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Abstract 10 

The aim of this research is to develop evaporation and transpiration products for Australia based on the maximum 11 

entropy production model (MEP). We introduce a method into the MEP algorithm of estimating the required 12 

model parameters over the entire Australia through the use of pedotransfer function, soil properties and remotely 13 

sensed soil moisture data. Our algorithm calculates the evaporation and transpiration over Australia on daily 14 

timescales at the 5 km2 resolution for 2003 – 2013.  15 

The MEP evapotranspiration (ET) estimates are validated using observed ET data from 20 Eddy Covariance (EC) 16 

flux towers across 8 land cover types in Australia. We also compare the MEP ET at the EC flux towers with two 17 

other ET products over Australia; MOD16 and AWRA-L products. The MEP model outperforms the MOD16 and 18 

AWRA-L across the 20 EC flux sites, with average root mean square errors (RMSE), 8.21, 9.87 and 9.22 mm/8 19 

days respectively. The average mean absolute error (MAE) for the MEP, MOD16 and AWRA-L are 6.21, 7.29 20 

and 6.52 mm/8 days, the average correlations are 0.64, 0.57 and 0.61, respectively. The percentage Bias of the 21 

MEP ET was within 20% of the observed ET at 12 of the 20 EC flux sites while the MOD16 and AWRA-L ET 22 

were within 20% of the observed ET at 4 and 10 sites respectively. Our analysis shows that evaporation and 23 

transpiration contribute 38% and 62%, respectively, to the total ET across the study period which includes a 24 

significant part of the “millennium drought” period (2003 – 2009) in Australia. The data (Abiodun et al., 2019) is 25 

available at http://dx.doi.org/10.25901/5ce795d313db8 26 
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 29 

1. Introduction 30 

The use of remote sensing data in existing and new methods for evapotranspiration (ET) estimation is 31 

incontrovertibly the current and future trend of ET flux quantification on catchment, regional and continental 32 

scales (Bhattarai et al., 2016;Zhang et al., 2016;Najmaddin et al., 2017). The use of remote sensing observations 33 

is an unprecedented advancement in regional scale ET estimation due to its spatiotemporal flexibility and/or 34 

economic viability (Chirouze et al., 2014;Long et al., 2014;Xiong et al., 2014;Yang et al., 2015;Bhattarai et al., 35 

2016). Various methods have been developed for improving ET estimates (Allen et al., 2007;Cleugh et al., 36 

2007;Tang et al., 2009;Mu et al., 2011;Xiong et al., 2014). However, the relative accuracy of these methods 37 

differ across different climates, vegetation and soil types (Jia et al., 2012;Kim et al., 2012;Velpuri et al., 38 

2013;Bhattarai et al., 2016). The performance of the ET models depends on the parameterization of physical 39 

processes underlying ET (Liaqat and Choi, 2017). A major challenge is to produce accurate ET estimates of 40 

various spatial and temporal resolutions (Senay et al., 2013;Wang et al., 2016;Gaur et al., 2017) when using 41 

remote sensing data (Kalma et al. (2008).  42 

A remote sensing based ET model is empirical or physically-based (Xiong et al., 2014). In the past two decades, 43 

several physically based ET models have been developed including the single source energy balance (SSEB) 44 

(Bastiaanssen et al., 1998;Roerink et al., 2000;Allen et al., 2007) and two-source surface energy balance (TSEB) 45 

(Kustas and Norman, 1999;Norman et al., 2003;Sun et al., 2009) models using remote sensing input data. The 46 

SSEB models provide total ET without partitioning it into soil evaporation (E) and transpiration (T), while the 47 

TSEB models do the partition. The TSEB models have been shown to be more accurate over partially vegetated 48 

surfaces (Timmermans et al., 2007;Gao and Long, 2008;Choi et al., 2009). A fundamental challenge of TSEB 49 

models is their reliance on land surface temperature (LST) and the partitioning methodology of the LST into soil 50 

and canopy temperature components for modelling (Colaizzi et al., 2012;Yang et al., 2018). Different 51 

techniques have been applied to partition the canopy and soil temperatures from the LST in the TSEB models 52 

(Norman et al., 2000;Zhang et al., 2005), with varying degree of success over different vegetation types (Chavez 53 

et al., 2009;Song et al., 2016;Diarra et al., 2017). The more pertinent challenge of the TSEB models becomes 54 

apparent when creating high resolution regional to continental scale ET, which requires accurate LST data as the 55 
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principal input. Frequent clouds plague remotely sensed LST products such as the widely accepted Moderate 56 

Resolution Imaging Spectroradiometer land surface temperature product (MODIS LST) (Wan et al., 2002).   57 

The limitations of the LST dependence of the traditional TSEB models was further highlighted by Mu et al. 58 

(2007) who found that the use of the 8-day composite of all cloud free data in the MODIS LST suite did not 59 

produce accurate estimates of global scale evapotranspiration. The MODIS LST yielded erroneous results of 60 

partitioned soil and canopy temperatures across various biomes, hence the development of a new algorithm is 61 

needed for estimating soil and canopy temperatures for improving the MODIS ET product (MOD16), which is 62 

widely accepted for comparison and validation purposes on catchment to continental scales. There are, however, 63 

unresolved issues of accuracy (Tang et al., 2015;de Arruda Souza et al., 2018;Khan et al., 2018). With the 64 

challenge surrounding the LST partitioning in TSEB models and the MOD16 challenges, a different perspective 65 

to the TSEB modelling on regional scale is required. 66 

 67 

The Maximum Entropy Production (MEP) model of ET (Wang and Bras, 2011) is a new approach to modelling 68 

