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Abstract.

Obtaining climate grids describing distinct variables is important for developing better climate studies. These grids are also
useful products for other researchers and end users. The atmospheric evaporative demand (AED) may be measured in terms of
the reference evapotranspiration (ET,), a key variable for understanding water and energy terrestrial balances and an important
variable in climatology, hydrology, and agronomy. Despite its importance, the calculation of ET, is not commonly undertaken,
mainly because datasets consisting of a high number of climate variables are required, and some of the required variables are
not commonly available.

To address this problem, a strategy based on the spatial interpolation of climate variables prior to the calculation of ET, using
FAO-56 Penman—Monteith was followed to obtain an ET, database for Continental Spain and the Balearic Islands covering
the 1961—-2014 period at a spatial resolution of 1.1 km and at a weekly temporal resolution. In this database, values for the

radiative and aerodynamic components as well as the estimated uncertainty related to ET, were also provided.

This database is available for download in the Network Common Data Form (netCDF) at http://dx.doi.org/10.20350/digital CSIC/8615

(Tomas-Burguera et al., 2019). A map visualization tool (http://speto.csic.es) is available to help users download the data cor-
responding to one specific point in comma-separated values (csv) format.

A relevant number of research areas could take advantage of this database. Providing only some examples: i) studies of the
Budyko curve, which relates rainfall data to the evapotranspiration and AED at the watershed scale; ii) calculations of drought
indices using AED data, such as SPEI or PDSI; iii) agroclimatic studies related to irrigation requirements; iv) validation of

climate models water and energy balance; v) studies of the impacts of climate change in terms of the AED.

Copyright statement. TEXT



10

15

20

25

30

1 Introduction

Reference evapotranspiration (ET,) is a theoretical variable describing the evapotranspiration that would occur from a well-
watered reference surface under specific meteorological conditions (Allen et al., 1998). Because well-watered conditions and
a reference crop are assumed, both spatial and temporal ET, variability depends solely on the variability of the meteorological
conditions. Hence, ET, is an accepted proxy for the atmospheric evaporative demand (AED), which is a key variable for under-
standing both water and energy terrestrial balances and, therefore, relevant to a variety of disciplines, including climatology,
hydrology, and agronomy (Espadafor et al., 2011). To compute ET,, the Food and Agriculture Organization of the United
Nations (FAO) recommends using a modified version of Penman—Monteith (Allen et al., 1998). The main advantage of this
method is that it is physically based. It has also been tested against lysimeters data obtaining reliable results (Jensen et al.,
1990; Itenfisu et al., 2000; Berengena and Gavilan, 2005; Trajkovic, 2007). On the other hand, its main problem is its high
data requirement, as data corresponding to the maximum and minimum air temperature, air humidity, wind speed, and solar
radiation are needed. Although the maximum and minimum air temperature are commonly collected at weather observatories,
observations of the other variables are scarce, especially if long time series are required for climate studies (Vanderlinden et al.,
2004; McVicar et al., 2007; Irmak et al., 2012; Vicente-Serrano et al., 2014) or to generate ET, grids. The other significant
problem facing the generation of ET,, climate grids is the changing number of observations, which can introduce non-climatic
changes in variance (Begueria et al., 2016).

In the event that some of the variables are not available, two types of approaches have been used to allow ET,, calculations
to be classified: i) use of methods for calculating ET,, requiring fewer climatic variables, commonly known as “’less demanding
methods”, and ii) estimation of missing data prior to ET, calculation.

i) Less demanding methods

The use of methods for calculating ET, requiring only temperature data, such as the Thornthwaite (Thornthwaite, 1948)
or Hargreaves Hargreaves and Samani (1985) approaches, are still common, especially because temperature is commonly
available, and temperature and solar radiation accounts for 80 % of the ET,, variability (Mendicino and Senatore, 2013; Samani,
2000). One of the major drawbacks of these methods is that variability and trends in the estimated ET, values depend only on
temperature, regardless of the importance of the other variables (Irmak et al., 2012; Mcvicar et al., 2012; Sheffield et al., 2012;
Tomas-Burguera et al., 2017).

ii) Estimation of missing data

Estimations of missing data prior to ET, calculation can also be divided in two possibilities: i) use of the recommendations
described in the FAO-56 document, which is the FAO document describing the guidelines for computing ET,, and ii) use of
nearby weather station data. Whenever data corresponding to the non-observed variables has been collected at nearby loca-
tions, the use of FAO-56 recommendations should be avoided for two reasons. First, they use stationary relationships between
variables that were empirically derived, which can be problematic in the context of climate change since these relationships

may also change. This is in fact the same problem that affects the less demanding methods, which also rely on empirically
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derived relationships (Tomas-Burguera et al., 2017). Second, temperature data are always required, limiting the number of
locations from which ET,, can be obtained.

