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Abstract. The capabilities of radar altimetry to measure inland water bodies are well established and several river altimetry
datasets are available. Here we produced a globally-distributed dataset, the Global River Radar Altimeter Time Series
(GRRATS), using Envisat and Ocean Surface Topography Mission (OSTM)/Jason-2 radar altimeter data spanning the time
period 2002-2016. We developed a method that runs unsupervised, without requiring parameterization at the measurement
location, dubbed virtual station (VS) level and applied it to all altimeter crossings of ocean draining rivers with widths
>900 m (>34% of global drainage area). We evaluated every VS, either quantitatively for VS locations where in-situ gages
are available, or qualitatively using a grade system. We processed nearly 1.5 million altimeter measurements from 1,478 VS.
After quality control, the final product contained 810,403 measurements distributed over 932 VS located on 39 rivers.
Auvailable in-situ data allowed quantitative evaluation of 389 VS on 12 rivers. Median standard deviation of river elevation
error is 0.93 m, Nash-Sutcliffe efficiency is 0.75, and correlation coefficient is 0.9. GRRATS is a consistent, well-
documented dataset with a user-friendly data visualization portal, freely available for use by the global scientific community.
Data are available at DOI 10.5067/PSGRA-SA2V1(Durand et al., 2016).
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1 Introduction

Despite growing demand from emerging large-scale hydrologic science and applications, global and freely available
observations of river water levels are still scarce (Hannah et al., 2011; Pavelsky et al., 2014; Shiklomanov et al., 2002).
Advances in remote sensing and computing capabilities have enabled new areas of global fluvial research that are dependent
upon river elevations, including global hydrologic quantification of carbon and nitrogen fluxes (e.g. Allen & Pavelsky, 2018;
Oki & Yasuoka, 2008) and characterizing flood risk for future climate scenarios (Schumann et al., 2018; Smith et al., 2015).
Evaluation of these global river elevation models requires global datasets of river elevation time series, but in situ river water
levels are scarce, as they are often not shared outside specific government agencies. Thus model evaluation and calibration
increasingly relies on remotely sensed data (Overton, 2015; Pavelsky et al., 2014; Sampson et al., 2015). Newer radar
altimeter missions like Sentinel-3 are improving the contemporary record with features like automated processing:,

alleviating the need for retracking and other post processing to generate useful measurements. In addition, the Surface Water

and Ocean Topography (SWOT; swot.jpl.nasa.gov) satellite mission, scheduled for launch in 2021, will observe global river
elevations with an unprecedented global spatial resolution despite variation within its measurement swath. Establishing
robust global river elevation datasets for the pre-SWOT period is critical to prepare for the SWOT mission and for the study
of hydrology more broadly.

Satellite radar altimetry data have enabled important scientific advances in hydrology (Birkett et al., 2002; Bjerklie et al.,
2005; Calmant et al., 2008; Jung et al., 2010, Guetirana et al., 2009, Birkinshaw et al., 2014, Frappart et al., 2015, Becker et
al., 2018, Emery et al., 2018, among many others), but spatial coverage is limited. This is for two primary reasons:
inclination or latitude coverage limits of radar altimeter orbits (orbits with better temporal resolution have worse spatial
coverage), and technical measurement challenges associated with retrieving elevation over seasonally varying rivers. Indeed,
radar altimeter orbits and elevation retrieval technology were originally designed for characterizing ocean surface
topography. The orbital characteristics of historic and contemporary radar altimetry missions used for hydrology tend to
follow either the 10-day TOPEX/POSIEDON/Jason-1/-2/-3 orbit with relative high temporal resolution but low spatial
coverage, or the 35-day ERS-1/-2/Envisat/SARAL-AItiKa orbits with low temporal resolution but higher spatial coverage.
Neither of these orbit paradigms capture all global rivers (Alsdorf et al., 2007).

The second fundamental cause of poor global coverage of river radar altimeter observation availability is rooted in the
measurement itself. There are a set of criteria, such as river width, nearby topography, and groundcover, associated with
successful water surface level retrieval, but none have been shown to be fully predictive of water level accuracy (Maillard et
al., 2015). Most of Earth’s rivers are too narrow to_-be-accurately be_accurately measured by satellite radar altimeters:
Lettenmaier et al. (2015) suggest that rivers should be wider than 1,000 m for optimal retrieval, primarily due to the 1-2 km
footprint size of pulse-limited satellite altimeters. Radar altimeter effective footprint size is a function of the surface
characteristics and pulse emission mode. For example, in Low Resolution mode (LRM), which was commonly used for

satellite altimeters until ~2016, footprints typically range from 1.5 to 6.0 km in diameter, depending on the land topography
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near rivers. Thus, all but the widest rivers are (technically) sub-footprint features in LRM. Radar altimetry retrieval of river
surface elevations thus relies on the fact that rivers reflect more radar signal than does land, due to the high dielectric
constant of water. Some studies have developed methods to process radar altimetry data for far narrower rivers with LRM
altimeters (e.g. ~100 m) for a particular location (e.g. Santo da Silva, 2010., Maillard et al., 2015, Boergens et al., 2016,
Biancamaria et al.,2017). Since ~2016, retrieving water levels over narrow rivers is increasingly common with the Synthetic
Aperture Radar (SAR) altimetry missions (e.g. Cryosat-2 and Sentinel-3) for which the equivalent footprint (300 m wide
along flight track band) enables much easier detection and processing of radar returns from rivers.