ET. The MEP model was formulated as a unique TSEB model for soil and vegetated surface where ET and the 69 

other surface heat fluxes result from the partition of net radiation. The MEP model requires three main inputs: 70 

surface temperature, specific humidity and net radiation. A major departure of the MEP model from the 71 

traditional TSEB models is that the MEP model is less sensitive to temperature and more sensitive to the 72 

moisture content of immediately above the target surface and the available energy.  73 

Case studies have shown that the MEP ET for small catchments outperformed several other models (Nearing et 74 

al., 2012;Yang and Wang, 2014;Shanafield et al., 2015). However, the MEP ET model is yet to be 75 

comprehensively tested over various vegetation covers. A global product of the MEP ET at a 100 km2 spatial 76 

resolution has been produced (Huang et al., 2017). However, at this scale, individual vegetation cover type 77 

validation and analysis is problematic. The ET data over the diverse Australian landscape at catchment to 78 

continental scale has been produced (Guerschman et al. (2009) using MOD16 model (Mu et al., 2011) and the 79 

Australian Water Resource Assessment Landscape (AWRA-L) model (Viney et al., 2014).   80 

The goal of this paper is to develop a daily MEP ET product for Australia on a 0.05o spatial resolution. We have 81 

generated the data for 2003 – 2013 for demonstration and testing of result (Abiodun et al., 2019). The skill of 82 

the MEP ET model will be evaluated using eddy covariance tower data across various vegetation covers and 83 
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compared with the results of the MOD16 and the AWRA-L products. The evaluation period covers the 84 

climatological highly variable “millennium drought” period (2003-2010).   85 

 86 

2   Method and data 87 
 88 

The energy balance equation over the land surface is expressed as, 89 

𝐸𝐸 +  𝐻𝐻 +  𝐺𝐺 =  𝑅𝑅𝑛𝑛          (1) 90 

where 𝐸𝐸,𝐻𝐻,𝐺𝐺 and 𝑅𝑅𝑛𝑛 are evapotranspiration (W/m2), sensible heat (W/m2), ground heat (W/m2) and net radiation 91 

(W/m2), respectively. The MEP ET model provides a solution of 𝐸𝐸𝑠𝑠,𝐻𝐻𝑠𝑠, and 𝐺𝐺 over non-vegetated land surface 92 

satisfying the energy balance equation Eq. (1) (Wang and Bras (2011) for given net radiation Rn, surface 93 

temperature T, and surface specific humidity q,  94 

𝜎𝜎𝑠𝑠 = 𝜆𝜆2

𝑐𝑐𝑝𝑝𝑅𝑅𝑣𝑣

𝑞𝑞𝑠𝑠
𝑇𝑇𝑠𝑠2

  , 𝛽𝛽(𝜎𝜎𝑠𝑠) = 6 ��1 + 11

36
𝜎𝜎𝑠𝑠 − 1�        (2) 95 

𝐺𝐺 = 𝛽𝛽(𝜎𝜎𝑠𝑠)
𝜎𝜎𝑠𝑠

 𝐼𝐼𝑠𝑠
𝐼𝐼𝑜𝑜

 𝐻𝐻𝑠𝑠|𝐻𝐻𝑠𝑠|−
1
6          (3) 96 

𝐸𝐸𝑠𝑠 =  𝛽𝛽(𝜎𝜎𝑠𝑠)𝐻𝐻𝑠𝑠             (4) 97 

 98 

where 𝜎𝜎𝑠𝑠 (Sigma) is a dimensionless parameter characterizing the effect of (soil or canopy) surface thermal and 99 

moisture state on the phase change of liquid water (-); 𝜆𝜆 is the latent heat of vaporization of liquid water (J kg-1); 100 

𝑐𝑐𝑝𝑝 is the specific heat of dry air at constant pressure (J kg-1 K-1); 𝑅𝑅𝑣𝑣 is the gas constant of water vapor (J kg-1 K-1); 101 

𝑞𝑞𝑠𝑠 the specific humidity at the soil or vegetation surface (kg kg-1); 𝑇𝑇𝑠𝑠 is the soil or canopy surface temperatures 102 

(K); 𝛽𝛽(𝜎𝜎𝑠𝑠) is the inverse Bowen ratio (-); 𝐼𝐼𝑠𝑠 is the thermal inertia of soil (J m-2 K-1 s-1/2); 𝐼𝐼𝑜𝑜 is the thermal inertia 103 

of turbulent air (J m-2 K-1 s-1/2). For vegetated land surface where 𝐺𝐺 is neglected, equations (2) – (4) become;  104 

𝐸𝐸𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝜎𝜎𝑠𝑠−1

 ,𝐻𝐻𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝜎𝜎𝑠𝑠

         (6) 105 

          106 
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where 𝐸𝐸𝑣𝑣 is the canopy transpiration and 𝐻𝐻𝑣𝑣 sensible heat flux over canopy surface satisfying energy balance 107 

equation 𝑅𝑅𝑛𝑛 = 𝐸𝐸𝑣𝑣 + 𝐻𝐻𝑣𝑣.           108 

The MEP ET algorithm calculates soil evaporation and canopy transpiration separately. Total evapotranspiration 109 

is the sum of the two fluxes weighted by the fractional coverage of soil and canopy (Fig 1). In this paper, we apply 110 

temporally varying vegetation fraction cover in the algorithm to partition the radiation energy for soil and canopy. 111 

 112 

 113 

Figure 1: Flowchart of MEP ET algorithm; BetaSigma is the inverse Bowen ratio  114 