The use of nearby weather station data to estimate missing data takes advantage of spatial interpolation methods, and it is
the only approach among the above-mentioned methods that estimates missing data using information about the same variable.
This strategy, usually known as Interpolate-then-Calculate (IC), has two main steps. First, the missing variables are estimated
using a spatial interpolation method, and second, the Penman—Monteith (PM) is calculated. This method was tested in various
regions, such as Greece, China, and Great Britain (Mardikis et al., 2005; McVicar et al., 2007; Robinson et al., 2017). Tomas-
Burguera et al. (2017), in the Iberian Peninsula, compared the performance of this method with the performances of some of

the aforementioned solutions, concluding that the IC strategy yielded better results.

The changing number of observations available over time is another relevant problem affecting the generation of ET,, climate
grids. To avoid negative effects, usually only the longest climate time series are used to generate climate grids using geostatis-

tical methods, such as universal kriging (UK). Obviously, this strategy diminishes the number of usable climatic observations.

The problems mentioned above usually restrict the availability of high spatial resolution climate data sets of ET,, especially
if they are developed using the Penman—Monteith equation. During the last several years, a ET, climate grid at a 1 km spatial
resolution over Great Britain was presented Robinson et al. (2017). Haslinger and Bartsch (2016) presented a climate grid at a
1 km spatial resolution over Austria, but their grid was based on the Hargreaves equation.

A method focused on overcoming the above-mentioned problems related to data availability was designed to generate a cli-
mate grid of ET, over Continental Spain and the Balearic Islands with a spatial resolution of 1.1 km covering the 1961—-2014
period with a weekly temporal resolution. This method took advantage of two estimation processes prior to ET, calculation: 1)
gap filling, used to obtain a subset of the complete time series over the period of interest for each of the climatic variables, and
ii) spatial interpolation, used to generate climate grids of each of the required climate variables. After spatial interpolation, ET,,
was calculated using climate grids as its source of data. This means that a PM-IC scheme was used. In addition to the estimation
processes, quality control and homogenization steps were necessary. Although not commonly used, an uncertainty propaga-
tion scheme was designed, considering the two estimation processes (gap filling and interpolation) as the unique sources of

uncertainty. The method and validation of the gap filling, homogenization, and interpolation steps are presented in detail in this

paper.

2 Data sources

The original dataset contained data corresponding to the daily maximum temperature (Tmax), minimum temperature (Tmin),
wind speed (W), relative humidity (RH), and sunshine duration (SD), and was provided by AEMET across the whole region
of Spain. Sunshine duration was used to estimate the radiation data as the number of weather stations collecting radiation data

was very low, and Sanchez-Lorenzo et al. (2013) assessed this method to obtain satisfactory results.
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The number of observations available (Table 1) depended on the variable. More than 4000 weather stations collected the
maximum and minimum temperature. Fewer than 1000 weather stations collected the other variables, and fewer than 300
collected the sunshine duration. The number of selected weather stations was always much lower than the available ones, as
only the longest time series were selected.

These weather stations did not collect data throughout the entire period. Figure 1 provides the number of weather obser-
vations available for each variable and each year for the 19612014 period. Temperature data showed the highest number of
observations, always higher than 500, reaching 2000 observations available in the mid 90’s, followed by a subsequent decrease.
The relative humidity and wind speed showed a low number of observations during the study period. Nevertheless, in the mid
2000’s, the installation of a large number of automatic weather stations (AWS) sharply increased the availability of these two
climatic variables. The sunshine duration measurements remained constant throughout the entire period.

Some geographic variables were used in the interpolation process. The Digital Elevation Model (DEM) was obtained from

the IGN (Instituto Geografico Nacional), and other variables, such as distance to the sea, were derived from the DEM.