Regardless of the specifics of a particular measurement location, altimeter range data (direct sensor measurement) requires a
great deal of processing to be converted into usable surface heights. Measurements of ocean height rely on an onboard
processor known as a “tracker” to dynamically estimate the approximate range of the target (i.e. the sea surface) in order to
map received radar pulses to precise surface elevations. The onboard tracker works well for measuring ocean surface
elevations, but it is unsuitable for estimating continental surface elevations. It thus requires further processing steps, known
as “retracking”. Using retracked river observations, inland radar altimetry can accurately measure changing river surface
elevation (Koblinsky et al., 1993, Berry et al., 2005; Frappart et al., 2006; Alsdorf et al., 2007; Santos da Silva et al., 2010;
Papa et al., 2010; Dubey et al., 2015, Tourian et al., 2016, Verron et al., 2018). While custom retrackers have been derived
and tested in particular locations (Huang et al., 2018; Maillard et al., 2015; Sulistioadi et al., 2015) the ICE-1 retracker
(Wingham et al., 1986) is arguably the best compromise between being consistently reliable and available for many altimeter
missions (Biancamaria et al., 2017; Frappart et al., 2006; Santos da Silva et al., 2010). While available globally, the ICE-1
retracked data must be extracted over river targets, and carefully filtered, to make them useful to global hydrological
modeling applications.

Virtual Stations (VSs) are the fundamental organizational element for the Global River Radar Altimeter Time Series

(GRRATS), as well as other altimetry datasets for rivers. VSs are locations where ground tracks of exact repeat altimetry

mission orbits cross rivers, enabling the development of a time series of water elevation observations. VSs can be thought of

much in the same way as an in situ river gaging station, but are entirely derived from remote sensed measurements of river

surface elevation.

The four currently available radar altimeter datasets for rivers represent tremendous technical achievements: 1) Hydroweb <—[ Formatted: Left

(hydroweb.theia-land.fr); 2) Database for Hydrological Time Series over Inland Waters (DAHITI) (dahiti.dgfi.tum.de); 3)
River&Lake Near Real Time (NRT) (https://web.archive.org/web/20180721182437/
http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/shared/main); and 4) HydroSat (hydrosat.gis.uni-stuttgart.de/php/index.php).

However, they are not optimized for the specific needs of global hydrologic modelers, who require global coverage, and
enhanced ease of use (accessibility and metadata). Note that River&LakeNRT is no longer online but we compare against it
for historical reasons (an archive link has been provided). Existing datasets have several characteristics that make them
challenging to use for global hydrologic modeling. First, they tend to include dense coverage where altimeters perform well
(e.g. over large, tropical rivers), or based on programmatic priorities of funding agencies. \/S-are-the-fundamental
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~Hydroweb has 991
river virtual-stations-(VS)VSs in South America alone, for example, primarily in the Amazon basin, while most include few
Arctic rivers. One challenge of including Arctic rivers involves the complicating effect of river ice, which is widespread for
much of the year. Three of the four datasets (Hydroweb being the exception), cannot be downloaded in bulk, but require
repetitive clicking via web interface.

In this study, we determined what fraction of available altimeter data would be useful for global rivers using retracked data
available from the official distribution of the instrument data (the geophysical data records (GDR)), unsupervised methods,
and automatic data filtering processes. The result is the Global River Radar Altimetry Time Series (GRRATS), a global river
altimetry dataset comprised of an opportunistic exploitation of VSs on the world’s largest rivers specifically suited for the
needs of global hydrological applications. GRRATS is an “Earth Science Data Record” (ESDR) hosted at Physical
Oceanography Distributed Active Archive Center (PO.DAAC) with a focus on conforming to data management and
stewardship best practices (Wilkinson et al., 2016). GRRATS currently spans 2002 — 2016, and includes global ocean-
draining rivers greater than 900 m in width: these collectively drain a total of >34% of global land area. GRRATS follows
data management best practices as outlined by Wilkinson et al. (2016), and it includes extensive metadata. In developing

GRRATS, our purpose is to create an accurate dataset, and also to create a better data product focused on ease of use.

