ൌ െ𝑚ଵሺ𝑡 െ 𝑛ଵሻ                                                                 A5 

where the left term in Eq. A5 can be calculated using 𝑣ଵ and 𝑣ଶ, together with the smoothed EVI time series 𝑓ሺ𝑡ሻ only during 

the green-up phase before 𝑑𝑜𝑦௫. 𝑚ଵ and 𝑛ଵ can be estimated using the least square regression approach.  

Finally, based on the estimated parameters (i.e., 𝑣ଵ, 𝑣ଶ, 𝑚ଵ and 𝑛ଵ), the second part (𝑆𝑖𝑔ଶ) of the double logistic model in the 

senescence phase can be formulated as Eqs. A6-8, respectively. In a similar manner, the pair-parameters of 𝑚ଶ and 𝑛ଶ can be 10 

estimated using the least square regression approach, together with the smoothed EVI time series during the green-up and 

senescence phases together.  

𝑆𝑖𝑔ଶ ൌ
௩భା௩మௌభିሺ௧ሻ

௩ଶ
ൌ

ଵ

ଵାషమሺషమሻ                           A6 

௩మሺଵିௌభሻି௩భାሺ௧ሻ

௩భశ௩మௌభିሺ௧ሻ
ൌ 𝑒ିమሺ௧ିమሻ                                                             A7 

lnሺ
௩మሺଵିௌభሻି௩భାሺ௧ሻ

௩భశ௩మௌభିሺ௧ሻ
ሻ ൌ  െ𝑚ଶሺ𝑡 െ 𝑛ଶሻ                                                        A8 15 
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Fig. 1: The proposed framework for deriving long-term (1985-2015) mean vegetation phenology indicators (start of season-SOS and end 

of season - EOS) (a) and their annual variabilities (b). 
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Fig. 2: Seasonal patterns of vegetation growth captured by the double logistic model for three distinctly different land cover types. The 

extent of a snapshot is 100m × 100m, and the red dot in the snapshot is the location of the Enhanced Vegetation Index (EVI) plot. EVI 

observations were composited using all clear-sky pixels during the past three decades (1985-2015). 5 
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Fig. 3: Illustration of the generalized Landsat phenology (GLP) approach for identifying the annual variability of phenology indicators. The 

solid circles are long-term enhanced vegetation index (EVI) observations and the empty circles are observations at a specific year. The 

shaded frames colored as green and brown are the rational ranges of day of year (DOY) and EVI to be used during the green-up and 5 

senescence phases, respectively.   
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Fig. 4: Performance of the Google Earth Engine (GEE)-based double logistic model from the South to the North in the United States using 

forest as an example. Each snapshot indicates a 1km2 square, and the red dot in the middle is the location (30m) of the enhanced vegetation 

index (EVI) time series fitting.    5 
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Fig. 5: Performance of the Google Earth Engine (GEE)-based double logistic model for sites from urban center to rural areas in the Chicago 

metropolitan area. Each snapshot indicates a 1km2 square, and the red dot in the middle is the location (30m) of the enhanced vegetation 

index (EVI) time series fitting.   
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Fig. 6: Comparison of the period (2001-2015) mean phenology indicators of the start of season (SOS) (a) and the end of season (EOS) (b) 

derived from Landsat and PhenoCam observations. COR: the correlation coefficient between the raw and fitted EVIs using the double 

logistic model.  
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Fig. 7: Selected PhenoCam sites of deciduous broadleaf forest (a). Annual time series of phenology indicators in the station of Acadia for 

the start of season (SOS) (b) and the end of season (EOS) (c). Comparison of annual variability of SOS (d) and EOS (e) between Landsat 

and PhenoCam phenology indicators across all stations. The annual variability for each site is defined as ሺ𝒙 െ 𝝁ሻ/𝝈, where 𝒙 is the annual 

value of SOS and EOS, 𝝁 and 𝝈 are mean and standard deviation of SOS or EOS over the years.  5 
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Fig. 8: Annual dynamics of the start of season (SOS) (a) and the end of season (EOS) (b) derived from Landsat and Harvard Forest (HF) 

observations and their scatter plots of SOS (c) and EOS (d) over the years.  



 

25 
 

 

 

Fig. 9: Spatial patterns of the mean start of season (SOS) (2001-2014) derived from Landsat, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) enhanced vegetation index (EVI), and MCD12Q2 and the land cover from the national land cover database 

(NLCD) (2011) in the Chicago metropolitan area (a). Enlarged views (b) at the location of the black square in (a). Change of normalized 5 

SOS and impervious surface area (ISA) (c) along the white rectangle in (a) (from left to right). Pixels without good fitting performance (i.e., 

the correlation coefficient is lower than 0.85) were removed in the derived SOS from Landsat and MODIS EVI. 
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Fig. 10: Annual start of season (SOS) derived from Landsat, the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced 

vegetation index (EVI), and MCD12Q2 in the Chicago metropolitan area in representative years (a) and the temporal trend at the regional 

level (b). Solid lines are the mean SOSs at the regional level and shadowed frames indicate the range of SOS within the 25th and 75th 

quantile levels. Pixels without good fitting performance (i.e., the correlation coefficient is lower than 0.85) were removed in the derived SOS 5 

from Landsat and MODIS EVI.  
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Fig. 11: Spatial patterns of the mean (1985-2015) vegetation phenology indicators (start of season - SOS, end of season - EOS, and growth 

season length - GSL) in the United States cities (a) and SOS in representative cities in the past three decades (b). Each dot in (a) represents 

the center of the urban cluster, and the spatial extent of selected cities in (b) is 25 km × 25 km. The mean SOS of each city and its standard 

deviation within each period (in parentheses) are provided in (b).   5 
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Fig. A1: Illustration of the double logistic model and corresponding parameters. EVI: enhanced vegetation index; DOY: day of year.  

 