3 Methodology

The general scheme used to generate the ET,, database involved two main steps: i) generation of climatic grids, and ii) estima-
tion of ET, (Figure 2). The generation of the climatic grids could be divided into a) daily quality control, b) daily-to-weekly
data conversion, c) gap filling, d) data selection, e) homogenization, and f) interpolation, and all of these steps were imple-
mented individually for each climatic variable. The estimation of ET, consisted of the calculation of ET, using the FAO-56
Penman—Monteith equation over the climatic grid data sources.

On the other hand, the uncertainty in ET, was estimated using a two-step process: i) uncertainty estimation of the climatic
grids, and ii) uncertainty propagation from the climatic grids to ET,. The uncertainty estimation of the climatic grids estimated
the uncertainty of each climatic grid after the interpolation process and considered the uncertainty related to the gap filling
process and the interpolation process. Uncertainty propagation refers to the technique used to estimate the uncertainty in ET,
values by combining the uncertainty in each climatic variable with the Jacobian of the Penman—Monteith equation.

The quality of the data were assessed by implementing an automated daily quality control in R. Daily data were tested
against two types of controls: codification errors and out-of-range values. The presence of duplicate data or n consecutive days
having the exact same values in different observatories were the two most relevant codification errors detected. Out-of-range
values mainly detected out-of-physical-range-values and out-of-climate-range values. More details can be found in Tomas-
Burguera et al. (2016). The temporal aggregation of daily data into weekly data was then executed. For all variables, weekly
time series were obtained by calculating the mean value of the daily data. Weeks presenting more than one day without data
were considered to have no data. This is an adaptation of the WMO rules for monthly data (WMO, 1989)

Some comparison problems between distinct years emerged if a time scale of 7 days were used, mainly because the number

of days in a year is not divisible by 7. In an attempt to combine weekly timescales to preserve comparability between years,
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each month was divided into 4 periods (days 1-8, 9-15, 16-22, 23-end). For the remainder of this discussion, the use of the
word week(s) refers to this definition of a sub-monthly period.

After this step, the relative humidity data were transformed into dewpoint temperature (Tq4) using the temperature data. Gap
filling and interpolation tests revealed that Ty was easier to work with than RH. The T4 data adjusted better to a Gaussian

distribution than RH data; therefore, working with Ty data was preferable for most of the implemented steps.
3.1 Gap filling

In an effort to obtain a complete time series of distinct climate variables, a gap filling procedure based on the estimation of
missing data using nearby weather station data, designed by (Begueria et al., 2019), was implemented. The standard error of
the estimated data was obtained and used as a measure of the uncertainty of the process.

The selection of nearby weather stations was relevant to the process, and a selection based on three steps was implemented:
i) overlapping periods longer than 7 years; ii) location closer than 100 km, and iii) values of R? higher than 0.6.

The procedure used standardized values prior to gap filling in order to avoid problems related to differences in the mean
values and/or variances between weather stations.

All weather stations available were used in the gap filling process. The last step of the process involved data selection
and depended on the amount of original data available. For temperature, only time series accounting for more than 25 years
of the original data were used. For the rest of variables, this period was reduced to 15 years due to the low availability of
long records (Figure 3). Up to three gap filling loops were implemented for less frequent variables (sunshine duration, dew
point temperature, and wind speed). Various steps in the gap filling procedure took advantage of non-overlapping data. This

configuration was used previously to generate other databases over Spain (Gonzalez-Hidalgo et al., 2015).
3.2 Homogenization

The homogeneity of the obtained time series after the gap filling process was tested using the Standard Normal Homogeneity
Test (SNHT) (Alexandersson, 1986). This method used as a basis the comparison of the time series to be homogenized, the
candidate series, and a reference time series. Reference time series were obtained using the same process used to obtain the
gap filling reference time series.

The test was implemented at the monthly time scale after the conversion of time series to time scales, mainly because
homogeneity tests, in general, are more robust when they are used with monthly data than with sub-monthly data. Weekly
homogeneous time series were obtained by transforming the monthly parameters to weekly parameters.

The climate series homogeneity was tested after gap filling to: i) detect inhomogeneities introduced by the gap filling process,
and ii) determine if the process was more reliable if the time series had no gaps.

