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Abstract: AVHRR GAC (Global Area Coverage) data provide daily global coverage of 9 

the Earth, which are widely used for global environmental and climate studies. However, their 10 

geolocation accuracy has not been comprehensively evaluated due to the difficulty caused by 11 

onboard resampling and the resulting coarse resolution, which hampers their usefulness in 12 

various applications. In this study, a Correlation-based Patch Matching Method (CPMM) was 13 

proposed to characterize and quantify the AVHRR GAC geo-location accuracy at the subpixel 14 

level. This method is not limited to landmarks and not suffer from errors caused by false 15 

detection due to the effect of mixed pixels, thus enables a more robust and comprehensive 16 

geometric assessment. Data of NOAA-17, MetOp-A, and MetOp-B satellites were selected to 17 

test the geocoding accuracy. The three satellites predominately present West shifts in the across-18 

track direction, with average values of  -1.69 km, -1.9 km, -2.56 km and standard deviations of 19 

1.32 km, 1.1 km, 2.19 km for NOAA-17, MetOp-A, and MetOp-B, respectively. The large shifts 20 

and uncertainties are partly induced by the larger satellite zenith angles (SatZ) and partly due 21 

to the terrain effect, which is related to SatZ and becomes apparent in the case of large SatZ. It 22 

is thus suggested that GAC data with SatZ less than 40° should be preferred in applications. 23 

The along-track geolocation accuracy is clearly improved compared to the across-track 24 

direction, with average shifts of -0.7 km, -0.02 km, 0.96 km and standard deviations of 1.01 25 

km, 0.79 km, 1.70 km for NOAA-17, MetOp-A, and MetOp-B, respectively. The data can be 26 

accessed from http://www.esa-cloud-cci.org/ (Stengel et al., 2017) and 27 

https://ladsweb.modaps.eosdis.nasa.gov/ (Didan, 2015). 28 

1 Introduction 29 

Advanced Very High Resolution Radiometer (AVHRR) data provide valuable data sources 30 

with a near daily global coverage to support a broad range of environmental monitoring 31 

researches, including weather forecasting, climate change, ocean dynamics, atmospheric 32 

soundings, land cover monitoring, search and rescue, forest fire detection, and many other 33 
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applications (Van et al., 2008). The unique advantages of AVHRR sensors is their long history 34 

dating back to the 1980s and thus enabling long-term analyses at climate-relevant time scales 35 

that cannot be covered by other satellites. However, AVHRR data are rarely used at the full 36 

spatial resolution for global monitoring due to the limited data availability (Pouliot et al., 2009; 37 

Fontana et al., 2009). Instead, the Global Area Coverage (GAC) AVHRR dataset with a reduced 38 

spatial resolution is generally employed in long-term studies at a global or regional perspective 39 

(Hori et al., 2017; Delbart et al., 2006; Stöckli et al., 2004; Moulin et al., 1997).  40 

However, there are several known problems with the geo-location of AVHRR GAC data, 41 

which have a profound impact on their application.  (1) The drift of the spacecraft clock results 42 

in errors in the along-track direction (Devasthale et al., 2016). Generally, an uncertainty of 1 43 

second approximately induces an error of 8 km in this direction. (2) Satellite orientation and 44 

position uncertainties influence the projection of the satellite geometry to the ground, which 45 

leads to errors in both along-track and across-track directions. (3) Earth surface elevation 46 

aggravates distortions in the across-track direction (Fontana et al., 2009). Without navigation 47 

corrections, the spatial misplacement of the GAC scene caused by these factors can be up to 48 

25-30 km occasionally (Devasthale et al., 2016). 49 

For geocoding of AVHRR data, a two-step approach is usually used: 1) geocoding based 50 

on orbit model, ephemeris data, and time of onboard clock (Van et al., 2008), achieving an 51 

accuracy within 3-5 km depending on the accuracy of orbit parameters and model (Khlopenkov 52 

et al., 2010); 2) using any kind of ground control points (GCPs) (e.g., road or river intersections, 53 

coastal lines) to improve geocoding (Takagi, 2004; Van et al., 2008). Additionally, in order to 54 

eliminate the ortho-shift caused by elevations, an orthorectification would be needed (Aguilar 55 

et al., 2013; Khlopenkov et al., 2010). The dataset used in this study is from the ESA (European 56 

Space Agency) cloud CCI (Cloud Climate Change Initiative) project, which has corrected clock 57 

drift errors by coregistration of AVHRR GAC data with a reference dataset, and showed 58 

improved navigation by fitting the data to coastal lines.  59 

Unlike the Local Area Coverage (LAC) data with a full spatial resolution of AVHRR, GAC 60 

data are sampled on board the satellite in real-time to generate reduced resolution data (Kidwell, 61 

1998). This is achieved by averaging values from four out of five pixel samples along a scan 62 

line and eliminating two out of three scan lines, resulting in a spatial resolution of 1.1 km × 4 63 

km along the scan line with a 3 km distance between pixels across the scan line. Therefore, the 64 

nominal size of a GAC pixel is 3 km × 4.4 km. It is important to note that the spatial resolution 65 

of GAC data also depends on the satellite zenith angle (SatZ). Because of the large swath width, 66 

the spatial resolution of LAC decreases to 2.4km by 6.9 km at the edge of the swath (D'Souza 67 

et al., 1994). With the selection process for GAC, the GAC resolution is also much worse than 68 

4 km. Furthermore, the onboard resampling process of GAC data makes the orthorectification 69 

not feasible, which results in lowering of geolocation accuracy in the across-track direction. 70 

The final quality of AVHRR GAC data has not been quantified and we, therefore, make an 71 

attempt to assess their geolocation accuracy, particularly over terrain areas.  72 
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There are generally three approaches to assess the non-systematic geometric errors of 73 

satellite images: (1) the coastline crossing method (CCM) which detects the coastline in the 74 

along-track and across-track directions through a cubic polynomial fitting (Hoffman et al., 75 