2 Methods

There are four major steps in building GRRATS (Durand et al., 2016): 1) identification of potential VVSs on global rivers; 2)
extraction of altimeter observations from the Geophysical Data Records (GDRs); 3) filtering out noisy returns from the
altimetry; and 4) performing either quantitative of qualitative evaluation. The philosophy and overview of GRRATS
methods are reviewed here, whereas details of GRRATS production are more thoroughly described in the User Handbook
(ftp://podaac-ftp.jpl.nasa.gov/allData/preswot_hydrology/L 2/rivers/docs/).

2.1 Identification of potential VSs

We began by identifying potential VS for GDR extraction by identifying locations on global ocean-draining rivers where
altimeter orbital ground tracks cross river locations greater than 900 m in width. We chose 900 m as our lower width limit as
previous work has shown that VSs with widths >1 km present a higher probability of good performance (Birkett et al., 2002;
Frappart et al., 2006; Kuo & Kao, 2011; Papa et al., 2012). This selection of rivers is spatially varied and large enough to
provide a sensible constraint on global models. We used the intersection of the nominal altimeter ground tracks with the
Global River Widths from Landsat (GRWL) dataset to identify such locations (Allen & Pavelsky, 2018).


ftp://podaac-ftp.jpl.nasa.gov/allData/preswot_hydrology/L2/rivers/docs/
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2.2 GDR extraction

We extracted altimeter observations at the VS from the GDRs; this consisted of three steps. First we spatially joined Landsat

imagery (selected from times of mean river discharge) compiled for the_Global River Widths from Landsat (GRWL) river

centerlines dataset (Allen & Pavelsky, 2015; Allen & Pavelsky, 2018) with satellite ground tracks to define the width extent

of the mask used for the extraction of water elevations. Each mask was constructed using the width extent and upstream and

downstream limits that were 2km perpendicular to the crossing location. We extracted all altimeter returns with centroids

falling within each mask pekygenr for each pass from Jason-2 Geephysical-Data-Record{GDR) version D (Dumont et al.,
2009), and the Envisat GDR, Version 2.1 or later (Soussi & Féménias, 2009), using corrections outlined in product

documentation. We extracted ICE-1 retracked ranges from the GDR (Gommenginger et al., 2011; Wingham et al., 1986). To
get ellipsoidal heights, we applied the standard combination of parameters and corrections. We then converted these
ellipsoidal heights to an orthometric height above the geoid, using the_Earth Gravitational Model 2008 (EGMO08) model
(Pavlis et al., 2012).

2.3 Data filtering

We filtered altimetry data in a six-step process. First, we filtered using an a priori Digital Elevation Model (DEM) data
baseline elevation (median of all best available DEM values falling within the extraction polygon) at each VS. We used
Shuttle Radar Topography Mission (SRTM), Global Multi-Resolution Terrain Elevation Data (GMTED), and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), in that order of preference(Abrams, 2000; Danielson &

Gesch, 2011; Van Zyl, 2001). We filtered out elevations 15 m above or 10 m below the constrained baseline elevation. We
arrived at these limits by examining over 150 United States Geological Survey (USGS) {United-States-Geological-Survey)
gages with upstream drainage areas larger than 20,000 km? and changing the upper filter limit (responsible for 90.5% of data

points filtered due to height), to 14 m or 16 _m resulting in a 4.2% increase and 3.8% decrease in filtered points respectively.
We determined these limits should reasonably encompasses any measurements of the river surface as the Amazon flood
wave is capped around 15_m from trough to peak (Trigg et al., 2009). Second, we applied an additional elevation filter
removing any elevations that fell 2 m or more below the 5™ percentile of surface elevations in the time series (0.03% of total
returns). We obtained low-end filter criteria for removing observations impacted by near-river topography at low flow by
trial-and-error. Third, we flagged and remove elevations from times of likely ice cover. Ice cover dates were determined

from USGS and Environment and Climate Change Canada (ECCC) (Environment-and-Climate-Change-Canada) data when
available. If they-ice breakup data were not available, we applied broad date limits regionally, using observations from the

Pavelsky and Smith (2004) study of Arctic river ice breakup timing. Breakup dates range from late September to early June.
Fourth, remaining elevations were averaged for each cycle at each VS. Fifth, we removed any potential VS with < 25% or

50% of available cycles for rivers with and without ice cover respectively. Finally, we determined a flow distance limit for
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tidal VSs (those where the tidal signal was dominant) using visual inspection of the time series on each river and removed
VSs below that point.

