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Abstract: AVHRR Global Area Coverage (GAC) data provide daily global coverage of 9 

the Earth, which are widely used for global environmental and climate studies. However, their 10 

geolocation accuracy has not been comprehensively evaluated due to the difficulty caused by 11 

onboard resampling and the resulting coarse resolution, which hampers their usefulness in 12 

various applications. In this study, a Correlation-based Patch Matching Method (CPMM) was 13 

proposed to characterize and quantify the geo-location accuracy at the subpixel level for 14 

satellite data with coarse resolution, such as AVHRR GAC dataset. This method is neither 15 

limited to landmarks nor suffers from errors caused by false detection due to the effect of mixed 16 

pixels caused by a coarse spatial resolution, and thus enables a more robust and comprehensive 17 

geometric assessment than existing approaches. Data of NOAA-17, MetOp-A, and MetOp-B 18 

satellites were selected to test the geocoding accuracy. The three satellites predominately 19 

present West shifts in the across-track direction, with average values of  -1.69 km, -1.9 km, -20 

2.56 km and standard deviations of 1.32 km, 1.1 km, 2.19 km for NOAA-17, MetOp-A, and 21 

MetOp-B, respectively. The large shifts and uncertainties are partly induced by the larger 22 

satellite zenith angles (SatZ) and partly due to the terrain effect, which is related to SatZ and 23 

becomes apparent in the case of large SatZ. It is thus suggested that GAC data with SatZ less 24 

than 40° should be preferred in applications. The along-track geolocation accuracy is clearly 25 

improved compared to the across-track direction, with average shifts of -0.7 km, -0.02 km, 0.96 26 

km and standard deviations of 1.01 km, 0.79 km, 1.70 km for NOAA-17, MetOp-A, and 27 

MetOp-B, respectively. The data can be accessed from http://www.esa-cloud-cci.org/ (Stengel 28 

et al., 2017) and https://ladsweb.modaps.eosdis.nasa.gov/ (Didan, 2015). 29 

1 Introduction 30 

Advanced Very High Resolution Radiometer (AVHRR) data provide valuable data sources 31 

with a near daily global coverage to support a broad range of environmental monitoring 32 

researches, including weather forecasting, climate change, ocean dynamics, atmospheric 33 
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soundings, land cover monitoring, search and rescue, forest fire detection, and many other 34 

applications (Van et al., 2008). The unique advantage of AVHRR sensors is their long history 35 

dating back to the 1980s and thus enabling long-term analyses at climate-relevant time scales 36 

that cannot be covered by other satellites. However, AVHRR data are rarely used at the full 37 

spatial resolution for global monitoring due to the limited data availability (Pouliot et al., 2009; 38 

Fontana et al., 2009). Instead, the Global Area Coverage (GAC) AVHRR dataset with a reduced 39 

spatial resolution is generally employed in long-term studies at a global or regional perspective 40 

(Hori et al., 2017; Delbart et al., 2006; Stöckli et al., 2004; Moulin et al., 1997).  41 

However, there are several known problems with the geo-location of AVHRR GAC data, 42 

which have a profound impact on their application.  (1) The drift of the spacecraft clock results 43 

in errors in the along-track direction (Devasthale et al., 2016). Generally, an uncertainty of 1 44 

second approximately induces an error of 8 km in this direction. (2) Satellite orientation and 45 

position uncertainties influence the projection of the satellite geometry to the ground, which 46 

leads to errors in both along-track and across-track directions. (3) Earth surface elevation 47 

aggravates distortions in the across-track direction (Fontana et al., 2009). Without navigation 48 

corrections, the spatial misplacement of the GAC scene caused by these factors can be up to 49 

25-30 km occasionally (Devasthale et al., 2016). 50 

For geocoding of AVHRR data, a two-step approach is usually used: 1) geocoding based 51 

on orbit model, ephemeris data, and time of onboard clock (Van et al., 2008), achieving an 52 

accuracy within 3-5 km depending on the accuracy of orbit parameters and model (Khlopenkov 53 

et al., 2010); 2) using any kind of ground control points (GCPs) (e.g., road or river intersections, 54 

coastal lines) to improve geocoding (Takagi, 2004; Van et al., 2008). Additionally, in order to 55 

eliminate the ortho-shift caused by elevations, an orthorectification would be needed (Aguilar 56 

et al., 2013; Khlopenkov et al., 2010). The dataset used in this study is from the ESA (European 57 

Space Agency) cloud CCI (Cloud Climate Change Initiative) project, which has corrected clock 58 

drift errors by coregistration of AVHRR GAC data with a reference dataset, and showed 59 

improved navigation by fitting the data to coastal lines.  60 

Unlike the Local Area Coverage (LAC) data with a full spatial resolution of AVHRR, GAC 61 

data are sampled on board the satellite in real-time to generate coarser resolution data (Kidwell, 62 

1998). This is achieved by averaging values from four out of five pixel samples along a scan 63 

line and eliminating two out of three scan lines, resulting in a spatial resolution of 1.1 km × 4 64 

km along the scan line with a 3 km distance between pixels across the scan line. Therefore, the 65 

nominal size of a GAC pixel is 3 km × 4.4 km. It is important to note that the spatial resolution 66 

of GAC data also depends on the satellite zenith angle (SatZ). Because of the large swath width, 67 

the spatial resolution of LAC decreases to 2.4km by 6.9 km at the edge of the swath (D'Souza 68 

et al., 1994). With the selection process for GAC, the GAC resolution is also much worse than 69 

4 km. Furthermore, the onboard resampling process of GAC data makes the orthorectification 70 

not feasible, which results in lowering of geolocation accuracy in the across-track direction. 71 

The final quality of AVHRR GAC data has not been quantified and we, therefore, make an 72 



attempt to assess their geolocation accuracy, particularly over terrain areas.  73 

There are generally three approaches to assess the non-systematic geometric errors of 74 

satellite images: (1) the coastline crossing method (CCM) which detects the coastline in the 75 

along-track and across-track directions through a cubic polynomial fitting (Hoffman et al., 76 

1987); (2) the land-sea fraction method (LFM) which develops a linear radiance model as a 77 

function of land-sea fraction, land and sea radiance, and then finds the minimum difference 78 

between model-simulated and instrument-observed radiance by shifting the pixels in along-79 

track and across-track directions (Bennartz, 1999); (3) the coregistration method which 80 

computes the difference or similarity relative to a reference image (Khlopenkov et al., 2010). 81 