 115 

2.1   Net radiation (𝑹𝑹𝒏𝒏) 116 
 117 
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Daily net radiation at 0.05o spatial resolution over Australia is partitioned between soil and canopy within a grid 118 

cell according to vegetation fraction cover. Photosynthetically active radiation (FPAR) product MOD15A2H 119 

(Myneni et al., 2015)  is used in this study. While the MEP model is very sensitive to net radiation as a model 120 

input with pronounced diurnal cycle, 8-day vegetation cover data were used as vegetation cover changes at 121 

seasonal time scale. Net radiation over canopy and soil surface within a grid cell is expressed as, 122 

𝑅𝑅𝑛𝑛_𝑣𝑣 = 𝐹𝐹𝑐𝑐 𝑅𝑅𝑛𝑛  ,  𝑅𝑅𝑛𝑛_𝑠𝑠 = (1 − 𝐹𝐹𝑐𝑐) 𝑅𝑅𝑛𝑛       (7) 123 

where, 𝑅𝑅𝑛𝑛_𝑣𝑣 is the net radiation over vegetation (W/m2), 𝑅𝑅𝑛𝑛_𝑠𝑠 is the net radiation over soil (W/m2), and 𝐹𝐹𝑐𝑐 is the 124 

vegetation fraction (-). 125 

 126 

2.2   Evaporation 127 
 128 

The MEP model as in Eqs. 1, 3 and 4 provides a unique solution of E, G and H for given surface temperature (𝑇𝑇𝑠𝑠), 129 

soil/canopy surface specific humidity (𝑞𝑞𝑠𝑠 ), and 𝑅𝑅𝑛𝑛_𝑠𝑠 . The land surface temperature (𝑇𝑇𝑠𝑠 ) is provided by the 130 

MOD11C1 product (Wan, 2014) derived from the MODIS observations. The daily data for Australia from 2003 131 

to 2013 was extracted from the global dataset. Missing 𝑇𝑇𝑠𝑠 data, due to cloud cover, were filled using the lowest 132 

value within a month for each grid cell. The rationale is that cloud cover reduces the amount of solar radiation 133 

reaching the land surface, hence the lowest observed 𝑇𝑇𝑠𝑠 value within a month is used.  134 

Due to the difficulty of obtaining 𝑞𝑞𝑠𝑠 over the entire Australia, an empirical equation is used to calculate 𝑞𝑞𝑠𝑠 as a 135 

function of soil surface relative humidity and land surface temperature. The soil surface relative humidity is 136 

calculated from the soil surface water potential. The Hutson and Cass function (Hutson and Cass (1987) is used 137 

for estimating soil surface water potential. The Hutson & Cass function requires two empirical coefficients 138 

calibrated for each grid cell using two methods: the empirical equation derived in Williams et al. (1992), and the 139 

pedotransfer functions to estimate the soil water content at wilting point (-1.5MPa) and at field capacity (-10kPa). 140 

The water content at the wilting point and field capacity for each 0.05o grid cell, estimated from the pedotransfer 141 

functions, are subsequently used to determine the coefficients, by applying the two-point method (Cresswell and 142 

Paydar (1996) (see Section 2.3.1). Different pedotransfer functions for determining the wilting point and field 143 

capacity (Minasny et al., 1999;Minasny and Mcbratney, 2002;Rab et al., 2011) (see Equations. 12 and 13 in (Rab 144 

et al. (2011)) were selected due to their modest data requirement and relative accuracy. The pedotransfer function 145 

combined with the two point method was preferred to the empirical equations (Williams et al. (1992) as they 146 
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yielded significantly better estimates of ET after validation with flux tower data. Soil properties as the inputs of 147 

the pedotransfer functions and empirical equations are obtained from the Australian Soil Resource Information 148 

System (ASRIS) (Johnston et al., 2003).  149 

An important parameter of the MEP model is the distance above target surface for which the Monin-Obukhov 150 

similarity theory is valid (z) in the formula of the thermal inertia of turbulent air above soil surface. Huang et al. 151 

(2017) suggested that the distance above target (𝑧𝑧) vary with the land cover types as shown in the look-up table 152 

(Table 1) used in this study. 𝑧𝑧 for each land cover is specified for each 0.05o grid cell using the MODIS land cover 153 

product (MOD12C1) (Mark and Damien, 2015) of the same resolution.  154 

Table 1: Distance above target surface (z) in (m) for Australian Land cover  155 

Land Cover Distance above target (z) in (m) 

Evergreen Needleleaf Forests (ENF) 10 

Evergreen Broadleaf Forests (EBF) 10 

Deciduous Needleleaf Forests (DNF) 10 

Deciduous Broadleaf Forests (DBF) 10 

Mixed Forests (MF) 10 

Closed Shrublands (CSH) 5 

Open Shrublands (OSH) 4 

Woody Savannas (WSA) 8 

Savannas (SAV) 7 

Grasslands (GRA) 5 

Croplands (CRP) 5 

Urban and Built up (URB) 3 

Cropland/Natural Vegetation Mosaics (CRV) 5 

 156 
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157 
Figure 2: Target height (z) in (m) above vegetation with location of Eddy Covariance flux towers and the land cover types; 158 

 159 

2.2.1 Hutson and Cass function with the two-point method 160 
To determine the Hutson and Cass coefficients “a” and “b” (Eq. 14) for each 0.05o grid cell across Australia, we 161 

solve the pedotransfer with the two-point method. The two values used are the volumetric soil moisture 162 

