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Abstract. Model simulations of the Last Glacial Maximum (LGM, ~21 000 years before present) can aid the 

interpretation of proxy records, help to gain an improved mechanistic understanding of the LGM climate system 

and are valuable for the evaluation of model performance in a different climate state. Ocean-ice only model 

configurations forced by prescribed atmospheric data (referred to as “forced ocean models”) drastically reduce the 

computational cost of paleoclimate modelling as compared to fully coupled model frameworks. While feedbacks 10 

between the atmosphere and ocean-sea-ice compartments of the Earth system are not present in such model 

configurations, many scientific questions can be addressed with models of this type. The data presented here are 

derived from fully coupled paleoclimate simulations of the Palaeoclimate Modelling Intercomparison Project 

(PMIP3). The data are publicly accessible at the NIRD Research Data Archive at 

https://doi.org/10.11582/2019.00011 (Morée and Schwinger, 2019). They consist of 2-D anomaly forcing fields 15 

suitable for use in ocean models that employ a bulk forcing approach. The data include specific humidity, 

downwelling longwave and shortwave radiation, precipitation, wind (v and u components), temperature and sea 

surface salinity (SSS). All fields are provided as climatological mean anomalies between LGM and pre-industrial 

times. These anomaly data can therefore be added to any pre-industrial ocean forcing data set in order to obtain 

forcing fields representative of LGM conditions as simulated by PMIP3 models. These forcing data provide a 20 

means to simulate the LGM in a computationally efficient way, while still taking advantage of the complexity of 

fully coupled model set-ups. Furthermore, the dataset can be easily updated to reflect results from upcoming and 

future paleo model intercomparison activities. 

1 Introduction 

The LGM (~21 kya) is of interest to the climate research community because of the relative abundance of proxy 25 

data, and because it is the most recent profoundly different climatic state of our planet. For these reasons, the LGM 

is extensively studied in modelling frameworks (Menviel et al., 2017; Brady et al., 2012; Otto-Bliesner et al., 

2007). Model simulations of the past ocean can not only provide a method to gain a mechanistic understanding of 

marine proxy records, they can also inform us about model performance in a different climatic state of the Earth 

system (Braconnot et al., 2012). Typical state-of-the-art tools to simulate the (past) Earth system are climate or 30 

Earth system models as, for example, used in the Climate Model Intercomparison Project phase 5 (CMIP5; Taylor 

et al. (2011)). Unfortunately, the computational costs and run-time of such fully coupled model frameworks are a 

major obstacle for their application to palaeoclimate modelling. Palaeoclimate modelling optimally requires long 

(thousands to ten thousands of years) simulations in order to provide the necessary time for relevant processes to 
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emerge (e.g. CaCO3 compensation) (Braconnot et al., 2007). Complex CMIP-type fully coupled models can 

typically not be run into full equilibrium (which requires hundreds to thousands of years of integration) due to 

computational costs (Eyring et al., 2016). Therefore, these models exhibit model drift (especially in the deep ocean, 

e.g. Marzocchi and Jansen (2017)). The 3rd phase of the PMIP project (PMIP3; Braconnot et al. (2012)) limits 

global mean sea-surface temperature drift to under 0.05 K per century and requires the Atlantic Meridional 5 

Overturning Circulation to be stable (Kageyama et al., 2018). 

The use of PMIP output as ocean forcing is an accepted practice in ocean modelling (e.g., Muglia and Schmittner 

(2015)). We refer to a “forced ocean model” as a model of the ocean-sea-ice-atmosphere system in which the 

atmosphere is represented by prescribed 2-D forcing fields. It can be used whenever ocean-atmosphere feedbacks 

are of minor importance and has the advantage of reducing the computational costs – making longer or more model 10 

runs feasible. We present 2-D (surface) anomaly fields (LGM minus pre-industrial) calculated from monthly 

climatological PMIP3 output. The PMIP3 output is the result of global boundary conditions and forcings (such as 

insolation and ice sheet cover) applied in the fully coupled PMIP3 models (Braconnot et al., 2012). Our dataset 