The abilities of these three methods in characterizing the geometric errors are limited and 82 

dependent on different, method-dependent factors. Whereas, the CCM is subject to the structure 83 

of coastline, and the LFM depends on the accuracy of the land-sea model but shows advantages 84 

on complex coastlines (Han et al., 2016). The coregistration method is usually applied to high-85 

resolution visible and infrared images (Wang et al., 2013; Wolfe et al., 2013) as it relies on 86 

individual objects/landmarks in both datasets. However, when it comes to coarse resolution 87 

data with several kilometers’ pixel size, the main difficulties arise from false detection due to 88 

the effect of mixed pixels, which hampers the application of the existing methods. An approach 89 

assessing the geolocation accuracy of coarse resolution satellite data is thus strongly needed. 90 

The geometric accuracy is important as even small geometric errors can lead to significant 91 

noises on the retrieval of surface parameters, such as NDVI, LAI, and albedo, which mask the 92 

reality or bias the final results and conclusions (Khlopenkov et al., 2010; Arnold et al., 2010). 93 

For instance, anomalous NDVI dynamics during the regeneration phase of forest fire-burnt 94 

areas can be explained by the imprecise geolocation of the data set used (Alcaraz-Segura et al., 95 

2010). Therefore, it is critical to develop a rigorous geometric accuracy assessment method in 96 

order to ensure the effectiveness of AVHRR GAC data in the generation of climate data records 97 

(CDR) (Khlopenkov et al., 2010; Van et al., 2008). 98 

Based on the idea of the coregistration method, this study proposes a method named 99 

Correlation-based Patch Matching Method (CPMM), which is capable of quantifying the 100 

geometric accuracy of coarse resolution satellite data available as fundamental climate data 101 

records (FCDR) for global applications (Hollmann et al., 2013). We show the procedure based 102 

on AVHRR GAC data, which are compiled for the ESA CCI cloud project (Stengel et al., 2017) 103 

and are now also used for the ESA CCI+ snow project. The assessment is conducted at the sub-104 

pixel level and not affected by the mixed pixel problem. This method is tested using satellite 105 

data from NOAA-17, MetOp-A, and MetOp-B, respectively. Furthermore, the potential factors 106 

that cause geometric distortions are explored and discussed. Although the band-to-band 107 

registration (BBR) accuracy assessment is an important aspect for such multi-spectral images, 108 

it is not a focus of this study, since the BBR accuracy of AVHRR has been comprehensively 109 

evaluated by a previous study (Aksakal et al., 2015).  110 



2 Data and geographical regions of interest 111 

2.1 Satellite data 112 

AVHRR is a multipurpose imaging instrument aboard on the NOAA satellite series since 113 

1978 and the Meteorological Operational Satellites (MetOp) operated by EUMETSAT since 114 

2006, delivering daily information of the Earth in the visible, near-infrared, and thermal 115 

wavelengths. They provide observations from 4 to 6 spectral bands, depending on the 116 

generation of AVHRR sensors.  This study only focuses on the AVHRR GAC data observed by 117 

NOAA-17 (AVHRR-3 generation), MetOp-A, and MetOp-B. The spectral characteristics of the 118 

AVHRR sensors on board these three platforms are the same and summarized in Table 1. Since 119 

the spatial resolution of AVHRR GAC data is often considered to be 4 km (Fontana et al., 2009), 120 

the analysis in this study was conducted at the 4 km level using the data acquired on August 13, 121 

2003 for NOAA-17 and March 12, 2017 for MetOp-A and MetOp-B. 122 

Table 1. Spectral characteristics of AVHRR sensors 123 

Band Wavelength (µm) Application 

1 0.58–0.68 (VIS) Cloud mapping, vegetation and surface characterization 

2 0.72–1.00 (NIR) Vegetation mapping, water body detection 

3a* 1.58–1.64 (MIR) Snow and Ice classification 

3b* 3.55–3.93 (MIR) Cloud detection, Sea/Land surface temperature, 

4 10.30–11.30 (TIR) Cloud detection, Sea/Land surface temperature, 

5 11.50–12.50 (TIR) Cloud detection, Sea/Land surface temperature 

*Note: Channel 3a is only used continuously on NOAA-17 and MetOp-A. On-board MetOp-B channel 3a was only 124 

active during a limited time span. 125 

From a standpoint of geometric accuracy assessment, the reflectances in band 1 and 2 were 126 

employed in this study. However, these two bands are not only affected by the atmosphere but 127 

also by the earth surface anisotropy characterized by the bidirectional reflectance distribution 128 

function (BRDF) (Cihlar et al., 2004). Given the fact that BRDF effects can be reduced through 129 

the calculation of vegetation indices such as NDVI (Lee & Kaufman, 1986), the NDVI is 130 

employed in this study, which is derived from the reflectance in band 1 and 2 according to 131 

Equation (1). 132 
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                                                                     (1) 133 

where 1R  and 2R refer to the reflectance in band 1 and 2, respectively. It is important to note 134 

that during the process of generating NDVI, the atmospheric and BRDF corrections were not 135 

performed. But it is expected that such effects originating from these omissions are of minor 136 

influence, because the method of this study is based on correlation analysis and does not rely 137 



on absolute values of NDVI. Another advantage of using NDVI is that it has higher contrast 138 

between different land cover types, such as vegetation/no-vegetation, snow/no-snow, etc. 139 

Furthermore, in order to investigate the effect of off-nadir viewing angle on geometric accuracy, 140 

the SatZ data of AVHRR were also extracted. 141 

Ideally, the referenced data in geometric quality assessment should meet the required 142 

accuracy of 1/3 field of view (FOV) (WMO and UNEP, 2006), and also satisfy the accuracy 143 

requirement of an order of magnitude better than one-tenth of the image spatial resolution 144 

(Aksakal, 2013), which means 400 m for the AVHRR GAC data. The NDVI provided by 145 

MOD13A1 V006 product was introduced as a source of reference data to perform the geometric 146 

quality assessment, because the sub-pixel accuracy of MODIS product is sufficient to satisfy 147 

this requirement (Wolfe et al., 2002). The high geolocation accuracy of MODIS products was 148 

achieved by using the most advanced data processing system, which has updated the models of 149 

spacecraft and instrument orientation several times since launch. Consequently, the various 150 

geolocation biases resulted from instrument effects and sensor orientation are removed (Wolfe 151 

et al., 2002). The NDVI data with the date corresponding to that of AVHRR GAC data, were 152 

obtained from the Level-1 and Atmosphere Archive & Distribution System (LAADS) 153 

Distributed Active Archive Center (DAAC)  (https://ladsweb.modaps.eosdis.nasa.gov/) with 154 

the sinusoidal projection at a spatial resolution of 500 m and a temporal resolution of 16-day. 155 