(θ1 and θ2) at the field capacity and the wilting point soil water potentials (Ψ1 and Ψ2) of -10 kPa and 1500 163 

kPa respectively. Combining both equations, we obtain the model parameters “a” and “b” for each 0.05o grid cell. 164 

Ψ = 𝑎𝑎( 𝜃𝜃
𝜃𝜃𝑝𝑝

)−𝑏𝑏            (8) 165 

𝜃𝜃𝑝𝑝 = 1 - (ρ / ρs)           (9) 166 

where Ψ is the soil water potential (kPa); a (kPa) and b (-) are curve-fitting parameters; 𝜃𝜃𝑝𝑝 (-) is the porosity; ρ 167 

(kg/dm3) is the bulk density of soil; and ρs =2.65 (kg/dm3) is the mineral density.  168 

 169 
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2.2.2 Soil moisture 170 
The soil moisture data used in this study are obtained from the European Space Agency’s Climate Change 171 

Initiative Soil Moisture Project (ESA CCI SM) at 0.25o and daily resolution available from 1978 to 2018 (Dorigo 172 

et al., 2017), hereafter referred to as the ESA CCI SM. The ESA CCI SM consists of three products; Active, 173 

Passive and Combined (Liu et al., 2012;Gruber et al., 2017). The ESA CCI SM is preferred in this study as it 174 

offers the most suitable spatio-temporal resolution compared to other available soil moisture products. The 175 

combined product is selected in this study as its algorithm unifies the Active and Passive products to have better 176 

spatial coverage than either the Passive or Active products with more stringent quality control. While the 177 

combined product has good spatial-temporal resolution for remote sensing applications, missing data are filled 178 

through an average of the day before and after. Multiple-days data gaps are filled using multiple-days average. 179 

The ESA CCI SM is also resampled at 0.05o resolution to be consistent with the spatial resolutions of the other 180 

input data.  181 

2.3   Transpiration 182 
The MEP method requires specific humidity and temperature very close to the target surface. However due to the 183 

difficulty of obtaining leaf surface temperature and specific humidity at regional scales, air temperature and air 184 

specific humidity are used as surrogates. Air temperature and relative humidity data above canopy are obtained 185 

from the interpolated field observations over Australia (Jeffrey et al., 2001). The Clausius-Clapeyron equation is 186 

used in obtaining the specific humidity from air temperature and relative humidity. 187 

2.4 Model Evaluation  188 
For the evaluation of the MEP model results over Australia, data from 20 eddy covariance (EC) flux towers across 189 

different land covers are used. The model performance is evaluated using six statistical metrics: the root mean 190 

square error (𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆), mean difference (𝑀𝑀𝑀𝑀), mean absolute error (𝑀𝑀𝑀𝑀𝑀𝑀), Pearson’s correlation coefficient (R), 191 

Nash-Sutcliffe Efficiency (𝑁𝑁𝑁𝑁𝑁𝑁) and Percent Bias (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), 192 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛� )2𝑁𝑁
𝑛𝑛=1

𝑁𝑁
           (10) 193 

𝑀𝑀𝑀𝑀 = ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛� )𝑁𝑁
𝑛𝑛=1

𝑁𝑁
            (11) 194 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛� |𝑁𝑁
𝑛𝑛=1

𝑁𝑁
           (12) 195 

𝑅𝑅 = �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄)(𝑁𝑁
𝑛𝑛=1 𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�  �

 �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2�∑ (𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2
          (13) 196 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )2

 ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2

          (14) 197 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100 × ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )

 ∑ 𝑄𝑄𝑛𝑛𝑁𝑁
𝑛𝑛=1

         (15) 198 

 199 

where 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 are observed and simulated daily ET values (mm); 𝑁𝑁 is the number of observed or simulated ET 200 

values; 𝑄𝑄𝑛𝑛 (mm) is the measured ET at day 𝑛𝑛; 𝑄𝑄𝑛𝑛�  (mm) is the simulated ET at day 𝑛𝑛; 𝑄𝑄𝑛𝑛�  (mm) is the mean 201 

simulated discharge at day 𝑛𝑛; and 𝑄𝑄 (mm) is the mean ET. 202 

  203 

The MEP ET product at 5 km2 resolution is validated across the 20 EC tower flux data with footprints ranging 204 

from 100 m2 up to about 2 km2 depending on the measuring height of the EC system and vegetation height. The 205 

effects of the differences in footprints of the EC towers and the data to be validated are not considered in this 206 

study. 207 

A three-product comparison (MEP, AWRA-L and MOD16) with the field data from the 20 EC flux towers across 208 

Australia was conducted as part of this study. While the MEP and the AWRA-L models are produced on daily 209 

timescales, the MOD16’s highest temporary resolution is an 8-day product. For a direct comparison, MEP and 210 

AWRA-L are aggregated to 8-day resolution. Since the MOD16 dataset has missing data points due to cloud cover 211 

or sensor failures, the days with missing data are removed across all models and the EC tower data before 212 

comparison.  213 

Mean annual maps are produced for the three products between 2003 and 2013 with the MOD16 resampled to the 214 

5 km2 resolution to match that of the MEP and AWRA-L data for direct comparison for 280,000 pixels covering 215 

the entire Australian using the R, RMSE, MAE and NSE statistical metrics.   216 

 217 

3.    Results and discussion 218 

3.1 Mean spatial-temporal MEP ET Analysis  219 
 220 

The daily MEP evaporation and transpiration over Australia for 2003 – 2013 are relatively high in the northern 221 

vegetated parts of Australia (Fig. 3a-b) and around the eastern coastline (Fig. 3b). Evaporation and transpiration 222 

account for 38% and 62% of total ET, respectively, over Australia. ET is highest in the high rainfall shrub-lands 223 

and forested regions in the northern Australia as well as around the coastline (Fig 3c). The west central parts of 224 