(Morée and Schwinger, 2019) is a unique compilation of existing data, processed and reformatted such that it can 

be readily applied in a forced ocean model framework that uses a bulk forcing approach similar to Large and 15 

Yeager (2004). Since this approach has been popularized through coordinated model intercomparison activities 

(Griffies et al., 2009), a majority of forced ocean models today uses this approach. The 2-D anomaly fields 

presented here can be added to the pre-industrial forcing of a forced ocean model in order to obtain an atmospheric 

forcing representative of the LGM. The data are climatological mean anomalies, and as such suitable for 

equilibrium LGM ‘time-slice’ modelling of the ocean. The description of the procedure followed to make this 20 

dataset (Sect. 3, Table 3) should support any extension of the dataset with additional (PMIP-derived) variables if 

needed. The PMIP4 guidelines (Kageyama et al., 2017) can support users in designing a specific model set-up, for 

example regarding the land-sea mask, trace gas concentrations, river outflow or other conditions and forcing one 

would want to apply to a model. In Sect. 2, a general description of the dataset and data sources is provided 

alongside with an overview of the variables (Table 1). 25 

2 General description of the dataset 

The data presented in this article are 2-D anomaly fields of the LGM versus pre-industrial state (LGM minus pre-

industrial) based on the PMIP3 (Braconnot et al., 2012). These anomaly fields can be used as atmospheric LGM 

forcing fields for ocean-only model set-ups when added to pre-industrial forcing fields. The basis of this data is 

monthly climatological PMIP3 output. Any variables presented on sub-monthly time resolution are therefore time-30 

interpolated. Since this is a limitation of the available data, we have to assume that any sub-monthly variability 

(e.g. the diurnal cycle) is preserved from the preindustrial climate state to the LGM state. The anomalies are 

calculated as the mean of the difference between monthly climatologies of the ‘lgm’ and ‘piControl’ PMIP3 model 

runs (denoted LGM and PI hereafter). In cases where modelling groups provided more than one ensemble member, 

we included only the first member in our calculations. Even though PMIP3 simulations have limitations and a 35 

large inter-model spread, PMIP3 is the state of the art for modelling of past climates at present (Braconnot et al., 

2012; Braconnot and Kageyama, 2015). Furthermore, no global proxy-based reconstructions of the variables 

presented here are available to provide a proxy-based LGM forcing dataset. Using mean coupled model output as 
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forcing is thus considered the best available option for use in forced ocean models. The data is the mean anomaly 

of four PMIP3 models (CNRM-CM5, IPSL-CM5A-LR, MIROC-ESM and MRI-CGCM3, Table 2), as only these 

models provide output for all variables. 

The variables are i) specific humidity at 10 meters, ii) downwelling longwave radiation, iii) downwelling 

shortwave radiation, iv) precipitation, v) wind (v and u components), vi) temperature at 10 meters, and vii) sea 5 

surface salinity (SSS) (Table 1). The SSS anomaly field can be used to apply SSS restoring in LGM simulations. 

All variables (Sect. 3.1-7) of the monthly climatological PMIP3 output have been regridded (Table 3, #1), averaged 

(Table 3, #2), and differenced (Table 3, #3) to calculate the anomaly fields. Changes in the order of the operations 

leads to differences in the order of round-off errors only. Additional procedures for each variable is given in the 

respective part of Sect. 3, together with a figure of each variable’s yearly mean anomaly and model spread. All 10 

operations were performed with either CDO version 1.7.0 (Schulzweida, 2019) or NCO version 4.6.9. Main 

functions used are documented in Table 3 and referred to in the text at the first occurrence. The atmospheric 

anomaly data are on a Gaussian grid, with 192×94 (lon×lat) grid-points. The SSS fields is on a regular 360×180 