2.4 Data Evaluation

We acquired evaluation stage data from 65 stream gages (on 12 rivers) (Environment Canada, 2016; Jacobs, 2002; Martinez,
2003; USGS, 2016). All stage data is publicly available with the exception of data from the Congo, Ganges, Brahmaputra,
and Zambezi which was provided by the authors. Note that VSs rarely fall in the same location as a stream gage; thus, most
studies recommend some VS-in-situ stream gage distance (e.g. 200 km) beyond which comparisons are not performed
(Michailovsky et al., 2012). Analyses showed that VVS-stream gage distance was often not an accurate predictor of height

anomaly differences. This is likely due to the hydraulics (width, nearby dams, confluences) of a more distant gage being

more similar to the location of the VS than the most proximal gage. Thus, in this study, we compared each virtual station

with all in-situ gages available on the main channel of that river. At each VS, we reported error metrics for the best, median,
and the spatially closest comparison. For completeness, we included VSs with poor error metrics; users can then select which
of the VSs to use, based on their reported error statistics and the user applications. Following the normal practice in the field
(e.g. Berry, 2010; Schwatke et al., 2015), we compare relative heights between VSs and gages, as opposed to absolute
heights, in order to avoid the influence of difference in datum and the lack of correspondence between satellite ground tracks
and gage locations. We calculated relative heights by removing the long-term mean between the sample pairs of VS heights
and the stage measured by the stream gages. Error metrics in GRRATS include the correlation coefficient (R), Nash-
Sutcliffe Efficiency (NSE), and Standard deviation of the errors (STDE). NSE is typically employed to describe the
goodness of fit for a modeled result with measured values, so our use here is non-traditional. Nonetheless, we use NSE
because, as opposed to R and STDE, NSE normalizes error with variation from the mean in the observed, or in our case, in-
situ data, by comparing error to actual variability. For example, 1 m of error can be an issue of varying severity when rivers
can have height variation ranging from >10 m (Amazon) to <5 m (St Lawrence). It is also an established metric for goodness
of fit within the altimeter literature (Biancamaria et al., 2018; Tourian et al., 2016).

While qualitative grades are not as reproducible as best fit statistics, they have been used in the past to guide users to
preferable time series when no other error metrics are available (Birkett et al., 2002). For the remainder of our VSs (without
stage gages), we performed a qualitative evaluation of the station represented by a letter grade ranging from A (highest level
of confidence on the data quality) to D (lowest level of confidence). The criteria used in the assignment of letter grades was
based on the presence of obvious outliers, number of data points in the time series, and time series continuity with nearby

VSs. We determined outliers by visual inspection._Letter grades are take in to consideration all of these criteria, but in

general, VSs with an A rating would have 1 or fewer obvious outliers per year, no more than 2 cycles filtered out per year,

and will fit nicely above VS downriver and below VS upriver. A D rating might be applied to a VS with 3 or more outliers
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per year, 5 or more cycles missing per year, and might fall below VS downriver from it, and above VS upriver from it. We

explicitly recorded and document which VSs in GRRATS are evaluated using this qualitative approach.

3. Results and Discussion

GRRATS processing produced a total of 932 globally distributed virtual stations (Figure 1). The 39 GRRATS rivers account
for 50-M km? (>34%) of global drainage area, and include 13 Arctic rivers. To attain these results, we extracted and

processed a total of 1.5M individual radar returns at 1478 potential VS locations.

3.1 Filtering returns

We removed 309.7K altimetry returns with our height filters (steps 1 and 2 of our filtering process), leaving 1.1M (78.2%)
viable measurements. Our ice filter removed an additional 296.9K of the remaining returns (step 3) resulting in 810.4K
viable returns (57.2%). Averaging all height returns within the river polygons for each pass at each VS (step 4) led to a total
of 102.3K (21.9K on Arctic rivers) pass-averaged measurements. VVSs were required to retain 50% (without ice) or 25%
(with ice) of their passes post-filtering to be included in the final data product, resulting in the removal of 465 potential VS
locations (step 5). VSs were also removed by visual inspection if they were tidal, resulting in the removal of an additional 45
stations (step 6). While many VSs were filtered heavily, 72.8% of the total returns for all VSs in the final product passed all
filters (the median VS value being 97.7%) and 227 VSs lost no returns. The filtering process resulted in a total 932 VSs for
evaluation derived from standard retracked data (ICE 1). These VSs had a data set wide average of ~16 measurements per
year (9.5 for Envisat VVSs and 35.8 for Jason2 VSs).