Australia have the lowest ET with mean annual ET 440 mm for Australia for 2003-2013, while the mean ET along 225 

the coastline exceeds 1000 mm for the same period.  226 
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                                                                     229 

 Figure 3: (a) Mean evaporation; (b) Mean transpiration; and (c) Mean evapotranspiration in mm/yr for 2003-2013 230 

 231 

 232 

Figure 3: MEP E &T vs Rainfall 233 
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Annual ET fluctuates during the study period (Fig 3) with the correlations between annual evaporation and 234 

transpiration and annual rainfall 0.94 and 0.84, respectively. Although the MEP model does not use rainfall as an 235 

input, the strong correlation between rainfall and ET, the largest components of the hydrologic system in Australia, 236 

suggests the MEP model captures the Australian hydrological system effectively. These results are consistent with 237 

the findings of Jung et al. (2010) who observed a drop in the global evapotranspiration due to reduced ET over 238 

Australia between 1998 and 2008. The reduction in ET over Australia can be seen through the “millennium 239 

drought” years with the immediate increase in ET observed in 2010 at the end of the prolonged drought.  240 

 241 

 242 

 243 
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Table 2: EC validation of the MEP, MOD16 and AWRA-L products. Eddy Covariance Tower Site name (Site Name); Fluxnet site ID and IGBP land 244 
cover type (Site ID); Average observed ET at flux tower (OBS_ET); Root Mean Square Error (RMSE); Mean Absolute Error (MAE); Correlation 245 
Coefficient (R); Percent Bias (PBIAS); EC sites citations 246 

  247 

Site 
Name 

Site 
ID 

Obs_
ET 
(mm/ 
8 
days) 

RMSE (mm/ 8 days) MAE (mm/ 8 days) R PBIAS (%) Citations 

   ME
P 

MOD
16 

AWR
A-L 

ME
P 

MOD
16 

AWR
A-L 

ME
P 

MOD
16 

AWR
A-L 

ME
P 

MOD
16 

AWR
A-L 

 

Adelaide 
River 

AU-
Ade 
(WS
A) 

15.34 9.06 11.09 9.65 7.04 9.22 5.73 0.64 0.57 0.71 26.1
8 

-34.38 22.26 (Beringer
, 2014g) 

Alice 
Springs 

AU-
ASM 
(EN
F) 

8.45 6.12 8.82 7.13 4.80 6.05 6.03 0.74 0.69 0.63 -
6.78 

-62.1 -23.9 (Derek and 
James, 
2014a) 

Calperum AU-
Cpr 
(SA
V) 

8.39 3.38 4.69 3.55 1.01 2.79 1.27 0.62 0.33 0.72 -
12.0
4 

-33.25 -15.15 (Koerber, 
2014) 

Daly 
River 
Cleared 

AU-
DaS 
(GR
A) 

18.6 4.62 9.74 6.05 3.63 8.21 4.43 0.88 0.74 0.78 -
12.2
3 

-38.6 0.21 (Beringer, 
2014f) 

Daly 
River 
Savanna 

AU-
DaP 
(GR
A) 

12.24 10.4
3 

10.75 9.78 8.64 6.93 6.89 0.63 0.74 0.77 17.3
2 

13.86 41.49 (Beringer, 
2014f) 

Dry River AU-
Dry 
(SA
V) 

19.55 9.95 13.63 12.58 4.7 8.14 5.02 0.62 0.43 0.58 -
24.2 

-41.77 -25.8 (Beringer, 
2014e) 

Emerald AU-
Emr 
(GR
A) 

11.56 5.69 5.96 9.91 4.22 4.35 7.32 0.47 0.48 0.43 -
10.9
2 

-14.38 21.25 (Schroder, 
2014) 

Fogg 
Dam 

AU-
Fog 
(WE
T) 

35.35 15.4
5 

22.53 18.9 13.9
7 

20.72 16.33 0.26 0.6 0.61 -
35.7
1 

-58.4 -42.79 (Beringer, 
2013b) 

Gingin AU-
Gin 
(WS
A) 

15.47 6.27 7.21 5.49 5.20 6.09 4.1 0.39 0.37 0.51 -3.0 -36.49 -17.02 (Silberstei
n, 2015) 

Great 
Western 
Woodlan
ds,  

AU-
GW
W 
(SA
V) 

7.65 2.78 5.15 3.47 2.04 3.9 2.62 0.63 0.08 0.37 11.0
8 

-47.45 -11.06 (Craig, 
2014;Berin
ger, 
2014d) 

Howard 
Springs 

AU-
How 
(WS
A) 

24.96 7.13 9.92 7.96 5.53 8.13 6.18 0.67 0.79 0.79 -3.2 -30.0 -9.87 (Beringer, 
2014c) 

Loxton AU-
Lox 
(DB
F) 

27.3 27.3
1 

27.09 32.63 17.7
8 

17.51 22.8 0.51 0.37 -0.12 -
63.4
8 

-60.0 -82.7 (Ewenz, 
2008) 

Red Dirt 
Melon 
Farm 

AU-
RDF 
(WS
A) 

14.66 9.56 11.36 12.17 8.25 8.65 8.88 0.66 0.55 0.58 3.45 -25.39 12.53 (Beringer, 
2013a) 

Riggs 
Creek 

AU-
Rig 
(GR
A) 

13.22 5.72 9.07 4.53 4.67 4.23 3.28 0.71 0.70 0.83 -
14.9
6 

-22.21 11.62 (Beringer, 
2014b) 