The detailed description of the MOD13A1 V006 product can be found in Didan (2015).  156 

2.2 Geographical regions of interest 157 

The purpose of this study is not only to assess the geolocation accuracy of 4 km AVHRR 158 

GAC data, but also to explore the potential impact factors related to geolocation accuracy. 159 

Therefore, the investigations were made at different latitudes and longitudes, at different 160 

locations with different SatZ, for different land covers, as well as different topographies. The 161 

swaths covering parts of Europe (including the alpine mountain) and Africa were used since 162 

they fit the study needs (Fig. 1). Investigations were based on six regions of interest (ROI) as 163 

shown in Figs. 1 and 2. The ROIs from 1 to 6 enable us to investigate the geolocation accuracy 164 

at different SatZ, topography, as well as latitudes and longitudes. Their locations and extents 165 

are consistent for the scenes from NOAA-17 and MetOp-A (Fig. 1), which enables the 166 

comparison of geolocation accuracy between these two sensors. The size of ROI was attempted 167 

to be set as large as possible in order to get more significant and comprehensive results. On the 168 

other hand, areas covered by cloud and water have to be avoided, resulting in the different sizes 169 

of these ROIs. Half of the ROIs (ROIs 2, 4, 6) serve as a good example for a typical 170 

mountainous areas on Earth. The other half of ROIs (ROIs 1, 3, 5), on the other hand, mainly 171 

cover relatively flat areas. Since the NOAA-17 scene was almost unaffected by cloud, another 172 

ROI (ROI 7) was selected to check the geolocation accuracy at nadir. The MetOp-B scene was 173 

influenced by cloud but served as a good example to illustrate the combined effect of 174 

topography and large SatZ (Fig. 2). Although there are also 6 ROIs (ROIs (a-f)) selected, their 175 
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sizes and extents are totally different from the above two scenes.  In order to include the terrain 176 

area, two subsets were used (Figs. 2a and c). Each grid in the ROI represents the minimum unit 177 

(namely the patch) based on which we conduct the geometric quality analysis.  178 

 179 

Figure 1. The study area and the distribution of ROIs. (a) and (c) are the composite maps of bands 2-1-180 

1 of AVHRR GAC data on August 13, 2003 and March 12, 2017, respectively. (b) and (d) are their 181 

corresponding SatZ respectively, which is indicated by the color bar, with the white line representing 182 

small SatZ along the satellite path.  183 

 184 
Figure 2. The study area and the distribution of ROIs on March 12, 2017. (a) and (c) are the composite 185 

maps of bands 2-1-1 subset 1 and 2, respectively. (b) and (d) are their corresponding SatZ (indicated by 186 

the color bar), respectively. The white line in (d) represents small SatZ along the satellite path. 187 

3 Methodology 188 

The assessment was performed by comparing the AVHRR GAC scenes with geo-located 189 

reference data, i.e. MOD13A1 (V006). An approach named Correlation-based Patch Matching 190 

Method (CPMM) is proposed to find the best match between small image patches taken from 191 

the reference images and the AVHRR GAC images. This method is expected to be more suitable 192 

for the geometric accuracy assessment of coarse resolution images than the current methods, 193 

i.e. the CCM, LFM, and co-registration using shorelines. The framework of CPMM is shown 194 

in Fig. 3, and the detailed description of this method is provided below.  195 
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 196 

Figure 3. Flowchart of the Correlation-based Patch Matching Method (CPMM). 197 

3.1 Satellite data processing 198 

The AVHRR GAC data set is stored in a Network Common Data Format (NetCDF), with 199 

latitude and longitude assigned to each pixel. In order to achieve a higher accuracy of image 200 

matching, the data need to be reprojected. The AVHRR GAC scene was reprojected into the 201 

Lambert Conformal Conic (LCC) projection by building the Geographic Lookup Table (GLT) 202 

using the latitude and longitude data in ENVI. The spatial resolution of the AVHRR GAC map 203 

in the LCC projection is 4 km. Based on the reprojected data, the NDVI was calculated using 204 

the band combinations as indicated by Eq. (1). Similarly, the NDVI band of MOD13A1 in the 205 

HDF format was extracted and converted to LCC projection from its raw sinusoidal projection 206 

using the MODIS Reprojection Tool (MRT). The nearest neighbor (NN) resampling scheme 207 

was employed in this procedure. The spatial resolution of the MODIS NDVI in the LCC 208 

projection is 500 m. Thus, the geometric assessment is performed at the 4 km resolution of 209 

AVHRR NDVI based on the 500 m MODIS NDVI data. 210 

3.2 Patch matching and geometric assessment 211 

In the process of matching the AVHRR GAC data with reference MODIS data, a patch 212 

size of 7 × 7 AVHRR pixels (corresponding to approximately 28 km × 28 km) was used.  These 213 

patches were distributed in each ROI as shown in Figs. 1 and 2, with an interval of 4 pixels in 214 

the along-track (Y-) and across-track (X-) direction. The sizes of the patch and interval were 215 

determined based on the following aspects: the size of the patch should contain enough pixels 216 

to support a robust correlation estimation, but at the same time, should not be too large in order 217 



to investigate the potential influencing factors related to the geometric accuracy, and get enough 218 

results from these patches to attain a more significant and comprehensive conclusion. Similarly, 219 

the size of the interval should enable the disparity between different patches on one hand and 220 

on the other hand a large number of patches within the extent of each ROI. The chosen size has 221 

proven to be most ideal for these criteria during the test of different patch size. 222 

For each patch in the ROI, the AVHRR GAC data within the patch were extracted. Then 223 

the patch was shifted in the Y- and X-direction as indicated by the arrows in Fig. 3. Shifts were 224 

conducted stepwise in order to achieve sub-pixel accuracy, beginning with only 500 m and 225 

adding up to 8 km (i.e., ± 2 pixels) at a step of 500 m (equivalent to the MODIS pixel size) in 226 

any direction of Y- and X-combination. Consequently, 33×33 combinations of X- and Y-shifts 227 

have been simulated. For each simulated shift, the MODIS NDVI pixels within the extent of 228 

the patch were extracted and aggregated to 4 km by spatial averaging.  Afterwards, the 229 

correlation between the 4 km rescaled MODIS NDVI and the 4 km AVHRR NDVI was 230 

calculated for each shift in X- and Y-direction. The displacement of one patch was indicated by 231 

the shift combination with the best correlation, which means the geolocation accuracy of the 232 

patch. In this way, the geolocation errors were transformed into the across-track and along-track 233 

directions at the sub-pixel level for correlation with possible error sources. 234 