(lon×lat) grid. Regridding any of the files to a different model grid should be straightforward (e.g., Table 3, #1), 

as it was ensured that all files contain the information needed for re-gridding. The variables, grid and time 15 

resolution are chosen to be compatible with the CORE forcing fields (Large and Yeager, 2004), which have been 

extensively used in the ocean modelling community (e.g. Griffies et al. (2009); Schwinger et al. (2016)). We 

anticipate that the variables selected here should be useful in different model set-ups as well. In the case of 

NorESM-OC (Schwinger et al., 2016), the atmospheric anomaly fields were added to its CORE normal-year 

forcing fields (Large and Yeager, 2004) to obtain a LGM normal-year forcing. Note that the addition of the 20 

anomaly fields to the user’s own model forcing could lead to physically unrealistic/not-meaningful results for 

some variables (such as negative precipitation or radiation). This must be corrected for by capping off sub-zero 

values (Table 3, #4) after addition of the anomaly. 

3 The variables 

3.1 Specific humidity anomaly 25 

The monthly climatology of near-surface specific humidity is provided at 2 meters height in PMIP3. The bulk 

forcing method of Large and Yeager (2004) requires specific humidity (and temperature) at the same height as the 

wind forcing (10 meters). Therefore, specific humidity was re-referenced to 10 meters height for each of the four 

models following the procedure detailed in Large and Yeager (2004). The re-referencing required the use of wind 

(u and v components), sea level pressure and skin temperature (sea surface temperature over the open ocean), 30 

which were taken from the respective PI and LGM PMIP3 output for each model. The mean anomaly over the 

four models was time interpolated (Table 3, #5) to a 6-hour time resolution from the monthly climatological PMIP3 

output. The annual mean LGM-PI anomaly field (Fig. 1) shows a global decrease in specific humidity, as expected 

from decreased air temperatures (Sect. 3.6). The anomaly is most pronounced around the equator, where we see a 

decrease of 2-3 kg kg-1, while the anomaly is near-zero towards both poles. The model spread of the anomaly 35 

shows a disagreement between the PMIP3 models generally in the order of 1-2 kg kg-1, without any strong spatial 

pattern (Fig. 1). 
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3.2 Downwelling longwave radiation anomaly 

The anomaly for surface downwelling longwave radiation is time-interpolated (Table 3, #5) to a daily time 

resolution. The annual mean anomaly field (Fig. 2) shows globally decreased downwelling longwave radiation in 

the LGM as compared to the PI, in the order of 10-30 W m-2 over most of the ocean due to a generally cooler 

atmosphere (Sect. 3.6). The largest anomalies lie at the northern ice sheets, with up to -146 W m-2 lower radiation 5 

in the LGM than in the PI. In addition to influencing radiative forcing over land, ice is likely also the main 

contributor to the high (60-90 W m-2) inter-model spread in North Atlantic. The remainder of the ocean exhibits a 

better agreement, with inter-model spreads generally below 20 W m-2 (Fig. 2). 

3.3 Downwelling shortwave radiation anomaly 

The surface downwelling shortwave radiation anomaly field is time-interpolated (Table 3, #5) to daily fields as 10 

done for downwelling longwave radiation. The annual mean anomaly is especially pronounced around the 

Laurentide and Scandinavian ice sheets, where strong positive anomalies of over ~30 W m-2 exist (Fig. 3). 

Globally, the annual mean downwelling shortwave radiation anomaly generally falls in a range of -15 to +15 W 

m-2 over the ocean. The anomaly field shows negative anomalies as well positive ones in an alternating spatial 

pattern approximately symmetrically around the equator in the Pacific basin. The inter-model spread is largest in 15 

the North Atlantic region and along the equator (Fig. 3). Due to the large model disagreement of up to 50 W m-2 

for this variable, the inter-model spread and mean anomaly are of similar magnitude although a consistent pattern 

is present in the anomaly field. 