Sturt 
Plains 

AU-
Stp 
(GR
A) 

10.24 7.95 8.20 8.5 6.17 5.64 4.79 0.73 0.79 0.78 25.7
7 

-40.4 17.9 (Schroder, 
2014) 
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 248 

Ti Tree 
East 

AU-
TTE 
(OS
H) 

2.81 4.45 4.32 6.99 3.69 2.63 4.95 0.43 0.08 0.20 96.1
7 

-42.34 146.08 (Derek and 
James, 
2014b) 

Tumbaru
mba 

AU-
Tum 
(EBF
) 

20.86 6.72 6.54 5.97 4.75 4.98 4.31 0.83 0.86 0.86 -
13.8
2 

14.07 -6.57 (Woodgate
, 2014) 

Wallaby 
Creek 

AU-
Wac 
(EBF
) 

15.35 6.76 11.13 5.76 5.82 9.31 4.84 0.85 0.77 0.78 34.6
7 

57.75 25.57 (Beringer, 
2014a) 

Whroo AU-
Whr 
(WS
A) 

13.73 6.51 5.08 5.86 5.09 4.10 4.52 0.54 0.59 0.46 -
2.54 

-23.07 -10.8 (Beringer, 
2014d) 

Wombat AU-
Wo
m 
(EBF
) 

23.28 8.24 5.13 7.45 7.11 4.16 6.02 0.89 0.88 0.81 -
30.1
2 

-0.29 -21.24 (Beringer, 
2014h) 
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3.2 MEP, MOD16 and AWRA-L performances at the Eddy Covariance flux sites  249 
 250 

The 20 eddy covariance flux tower sites used for the validation of the MEP, MOD16 and AWRA-L products 251 

include 8 land cover types according to the International Geosphere-Biosphere Programme (IGBP), i.e. 4-252 

Evergreen Broadleaved Forest (EBF), 4-Woodland Savanna (WSA),4-Savanna (SAV), 1-Wetland (WET), 4-253 

Grassland (GRA), 1-Evergreen Needle Forest (ENF), 1-Deciduous Broadleaved Forest (DBF), and 1-Open 254 

Shrubland (OSH). The MEP model outperforms the MOD16 at 15, 13, 14 and 16 sites measured by the RMSE, 255 

MAE, R and PBIAS metrics respectively. The MEP also performed better than the AWRA-L at 13, 11, 11 and 12 256 

sites measured by the RMSE, MAE, R and PBIAS metrics, respectively. The MEP model also outperforms the 257 

MOD16 and AWRA-L measured by the average RMSE, MAE and R across the 20 EC flux sites. The average 258 

RMSE across the 20 EC flux sites for the MEP, MOD16 and AWRA-L are respectively 8.21, 9.87 and 9.22. The 259 

average MAE are respectively 6.21, 7.29 and 6.52 for the MEP, MOD16 and AWRA-L. The average correlations 260 

are 0.64, 0.57 and 0.61 for the MEP, MOD16 and AWRA-L, respectively. The MEP PBIAS was within 20% of 261 

the observed flux at 12 sites while the MOD16 and AWRA-L were within 20% of the observed flux at 4 and 10 262 

sites, respectively. 263 

Some consistency is seen across the models at many sites, with the three models seeming to perform best for the 264 

evergreen broadleaved forests with correlations ranging from 0.77 to 0.89 at the three sites. Similar correlation 265 

consistency of the models is obtained across the five grassland sites. Generally, the MOD16 underestimated ET 266 

significantly at most sites with 12 sites over 30%.  Consistent underestimation is also observed across the Fogg 267 

Dam wetland site with the three models underestimating ET by 35% or higher. The MEP ET exhibited the lowest 268 

correlation at the Fogg Dam site. The Fogg Dam is a seasonally flooded wetland where water evaporation is a 269 

principal component of ET. However, due to the coarse resolution of the soil moisture data, the MEP model may 270 

not effectively capture the local evaporation. Less accurate ET estimates were also observed at the Loxton site by 271 

the three models with underestimation at least 60%. The flux data at the Loxton site appear unrealistic presumably 272 

caused by sensor failures suggested by 1800 mm ET while only 500 mm rainfall is recorded at the site.  273 

 274 
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283 

 284 

Figure 4: Continuous plot of the MEP, EC, AWRA-L and MOD16 ET  285 

 286 

Fig. 4 shows that the MEP model reasonably captures the temporal trends of ET relative to the EC flux at most 287 

sites. The MEP model appears to underestimate ET in the winter months and overestimate ET in the summer 288 

months at the Whroo site. A possible reason for this trend in the MEP model is the wrong classification of the 289 

vegetation at the Whroo site. The Whroo site, a box woodland revegetation from the gold mining era currently 290 

covered with pasture and eucalyptus species vegetation, is incorrectly classified by the IGBP as an evergreen 291 

broadleaved forest. The FPAR product used in partitioning net radiation between soil and canopy show large inter-292 

annual variation, leading to seasonal under- or overestimation of ET.  293 
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The MOD16 performs the best at forested sites showing consistent temporal patterns relative to the EC 294 

observations. The calibrated AWRA-L model also effectively replicates the temporal trends across most sites and 295 

outperforms the MOD16 at most sites.  296 

 The accuracy of the modelled ET is strongly affected by the estimated soil water potential using the pedotransfer 297 

function. The difference in the footprints of the flux towers may also contribute to the underestimation of ET 298 