It is expected that the results from each patch are different. Therefore, the general accuracy 235 

of each ROI was determined by summarizing the measured shifts of each respective patch 236 

statistically. Here, the histogram was employed to show the distribution of geometric errors in 237 

the across-track and along-track directions. And the quantitative indexes, such as the number 238 

of patches, their mean and standard errors, were calculated.  The averaging is expected to reduce 239 

the uncertainties caused by random factors and produce accurate shift measurement estimates 240 

(Bicheron et al., 2011). The final shifts of the scene were calculated by averaging the measured 241 

shifts of all patches on the scene. 242 

3.3 Influence factor 243 

The influence of potential variables on the geometric accuracy was studied, including 244 

SatZ, topography, latitudes, and longitude. To achieve this, the information of these factors were 245 

also extracted for each patch on the scene. The geometric errors induced by SatZ were 246 

highlighted by checking the relationship between errors and SatZ.  The effect of topography 247 

was investigated by checking the relationship of geometric errors in the across-track direction 248 

over terrain areas compared to relatively flat areas. The effect of latitudes and longitude was 249 

determined by analyzing their relationship with measured shifts on the along-track and across-250 

track directions, respectively. 251 

4 Results and discussions 252 

Fig. 4 shows the correlation distribution over the 33 × 33 simulated shifted cases within ± 253 

8 km range at a step change of 500 m. Here, only one patch is extracted from each respective 254 



scene to illustrate the results. Each grid in Fig. 4 represents a shift combination case, which is 255 

indicated by the location of the grid away from the center. The center of each subfigure depicts 256 

the case in which the location of the patch on the reference scene is exactly overlapped with 257 

that on the AVHRR scene. The results are visualized for one example showing the spatial 258 

distribution of correlation between the MODIS reference scene and the AVHRR data (Fig. 4). 259 

The color coding indicates a high correlation in dark green and reddish-white colors indicate 260 

low correlation values. It can be seen that the correlation appears a maximum at a certain 261 

location, and then becomes gradually smaller with increasing distance from that location. The 262 

location with the maximum correlation indicates the actual displacement of this patch. Then the 263 

geolocation errors can be transferred into distances in kilometer (km) by multiplying the 264 

location of the grid with 500 m. An almost perfect match is shown in Fig. 4b, where the dark 265 

green area is nearly centered at the coordinates (0, 0). From Fig. 4a, it can be found that the 266 

patch on the NOAA-17 scene shows geolocation errors of -1 km and 0 km in the along-track 267 

and across-track directions, respectively. The Fig. 4b indicates a geolocation error of 0 km and 268 

-0.5 km in the along-track and across-track directions respectively for the patch on the MetOp-269 

A scene. And Fig. 4c indicates that the patch on the MetOp-B scene shows a geometric error of 270 

2 km in the along-track direction and -5.5 km in the across-track direction. However, these 271 

figures show only the results of one single patch. The final results are based on a large number 272 

of samples to be statistically significant. 273 

 274 

Figure 4. Variations of the correlation with respect to each shift combination. Only the results of one 275 

patch from the NOAA-17 (left), MetOp-A (middle), and MetOp-B (right) scenes are shown for 276 

conciseness. 277 

4.1 Geocoding accuracy 278 

The geolocation shifts of each patch are slightly different as shown in Figs. 5-7. The +y 279 

indicates a shift to the North and +x indicates a shift to the East (minus sign indicates opposite 280 

directions). The statistical indicators such as the mean value of shift (Mean), the standard 281 

deviation of shift (StdDev) and the number of patches (N), are derived from the estimated shift 282 

values of all patches within the extent of the corresponding ROI.  283 

As shown in Fig. 5, it can be seen that the scene of NOAA-17 generally shows West shifts 284 



in the across-track direction, since the majority of patches in all ROIs show negative shifts. 285 

Nevertheless, the magnitudes of shifts for different ROIs vary from one to another. ROI 2 shows 286 

the smallest shift with a mean value of -0.76 km, with most shifts concentrated around -1 (Fig. 287 

5b). The ROIs 6 and 5 indicate the second smallest shifts, with still weak magnitudes of -1.33   288 

and -1.35, respectively. Most of their shifts are distributed between -2 and 0 (Figs. 5f and e). 289 

The ROIs 7, 3, 1, 4 show slightly larger mean shifts but are still with the magnitudes of less 290 

than 2.5 km. These results are unexpected, because the ROIs (ROIs 2 and 6) over terrain areas 291 

are with smaller shifts than those (ROIs 7, 3, 1, 4) over relatively flat areas in the across-track 292 

direction. One possible reason is that the SatZ for ROIs 2 and 6 are not large (less than 40°) 293 

(Fig. 1b) so that the terrain effect on geolocation accuracy is counterbalanced by the small SatZ. 294 

This also indicates that the influence of small SatZ may be stronger than the terrain effect. But 295 

it is surprising that the ROI 7 (Fig. 5g), which is located at the nadir area (Fig. 1b), shows even 296 

larger shifts than other ROIs (ROIs 2, 6 and 5) with relatively larger SatZ. On the other hand, 297 

ROI 7 shows the most stable behavior, indicated by the smallest StdDev of 0.77. Other ROIs 298 

present relatively large, but still acceptable variations with StdDev ranging from 0.97 to 1.41 299 

(Figs. 5a-g).  300 

When combining the results of all ROIs together (Fig. 5h), the shifts in the across-track 301 

direction generally follow an approximately normal distribution with a mean value of -1.69 and 302 

a standard deviation of 1.32. Nearly 91% of the shifts are within the range of ±3 km, and the 303 

great majority (97%) of the shifts lay within a range of ±4 km. The number of patches (N=759) 304 

is assumed to be sufficient to ensure reliability and robustness of the results and the reduction 305 

of the influence of random factors. 306 

 307 

Figure 5. The distribution of shifts in the across-track (X, represented by red histogram) and along-track 308 

(Y, denoted as blue histogram) directions over different regions for NOAA-17 scene. The unit of the 309 

shift is km. For histograms, the heights of the bars indicate the density. In this case, the area of each bar 310 

is the relative frequency, and the total area of the histogram is equal to 1. 311 



The shifts in the along-track direction are mainly negative throughout these ROIs, 312 

indicating that the NOAA-17 scene is dominated by South shifts in the along-track direction. 313 

Nevertheless, a considerable number of patches also show slight North shifts over ROIs 1, 3 314 

and 4 (Figs. 5a, c and d), where the shifts are distributed around 0 with mean values of -0.18, -315 