3.4 Precipitation anomaly 

The anomaly presented here is the LGM-PI precipitation anomaly at the air-sea interface and includes both the 20 

liquid and solid phases from all types of clouds (both large-scale and convective). The units were converted to mm 

day-1. The resulting annual mean anomaly generally falls in the range of -2 to 2 mm day-1, and is most pronounced 

along the equator and in the Northern Hemisphere (Fig. 4). The models show a mean increase in precipitation 

directly south of the equator in the Pacific basin, as well as in the Pacific subtropics off the western North-

American coast. The North Atlantic also receives a mean positive precipitation anomaly, offsetting part of the 25 

positive salinity anomaly there, which is potentially relevant for the simulation of deep water formation in this 

region (Sect. 3.7). Negative mean precipitation anomalies are most pronounced directly north of the equator and 

north of ~40° N in the Pacific basin as well as in the Atlantic Arctic. The inter-model spread is up to ~5 mm day-1 

around the equator, likely due to the model disagreement about the sign and location of changes in the inter-tropical 

convergence zone (Fig. 4). 30 

3.5 Wind anomalies, u and v components 

Both for the u and v component of the wind speed, the LGM-PI anomaly is time-interpolated to 6-hourly fields. 

The annual mean meridional wind velocity (v, southerly winds) anomaly shows a pronounced increase (~3-5 m s-

1) in southerly winds around the NW edge of the Laurentide ice sheet as well as over the NW edge of the 

Scandinavia ice sheet (Fig. 5). Alongside that, a pronounced decrease (~ 3-5 m s-1) in southerly winds is simulated 35 

above the Laurentide ice sheet and east of Scandinavia. The open ocean anomalies are generally small (at most ±1 
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m s-1). The inter-model spread has no pronounced pattern but is sizable, with ~ 1-5 m s-1 disagreement between 

the PMIP3 models. The mean zonal wind velocity (u, westerly winds) anomaly shows alternating negative and 

positive anomaly bands with an approximate ±2 m s-1 range (Fig. 6). This pattern is stronger in the Northern 

Hemisphere north of ~45° N, where ~5 m s-1 anomalies exist over the American continent and the North Atlantic 

ocean basin. The inter-model spread (~1-3 m s-1) has little structure except for the ~4-5 m s-1 disagreement in the 5 

Southern Ocean south of ~40° S (Fig. 6). 

3.6 Temperature anomaly 

The near-surface atmospheric temperature at 2 m height from PMIP3 is re-referenced to 10 meters (as done for 

specific humidity, Sect. 3.1), and time-interpolated to calculate the 6-hourly mean anomaly for temperature. In 

order to account for differences in temperature to changes in topography in each of the models, a correction is 10 

made for the adiabatic lapse rate. The temperature effect in topography above 10 m is calculated per model using 

an adiabatic lapse rate effect of 5 degrees per kilometre. The dataset presented here is thus representative of the 

fictitious temperature at 10 meter above sea level, and should be corrected for the adiabatic lapse rate if applied at 

a different height (i.e. on land). For flexibility of use, both the topography uncorrected (‘tas’) and topography 

corrected (‘tas_10m’) temperature anomaly data are provided in the netCDF file. The topography-corrected annual 15 

mean temperature anomaly is generally negative (~ -3 K), but has extremes around the North Atlantic of around -

15 K (Fig. 7). There is a clear pattern in the model spread: The models show a large spread (>10 K) over the 

continents north of ~45° N, as well as south of ~40° S. At lower latitudes and over the ocean the model spread is 

generally smaller (0-3 K), with the only exceptions in the Southern Ocean (5-10 K) and in the North Atlantic (>10 

K) (Fig. 7). 20 

3.7 Sea surface salinity anomaly 

Global mean salinity is initialized in PMIP3 models with a 1 psu higher salinity to account for the concentrating 

effect of the decrease in sea level (Kageyama et al., 2017). Sea surface salinity however, shows a more variable 

annual mean LGM-PI change due to changes in the global hydrological cycle (Fig. 8). Only the models CNRM-