particularly at flux tower sites with mixed vegetation. 299 

 300 

3.3 Comparison of the MEP, MOD16 and AWRA-L at Continental scale 301 
 302 

A continental scale comparison of the MEP, MOD16 and AWRA_L ET products was carried out after calculating 303 

a mean annual ET over the study period from each product over the entire Australia. All 260,000 pixels of 5 km 304 

resolution across the three models are used in the analysis. Annual mean ET over Australia from the MEP, MOD16 305 

and AWRA_L products over the 11-year study period were calculated as 440, 262 and 428 mm, respectively. All 306 

the corresponding cells were also used to calculate the correlation R, RMSE, NSE and MAE (Table 3). The spatial 307 

agreements across the products was evident with all three products showing higher ET around the coastline and 308 

lower ET in inland Australia. The NSE between the MEP and AWRA-L shows a better agreement than between 309 

the MEP and MOD16 products, which have a negative NSE. The MAE and RMSE were also significantly lower 310 

between the MEP and AWRA-L. The total ET from the MEP and AWRA-L appears more reasonable relative to 311 

the annual rainfall over Australia (Fig 2). The annual MEP ET as a percentage of rainfall (Fig 2) is consistent with 312 

other studies that about 90% of annual rainfall in Australia is returned to the atmosphere through ET (Chiew et 313 

al., 2002;Prosser, 2011). Moreover, significant underestimation of ET by the MOD16 model was observed across 314 

the flux tower sites. 315 

 Spatial analysis of the three products were also carried out using the percentage difference for MEP vs MOD16, 316 

MEP vs AWRA-L and AWRA-L vs MOD16 (Fig 4). MEP ET was significantly higher than MOD16 ET for large 317 

swaths of inland Australia while MOD16 was higher around the coastlines, particularly the eastern coastlines and 318 

Tasmania. The underestimation of the MOD16 ET at the EC flux tower sites (section 3.3 showing that MOD16 319 

underestimating ET at 17 of the 20 flux sites and by more than 30% in 12 of the sites) is confirmed as shown in 320 

Fig. 4(a) and (c). The MOD16 performed better at the evergreen broadleaved forest tower sites close to the 321 

coastline where it has better agreement with the MEP. However due to mixed performance of the MEP and 322 

https://doi.org/10.5194/essd-2019-70

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



22 
 

MOD16 model at the flux towers around the south-eastern coastline, it is difficult to draw a definite conclusion 323 

on which model performs better. The percentage difference between the MEP and AWRA-L model has a narrower 324 

range over large areas of Australia with both models within 50% for Australia. There are two large areas in the 325 

south-central to Western Australia where the AWRA-L model significantly underestimates ET. The AWRA-L 326 

ET is in the range of 1 – 10 mm/yr over large portion of Western Australia with numerous pixels having mean ET 327 

less than 1 mm/yr between 2003 and 2013, which may be due to water balance errors in the AWRA-L algorithm. 328 

The historic average precipitation in the partially vegetated region is in the range 200-500 mm/yr and it appears 329 

implausible for ET to be less than 10 mm/yr. The large swath is also conspicuous in the AWRA-L and MOD16 330 

percentage difference map (Fig 4c). The MOD16 model also produces higher ET than the MEP and AWRA-L 331 

specifically in regions classified as evergreen broadleaved forests along the coastlines. The overestimation of 332 

MOD16 at evergreen broadleaved forests has been documented in literature (Ruhoff et al., 2013;Hu et al., 2015).  333 

 334 

Table 2: The correlation coefficient (R), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE) and Mean Absolute 335 
Error (MAE) for comparison of the MEP, MOD16 and AWRA_L products over the entire Australia 336 

                   RMSE (mm/yr)                             MAE (mm/yr) 

 

 

R 

 MEP MOD16 AWRA-L  

    

NSE 

 MEP MOD16 AWRA-L 

MEP  242 162 MEP  203 126 

MOD16 0.75  205 MOD16 -0.05  187 

AWRA-L 0.77 0.86  AWRA-L 0.51 0.25  
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 338 

       339 
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 340 

Figure 5: Mean annual percentage difference between (a) MEP – MOD16; (b) MEP-AWRA-L; (c) AWRA-L-  341 

 342 

 343 

3.4 Possible challenges with the MEP model 344 
 345 

The MEP model appears lacking spatial continuity, probably due to the use of pedotransfer functions to determine 346 

the wilting point and field capacity, since surface specific humidity is a crucial input of the MEP model. Hence, 347 

further improvement to the MEP model may be achieved by improving the parameterization of the pedotransfer 348 

functions for each soil type. 349 

Another challenge is the spatial resolution of soil moisture data for the regions where soil moisture is spatially 350 

more variable. The low correlation of the MEP model in the Fogg Dam wetlands may be related to high spatial 351 

variability of the soil moisture with intermittent flooding occurring at the site.  352 

 353 

 354 

 355 

 356 

 357 
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4 Data Availability 358 
 359 

The produced daily evaporation and transpiration datasets over the entire Australia at the 5 km resolution for the 360 
time period 2003 – 2013 (Abiodun et al., 2019) are publicly available at 361 
http://dx.doi.org/10.25901/5ce795d313db8 or  from the direct download portal; 362 
https://dap.tern.org.au/thredds/catalog/MEP/catalog.html  363 

5 Conclusion 364 
 365 

We have implemented the MEP model for estimating ET on a continental scale using readily available remote 366 

sensing datasets to produce daily evaporation and transpiration at 5 km2 resolution dataset over the entire Australia.  367 

The MEP modelled ET was validated at 20 EC flux tower sites and compared to the MOD16 and AWRA-L model 368 