Present observations were assumed to be standard, meaning that any inhomogeneities were corrected to adjust the values of

the past to the present values.
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3.3 Interpolation

Kriging is a geostatistical method widely used in Climatology to generate interpolated surfaces for many variables (Aalto et al.,
2013; Hofstra et al., 2008). Kriging is, in fact, a set of different methods, for example, ordinary kriging (OK) or Universal
Kriging (UK). The main difference between OK and UK is that the former assumes the presence of a spatial constant mean,
whereas the latter assumes that the spatial mean is a function that can depend on geographical factors (Cressie, 1993). The
latter assumption is preferable in Climatology because climate variables commonly depend on geographical factors, such as
latitude, longitude, or elevation (Aalto et al., 2013). In this paper, climate grids for each variable were generated individually
using UK to predict a value at each grid point for each time step.

As a first step in the interpolation process, a semi-variogram model was generated. This model was unique for each time step
and each climatic variable. This process was implemented using the gstat package in R (Pebesma, 2004; Griler et al., 2016).

Using UK a variance of the prediction was also obtained, and this value was used to estimate the uncertainty. One of the
advantages of using the gstat package is that an uncertainty associated with observed data can be provided. We decided to use

the quantification of the uncertainty obtained from the gap filling process, which is the previous estimation process.
3.4 ET, calculation

Predicted values of distinct climate variables were used to calculate ET, using the FAO-PM equation (Allen et al., 1998).

_ 0408A (R, — G) +7(72%5) Ua (€5 — €a)
B A+7(1+0.340U>) ’

ey

o}

where R,, is the net radiation at the crop surface (M.J m~2day '), G is the soil heat flux density (M.J m~2day~1), T is the
mean air temperature at 2 m (°C), Us is the wind speed at 2 m (ms~1), e, is the saturation vapor pressure (kPa), e, is the
actual vapor pressure (kPa), e; — e, is the saturation vapor pressure deficit (kPa), A is the slope of the vapor pressure curve
(kPa °C~1), and v is the psychrometric constant (kPa °C~!). The value 0.408 was used to convert from M.J m~2day~*
units to kg m~2day~" (alternatively: mm day~'). Following the recommendations of Allen et al. (1998), we fixed G to 0, as
we estimated ET, over a time period of fewer than 10 days.

The main advantages of this equation are that it is physically based and accounts for both the radiative and aerodynamic
components of evapotranspiration. The former is related to the energy available for evaporation and the latter is related to the
capacity of the air to store the vapor from evapotranspiration (Azorin-Molina et al., 2015). Although the radiative component
was strongly related to the solar radiation and presented a high seasonality in the study region due to its latitude, the aerody-

namic component was more variable throughout the year, as it was influenced by the vapor pressure deficit as well as the wind
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speed. Splitting Eq. (1) into the sum of its two parts yielded the radiative component (ETog,) and the aerodynamic component

(ETer)o

0.408 A (R, — G)

A+~ (1+0.34U5)

7 (77553) Uz (€5 — ea)
A+~ (1+0.3405)

ETora =

EToae = 2

This dataset contained data describing each of the two components, ETgr, and ETya, as well as their summation, which is
ET,. A variability and trend analysis benefitted from the availability of the two components. For example, wind stilling and
solar brightening have opposite effects in ET,, but studying the two components separately facilitates the study of the impacts

of each one on ET,.
3.5 ET, uncertainty estimation

Due to the complexity of the process involved in estimating the uncertainty in ET,, the uncertainty in this first version of the

dataset was estimated only for the final value of ET, and not for its two components (ETor, and ET,ae).
3.5.1 Uncertainty estimation in the climatic grids

Climate grid generation involves many sources of data uncertainty, including uncertainty related to the observation, interpo-
lation process, and other sources (Haylock et al., 2008). In this paper, we assumed that uncertainty was only related to the
estimation processes, i.e., gap filling and interpolation. Moreover, we considered the uncertainty of each climatic grid at each
time step to be equal to the uncertainty after the interpolation process.

Uncertainty estimation over the gap filling process was based on the number of weather observations used to estimate the
missing data and the covariance between these data points. Less covariance between data was associated with more uncertainty.

The interpolation process assumed that any uncertainty was equal to the variance of the prediction, i.e., the variance of
the kriging. The uncertainty estimated over the gap filling process was propagated to the interpolation process using the gstat

package in R, as the uncertainties related to the observational data used in the interpolation process was available.
3.5.2 Uncertainty propagation

The uncertainty propagation allowed us to obtain the uncertainty associated with the predicted values of ET, (R) using the

posterior variance of the climate grids and the Jacobian of the FAO-PM.