1987); (2) the land-sea fraction method (LFM) which develops a linear radiance model as a 76 

function of land-sea fraction, land and sea radiance, and then finds the minimum difference 77 

between model-simulated and instrument-observed radiance by shifting the pixels in along-78 

track and across-track directions; (3) the coregistration method which computes the difference 79 

or similarity relative to a reference image (Khlopenkov et al., 2010). The abilities of these 80 

methods in characterizing the geometric errors are limited to certain conditions. The CCM is 81 

subject to the structure of coastline. Although the LFM works better on complex coastlines but 82 

depends on the accuracy of the land-sea model. The coregistration method is usually applied to 83 

high-resolution visible and infrared images (Wang et al., 2013; Wolfe et al., 2013). When it 84 

comes to coarse resolution data with several kilometers, the main difficulty arises from false 85 

detection due to the effect of mixed pixels. The geometric accuracy is important as even small 86 

geometric errors can lead to significant noises on the retrieval of surface parameters, such as 87 

NDVI, LAI, and albedo, which mask the reality or bias the final results and conclusions 88 

(Khlopenkov et al., 2010; Arnold et al., 2010). For instance, anomalous NDVI dynamics during 89 

the regeneration phase of forest fire-burnt areas can be explained by the imprecise geolocation 90 

of the data set used (Alcaraz-Segura et al., 2010). Therefore, it is critical to develop a rigorous 91 

geometric accuracy assessment method in order to ensure the effectiveness of AVHRR GAC 92 

data in the generation of climate data records (CDR) (Khlopenkov et al., 2010; Van et al., 2008). 93 

Based on the idea of the coregistration method, this study proposes a method named 94 

Correlation-based Patch Matching Method (CPMM), which is capable of quantifying the 95 

geometric accuracy of coarse resolution satellite data available as fundamental climate data 96 

records (FCDR) for global applications (Hollmann et al., 2013). We show the procedure based 97 

on AVHRR GAC data, which are compiled for the ESA CCI cloud project (Stengel et al., 2017) 98 

and are now also used for the ESA CCI+ snow project. The assessment is conducted at the sub-99 

pixel level and not affected by the mixed pixel problem. This method is applied to some test 100 

data from NOAA-17, MetOp-A, and MetOp-B, respectively. Furthermore, the potential factors 101 

that cause geometric distortions are explored and discussed. Although the band-to-band 102 

registration (BBR) accuracy assessment is an important aspect for such multi-spectral images, 103 

it is not a focus of this study, since the BBR accuracy of AVHRR has been comprehensively 104 

evaluated by a previous study (Aksakal et al., 2015).  105 

2 Data and geographical regions of interest 106 

2.1 Satellite data 107 

AVHRR is a multipurpose imaging instrument aboard on the NOAA satellite series since 108 

1978 and the Meteorological Operational Satellites (MetOp) operated by EUMETSAT since 109 
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2006, delivering daily information of the Earth in the visible, near-infrared, and thermal 110 

wavelengths. They provide observations from 4 to 6 spectral bands, depending on the 111 

generation of AVHRR sensors.  This study only focuses on the AVHRR GAC data observed by 112 

NOAA-17 (AVHRR-3 generation), MetOp-A, and MetOp-B. The spectral characteristics of the 113 

AVHRR sensors on board these three platforms are the same and summarized in Table 1. Since 114 

the spatial resolution of AVHRR GAC data is often considered to be 4 km (Fontana et al., 2009), 115 

the analysis in this study was conducted at the 4 km level using the data acquired on August 13, 116 

2003 for NOAA-17 and March 12, 2017 for MetOp-A and MetOp-B. 117 

Table 1. Spectral characteristics of AVHRR sensors 118 

Band Wavelength (µm) Application 

1 0.58–0.68 (VIS) Cloud mapping, vegetation and surface characterization 

2 0.72–1.00 (NIR) Vegetation mapping, water body detection 

3a* 1.58–1.64 (MIR) Snow and Ice classification 

3b* 3.55–3.93 (MIR) Cloud detection, Sea/Land surface temperature, 

4 10.30–11.30 (TIR) Cloud detection, Sea/Land surface temperature, 

5 11.50–12.50 (TIR) Cloud detection, Sea/Land surface temperature 

*Note: Channel 3a is only used continuously on NOAA-17 and MetOp-A. On-board MetOp-B channel 3a was only 119 

active during a limited time span. 120 

From a standpoint of geometric accuracy assessment, the reflectances in band 1 and 2 were 121 

employed in this study. However, these two bands are not only affected by the atmosphere but 122 

also by the earth surface anisotropy characterized by the bidirectional reflectance distribution 123 

function (BRDF) (Cihlar et al., 2004). Given the fact that BRDF effects can be reduced through 124 

the calculation of vegetation indices such as NDVI (Lee & Kaufman, 1986), the NDVI is 125 

employed in this study, which is derived from the reflectance in band 1 and 2 according to 126 

Equation (1). 127 

2 1

2 1

R R
NDVI

R R





                                                                     (1) 128 

where 1R  and 2R refer to the reflectance in band 1 and 2, respectively. It is important to note 129 

that during the process of generating NDVI, the atmospheric and BRDF corrections were not 130 

performed. But it is expected that such effects originating from these omissions are of minor 131 

influence, because the method of this study is based on correlation analysis and does not rely 132 

on absolute values of NDVI. Another advantage of using NDVI is that it has higher contrast 133 

between different land cover types, such as vegetation/no-vegetation, snow/no-snow, etc. 134 

Furthermore, in order to investigate the effect of off-nadir viewing angle on geometric accuracy, 135 

the SatZ data of AVHRR were also extracted. 136 

Ideally, the referenced data in geometric quality assessment should meet the required 137 

accuracy of 1/3 field of view (FOV) (WMO and UNEP, 2006), and also satisfy the accuracy 138 
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requirement of an order of magnitude better than one-tenth of the image spatial resolution 139 

(Aksakal, 2013), which means 400 m for the AVHRR GAC data. The NDVI provided by 140 

MOD13A1 V006 product was introduced as a source of reference data to perform the geometric 141 

quality assessment, because the sub-pixel accuracy of MODIS product is sufficient to satisfy 142 

this requirement (Wolfe et al., 2002). The high geolocation accuracy of MODIS products was 143 

achieved by using the most advanced data processing system, which has updated the models of 144 

spacecraft and instrument orientation several times since launch. Consequently, the various 145 

geolocation biases resulted from instrument effects and sensor orientation are removed (Wolfe 146 

et al., 2002). The NDVI data with the date corresponding to that of AVHRR GAC data, were 147 

obtained from the Level-1 and Atmosphere Archive & Distribution System (LAADS) 148 

Distributed Active Archive Center (DAAC)  (https://ladsweb.modaps.eosdis.nasa.gov/) with 149 

the sinusoidal projection at a spatial resolution of 500 m and a temporal resolution of 16-day. 150 