ET. The MEP model outperforms both models at most EC flux sites with the AWRA-L model performing the 369 

next best. The MEP ET has the best average RMSE, MAE, R and PBIAS across all 20 EC flux sites. The MEP 370 

annual mean ET over Australia corroborates previous studies on the ET trend over Australia indicated by close 371 

correlation between MEP ET and rainfall during and after the “millennium drought” period.  372 

The MEP model is the simplest of the three models in terms of model formula and input data. This study shows 373 

that the MEP model as a two-source surface energy balance model effectively estimates ET on regional scales 374 

using fewer input data to produce evaporation and transpiration separately.  375 

The MEP method has the potential to be further improved for modelling ET. Further study will seek to improve 376 

the resolution of the MEP ET product while focusing on the development of a daily global MEP product. 377 

Appendix A 378 
 379 

The MEP model of evaporation and transpiration was derived from the dissipation function in Equation (A1) in 380 

(Wang and Bras (2011) 381 

𝐷𝐷(𝐸𝐸,𝐺𝐺,𝐻𝐻) ≡ 2𝐸𝐸2

𝐼𝐼𝑒𝑒
+ 2𝐺𝐺2

𝐼𝐼𝑠𝑠
+ 2𝐻𝐻2

𝐼𝐼𝑎𝑎
         (A1) 382 

where 𝐼𝐼𝑒𝑒 , 𝐼𝐼𝑠𝑠 , and 𝐼𝐼𝑎𝑎 are the thermal inertia relative to latent heat, ground heat and sensible heat flux, respectively, 383 

 384 

𝐼𝐼𝑠𝑠 = �2.1𝜌𝜌�1.2−0.02� 𝜌𝜌
𝜌𝜌𝑤𝑤

�100𝜃𝜃�𝑒𝑒
�−0.007�100𝜃𝜃𝜃𝜃𝜌𝜌𝑤𝑤

−20�
2
�

+ 𝜌𝜌�0.8+0.02� 𝜌𝜌
𝜌𝜌𝑤𝑤

�100𝜃𝜃��
0.5

× �
�20𝜃𝜃𝜌𝜌𝑤𝑤

�𝜌𝜌2

0.01
�   (A2)  385 

𝐼𝐼𝑠𝑠 is parameterized as a function of soil moisture and water density and bulk density (Ma and Xue, 1990;Cai et 386 

al., 2007) where 𝜌𝜌𝑤𝑤 is density of water (kg/m3); 𝜃𝜃 is the soil moisture content of the soil (m3/m3); 387 

https://doi.org/10.5194/essd-2019-70

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 18 July 2019
c© Author(s) 2019. CC BY 4.0 License.



26 
 

𝐼𝐼𝑜𝑜 =  𝐶𝐶𝑜𝑜𝜌𝜌𝑎𝑎𝐶𝐶𝑝𝑝√𝑘𝑘𝑘𝑘 �
𝑘𝑘𝑘𝑘𝑘𝑘

𝜌𝜌𝑎𝑎𝐶𝐶𝑝𝑝𝑇𝑇𝑟𝑟
�
1
6
                      (A3)           388 

𝐶𝐶𝑜𝑜 is the empirical constant characterizing the atmospheric stability (Businger et al., 1971): 𝐶𝐶𝑜𝑜 = 1.7 Unstable, 389 

1.2 Stable; 𝜌𝜌𝑎𝑎 is the density of air (Kgm-3); 𝑘𝑘 = 0.4 the von Kármán constant; 𝑧𝑧 is the distance above the target 390 

surface for which the Monin-Obukhov similarity theory is valid (m); 𝑔𝑔 = 9.8 m/s2 the acceleration due to gravity; 391 

𝑇𝑇𝑟𝑟 (~ 300 K) is an atmospheric reference temperature;  392 

 𝐼𝐼𝑎𝑎 =  𝐼𝐼𝑜𝑜|𝐻𝐻|−
1
6,  𝐼𝐼𝑒𝑒 = 𝜎𝜎𝐼𝐼𝑎𝑎 ,           (A4) 393 

where 𝜎𝜎 is defined in Equation 2 394 

In the MEP equation over vegetated land surface in Wang and Bras (2011), the reciprocal Bowen ratio; 𝛽𝛽(𝜎𝜎) =395 

6��1 + 11
36
𝜎𝜎 − 1� , was introduced to represent the target surface conditions as a function of specific humidity 396 

and temperature. Hence, the MEP flux equations over vegetated land can be written as,   397 

𝐸𝐸𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝛽𝛽(𝜎𝜎)𝑣𝑣

−1 , 𝐻𝐻𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝛽𝛽(𝜎𝜎)𝑣𝑣

         (A5) 398 

At regional scales where air specific humidity and air temperature are used as surrogates of canopy surface specific 399 

humidity and temperature, 𝛽𝛽(𝜎𝜎) in equation A5 is replaced with  𝜎𝜎 400 

𝜃𝜃 @𝐹𝐹𝐹𝐹 =  7.561 +  1.176𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙 –  0.009843𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2  +  0.2132𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆     (A6) 401 

 𝜃𝜃 @𝑃𝑃𝑃𝑃𝑃𝑃 = – 1.304 +  1.117𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 –  0.009309𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2       (A7) 402 

Pedotransfer functions in Equations A6 and A7 are used to determine the soil moisture content at field capacity 403 

and permanent wilting point as the inputs into the Hutson and Cass model in Equation. FC is the field capacity (-404 

); Clay and Silt are the clay and silt fraction of the soil; and PWP is permanent wilting point (-).  405 

 406 
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