3.2 Example Time Series evaluation

Figure 2Figure2 shows example GRRATS time series for the Mackenzie and Amazon Rivers and corresponding in-situ

gages._E-rror bars represent the range of the values that were averaged to generate each data point (does not include filtered

data points). Data necessary to compute error bars are a part of the data product. Comparison between the Jason-2 time series

and the gage on the Mackenzie River produced STDE = 0.5 m, NSE = 0.41, and an R = 0.64. In this case, the gage used for

/{ Formatted: Font: (Default) +Body (Times New Roman)

evaluation was located ~700 km upriver (Figure 2Figure-2(a)). The STDE is approximately consistent with what is expected ///{ Formatted: Font: (Default) +Body (Times New Roman)

from the literature (Asadzadeh Jarihani et al., 2013; Frappart et al., 2006). However, the STDE is relatively large in

comparison with the overall annual range in the time series (typically ~2 m) observed from the gage (see Figure 2Figure2 ///{ Formatted: Font: (Default) +Body (Times New Roman)

(a)), leading to a relatively low NSE. Additionally, several cycles have far larger errors, reaching up to two meters, in some
cases. There are a total of 3 in-situ gages used for evaluation on the Mackenzie River. Across the 3 gage comparisons, this
VS had median statistics of 0.58 m, 0.35 and 0.64 for STDE, NSE, and R, respectively. Comparing the VS data to the gage
on the Amazon River yields STDE= 0.98 m, NSE= 0.94 and R= 0.97, with the evaluation gage 263 km upriver from the VS

7
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Figure 2Figure-2(b)). Despite the STDE being nearly twice as large, the magnitude of change on the Amazon allowed for a /{ Formatted:

Font: (Default) +Body (Times New Roman)

much better fit due to the large interannual variability of the Amazon floodwave (>10 m). Most of the error was from times
of low flow near the ends of the calendar year in 2009, 2011 and 2012. There are 6 in-situ gages on the Amazon River.
Across these comparisons, this VS had median statistics of 0.94 m, 0.95, and 0.98 for STDE, NSE, and R, respectively.

3.3 GRRATS evaluation across all rivers

We compared GRRATS against in-situ evaluation data on a total of 12 rivers. This provided evaluation of 380 of the 920

virtual stations (42%). On each river, the total number of time series evaluations was the product of the number of VSs and

the number of gages (Figure 1Figure-1). Thus, the total number of time series evaluations (summed across all 12 rivers) was ///{ Formatted

: Font: (Default) +Body (Times New Roman)

1,915 (Table 1).

A total of 72.5% of the quantitatively evaluated virtual stations had an NSE greater than 0.4 when compared with at least one

gage. The highest maximum NSE (Figure 3Figure-3(a)) was 0.98, from an Envisat VS in the upper reaches of the Amazon. /[ Formatted

: Font: (Default) +Body (Times New Roman)

The median value for maximum NSEs for all VSs was 0.75 (0.67 from closet gage comparison Figure 3Figure-3(ci)). A total /[ Formatted

: Font: (Default) +Body (Times New Roman)

of 341 of the 389 (87.7 %) virtual stations had a maximum NSE >0 (Figure 3Figure-3(ae)) .The highest median NSE (Figure /[ Formatted:

Font: (Default) +Body (Times New Roman)

3Figure-3(b) and-Figure-3(H)) values were 0.96 at two Envisat VS on the Orinoco river (lower and mid). A total of 277 of 389 Formatted:

Font: (Default) +Body (Times New Roman)

(71.2%) had a medianar NSE >0.
The smallest minimum STDE (to two significant digits) was 0.11 m and occurred at an Envisat VS on the upper Congo. The

median value for minimum STDE (Figure 3Figure-3(d)€) for all VSs was 0.93 m (1.08_m from closest gage comparison /[Formatted;

Font: (Default) +Body (Times New Roman)

Figure 3Figure-3(f})). The minimum and median value for median STDE (Figure 3Figure-3(ed)) were 0.31m, and 1.3 m /[Formatted;

Font: (Default) +Body (Times New Roman)

respectively. Our STDE error statistics are greater than previous work reporting accuracies ranging from 0.14 m to 0.43 m Formatted:

Font: (Default) +Body (Times New Roman)

for Envisat data and 0.19 m to 0.31 m for Jason-2 data (Frappart et al., 2006; Kuo & Kao, 2011; Papa et al., 2012; Santos da
Silva et al., 2010). This discrepancy is likely because GRRATS includes VSs on rivers where evaluations have not
previously been reported in the literature, and the fact that we do not fine-tune processing or filtering to each VS due to the
global nature of the dataset.

Some locations with relatively low STDE values showed poor performance in terms of NSE, particularly for rivers with
relatively low water elevation variability. VVSs on the St Lawrence River had minimum STDE ranging from 0.58 - 3.27 m.
The VS with 0.58 m STDE corresponded with a maximum NSE value of -0.27, indicating quite poor performance in
resolving river variations (standard deviation of 0.35 m). The St Lawrence River is anomalous in other ways as well. For 2
potential VSs (one each from Jason 2 and Envisat), the unprocessed data (ICE-1 retracked GDR data) showed a bias of
several tens of meters above the baseline height, and thus no data for these VSs are included in GRRATS. Closer
examination of these VSs seems to indicate that the on-board tracking window was often tens of meters outside of the river
surface range, making retrievals from the surface impossible. This case is particularly odd as such errors are not expected for
wider rivers; the St Lawrence is between 2 and 7 km wide where we sampled it. Such errors are more commonly associated

with altimeter returns from near-river topography on narrow rivers (Biancamaria et al., 2017; Frappart et al., 2006; Maillard

8
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et al., 2015; Santos da Silva et al., 2010). Moderately poor performance from the remainder of VSs in terms of NSE and
STDE on the river is likely due to the river lacking enough variation in height to allow for retrieval of a good signal outside
the error range of radar altimeters. However, this low variation data can still be quite useful to modelers for determining if
their results show excessive change in the annual cycle of water elevations.