The detailed description of the MOD13A1 V006 product can be found in Didan (2015).  151 

2.2 Geographical regions of interest 152 

The purpose of this study is not only to assess the geolocation accuracy of 4 km AVHRR 153 

GAC data, but also to explore the potential impact factors related to geolocation accuracy. 154 

Therefore, the investigations were made at different latitudes and longitudes, at different 155 

locations with different SatZ, for different land covers, as well as different topographies. The 156 

swaths covering parts of Europe (including the alpine mountain) and Africa were used since 157 

they fit the study needs (Fig. 1). Investigations were based on six regions of interest (ROI) as 158 

shown in Figs. 1 and 2. The ROIs from 1 to 6 enable us to investigate the geolocation accuracy 159 

at different SatZ, topography, as well as latitudes and longitudes. Their locations and extents 160 

are consistent for the scenes from NOAA-17 and MetOp-A (Fig. 1), which enables the 161 

comparison of geolocation accuracy between these two sensors. The size of ROI was attempted 162 

to be set as large as possible in order to get more significant and comprehensive results. On the 163 

other hand, areas covered by cloud and water have to be avoided, resulting in the different sizes 164 

of these ROIs. Half of the ROIs (ROIs 2, 4, 6) serve as a good example for a typical 165 

mountainous areas on Earth. The other half of ROIs (ROIs 1, 3, 5), on the other hand, mainly 166 

cover relatively flat areas. Since the NOAA-17 scene was almost unaffected by cloud, another 167 

ROI (ROI 7) was selected to check the geolocation accuracy at nadir. The MetOp-B scene was 168 

influenced by cloud but served as a good example to illustrate the combined effect of 169 

topography and large SatZ (Fig. 2). Although there are also 6 ROIs selected, their sizes and 170 

extents are totally different from the above two scenes.  In order to include the terrain area, two 171 

subsets were used (Figs. 2a and c). Each grid in the ROI represents the minimum unit (namely 172 

the patch) based on which we conduct the geometric quality analysis.  173 
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 174 

Figure 1. The study area and the distribution of ROIs. (a) and (c) are the composite maps of bands 2-1-175 

1 of AVHRR GAC data on August 13, 2003 and March 12, 2017, respectively. (b) and (d) are their 176 

corresponding SatZ, respectively.  177 

 178 
Figure 2. The study area and the distribution of ROIs on March 12, 2017. (a) and (c) are the composite 179 

maps of bands 2-1-1 subset 1 and 2, respectively. (b) and (d) are their corresponding SatZ, respectively.  180 

3 Methodology 181 

The assessment was performed by comparing the AVHRR GAC scenes with geo-located 182 

reference data, i.e. MOD13A1 (V006). An approach named Correlation-based Patch Matching 183 

Method (CPMM) is proposed to find the best match between small image patches taken from 184 

the reference images and the AVHRR GAC images. This method is expected to be more suitable 185 

for the geometric accuracy assessment of coarse resolution images than the current methods, 186 

i.e. the CGM, LFM, and co-registration using shorelines. Because it is not limited to a certain 187 

landmark such as a lake or sea shoreline, and thus enables a more comprehensive assessment 188 

over different areas in the satellite scene. Moreover, this method does not suffer from errors 189 

caused by false detection due to the effect of mixed pixels because it is applied directly on the 190 

pixel values. The framework of CPMM is shown in Fig. 3, and the detailed description of this 191 

method is provided below.  192 
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 193 

Figure 3. Flowchart of the Correlation-based Patch Matching Method (CPMM). 194 

3.1 Satellite data processing 195 

The AVHRR GAC data set is stored in a Network Common Data Format (NetCDF), with 196 

latitude and longitude assigned to each pixel. In order to achieve a higher accuracy of image 197 

matching, the data need to be reprojected. The AVHRR GAC scene was reprojected into the 198 

Lambert Conformal Conic (LCC) projection by building the Geographic Lookup Table (GLT) 199 

using the latitude and longitude data in ENVI. The spatial resolution of the AVHRR GAC map 200 

in the LCC projection is 4 km. Based on the reprojected data, the NDVI was calculated using 201 

the band combinations as indicated by Eq. (1). Similarly, the NDVI band of MOD13A1 in the 202 

HDF format was extracted and converted to LCC projection from its raw sinusoidal projection 203 

using the MODIS Reprojection Tool (MRT). The nearest neighbor (NN) resampling scheme 204 

was employed in this procedure. The spatial resolution of the MODIS NDVI in the LCC 205 

projection is 500 m. Thus, the geometric assessment is performed at the 4 km resolution of 206 

AVHRR NDVI based on the 500 m MODIS NDVI data. 207 

3.2 Patch matching and geometric assessment 208 

In the process of matching the AVHRR GAC data with reference MODIS data, a patch 209 

size of 7 × 7 AVHRR pixels (corresponding to approximately 28 km × 28 km) was used.  These 210 

patches were distributed in each ROI as shown in Figs. 1 and 2, with an interval of 4 pixels in 211 

the along-track (Y-) and across-track (X-) direction. The sizes of the patch and interval were 212 

determined based on the following aspects: the size of the patch should contain enough pixels 213 

to support a robust correlation estimation, but at the same time, should not be too large in order 214 
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to investigate the potential influencing factors related to the geometric accuracy, and get enough 215 

results from these patches to attain a more significant and comprehensive conclusion. Similarly, 216 

the size of the interval should enable the disparity between different patches on one hand and 217 

on the other hand a large number of patches within the extent of each ROI. The chosen size has 218 

proven to be most ideal for these criteria during the test of different patch size. 219 

For each patch in the ROI, the AVHRR GAC data within the patch were extracted. Then 220 

the patch was shifted in the Y- and X-direction as indicated by the blue arrows in Fig. 3. Shifts 221 

were conducted stepwise in order to achieve sub-pixel accuracy, beginning with only 500 m 222 

and adding up to 8 km (i.e., ± 2 pixels) at a step of 500 m (equivalent to the MODIS pixel size) 223 

in any direction of Y- and X-combination. Consequently, 33×33 combinations of X- and Y-224 

shifts have been simulated. For each shift, the MODIS NDVI pixels within the extent of the 225 

patch were extracted and aggregated to 4 km by spatial averaging.  Afterwards, the correlation 226 

between the 4 km rescaled MODIS NDVI and the 4 km AVHRR NDVI was calculated for each 227 

shift in X- and Y-direction. The displacement of one patch was indicated by the shift 228 

combination with the best correlation, which means the geolocation accuracy of the patch. In 229 

this way, the geolocation errors were transformed into the across-track and along-track 230 

directions at the sub-pixel level for correlation with possible error sources. 231 