CM5 and MIROC-ESM are used here for the averaging because of data availability. The difference in land-sea 25 

mask between the LGM and PI simulations is accounted for by filling any missing values with a distance-weighted 

mean based on the four nearest neighbours per empty grid cell (Table 3, #6). This results in a SSS anomaly field 

with values in every grid cell (so essentially without a land-sea mask), such that it can be used with any land-sea 

mask. In addition, the sea surface salinity anomaly is presented on a regular 1x1 grid for ease of use. The land-sea 

mask correction is only needed for SSS, as all other variables presented in this text are global atmospheric fields. 30 

Because the mean anomaly is locally patchy due to the large model spread and extrapolation, we improve the 

smoothness of the result using 9-point smoothing as a final step (Table 3, #7). The resulting annual mean SSS 

anomaly (Fig. 8) shows an increase in sea surface salinity (~1 psu) over the Southern Ocean south of ~55° S, as 

well as in the Arctic (>3 psu) and the Northern Indian Ocean (~1 psu). A ~2 psu anomaly is simulated in the 

Canadian Archipelago, the Labrador Sea and across the North Atlantic between what is now Canada and Europe 35 

(Fig. 8). Freshening is simulated close to some continents, and is especially pronounced around Scandinavia (about 

-3 psu). Simulated ocean circulation can be very sensitive to fresh water forcing and thus SSS, especially in the 

North Atlantic (e.g. Rahmstorf (1996), Spence et al. (2008)). Application of SSS restoring using the SSS anomaly 
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field should therefore be done with caution and attention to its effects on the meridional overturning circulation. 

Tuning of the salinity anomaly in important deep-water formation regions of up to about ±1 psu, such as done by 

for example Winguth et al. (1999), may be required to obtain a satisfactory circulation field in reasonable 

agreement with proxy data. Such adjustments fall well within the PMIP3 model spread (Fig. 8), and show the 

current limitations of fully coupled PMIP3 models to simulate the LGM hydrological cycle consistent with proxy 5 

records of ocean circulation. 

4 Data availability 

The data are publicly accessible at the NIRD Research Data Archive at https://doi.org/10.11582/2019.00011 

(Morée and Schwinger, 2019). 

5 Summary and Conclusions 10 

The output of the fully coupled PMIP3 simulations of CNRM-CM5, IPSL-CM5A-LR, MIROC-ESM and MRI-

CGCM3 is converted to anomaly datasets intended for use in forced ocean modelling of the LGM. All anomalies 

are calculated as the difference between the LGM and PI PMIP3 experiments. In addition, all data are formatted 

in a way that further conversions (of for example units or the grid) can be applied in a straightforward way. The 

variables are provided in netCDF format in separate files, and distributed by the NIRD Research Data Archive 15 

(Morée and Schwinger, 2019). A climatological LGM forcing data set can be created for any forced ocean model 

by addition of the presented 2-D anomaly fields to the model’s pre-industrial forcing. This approach enables the 

scientific community to simulate the LGM ocean state in a forced model set-up. We expect that if additional 

forcing is needed for a specific model, the same approach as described above can be followed. This process is 

simplified by providing all main CDO and NCO commands used in creating the dataset (Table 3). All data 20 

represent a climatological year, i.e. one annual cycle per variable. The application of the data is thus suitable for 

‘time-slice’ equilibrium simulations of the LGM. 