The median of the maximum R values (Figure 3Figure-3(g)) for each station is 0.9 (0.87 from closest gage comparison

JFigure 3Figure-3(ik)). The maximum R value plot shows left skewness, similar to the NSE results. The lowest maximum R

value of -0.15 occurred at an Envisat VS on the mid St Lawrence River, which was the only virtual station to display a
negative correlation. The best maximum R value was 0.99 for an Envisat station near the mouth of the Ganges River that
also displayed high NSE and low STDE. The median value of the median R (Figure 3Figure-3(h)) is 0.69. The values range

from -0.18 (an Envisat VS on the lower St Lawrence) to 0.99 (an Envisat VS on the lower Brahmaputra).
For 27 of the 39 rivers in the GRRATS dataset, no in-situ data is available for evaluation. We gave the remaining 27 rivers
qualitative letter grades based on number of missing data points, obvious outliers, and agreement with nearby stations. These

grades are included with the data for end users_(Table 2). The majority of rivers evaluated this way fall into the B or C

category (~61%), with only ~15% getting an A rating.

3.4 Towards quantitative performance prediction

As is evident above, radar altimeter performance varies dramatically across rivers and across VSs. Generally, measurements
from wide rivers without large topographic features in the altimeter footprints that have large seasonal water elevation
variations tend to result in better altimeter performance. In order to identify conditions that may contribute to poor return
quality, we compared both VSs width and percentage of original returns post-filtering, near-river topography, and river
height variation with all three fit statistics. We found no statistically significant relationships in this evaluation, a finding that
supports existing literature on quantitative prediction of altimeter performance (Maillard et al., 2015). Indeed, we found
many examples of counterintuitive performance in our examination. The St. Lawrence (described above) is an example of
unexpectedly poor performance; typical predictors such as width (smallest VS ~1.5 km wide) and the lack of extreme
proximal topography led to an expectation of accurate performance that was not met. Meanwhile, other rivers defied the
normal pattern by showing good fit metrics while being far narrower. The Mississippi River was consistently at our lower
limit for river width. The VS widths ranged from 509.1 m to 2,608.0 m, and had an average width of just 955.3 m. The
average near-river relief ranged from 10-60 m. The Mississippi maximum NSE values ranged from -0.22 to 0.96, with an
average of 0.43. Minimum STDE values ranged from 0.34 m-2.22 m, with an average of 1.18 m. additionally, we computed
average error statistics across all VVSs along each river. Some rivers stood out as particularly good or poor performers (

Table 3Fable-1), but no broad geographical patterns emerged. For this reason, we recommend using the median (dataset
wide) value for evaluated STDE (0.93 m) as an error estimate for VVSs without evaluation data, as this is representative of

42% of all of the VSs in the dataset. While we do not provide error estimates at the individual data point level, w\/e suggest

that individual VS data point error be estimated-treated as the STDE of the time series they are a component of.
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3.5 Comparison to other altimetry datasets

While it is outside the scope of this study to compare GRRATS exhaustively with existing datasets, we find it appropriate to
demonstrate that our dataset is comparable. Therefore, we compared twe-three VS locations that are in each of the four
datasets discussed (one on the Amazon, ere-en-the-Congo, and Brahmaputra).- Figure 4 (a-c) show time series anomaly at
each VS and the closest gage. Note that time series lengths are limited to the shortest time series in the comparison and do
not match the coverage of any particular mission, and that River&LakeNRT data was unavailable for the VS location on the
Brahmaputra- GRRATS, DAHITI, and Hydroweb are similar and fit with the in-situ gage well (Table 4Fable-2). DAHITI is

missing data on the Amazon time series. HydroSat and River&LakeNRT are frequently out of phase, particularly on the

Amazon River (Figure 4(a)). Performance is similar on ungaged rivers when compared (Figure 5). GRRATS and DAHITI
showed good agreement on the Parana River (Figure 5(a)). HydroSat and Hydroweb (Figure 5(b-c)), are differentiated from
GRRATS on the Ob’ and Lena Rivers, as they show heights from a frozen river that GRRATS flags and removes. During
overlap, HydroSat and GRRATS were similar at the Ob” VS. Hydroweb data on the Lena is similar to GRRATS, with the
exception of the 2006 peak flow, which is missing. Note that much of the rising limb is missing in these time series as it
occurs during times of ice cover. Unfiltered data and ice flags are available to data users if needed. This process
demonstrated that our quasi-automated methods produce a dataset with global coverage and performance that approximates

the accuracy of regional altimetry datasets.