It is expected that the results from each patch are different. Therefore, the general accuracy 232 

of each ROI was determined by summarizing the measured shifts of each respective patch 233 

statistically. Here, the histogram was employed to show the distribution of geometric errors in 234 

the across-track and along-track directions. And the quantitative indexes, such as the number 235 

of patches, their mean and standard errors, were calculated.  The averaging is expected to reduce 236 

the uncertainties caused by random factors and produce accurate shift measurement estimates 237 

(Bicheron et al., 2011). The final shifts of the scene were calculated by averaging the measured 238 

shifts of all patches on the scene. 239 

3.3 Influence factor 240 

The influence of potential variables on the geometric accuracy was studied, including 241 

SatZ, topography, latitudes, and longitude. To achieve this, the information of these factors were 242 

also extracted for each patch on the scene. The geometric errors induced by SatZ were 243 

highlighted by checking the relationship between errors and SatZ.  The effect of topography 244 

was investigated by checking the relationship of geometric errors in the across-track direction 245 

over terrain areas compared to relatively flat areas. The effect of latitudes and longitude was 246 

determined by analyzing their relationship with measured shifts on the along-track and across-247 

track directions, respectively. 248 

4 Results and discussions 249 

Fig. 4 shows the correlation distribution over the 33 × 33 shifted cases within ± 8 km range 250 

at a step change of 500 m. Here, only one patch is extracted from each respective scene to 251 
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illustrate the results. Each grid in Fig. 4 represents a shift combination case, which is indicated 252 

by the location of the grid away from the center. Then the geolocation errors can be transferred 253 

into distances in kilometer (km) by multiplying the location of a grid with 500 m. The center 254 

of each subfigure depicts the case in which the location of the patch on the reference scene is 255 

exactly overlapped with that on the AVHRR scene. The results are visualized for one example 256 

showing the spatial distribution of correlation between the MODIS reference scene and the 257 

AVHRR data (Fig. 4). The color coding indicates a high correlation in dark green and reddish-258 

white colors indicate low correlation values. An almost perfect match is shown in Fig. 4b, where 259 

the dark green area is nearly centered at the coordinates (0, 0). From Fig. 4a, it can be found 260 

that the patch on the NOAA-17 scene shows geolocation errors of -1 km and 0 km in the along-261 

track and across-track directions, respectively. The Fig. 4b indicates a geolocation error of 0 262 

km and -0.5 km in the along-track and across-track directions respectively for the patch on the 263 

MetOp-A scene. And Fig. 4c indicates that the patch on the MetOp-B scene shows a geometric 264 

error of 2 km in the along-track direction and -5.5 km in the across-track direction. However, 265 

these figures show only the results of one single patch. The final results are based on a large 266 

number of samples to be statistically significant. 267 

 268 

Figure 4. Variations of the correlation with respect to each shift combination. Only the results of one 269 

patch from the NOAA-17 (left), MetOp-A (middle), and MetOp-B (right) scenes are shown for 270 

conciseness. 271 

4.1 Geocoding accuracy 272 

The geolocation shifts of each patch are slightly different as shown in Figs. 5-7. The +y 273 

indicates a shift to the North and +x indicates a shift to the East (minus sign indicates opposite 274 

directions). The statistical indicators such as the mean value of shift (Mean), the standard 275 

deviation of shift (StdDev) and the number of patches (N), are derived from the estimated shift 276 

values of all patches within the extent of the corresponding ROI.  277 

As shown in Fig. 5, it can be seen that the scene of NOAA-17 generally shows West shifts 278 

in the across-track direction, since the majority of patches in all ROIs show negative shifts. 279 

Nevertheless, the magnitudes of shifts for different ROIs vary from one to another. ROI 2 shows 280 

the smallest shift with a mean value of -0.76 km, with most shifts concentrated around -1 (Fig. 281 
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5b). The ROIs 6 and 5 indicate the second smallest shifts, with still weak magnitudes of -1.33 282 

and -1.35, respectively. Most of their shifts are distributed between -2 and 0 (Figs. 5f and e). 283 

The ROIs 7, 3, 1, 4 show slightly larger mean shifts but are still with the magnitudes of less 284 

than 2.5 km. These results are unexpected, because the ROIs (ROIs 2 and 6) over terrain areas 285 

are with smaller shifts than those (ROIs 7, 3, 1, 4) over relatively flat areas in the across-track 286 

direction. One possible reason is that the SatZ for ROIs 2 and 6 are not large (less than 40°) 287 

(Fig. 1b) so that the terrain effect on geolocation accuracy is counterbalanced by the small SatZ. 288 

This also indicates that the influence of small SatZ may be stronger than the terrain effect. But 289 

it is surprising that the ROI 7 (Fig. 5g), which is located at the nadir area (Fig. 1b), shows even 290 

larger shifts than other ROIs (ROIs 2, 6 and 5) with relatively larger SatZ. On the other hand, 291 

ROI 7 shows the most stable behavior, indicated by the smallest StdDev of 0.77. Other ROIs 292 

present relatively large, but still acceptable variations with StdDev ranging from 0.97 to 1.41 293 

(Figs. 5a-g).  294 

When combining the results of all ROIs together (Fig. 5h), the shifts in the across-track 295 

direction generally follow an approximately normal distribution with a mean value of -1.69 and 296 

a standard deviation of 1.32. Nearly 91% of the shifts are within the range of ±3 km, and the 297 

great majority (97%) of the shifts lay within a range of ±4 km. The number of patches (N=759) 298 

is assumed to be sufficient to ensure reliability and robustness of the results and the reduction 299 

of the influence of random factors. 300 

 301 

Figure 5. The distribution of shifts in the across-track (X) and along-track (Y) directions over different 302 

regions for NOAA-17 scene. The unit of the shift is km. 303 

The shifts in the along-track direction are mainly negative throughout these ROIs, 304 

indicating that the NOAA-17 scene is dominated by South shifts in the along-track direction. 305 