R=Jpr.Q(Jrro)", 3)

where .J,,._ is the Jacobian of ET,, and () is the covariance matrix of the variables. For simplicity, the variables were considered

to be independent, yielding a diagonal matrix with variance positions distinct from O.
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The Jacobian assumed the following form and was analytically derived.

J. — | dET, dET, dET, dET, dET,
BTo dTmae  dTmin  dId aw dsSD *

The covariance matrix could be expressed as

oz 0 0 0 0
0 o} 0 0 0
Q= 0 0 o7, 0 0
0 0 0 of 0
0 0 0 0 odp, |

where o2 is the variance of the kriging of each of the climatic variables. In fact, as @ is a diagonal matrix, the R calculation

could be rewritten as:

OFT, 2 ) OFET, 2 ) OET, 2 , OET, 9 ) BT, 5 )
= —— . 4
i <8Tmax) i rmas + <8Tmzn) ¥ TTmin + < 6Td ) * Ira + ( ow ) * Ow + ( 8SD ) * Osp ( )

3.6 Using 2010—2014 data to validate the air humidity and wind speed grids

During the last part of the period (2010—2014), a high number of AWS were installed. A sharp increase in the available RH
and W data was observed during this period, compared with the data available from weather stations used to generate the
original database (Table 1). The values of these observations and the values of the climate grids were compared directly to

obtain the relative humidity and wind speed over the 2010—2014 period using the new stations as an independent dataset.

4 Validation
4.1 Gap filling

The performance of the gap filling step was verified by comparing the original data and estimated data. Obviously, this com-
parison was only possible for periods having original data.

Table 2 lists certain statistics associated with the verification process. In general, satisfactory values of R? were achieved,
with values higher than 0.9 for all variables except for the wind speed, which showed an R? of only 0.53. Evaluation of Mean
Error (ME) and Percent Bias (PBIAS) showed no bias for the maximum and minimum temperature, a small negative bias for
the dewpoint temperature (ME of -0.01 and PBIAS of -0.15) and the sunshine duration (ME of -0.01 and PBIAS of -0.23), and
a positive bias for the wind speed (ME of 0.08 and PBIAS of 0.64). The ratio of the mean values and the ratio of the standard
deviation showed values close to 1 for all variables. The wind speed displayed a standard deviation ratio of 1.05, meaning that

the temporal variability of the gap filling data was slightly higher than the temporal variability of the original data.
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Figure 4 evaluates the possible existence of temporal differences in the performance of the gap filling process using decadal
values of R?. In general, all analyzed periods showed similar performances. For wind speed, the most recent decade showed
slightly higher R? values than the first decades of the period.

As the number of original data changed over time, the number of filled data also showed a temporal evolution. Figure 5
indicates this temporal evolution, with a higher number of filled data during the first years of the period and a large decline
over time. The number of filled data corresponding to the maximum and minimum temperature increased again during the last
several years because of a slow decline in the number of observations and the disappearance of some of the weather stations
with longer records.

The wind speed provided the lowest amount of filled data. It was difficult to obtain highly correlated time series to fill in the
gaps, which had two major effects in the process: i) the probability of obtaining a reference time series from the neighbors was
decreased; and ii) the reconstruction was poor when the reference time series could be obtained. The low correlation of the
wind speed time series was a consequence of i) the high spatial and temporal variability of this variable and ii) the low number

of observations available.
4.2 Homogenization

The percentage of data affected by the homogenization process exceeded 10 % for all variables except for the wind speed (Table
3). For all variables, the percentage of homogenized data was higher for the filled data than for the original data, indicating the
importance of implementing a homogenization process after gap filling. Two factors could explain this effect: i) because the
original data was not homogenized prior to the gap filling, the presence of inhomogeneities in the original data propagated to
the homogenized data, and ii) inhomogeneities may have been introduced by the gap filling procedure.

The temporal evolution of the quantity of data detected as inhomogeneous was analyzed (Figure 5), revealing a temporal
trend with maximum values at the start of the study period and minimum values at the end. The most likely explanation for
this observation is the use of more recent conditions as the standard conditions.