0.28 and -0.29, respectively. These shifts are generally small in these three regions given that 316 

the maximum shift is no more than 3.5 km (Table 2). In contrast, the ROIs 2, 5, 6 and 7 present 317 

systematic shifts to the South, which are mostly distributed within the  range of -2 to 0 km, with 318 

mean values of -0.83, -1.55, -0.88 and -1.64, respectively (Figs. 5b, e, f and g). The large 319 

differences in the distribution of shifts over different ROIs demonstrate that the shifts in the 320 

along-track direction are dependent on the region. It is interesting to find that ROI 7 still shows 321 

the smallest StdDev of 0.59 when excluding ROI 5 due to its very small number of patches. 322 

This indicates that ROI 7 also shows the smallest uncertainty in the along-track direction. And 323 

this may be associated with its smallest SatZ among all investigated ROIs. When combining 324 

the results of different ROIs (Fig. 5h), the overall shifts in the along-track direction 325 

approximately obey a normal distribution, with an average of -0.70 and a standard deviation of 326 

1.01. Nearly 70% of them are within the range of ±1 km, and only a small part (1.5%) show 327 

values larger than 3 km.  328 

Furthermore, it can be stated that the distribution of shifts in the along-track direction is 329 

less widely spread than that in the across-track direction, demonstrating the smaller uncertainty 330 

of geocoding in the along-track direction, as indicated by the smaller StdDev values throughout 331 

these ROIs (Table 2). Moreover, the geolocation errors in the across-track direction are greater 332 

than the along-track direction (Fig. 5), which is expected due to the applied clock drift 333 

correction. 334 

Table 2. Summary of the results for the scene of NOAA-17. The unit of the shift is km.  335 

ROI Elevation(m) Min(X) Max(X) Mean(X) StdDev(X) Min(Y) Max(Y) Mean(Y) StdDev(Y) N 

1 481 -5 7 -2.18  1.37  -3.5 3.5 -0.18  0.85  170 

2 1436 -3.5 5 -0.76  1.19  -4.5 6 -0.83  1.18  115 

3 518 -5 1.5 -1.93  1.14  -2.5 1.5 -0.28  0.67  144 

4 436 -5 -1 -2.49  1.23  -2.5 1 -0.29  0.80  36 

5 543 -3 0 -1.35  0.97  -2 -1 -1.55  0.28  10 

6 1094 -7.5 4 -1.33  1.41  -4 3.5 -0.88  1.01  163 

7 440 -4.5 0 -1.88  0.77  -3.5 0 -1.64  0.59  121 

Overall / -7.5 7 -1.69  1.32  -4.5 6 -0.70  1.01  759 

Similar to the results of NOAA-17, MetOp-A scene mainly present West shifts in the 336 

across-track direction, indicated by the widely distributed negative values throughout these 337 

ROIs (Figs. 6a-f). These shifts are basically concentrated around -2, however, the ROIs 2 and 338 

6 located in the terrain areas, show smaller average shifts (-1.68 and -1.82, respectively) than 339 

those of ROIs 1 and 3 (-2.25 and -1.94, respectively) over the relatively flat areas. This is 340 

understandable since the ROIs 2 and 6 are closer to the nadir area (Fig. 1d). And this align with 341 

the results from NOAA-17, where the influence of SatZ is also stronger than the terrain effect.  342 

Although the ROIs 5 and 4 show the smallest average shifts (-0.72 and -1.45, respectively) in 343 



the across-track direction, their results may be biased due to the smaller number of analyzed 344 

patches. It is interesting to find that ROI 3, which is almost located in the nadir area, still shows 345 

the least uncertainty, indicated by the smallest StdDev of 0.67. Furthermore, all ROIs close to 346 

the nadir area are characterized by small StdDevs (0.8 and 1.03 for ROIs 2 and 6, respectively) 347 

compared to ROIs located further away from the nadir area (1.29, 2.05, 1.37 for ROIs 1, 4, 5, 348 

respectively).  These results demonstrate that SatZ plays a crucial role in determining the 349 

uncertainty of the shifts in the across-track direction. This conclusion also agrees with previous 350 

research conducted by Aguilar et al. (2013). When combining the results of all ROIs (Fig. 6g), 351 

the shifts approximately follow a normal distribution, with an average of -1.90 and a standard 352 

deviation of 1.1. Most of the patches (94%) are within the range of ±3 km, and nearly 98% of 353 

them are with shifts less than ±4 km. 354 

Since ROIs 1-6 on the MetOp-A scene are identical to those on NOAA-17 scene in terms 355 

of spatial extents, their shifts in the across-track direction are generally comparable. When 356 

excluding the results of ROIs 4 and 5, the ROIs on the MetOp-A scene generally show larger 357 

average shifts but smaller StdDevs than the NOAA-17 scene in the across-track direction (see 358 

Table 2 and 3).  However, it does not necessarily mean that the MetOp-A scene has a smaller 359 

uncertainty than NOAA-17 scene in the across-track direction, because the ROIs on the MetOp-360 

A scene are slightly closer to the nadir area than those on the NOAA-17 scene (Figs. 1b and d). 361 

Given the larger SatZ and the smaller average shifts of NOAA-17 scene, it is reasonable to 362 

conclude that the NOAA-17 scene shows a slightly better geolocation accuracy than the 363 

MetOp-A scene in the across-track direction. 364 

 365 

Figure 6. The distribution of shifts in the across-track (X, represented by red histogram) and along-track 366 

(Y, denoted as blue histogram) directions over different regions for MetOp-A scene. The unit of the shift 367 

is km. For histograms, density instead of frequency is labelled in the ordinate. 368 

Looking at the shifts in the along-track direction, the MetOp-A scene does not show strong 369 



systematic North or South shifts,  but rather a general distribution of the shifts around 0 (Figs. 370 

6a-f). The shifts are generally small within a range of ±1 km, with StdDevs less than 0.83 371 

except for ROI 4. Furthermore, ROIs 2, 3 and 6 that are located close to the nadir area exhibit 372 

smaller StdDevs than those located further away from the nadir area when excluding ROI 5 due 373 

to its very small number of patches. This further indicates that SatZ also determines the 374 

uncertainty of shifts in the along-track direction. When combining the results of all ROIs (Fig. 375 

6g), the shifts also display a nearly normal distribution, with an average of -0.02 and a StdDev 376 

of 0.79. Nearly 94% of the shifts are within the range of ±1 km and almost all of them (98%) 377 

are distributed within the range of ±2 km. It can be found that the shifts in the along-track 378 

direction are obviously smaller and more centralized than those in the across-track direction. 379 