Nevertheless, a considerable number of patches also show slight North shifts over ROIs 1, 3 306 

and 4 (Figs. 5a, c and d), where the shifts are distributed around 0 with mean values of -0.18, -307 
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0.28 and -0.29, respectively. These shifts are generally small in these three regions given that 308 

the maximum shift is no more than 3.5 km (Table 2). In contrast, the ROIs 2, 5, 6 and 7 present 309 

systematic shifts to the South, which are mostly distributed within the  range of -2 to 0 km, with 310 

mean values of -0.83, -1.55, -0.88 and -1.64, respectively (Figs. 5b, e, f and g). The large 311 

differences in the distribution of shifts over different ROIs demonstrate that the shifts in the 312 

along-track direction are dependent on the region. It is interesting to find that ROI 7 still shows 313 

the smallest StdDev of 0.59 when excluding ROI 5 due to its very small number of patches. 314 

This indicates that ROI 7 also shows the smallest uncertainty in the along-track direction. And 315 

this may be associated with its smallest SatZ among all investigated ROIs. When combining 316 

the results of different ROIs (Fig. 5h), the overall shifts in the along-track direction 317 

approximately obey a normal distribution, with an average of -0.70 and a standard deviation of 318 

1.01. Nearly 70% of them are within the range of ±1 km, and only a small part (1.5%) show 319 

values larger than 3 km.  320 

Furthermore, it can be stated that the distribution of shifts in the along-track direction is 321 

less widely spread than that in the across-track direction, demonstrating the smaller uncertainty 322 

of geocoding in the along-track direction, as indicated by the smaller StdDev values throughout 323 

these ROIs (Table 2). Moreover, the geolocation errors in the across-track direction are greater 324 

than the along-track direction (Fig. 5), which is expected due to the applied clock drift 325 

correction. 326 

Table 2. Summary of the results for the scene of NOAA-17. The unit of the shift is km. 327 

ROI Min(X) Max(X) Mean(X) StdDev(X) Min(Y) Max(Y) Mean(Y) StdDev(Y) N 

1 -5 7 -2.18  1.37  -3.5 3.5 -0.18  0.85  170 

2 -3.5 5 -0.76  1.19  -4.5 6 -0.83  1.18  115 

3 -5 1.5 -1.93  1.14  -2.5 1.5 -0.28  0.67  144 

4 -5 -1 -2.49  1.23  -2.5 1 -0.29  0.80  36 

5 -3 0 -1.35  0.97  -2 -1 -1.55  0.28  10 

6 -7.5 4 -1.33  1.41  -4 3.5 -0.88  1.01  163 

7 -4.5 0 -1.88  0.77  -3.5 0 -1.64  0.59  121 

Overall -7.5 7 -1.69  1.32  -4.5 6 -0.70  1.01  759 

Similar to the results of NOAA-17, MetOp-A scene mainly present West shifts in the 328 

across-track direction, indicated by the widely distributed negative values throughout these 329 

ROIs (Figs. 6a-f). These shifts are basically concentrated around -2, however, the ROIs 2 and 330 

6 located in the terrain areas, show smaller average shifts (-1.68 and -1.82, respectively) than 331 

those of ROIs 1 and 3 (-2.25 and -1.94, respectively) over the relatively flat areas. This is 332 

understandable since the ROIs 2 and 6 are closer to the nadir area (Fig. 1d). And this align with 333 

the results from NOAA-17, where the influence of SatZ is also stronger than the terrain effect.  334 

Although the ROIs 5 and 4 show the smallest average shifts (-0.72 and -1.45, respectively) in 335 

the across-track direction, their results may be biased due to the smaller number of analyzed 336 

patches. It is interesting to find that ROI 3, which is almost located in the nadir area, still shows 337 

the least uncertainty, indicated by the smallest StdDev of 0.67. Furthermore, all ROIs close to 338 

the nadir area are characterized by small StdDevs (0.8 and 1.03 for ROIs 2 and 6, respectively) 339 
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compared to ROIs located further away from the nadir area (1.29, 2.05, 1.37 for ROIs 1, 4, 5, 340 

respectively).  These results demonstrate that SatZ plays a crucial role in determining the 341 

uncertainty of the shifts in the across-track direction. This conclusion also agrees with previous 342 

research conducted by Aguilar et al. (2013). When combining the results of all ROIs (Fig. 6g), 343 

the shifts approximately follow a normal distribution, with an average of -1.90 and a standard 344 

deviation of 1.1. Most of the patches (94%) are within the range of ±3 km, and nearly 98% of 345 

them are with shifts less than ±4 km. 346 

Since ROIs 1-6 on the MetOp-A scene are identical to those on NOAA-17 scene in terms 347 

of spatial extents, their shifts in the across-track direction are generally comparable. When 348 

excluding the results of ROIs 4 and 5, the ROIs on the MetOp-A scene generally show larger 349 

average shifts but smaller StdDevs than the NOAA-17 scene in the across-track direction (see 350 

Table 2 and 3).  However, it does not necessarily mean that the MetOp-A scene has a smaller 351 

uncertainty than NOAA-17 scene in the across-track direction, because the ROIs on the MetOp-352 

A scene are slightly closer to the nadir area than those on the NOAA-17 scene (Figs. 1b and d). 353 

Given the larger SatZ and the smaller average shifts of NOAA-17 scene, it is reasonable to 354 

conclude that the NOAA-17 scene shows a slightly better geolocation accuracy than the 355 

MetOp-A scene in the across-track direction. 356 

 357 

Figure 6. The distribution of shifts in the across-track (X) and along-track (Y) directions over different 358 

regions for MetOp-A scene. The unit of the shift is km. 359 

Looking at the shifts in the along-track direction, the MetOp-A scene does not show strong 360 

systematic North or South shifts,  but rather a general distribution of the shifts around 0 (Figs. 361 

6a-f). The shifts are generally small within a range of ±1 km, with StdDevs less than 0.83 362 

except for ROI 4. Furthermore, ROIs 2, 3 and 6 that are located close to the nadir area exhibit 363 

smaller StdDevs than those located further away from the nadir area when excluding ROI 5 due 364 

to its very small number of patches. This further indicates that SatZ also determines the 365 
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uncertainty of shifts in the along-track direction. When combining the results of all ROIs (Fig. 366 

6g), the shifts also display a nearly normal distribution, with an average of -0.02 and a StdDev 367 

of 0.79. Nearly 94% of the shifts are within the range of ±1 km and almost all of them (98%) 368 

are distributed within the range of ±2 km. It can be found that the shifts in the along-track 369 

direction are obviously smaller and more centralized than those in the across-track direction. 370 