4. Data availability

GRRATS (DOI 10.5067/PSGRA-SA2V1) is available at “ ﬂ Formatted: Left

https://podaac.jpl.nasa.gov/dataset/PRESWOT_HYDRO_GRRATS_L2 VIRTUAL_STATION_HEIGHTS V1

fipjpl-nasa-gov/aliData/preswet_hydrology ivers-for non-commercial use only (Durand et al., 2016). Data

are provided in NETCDF format. For a file content description please see Appendix A. An interactive map of the data is

located at http://research.bpcrc.osu.edu/grrats/. This tool is intended for exploration only, and may not reflect the most up-to-

/{ Formatted: Default Paragraph Font, English (United

Kingdom)

/{ Formatted: No underline, Font color: Auto

date version of the data. As with figure 2, error bars represent the range of the values that were averaged to generate each

data point (does not include filtered data points). Data necessary to compute error bars are a part of the data product,

/{ Formatted: English (United States)

5. Conclusion

We find that uniform altimeter data processing produces usable data with accessible documentation for end users.
Encouraging end user understanding of how this kind of data is produced is critical in fostering its use across the scientific
and stakeholder communities. GRRATS considers only ocean-draining (highest order) rivers, while other datasets include
some VSs on large tributaries. However, our use of the GRWL dataset allowed for a comprehensive selection of altimeter
crossings on a global scale. These features should enable broad use by the scientific community. This resulted in GRRATS

10
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having the best coverage available for North American rivers as well. We produced GRRATS with ease of use in mind. VS
metadata are included and the product can be downloaded in bulk.

On the whole, the median value of the error standard deviation is 0.93 m, which is similar to or slightly larger than values
reported for the rivers that are most commonly studied using radar altimetry (e.g., the Amazon and Congo). Our philosophy
in constructing the dataset was to maximize the spatial coverage of altimeter crossings, construct the product in a uniform
way, and to provide an evaluation of quality for each VS. Thus, users can decide whether each VS is useful given their data
needs. Note that a total of 77.2% of virtual stations evaluated against in-situ data had an NSE>0.4. Our uniform production
method allowed us to evaluate whether river width or the height of bluffs proximal to rivers at altimeter crossings correlate
with altimeter performance, as was expected in the literature. However, we were unable to identify a predictive model for
altimeter performance, and leave this exercise for future work.

The GRRATS dataset maximizes traceability: all of the information needed to re-process these VSs is included in the final
data product. It is our expectation that other researchers could implement other methods of filtering and processing to

achieve derived data products tailored to their applications.
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Brahmaputra 1.07m 1.88m
St Lawrence
Mississippi 1.18 m 1.69 m

16

«

*‘[ Formatted: Left




Table 4 Multi-product fit statistics from figure 5

Product STDE R NSE
Amazon River
HydroSat 212m 0.61 0.33
Hydroweb 142m 0.96 0.72
NRTRL 29m 0.3 -0.74
DAHITI 0.85m 0.99 0.81
GRRATS 1.57m 0.95 0.65
Congo River
HydroSat 0.48m 0.87 0.76
Hydroweb 0.42m 0.92 0.84
NRTRL 32m 0.11 -7.88
DAHITI 0.39m 0.93 0.86
GRRATS 05m 0.91 0.81
Brahmaputra River
HydroSat 0.56m 0.96 0.92
Hydroweb 0.58 m 0.91 0.96
DAHITI 0.6m 0.96 0.86
GRRATS 0.69m 0.95 0.87
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Figure 1 The GRRATS dataset and evaluation results. Maximum NSE (best fit) plotted in yellow to red (shown on all rivers with
gage data) and qualitative grades plotted in teal to dark purple. In both cases, darker colors indicate better evaluation results.
Each river is evaluated using only one of these methods.
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Figure 2 Example time series for the Mackenzie River. Panel (a) shows water surface heights with ice filtering compared to

Environment Canada gage (10KA001) located 684 km away from the virtual station. Panel (b) compares the time series derived

from Jason-2 for one of the Amazon gages._Error bars represent the range of the values that were averaged to generate each data
5  point (does not include filtered data points).
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Figure 4: Multi product evaluation at same location. Panel (a): multiproduct comparison on the Amazon River Panel (b): multi
product comparison on the Congo River. Panel (c): multi product comparison on Brahmaputra River. DAHITI plotted in purple
with square markers, HydroSat in dark blue with circle markers, River&LakeNRT in yellow with diamond markers, Hydroweb
in red with cross markers, and GRRATS in green with x markers and in-situ in dashed light blue. Note that the legend in panel (b)
apples to all of figure 4. GRRATS error bars not shown to improve readability.
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Figure 5 multi product evaluation at ungagged river locations GRRATS plotted in green, DAHITI in purple with square markers,
HydroSat in blue with circle markers, HydroWeb in red with cross markers, and times of ice cover plotted with a dotted black
line. Panel (a) is a comparison with DAHITI on the Parana River. Panel (b) is a comparison with HydroSat on the Ob River, and