This can be further confirmed by the consistently smaller StdDev values in the along-track 380 

direction than those in the across-track direction as shown in Table 3. 381 

Table 3. Summary of the results for the scene of MetOp-A. The unit of the shift is km. 382 

ROI Elevation(m) Min(X) Max(X) Mean(X) StdDev(X) Min(Y) Max(Y) Mean(Y) StdDev(Y) N 

1 479 -7 4 -2.25  1.29  -3.5 4.5 0.04  0.83  170 

2 1440 -4 0 -1.68  0.80  -1.5 2 -0.17  0.58  117 

3 518 -4 -0.5 -1.94  0.67  -1 2 0.09  0.51  144 

4 436 -5 5 -1.45  2.05  -4.5 6 0.07  1.99  29 

5 540 -2.5 1.5 -0.72  1.37  -0.5 1 0.22  0.44  9 

6 1095 -4.5 3 -1.82  1.03  -3.5 2.5 -0.09  0.69  163 

Overall / -7 5 -1.90  1.10  -4.5 6 -0.02  0.79  632 

By comparing Figs. 6a-f with Figs. 5a-f, it becomes obvious that large differences exist 383 

between the shifts in the along-track direction of MetOp-A and NOAA-17 scenes. In the first 384 

place, systematic South shifts occur on the NOAA-17 scene but not on the MetOp-A scene. 385 

Secondly, the magnitudes of shifts on the MetOp-A scene are generally smaller than those on 386 

the NOAA-17 scene, as the former are concentrated around 0 while the latter are concentrated 387 

around -1. Thirdly, the distribution of shifts is more centralized for the MetOp-A scene 388 

compared to the NOAA-17 scene, except for ROIs 4 and 5. This can further be proved by the 389 

smaller StdDev values for MetOp-A (Table 3) than those for NOAA-17 (Table 2). Therefore, it 390 

can be concluded that the MetOp-A scene shows a better geolocation accuracy and less 391 

uncertainty than the NOAA-17 scene in the along-track direction. 392 

Similar to the scenes of NOAA-17 and MetOp-A, the MetOp-B scene generally shows 393 

West shifts in the across-track direction, indicated by the predominant occurrence of negative 394 

values (Figs. 7a-f). Nevertheless, unlike the results for the terrain areas on NOAA-17 and 395 

MetOp-A scenes, the ROI c located in the terrain area on the MetOp-B scene (Fig. 2a), shows 396 

the largest shifts throughout these ROIs with an average of -4.69 in the across-track direction. 397 

Furthermore, the magnitudes of these shifts are characterized by even larger values than 6 km 398 

(Fig. 7c).  This is most probably caused by the combined effect of topography and large SatZ 399 

(Fig. 2b). Significant terrain effects appear only in the case of SatZ larger than 40° as shown in 400 



Fig. 2b. This finding agrees with the previous study by Fontana et al. (2009), who demonstrated 401 

that the errors in across-track direction result from the intertwined effects of observation 402 

geometry and terrain elevation. Nevertheless, ROI e that is located in the nadir area (Fig. 2d), 403 

shows the smallest average shift of -1.29 but the largest standard deviation of 2.51 (Fig. 7e). 404 

The largest StdDev is attributed to the fact that a considerable number of shifts exhibit values 405 

of ±6 km. As shown in Fig. 2c, the main reason for these large and unstable shifts may be the 406 

presence of thin clouds or cloud shadows in this region. By comparing the results of ROIs d 407 

and e with smaller SatZ against ROIs b, c, f with larger SatZ (Figs. 2b and d), it can be stated 408 

that the shifts with smaller SatZ are generally weaker than those with larger SatZ (Figs. 7b-f). 409 

When combining the results of all ROIs (Fig. 7g), the MetOp-B scene shows an average shift 410 

of -2.56 km with a standard deviation of 2.19 in the across-track direction. Only 63% of the 411 

shifts are distributed within the range of ±3 km, and the percentage raises up to 92% within 412 

the range of ±5.5 km.  413 

 414 

Figure 7. The distribution of shifts in the across-track (X, represented by red histogram) and along-track 415 

(Y, denoted as blue histogram) directions over different regions for MetOp-B scene. The unit of the shift 416 

is km. For histograms, density instead of frequency is labelled in the ordinate. 417 

Since the extent of the ROIs in the MetOp-B scene are not consistent with those on NOAA-418 

17 and MetOp-A scenes, only their overall performances in the across-track direction are 419 

compared here. By comparing Fig. 7g with Fig. 6g and Fig. 5h, it is obvious that the MetOp-B 420 

scene shows larger shifts and greater uncertainties than NOAA-17 and MetOp-A scenes in the 421 

across-track direction. This is partly due to the larger range of SatZ of these ROIs and partly 422 

due to the worse geolocation accuracy of the MetOp-B scene in the across-track direction. 423 

The MetOp-B scene is dominated by North shifts in the along-track direction, indicated 424 

by the predominantly positive shift values (Figs. 7a-f). It is interesting to find that ROI c, which 425 

is located at terrain area and with large SatZ, shows the largest shifts with an average of 1.85 426 



km in the along-track direction. Given that terrain does not affect the geolocation accuracy in 427 

the along-track direction, the main cause of the largest shift may be the largest SatZ of ROI c 428 

among these ROIs. Furthermore, by comparing the results of ROI d and e with those of ROI b, 429 

c, f, it can be found the shifts of ROIs with smaller SatZ are more concentrated around 0 (Figs. 430 

7d and e), while the shifts of ROIs with larger SatZ are more widely spread (Figs. 7b, c, and f). 431 

This manifests that the effect of large SatZ on shifts in the along-track direction cannot be 432 

neglected. When combining the results of all ROIs, the MetOp-B scene shows shifts with an 433 

average of 0.96 and a standard deviation of 1.7. Only 52% of the shifts are distributed within 434 

the range of ±1 km, and the percentage raises up to 92% for the range of ±3 km. 435 

It can be seen that the shifts in the along-track direction are still significantly smaller than 436 

those in the across-track direction. Furthermore, the uncertainties of the shifts in the along-track 437 

direction are generally smaller than those in the across-track direction, when excluding the 438 

results of ROI a due to its limited number of patches (Table 4). This further verifies that after 439 

removing clock drift errors, the geolocation errors in the along-track direction are generally 440 

more accurate and with less uncertainties than the across-track direction. 441 

Table 4. Summary of the results for the scene of MetOp-B. The unit of the shift is km. 442 