This can be further confirmed by the consistently smaller StdDev values in the along-track 371 

direction than those in the across-track direction as shown in Table 3. 372 

Table 3. Summary of the results for the scene of MetOp-A. The unit of the shift is km. 373 

ROI Min(X) Max(X) Mean(X) StdDev(X) Min(Y) Max(Y) Mean(Y) StdDev(Y) N 

1 -7 4 -2.25  1.29  -3.5 4.5 0.04  0.83  170 

2 -4 0 -1.68  0.80  -1.5 2 -0.17  0.58  117 

3 -4 -0.5 -1.94  0.67  -1 2 0.09  0.51  144 

4 -5 5 -1.45  2.05  -4.5 6 0.07  1.99  29 

5 -2.5 1.5 -0.72  1.37  -0.5 1 0.22  0.44  9 

6 -4.5 3 -1.82  1.03  -3.5 2.5 -0.09  0.69  163 

Overall -7 5 -1.90  1.10  -4.5 6 -0.02  0.79  632 

By comparing Figs. 6a-f with Figs. 5a-f, it becomes obvious that large differences exist 374 

between the shifts in the along-track direction of MetOp-A and NOAA-17 scenes. In the first 375 

place, systematic South shifts occur on the NOAA-17 scene but not on the MetOp-A scene. 376 

Secondly, the magnitudes of shifts on the MetOp-A scene are generally smaller than those on 377 

the NOAA-17 scene, as the former are concentrated around 0 while the latter are concentrated 378 

around -1. Thirdly, the distribution of shifts is more centralized for the MetOp-A scene 379 

compared to the NOAA-17 scene, except for ROIs 4 and 5. This can further be proved by the 380 

smaller StdDev values for MetOp-A (Table 3) than those for NOAA-17 (Table 2). Therefore, it 381 

can be concluded that the MetOp-A scene shows a better geolocation accuracy and less 382 

uncertainty than the NOAA-17 scene in the along-track direction. 383 

Similar to the scenes of NOAA-17 and MetOp-A, the MetOp-B scene generally shows 384 

West shifts in the across-track direction, indicated by the predominant occurrence of negative 385 

values (Figs. 7a-f). Nevertheless, unlike the results for the terrain areas on NOAA-17 and 386 

MetOp-A scenes, the ROI 3 located in the terrain area on the MetOp-B scene (Fig. 2a), shows 387 

the largest shifts throughout these ROIs with an average of -4.69 in the across-track direction. 388 

Furthermore, the magnitudes of these shifts are characterized by even larger values than 6 km 389 

(Fig. 7c).  This is most probably caused by the combined effect of topography and large SatZ 390 

(Fig. 2b). Significant terrain effects appear only in the case of SatZ larger than 40° as shown in 391 

Fig. 2b. This finding agrees with the previous study by Fontana et al. (2009), who demonstrated 392 

that the errors in across-track direction result from the intertwined effects of observation 393 

geometry and terrain elevation. Nevertheless, ROI 5 that is located in the nadir area (Fig. 2d), 394 

shows the smallest average shift of -1.29 but the largest standard deviation of 2.51 (Fig. 7e). 395 

The largest StdDev is attributed to the fact that a considerable number of shifts exhibit values 396 
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of ±6 km. As shown in Fig. 2c, the main reason for these large and unstable shifts may be the 397 

presence of thin clouds or cloud shadows in this region. By comparing the results of ROIs 4 398 

and 5 with smaller SatZ against ROIs 2, 3, 6 with larger SatZ (Figs. 2b and d), it can be stated 399 

that the shifts with smaller SatZ are generally weaker than those with larger SatZ (Figs. 7b-f). 400 

When combining the results of all ROIs (Fig. 7g), the MetOp-B scene shows an average shift 401 

of -2.56 km with a standard deviation of 2.19 in the across-track direction. Only 63% of the 402 

shifts are distributed within the range of ±3 km, and the percentage raises up to 92% within 403 

the range of ±5.5 km.  404 

 405 

Figure 7. The distribution of shifts in the across-track (X) amd along-track (Y) directions over different 406 

regions for MetOp-B scene. The unit of the shift is km. 407 

Since the extent of the ROIs in the MetOp-B scene are not consistent with those on NOAA-408 

17 and MetOp-A scenes, only their overall performances in the across-track direction are 409 

compared here. By comparing Fig. 7g with Fig. 6g and Fig. 5h, it is obvious that the MetOp-B 410 

scene shows larger shifts and greater uncertainties than NOAA-17 and MetOp-A scenes in the 411 

across-track direction. This is partly due to the larger range of SatZ of these ROIs and partly 412 

due to the worse geolocation accuracy of the MetOp-B scene in the across-track direction. 413 

The MetOp-B scene is dominated by North shifts in the along-track direction, indicated 414 

by the predominantly positive shift values (Figs. 7a-f). It is interesting to find that ROI 3, which 415 

is located at terrain area and with large SatZ, shows the largest shifts with an average of 1.85 416 

km in the along-track direction. Given that terrain does not affect the geolocation accuracy in 417 

the along-track direction, the main cause of the largest shift may be the largest SatZ of ROI 3 418 

among these ROIs. Furthermore, by comparing the results of ROI 4 and 5  with those of ROI 419 

2, 3, 6, it can be found the shifts of ROIs with smaller SatZ are more concentrated around 0 420 

(Figs. 7d and e), while the shifts of ROIs with larger SatZ are more widely spread (Figs. 7b, c, 421 

and f). This manifests that the effect of large SatZ on shifts in the along-track direction cannot 422 
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be neglected. When combining the results of all ROIs, the MetOp-B scene shows shifts with an 423 

average of 0.96 and a standard deviation of 1.7. Only 52% of the shifts are distributed within 424 

the range of ±1 km, and the percentage raises up to 92% for the range of ±3 km. 425 

It can be seen that the shifts in the along-track direction are still significantly smaller than 426 

those in the across-track direction. Furthermore, the uncertainties of the shifts in the along-track 427 

direction are generally smaller than those in the across-track direction, when excluding the 428 

results of ROI 1 due to its limited number of patches (Table 4). This further verifies that after 429 

removing clock drift errors, the geolocation errors in the along-track direction are generally 430 

more accurate and with less uncertainties than the across-track direction. 431 

Table 4. Summary of the results for the scene of MetOp-B. The unit of the shift is km. 432 