The uncertainty of our anomaly forcing (approximated by the model spread of the PMIP3 models) is generally of 

similar magnitude as the multi-model annual mean. The attribution of the model spread to specific processes is 

beyond the scope of this article, but our results show that there is considerable uncertainty involved in the 25 

magnitude of the anomaly for all variables presented here. Nevertheless, all mean anomalies show a distinct spatial 

pattern that we expect to be indicative of the LGM-PI changes. Finally, there is no other way to reconstruct most 

of these variables than model simulations with state-of-the-art models such as those applied in the PMIP3 

experiments. For modelling purposes, the inter-model disagreement of PMIP3 provides the user with leeway to 

adjust the amplitude of the forcing (guided by the size of the model spread). Such adjustments can improve model-30 

proxy data agreements, such as described for salinity in Sect. 3.7. 
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Variable 

description 

Units Resolution 

(lon×lat), 

time 

Notes Variable name(s) PMIP3 variable 

name(s) 

Specific humidity kg kg-

1 

192×94, 

1460 

Re-referenced to 10 

m 

huss_10m huss 

Downwelling 

longwave 

radiation 

W m-2 192×94, 

365 

 rlds rlds 

Downwelling 

shortwave 

radiation 

W m-2 192×94, 

365 

 rsds rsds 

Precipitation mm 

day-1 

192×94, 12  pr pr 

Wind (u and v 

components) 

m s-1 192×94, 

1460 

 uas and vas uas and vas 

Temperature K 192×94, 

1460 

Re-referenced to 10 

m 

tas (re-referenced) 

tas_10m (re-

referenced and 

topography 

corrected) 

tas_diff (= tas -

tas_10m = 

temperature effect) 

tas 

Sea surface 

salinity 

psu 360×180, 

12 

CNRM-CM5 and 

MIROC-ESM only 

sos sos 

Table 1: Summary of the data showing variable description, units, format (lon×lat, time), Notes, netCDF variable 

name(s) and the original PMIP3 variable name(s). The wind component variables are provided in separate files (Morée 

and Schwinger, 2019). 
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Model name Modelling group Reference 

CNRM-CM5 CNRM-CERFACS 

(France) 

Voldoire et al. (2013) 

IPSL-CM5A-LR IPSL (Institut Pierre 

Simon Laplace, 

France) 

Dufresne et al. (2013) 

MIROC-ESM MIROC (JAMSTEC 

and NIES, Japan) 

Sueyoshi et al. (2013) 

MRI-CGCM3 MRI (Meteorological 

Research Institute, 

Japan) 

Yukimoto et al. (2012) 

Table 2: PMIP3 models used in this study 
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# CDO or NCO command 

1 cdo remapbil,t62grid 

2 ncea 

3 ncdiff 

4 ncap2 

5 cdo inttime 

6 cdo setmisstodis 

7 cdo smooth9 

Table 3: Package commands applied in this study. Detailed information on these commands can be found in the 

respective NCO and CDO documentation online. All operations were performed with either CDO version 1.7.0 

(Schulzweida, 2019) or NCO version 4.6.9. 

  

https://doi.org/10.5194/essd-2019-79

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 1 July 2019
c© Author(s) 2019. CC BY 4.0 License.



12 

 

 

Figure 1: Annual mean 10-meter height specific humidity LGM-PI anomaly (left) and model spread (right) in kg kg-1. 

 

Figure 2: Annual mean downwelling longwave radiation LGM-PI anomaly (left) and model spread (right) in W m-2. 

 5 

Figure 3: Annual mean downwelling shortwave radiation LGM-PI anomaly (left) and model spread (right) in W m-2. 
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Figure 4: Annual mean precipitation LGM-PI anomaly (left) and model spread (right) in mm day-1. 

Figure 5: Annual mean meridional wind velocity LGM-PI anomaly (left) and model spread (right) in m s-1. 

 5 

Figure 6: Annual mean zonal wind velocity LGM-PI anomaly (left) and model spread (right) in m s-1. 
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Figure 7: Annual mean topography-corrected 10-meter height temperature LGM-PI anomaly (left) and model spread 

(right) in K. 

Figure 8: Annual mean sea surface salinity LGM-PI anomaly (left) and model spread (right) in psu. 5 
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