ROI Elevation(m) Min(X) Max(X) Mean(X) StdDev(X) Min(Y) Max(Y) Mean(Y) StdDev(Y) N 

a 236 -5 1 -2.15  1.43  0 7 0.98  1.64  20 

b 566 -7.5 1 -2.85  1.47  -3.5 3.5 1.31  1.09  81 

c 1677 -7.5 1 -4.69  1.65  -1.5 5 1.85  1.05  96 

d 406 -4 5.5 -1.55  1.26  -4 5 0.47  1.09  103 

e 729 -6 7.5 -1.29  2.51  -7.5 7.5 0.50  2.53  96 

f 420 -7.5 6.5 -2.64  2.08  -7 4.5 0.68  1.80  73 

Overall / -7.5 7.5 -2.56  2.19  -7.5 7.5 0.96  1.70  469 

The comparison of Fig. 7g with Fig. 6g and Fig. 5h reveals that the MetOp-B scene is 443 

significantly inferior to the MetOp-A scene in terms of the geolocation accuracy in the along-444 

track direction, with the former being concentrated around 1 and the latter around 0. 445 

Furthermore, the uncertainty of the shifts of the MetOp-B scene (StdDev=1.7) is much larger 446 

than that of the MetOp-A scene (StdDev=0.79). As for the performance of the MetOp-B scene 447 

relative to the NOAA-17 scene, it can be found that they are comparable with regard to the 448 

magnitude as well as the distribution of the shifts in the along-track direction. However, the 449 

MetOp-B scene shows larger uncertainties than NOAA-17.  450 

From the results above, it can be concluded that NOAA-17 and MetOp-A scenes show 451 

distinct advantages over the MetOp-B scene in both directions. However, the NOAA-17 scene 452 

is slightly better than the MetOp-A scene in the across-track direction, with average shifts of -453 

1.69 for NOAA-17 and -1.90 for MetOp-A, which are both greatly lower than  for MetOp-B (-454 

2.56). But the MetOp-A scene shows a distinct advantage over NOAA-17 in the along-track 455 

direction, with an average shift of -0.02 for MetOp-A and -0.7 for NOAA-17, which are both 456 

lower than for MetOp-B (0.96). In addition to the magnitudes of their shifts, the MetOp-B scene 457 

also shows larger uncertainties than NOAA-17 and MetOp-A scenes in both directions. 458 



4.2 The potential influence factors 459 

From the above results, it is known that SatZ plays an important role in determining the 460 

geolocation accuracy of the satellite scene. To investigate how and to what extent it influences 461 

the geolocation accuracy, Fig. 8 displays the shifts in both directions as a function of SatZ for 462 

all three satellites. Furthermore, the influences of latitude and longitude on geolocation 463 

accuracy are also explored.  464 

As shown in Figs. 8a-c, it can be seen that the shifts in the across-track direction vary 465 

considerably for all SatZ, and this is particularly evident in the results of MetOp-B (Fig. 8c). 466 

This demonstrates that besides the SatZ effects, the geolocation accuracy is also influenced by 467 

other factors. Furthermore, the spread at each fixed SatZ tends to become larger at larger SatZ 468 

(larger than 20°) (Figs. 8a-b). The large variability of MetOp-B scene shifts at small SatZ (less 469 

than 20°) (Fig. 8c) is mainly due to the effect of thin cloud or cloud shadow as explained before. 470 

Despite the dispersion of the shifts for all SatZ, it can still be found that the shifts in the across-471 

track direction do not change much when the SatZ is less than 20° (Figs. 8a-b and Table 5). A 472 

slightly decreasing trend (increasing trend of the magnitude) can be observed from 20° to 40° 473 

(Table 5), and becomes more apparent at SatZ larger than 40° (Fig. 8c and Table 5). 474 

Furthermore, it can be found that for small SatZ (less than 20°) the shifts in the across-track 475 

direction are generally concentrated around 2 km for NOAA-17 and MetOp-A scenes (Figs. 8a-476 

b). With increasing SatZ, the largest magnitudes of shifts become larger but basically stay 477 

within the range of 4 km for SatZ smaller than 40°. For even larger SatZ (larger than 40°), the 478 

magnitude of shifts can reach 6 km for NOAA-17 scene and 8 km for MetOp-B scene. From 479 

these results, it can be inferred that the SatZ has a considerable effect on both the magnitude 480 

and uncertainty of the shifts in across-track direction. The larger SatZ generally contributes to 481 

larger shifts and uncertainties in the across-track direction. Furthermore, it can be inferred that 482 

the GAC data with SatZ less than 40° should be preferred in applications. 483 

Compared to the shifts in the across-track direction (Figs. 8a-c), the shifts in the along-484 

track direction show smaller variability at each fixed SatZ (Figs. 8d-f). From Figs. 8d-e, it can 485 

be seen that the shifts in the along-track direction are relatively stable at each level of SatZ for  486 

SatZ smaller than 15°, but becomes more variable for greater SatZ. A similar phenomenon can 487 

be observed in Fig. 8f, where the shifts are relatively stable with SatZ ranging from 20° to 35°, 488 

but becomes more variable at each level of SatZ with its values larger than 35°. It is noteworthy 489 

that the wide spread of shifts with SatZ less than 20° is mainly caused by cloud contamination. 490 

These results confirm the influence of larger SatZ on the uncertainty of shifts in the along-track 491 

directions. It is interesting to find that the magnitudes of NOAA-17 scene shifts with small SatZ 492 

(less than 20°) are even larger than those with larger SatZ (larger than 20°) (Fig. 8d). On the 493 

contrary, the magnitudes of MetOp-B scene shifts with smaller SatZ (20-35°) are smaller than 494 

those with larger SatZ (larger than 35°) (Fig. 8f). Nevertheless, all three sensors have in 495 

common that they do not show clear change with SatZ smaller than 20° for NOAA-17 and 496 



smaller than 35° for MetOp-A and MetOp-B (Figs. 8d-f). For larger SatZ than these values, 497 

shifts exhibit a slightly decreasing trend for NOAA-17 (Fig. 8d) and an increasing trend for 498 

MetOp-B (Fig. 8f). From these results, it can be stated that the influences of large SatZ on the 499 

magnitude of shifts in the along-track direction are probably intertwined with other factors. 500 

 501 

Figure 8. Influence of SatZ on the geolocation accuracy in the across-track (a-c) and along-track (d-f) 502 

directions. (g-i) and (j-l) describe the influence of longitude and latitude on the geolocation accuracy in 503 

the across-track and along-track directions, respectively. The left column indicates results of NOAA-17 504 

(blue), middle for MetOp-A (red), and right for MetOp-B (pink) scenes. 505 

Table 5. The mean shift for each range of SatZ in the across-track direction. The unit of the shift is km. 506 