ROI Min(X) Max(X) Mean(X) StdDev(X) Min(Y) Max(Y) Mean(Y) StdDev(Y) N 

1 -5 1 -2.15  1.43  0 7 0.98  1.64  20 

2 -7.5 1 -2.85  1.47  -3.5 3.5 1.31  1.09  81 

3 -7.5 1 -4.69  1.65  -1.5 5 1.85  1.05  96 

4 -4 5.5 -1.55  1.26  -4 5 0.47  1.09  103 

5 -6 7.5 -1.29  2.51  -7.5 7.5 0.50  2.53  96 

6 -7.5 6.5 -2.64  2.08  -7 4.5 0.68  1.80  73 

Overall -7.5 7.5 -2.56  2.19  -7.5 7.5 0.96  1.70  469 

The comparison of Fig. 7g with Fig. 6g and Fig. 5h reveals that the MetOp-B scene is 433 

significantly inferior to the MetOp-A scene in terms of the geolocation accuracy in the along-434 

track direction, with the former being concentrated around 1 and the latter around 0. 435 

Furthermore, the uncertainty of the shifts of the MetOp-B scene (StdDev=1.7) is much larger 436 

than that of the MetOp-A scene (StdDev=0.79). As for the performance of the MetOp-B scene 437 

relative to the NOAA-17 scene, it can be found that they are comparable with regard to the 438 

magnitude as well as the distribution of the shifts in the along-track direction. However, the 439 

MetOp-B scene shows larger uncertainties than NOAA-17.  440 

From the results above, it can be concluded that NOAA-17 and MetOp-A scenes show 441 

distinct advantages over the MetOp-B scene in both directions. However, the NOAA-17 scene 442 

is slightly better than the MetOp-A scene in the across-track direction, with average shifts of -443 

1.69 for NOAA-17 and -1.90 for MetOp-A, which are both greatly lower than  for MetOp-B (-444 

2.56). But the MetOp-A scene shows a distinct advantage over NOAA-17 in the along-track 445 

direction, with an average shift of -0.02 for MetOp-A and -0.7 for NOAA-17, which are both 446 

lower than for MetOp-B (0.96). In addition to the magnitudes of their shifts, the MetOp-B scene 447 

also shows larger uncertainties than NOAA-17 and MetOp-A scenes in both directions. 448 

4.2 The potential influence factors 449 

From the above results, it is known that SatZ plays an important role in determining the 450 

geolocation accuracy of the satellite scene. To investigate how and to what extent it influences 451 

the geolocation accuracy, Fig. 8 displays the shifts in both directions as a function of SatZ for 452 

all three satellites. Furthermore, the influences of latitude and longitude on geolocation 453 
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accuracy are also explored.  454 

As shown in Figs. 8a-c, it can be seen that the shifts in the across-track direction vary 455 

considerably for all SatZ, and this is particularly evident in the results of MetOp-B (Fig. 8c). 456 

This demonstrates that besides the SatZ effects, the geolocation accuracy is also influenced by 457 

other factors. Furthermore, the spread at each fixed SatZ tends to become larger at larger SatZ 458 

(larger than 20°) (Figs. 8a-b). The large variability of MetOp-B scene shifts at small SatZ (less 459 

than 20°) (Fig. 8c) is mainly due to the effect of thin cloud or cloud shadow as explained before. 460 

Despite the dispersion of the shifts for all SatZ, it can still be found that the shifts in the across-461 

track direction do not change much when the SatZ is less than 20° (Figs. 8a-b and Table 5). A 462 

slightly decreasing trend (increasing trend of the magnitude) can be observed from 20° to 40° 463 

(Table 5), and becomes more apparent at SatZ larger than 40° (Fig. 8c and Table 5). 464 

Furthermore, it can be found that for small SatZ (less than 20°) the shifts in the across-track 465 

direction are generally concentrated around 2 km for NOAA-17 and MetOp-A scenes (Figs. 8a-466 

b). With increasing SatZ, the largest magnitudes of shifts become larger but basically stay 467 

within the range of 4 km for SatZ smaller than 40°. For even larger SatZ (larger than 40°), the 468 

magnitude of shifts can reach 6 km for NOAA-17 scene and 8 km for MetOp-B scene. From 469 

these results, it can be inferred that the SatZ has a considerable effect on both the magnitude 470 

and uncertainty of the shifts in across-track direction. The larger SatZ generally contributes to 471 

larger shifts and uncertainties in the across-track direction. Furthermore, it can be inferred that 472 

the GAC data with SatZ less than 40° should be preferred in applications. 473 

Compared to the shifts in the across-track direction (Figs. 8a-c), the shifts in the along-474 

track direction show smaller variability at each fixed SatZ (Figs. 8d-f). From Figs. 8d-e, it can 475 

be seen that the shifts in the along-track direction are relatively stable at each level of SatZ for  476 

SatZ smaller than 15°, but becomes more variable for greater SatZ. A similar phenomenon can 477 

be observed in Fig. 8f, where the shifts are relatively stable with SatZ ranging from 20° to 35°, 478 

but becomes more variable at each level of SatZ with its values larger than 35°. It is noteworthy 479 

that the wide spread of shifts with SatZ less than 20° is mainly caused by cloud contamination. 480 

These results confirm the influence of larger SatZ on the uncertainty of shifts in the along-track 481 

directions. It is interesting to find that the magnitudes of NOAA-17 scene shifts with small SatZ 482 

(less than 20°) are even larger than those with larger SatZ (larger than 20°) (Fig. 8d). On the 483 

contrary, the magnitudes of MetOp-B scene shifts with smaller SatZ (20-35°) are smaller than 484 

those with larger SatZ (larger than 35°) (Fig. 8f). Nevertheless, all three sensors have in 485 

common that they do not show clear change with SatZ smaller than 20° for NOAA-17 and 486 

smaller than 35° for MetOp-A and MetOp-B (Figs. 8d-f). For larger SatZ than these values, 487 

shifts exhibit a slightly decreasing trend for NOAA-17 (Fig. 8d) and an increasing trend for 488 

MetOp-B (Fig. 8f). From these results, it can be stated that the influences of large SatZ on the 489 

magnitude of shifts in the along-track direction are probably intertwined with other factors. 490 
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 491 

Figure 8. Influence of SatZ (a-c), longitude (d-f), and latitude (g-i) on the geolocation results of NOAA-492 