Panel (c) is a comparison with HydroWeb on the Lena River.
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Appendix 1

Data packaging and Variable identification

Sample Altimetry Data (NetCDF format)

Format: netcdf4

Title = 'Altimetry Data for virtual station Yukon Jason2 0'

Global Variables:
Variable Dimension | Datatype Units Name
lon X double degrees east longitude
lat Y double degrees north latitude
1D root char - Reference VS 1D
sat root char E satellite
Flow Dist distance double km Distance from river
mouth
rate root double Hz sampling rate
ass root int32 - pass number
nse grade double - Max  Nash Sutcliffe
efficiency
nse AVG grade double - Average Nash
Sutcliffe efficiency
R grade double - Correlation coefficient
std orade double m Minimum standard
deviation of error
stdAVG orade double m Average standard
rade grade char - qualitative letter grade

“[ Formatted: Heading 1

The global variables are: longitude and latitude of the center of the virtual station, the virtual station 1D, the satellite name, flow

distance, sampling rate , the satellite pass number and a suite of fit statistics, or a qualitative letter grade. Qualitative letter grades
were assigned based on amount of data points, seasonal pattern, and similarity to nearby VS. This was done, only when validation

data was unavallable When Vahdatlon was po%lble the VS was evaluated \Vlth all gauges on the river through relative height




/Unprocessed GDR Data[/

Variable Dimension Datatype Units Name

lon X double degrees east Longitude

lat Y double degrees north latitude

h Z double meters above HEGM2008 | Unprocessed heights

geoid

sig0 UGDR double dB Sigma0

pk UGDR double unknown peakiness

cycle UGDR int32 unknown Altimeter cycle

time T double Days  since  Jan-1-1900

heightfilter UGDR int32 -flag- Good heights flag

icefilter UGDR int32 flag- No ice flag

allfilter UGDR int32 -flag- Ice free heights that
passed height filter

This includes the data from each return: lon and lat, the height of the water level in meters, the signal strength, sigma0, in
decibels, a ‘peakiness’ value, the cycle number, the time of the return, and filter flags that signal 1 for data that should be included
and 0 for data that should be excluded. The flags are for a height filter, an ice filter, and the logical intersection of the two

(allfilter), with 1 denoting returns that pass through the filter and 0 denoting returns that do not.

/Timeseties/

Variable Dimension Datatype Units Name

time T double Days  since  Jan-1-1900 | time
00:00:00

cycle TS int32 - Altimeter cycle

hbar Z double meters _above EGM2008 | average height
geoid

hwbar Z double meters above EGM2008 | weighted average
oeoid height

sigObar time double dB average sigma(

kbar time double - Average peakiness

These are pass-averaged values, having gone through the filter. There are two values that flag data: -9999 for data that is missing
from the GDR, and -9998 for data that is missing because of height/ice filters. These flags are only present when none of the
values to be averaged can be found. The other values give average height (hbar), in meters, and sigma-0 weighted height using
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/Sampling/

Variable Dimension Datatype Units Name

scene scene char - Landsat Scene 1D
lonbox X double degrees east Longitude box extent
latbox Y double degrees north Latitude box extent
island scene int32 -flag- Island flag

“1 Formatted Table

This is the data from the polygons, including the Landsat scene ID used to draw the polygons. The island flag is used when

islands are visible inside the polygon in the imagery when drawing the mask.

/Filter/

Variable Dimension Datatype Units Name

nNODATA - int32 count Number of cycles
without data

riverh Z double meters above HEGM2008 | River elevation from

geoid filter file
maxh Z double meters above EGM2008 | Max clevation
coid allowed by filter

minh Z double meters above EGM2008 | Min elevation allowed

icethaw T double Days  since  Jan-1-1900 | Thaw dates for river

icefreeze T double Days  since  Jan-1-1900 | Freeze dates for river

DEMused DEM Char - DEM used in height
filter

This is the filter data; nNODATA gi

‘“[ Formatted Table

that is filtered out. riverh gives the river elevation extracted from a 30 arc-second DEM of the region. This is used for the height

filter. maxh and minh are the upper and lower bounds of river heights included in the filtered data; we set a +15m, -10m from

the DEM river elevation as a first pass, and then removed any data that was 5m below the 5% Dercemlle of river stage heights.

to the DEM that the basshnc height was taken fmm
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