SatZ 0°-10° 10°-20° 20°-30° 30°-40° 40°-50° 50°-60° 

NOAA-17 -1.84 -1.84 -1.32 -1.66 -2.27  

MetOp-A -1.87 -1.80 -2.06 -2.62   

MetOp-B -1.29 -1.45 -1.75 -2.71 -3.95 -4.93  

For NOAA-17, the shifts tend to be smaller with the longitudinal range of 10°-15° and 507 

become larger outside this range (Fig. 8g). The MetOp-A scene does not show apparent change 508 

with longitude between 8° and 15° and neither does MetOp-B within the range between -8° and 509 



0° (Fig. 8 h and i, respectively). However, MetOp-B presents a clear decreasing trend (an 510 

increasing trend in magnitude) for longitudes larger than 5°.  Given the fact that the longitude 511 

of the nadir area is distributed between 10°-15° for NOAA-17, 8°-15° for MetOp-A, and -8°-512 

0° for MetOp-B (Figs. 1b and d, Figs. 2b and d), it can be concluded that the influence of 513 

longitude on the shifts in the across-track direction is related to the longitude of nadir area of 514 

the satellite, as it shows almost no influence in the nadir area. The influence increases with the 515 

difference of the longitude relative to that of the nadir area. This is well understandable, as the 516 

influence of longitude is equivalent to that of SatZ in the across-track direction. 517 

The variation of the shifts (in the along-track direction) with latitude also depends on the 518 

situation (Figs. 8j-l). The magnitudes of shifts with larger latitude (larger than 45°) are generally 519 

greater than those with smaller latitude (less than 40°) on the NOAA-17 (Fig. 8j) and MetOp-520 

B scene (Fig. 8l). This is not visible for the MetOp-A scene (Fig. 8k), where the shifts exhibit 521 

almost no change with latitude.  This can be attributed to the fact that the clock drift errors are 522 

corrected more thoroughly for MetOp-A satellite than NOAA-17 and MetOp-B satellites. 523 

Furthermore, the MetOp satellites have an on-board stabilization to keep them in the right 524 

position and orientation in orbit compared to the NOAA satellites. 525 

5 Conclusions 526 

The geometric accuracy of satellite data is crucial for most applications as geometric 527 

inaccuracy can bias the obtained results. Therefore, the assessment of the geolocation accuracy 528 

is important to provide satellite data of high quality enabling successful applications. In this 529 

study, a correlation-based patch matching method was proposed to characterize and quantify 530 

the AVHRR GAC geo-location accuracy. This method presented here yields significant 531 

advantages over existing approaches and enables achieving a subpixel geo-positioning accuracy 532 

of coarse resolution scenes. It is free from the impact of false detection due to the influence of 533 

mixed pixels, not limited to a certain landmark (e. g. shoreline) and therefore enables a more 534 

comprehensive geometric assessment. This method was utilized to characterize the geolocation 535 

accuracy of AVHRR GAC scenes from NOAA-17, MetOp-A, and MetOp-B satellites. 536 

The study is based on several ROIs comprising numerous patches over different land cover 537 

types, latitudes, and topographies. The scenes from these satellites all present West shifts in the 538 

across-track direction, with an average shift of -1.69 km and a StdDev of 1.32 km for NOAA-539 

17, -1.9 km and 1.1 km respectively for MetOp-A, and -2.56 km and 2.19 km respectively for 540 

MetOp-B. In regard to the shifts in the along-track direction, NOAA-17 generally shows South 541 

shifts with an average of -0.7 km and a StdDev of 1.01 km. By contrast, the MetOp-B mainly 542 

present North shifts with an average of 0.96 km and a StdDev of 1.70 km. The MetOp-A scene 543 

shows a distinct advantage over NOAA-17 and MetOp-B in the along-track direction without 544 

obvious shifts, indicated by the average of -0.02 km and a StdDev of 0.79 km. Generally, the 545 

MetOp-B scene is inferior to NOAA-17 and MetOp-A scenes, with larger shifts and 546 



uncertainties in both directions. Despite the variation of shifts due to various factors (e. g. SatZ, 547 

topography), more than 90 percent of the AVHRR GAC data across-track errors are within ±548 

3 km for NOAA-17 and MetOp-A, and ±5.5 km for MetOp-B. Along-track errors are within 549 

±2 km for NOAA-17, ±1 km for MetOp-A, and ±3 km for MetOp-B for more than 90 550 

percent of the test data. It is important to note that since these satellites show different shifts, 551 

using the combined data from NOAA-17 and MetOp will result in additional uncertainty in 552 

time series applications.  553 

From the results above, it can be found that the geolocation accuracy in the along-track 554 

direction is always higher and with less uncertainties than the across-track direction, which is 555 

consistent with previous related studies. This is understandable since the GAC dataset from the 556 

ESA cloud CCI project has been corrected for clock drift errors, but has no ortho-correction, 557 

which is not feasible due to the onboard sampling characteristics. SatZ plays a decisive role in 558 

determining the magnitude as well as the uncertainty of the shifts in the across-track direction. 559 

Larger SatZ generally induce greater shifts and uncertainties in this direction. The combined 560 

effect of SatZ and topography on geolocation accuracy in the across-track direction has also 561 

been shown. And significant terrain effects appear only in the case of large SatZ (>40° for this 562 

study). It is important to note that the effect of SatZ on the magnitude and uncertainty of shifts 563 

in the along-track direction is not negligible. But this effect is likely to be intertwined with other 564 

factors. The impact of longitude on the shifts in the across-track direction is equivalent to that 565 

of SatZ, while the effect of latitude is related to the degree of how the clock drift errors are 566 

corrected. It was found that the clock drift errors are more thoroughly corrected for MetOp-A 567 

than NOAA-17 and MetOp-B. 568 

Although this assessment was only conducted for a single scene of each satellite, the 569 

highly variable ROIs take the influential factors of geometric accuracy well into account. 570 

Therefore, the presented conclusions are transferable to other regions or seasons. However, it 571 

is noteworthy that this method is not applicable to homogeneous surface (e.g., water, desert), 572 

where the correlations are almost the same in any simulated displacement cases. In general, this 573 

study provides an important preliminary geolocation assessment for AVHRR GAC data. It is a 574 

first step towards a more precise geolocation and thus improves application of coarse-resolution 575 

satellite data. For instance, it identifies the threshold of SatZ under which the GAC data should 576 

be preferred in applications. Furthermore, the CPMM geolocation assessment method proposed 577 

by this study is also applicable to other coarse-resolution satellite data. 578 
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