17 (left), MetOp-A (middle) and MetOp-B (right) scenes. 493 

Table 5. The mean shift for each range of SatZ in the across-track direction. The unit of the shift is km. 494 

SatZ 0°-10° 10°-20° 20°-30° 30°-40° 40°-50° 50°-60° 

NOAA-17 -1.84 -1.84 -1.32 -1.66 -2.27  

MetOp-A -1.87 -1.80 -2.06 -2.62   

MetOp-B -1.29 -1.45 -1.75 -2.71 -3.95 -4.93  

From Figs. 8g-i, it can be found that the variation of shifts (in the across-track direction) 495 

with longitude largely depends on the situation. For NOAA-17, the shifts tend to be smaller 496 

with the longitudinal range of 10°-15° and become larger outside this range (Fig. 8g). The 497 

MetOp-A scene does not show apparent change with longitude between 8° and 15° and neither 498 

does MetOp-B within the range of -8°-0°. However, MetOp-B presents a clear decreasing trend 499 

(an increasing trend in magnitude) for longitudes larger than 5°.  Given the fact that the latitude 500 

of the nadir area is distributed between 10°-15° for NOAA-17, 8°-15° for MetOp-A, and -8°-501 

0° for MetOp-B (Figs. 1b and d, Figs. 2b and d), it can be concluded that the influence of 502 

longitude on the shifts in the across-track direction is related to the longitude of nadir area of 503 
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the satellite, as it shows almost no influence in the nadir area. The influence increases with the 504 

difference of the longitude relative to that of the nadir area. This is well understandable, as the 505 

influence of longitude is equivalent to that of SatZ in the across-track direction. 506 

The variation of the shifts (in the along-track direction) with latitude also depends on the 507 

situation (Figs. 8j-l). The magnitudes of shifts with larger latitude (larger than 45°) are generally 508 

greater than those with smaller latitude (less than 40°) on the NOAA-17 (Fig. 8j) and MetOp-509 

B scene (Fig. 8l). This is not visible for the MetOp-A scene (Fig. 8k), where the shifts exhibit 510 

almost no change with latitude.  This can be attributed to the fact that the clock drift errors are 511 

corrected more thoroughly for MetOp-A satellite than NOAA-17 and MetOp-B satellites. 512 

Furthermore, the MetOp satellites have an on-board stabilization to keep them in the right 513 

position and orientation in orbit compared to the NOAA satellites. 514 

5 Conclusions 515 

The geometric accuracy of satellite data is crucial for most applications as geometric 516 

inaccuracy can bias the obtained results. Therefore, the assessment of the geolocation accuracy 517 

is important to provide satellite data of high quality enabling successful applications. In this 518 

study, a correlation-based patch matching method was proposed to characterize and quantify 519 

the AVHRR GAC geo-location accuracy. This method presented here yields significant 520 

advantages over existing approaches and enables achieving a subpixel geo-positioning accuracy 521 

of coarse resolution scenes. It is free from the impact of false detection due to the influence of 522 

mixed pixels, not limited to a certain landmark (e. g. shoreline) and therefore enables a more 523 

comprehensive geometric assessment. This method was utilized to characterize the geolocation 524 

accuracy of AVHRR GAC scenes from NOAA-17, MetOp-A, and MetOp-B satellites. 525 

The study is based on several ROIs comprising numerous patches over different land cover 526 

types, latitudes, and topographies. The scenes from these satellites all present West shifts in the 527 

across-track direction, with an average shift of -1.69 km and a StdDev of 1.32 km for NOAA-528 

17, -1.9 km and 1.1 km respectively for MetOp-A, and -2.56 km and 2.19 km respectively for 529 

MetOp-B. In regard to the shifts in the along-track direction, NOAA-17 generally shows South 530 

shifts with an average of -0.7 km and a StdDev of 1.01 km. By contrast, the MetOp-B mainly 531 

present North shifts with an average of 0.96 km and a StdDev of 1.70 km. The MetOp-A scene 532 

shows a distinct advantage over NOAA-17 and MetOp-B in the along-track direction without 533 

obvious shifts, indicated by the average of -0.02 km and a StdDev of 0.79 km. Generally, the 534 

MetOp-B scene is inferior to NOAA-17 and MetOp-A scenes, with larger shifts and 535 

uncertainties in both directions. Despite the variation of shifts due to various factors (e. g. SatZ, 536 

topography), more than 90 percent of the AVHRR GAC data across-track errors are within ±537 

3 km for NOAA-17 and MetOp-A, and ±5.5 km for MetOp-B. Along-track errors are within 538 

±2 km for NOAA-17, ±1 km for MetOp-A, and ±3 km for MetOp-B for more than 90 539 

percent of the test data. It is important to note that since these satellites show different shifts, 540 
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using the combined data from NOAA-17 and MetOp will result in additional uncertainty in 541 

time series applications.  542 

From the results above, it can be found that the geolocation accuracy in the along-track 543 

direction is always higher and with less uncertainties than the across-track direction, which is 544 

consistent with previous related studies. This is understandable since the GAC dataset from the 545 

ESA cloud CCI project has been corrected for clock drift errors, but has no ortho-correction, 546 

which is not feasible due to the onboard sampling characteristics. SatZ plays a decisive role in 547 

determining the magnitude as well as the uncertainty of the shifts in the across-track direction. 548 

Larger SatZ generally induce greater shifts and uncertainties in this direction. The combined 549 

effect of SatZ and topography on geolocation accuracy in the across-track direction has also 550 

been shown. And significant terrain effects appear only in the case of large SatZ (>40° for this 551 

study). It is important to note that the effect of SatZ on the magnitude and uncertainty of shifts 552 

in the along-track direction is not negligible. But this effect is likely to be intertwined with other 553 

factors. The impact of longitude on the shifts in the across-track direction is equivalent to that 554 

of SatZ, while the effect of latitude is related to the degree of how the clock drift errors are 555 

corrected. It was found that the clock drift errors are more thoroughly corrected for MetOp-A 556 

than NOAA-17 and MetOp-B. 557 

Although this assessment was only conducted for a single scene of each satellite, it 558 

provides an important preliminary geolocation assessment for AVHRR GAC data. It is a first 559 

step towards a more precise geolocation and thus improves application of coarse-resolution 560 

satellite data. For instance, it identifies the threshold of SatZ under which the GAC data should 561 

be preferred in applications. Furthermore, the CPMM geolocation assessment method proposed 562 

by this study is also applicable to other coarse-resolution satellite data. 563 
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