Another effect of this assumption is the propagation of the current conditions to the past, which was evaluated by comparing
the spatial mean values of the homogenized and prior-to-homogenization time series. Figure 6 highlights this effect in the
implemented homogenization process. The maximum and minimum temperature, which displayed a positive trend in Spain
over the study period (del Rio et al., 2012; Gonzalez-Hidalgo et al., 2016), suggested that higher values occurred in the
present than in the past. A positive bias was observed in the homogenized data over the first decades. Unlike the maximum
and minimum temperature, the wind speed, which displayed a negative trend (Azorin-Molina et al., 2014), was affected by a
negative bias during the first decades of the study period.

The effect of the homogenization process on ET, was evaluated using a similar procedure, which involved calculating the
mean regional values of ET, before and after homogenization of the climatic variables. These regional values were obtained by
calculating first a mean regional value of the climatic variables, followed by calculating the ET, using the Penman—Monteith

equation.
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No important differences were detected in a comparison of the two time series of ET, (Fig. 7). This result is relevant, as it

shows that the undesirable detrending introduced by the homogenization process did not affect the spatial mean values of ET,.
4.3 Interpolation validation

The interpolation process was validated by executing a leave-one-out-cross-validation (LOO-CV) process, and validation statis-
tics were calculated to evaluate the performance of the interpolation predicting both the temporal variability and the spatial
variability. The LOO-CV process consisted of repeating the interpolation process n times (n being the number of observations
available) using each time n-1 observations and using the predicted value at the unused observatory as a way to evaluate the
quality of the interpolation.

The temporal variability was evaluated by calculating the temporal statistics individually for each observatory and then
computing the mean of all observatories. The spatial variability was evaluated by calculating the statistics at each time step
using information comprising all observatories and then computing the mean of all time steps. The problem with the LOO-CV
method is that validation could only be estimated at a given point if observations used during the interpolation process existed.

Another option for validating the interpolation process consisted of comparing the unused observational data over the
2010—2014 period (when a high number of wind speed and relative humidity observations existed) against the interpolated

values.
4.3.1 Spatial and temporal validation using LOO-CV

The ability of the interpolation process to predict the spatial and the temporal variability of the climatic grids is summarized
in Table 4. In general, temporal validation showed better statistics than spatial validation. All variables, except for the wind
speed, showed R? values greater than 0.9 for the temporal validation and close to 0.8 for the spatial validation.

According to ME and PBIAS, the only variable that indicated the presence of bias in both validations was the wind speed,
which yielded a PBIAS of 12.31 for the temporal validation.

A temporal analysis of the R? values obtained from the spatial validation of the maximum and minimum temperature (Fig.
8) showed slightly better statistics (i. e., closer to one) in recent decades. Nevertheless, the most relevant detected effect was
the presence of seasonality in the R? of the dewpoint temperature, which indicated lower values during summer than during
winter. A higher spatial variability in the air humidity in summer months due to the contrast between the high air humidity in

the coastal areas and the low air humidity in the continental areas may be the source of the lower values during summer.
4.3.2 2010—2014 validation

Validating the interpolation performance over the 2010—2014 independent time series of the wind speed and relative humidity
revealed that the two most relevant detected problems were the overestimation of the wind speed during winter months in

the northeastern region of the Iberian Peninsula and the overestimation of the dewpoint temperature in the inner region of the
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Iberian Peninsula during the summer months at the same time that an underestimation was detected in the maritime region.

These two effects are visualized in Figure 9, which shows the mean errors for January and July for the two variables.
4.3.3 Uncertainty validation

Data from the 2010—2014 period could also be used to validate the uncertainty estimation of the climatic grids. First, the Mean
Absolute Error (MAE) was calculated by comparing the independent weather station data against the climatic grid data. Then,
the obtained values of the MAE were compared against the uncertainty values of the climatic grids.

The mean spatial values of the MAE and the uncertainty are represented in Figure 10. In general, the uncertainty of the
climatic grids was well estimated, especially for the wind speed and sunshine duration, as these variables showed similar
values of the MAE and uncertainty. The other variables, (Tnax, Tmin, and Tq), showed slightly higher values of uncertainty than

the MAE values but always with similar temporal oscillations.

5 Discussion and conclusions

We proposed a method for obtaining a 1961—-2014 ET,, climate grid across Spain based on the Penman—Monteith equation.
Whereas previous studies of ET, and AED climatology in Spain have been developed (Azorin-Molina et al., 2015; Sanchez-
Lorenzo et al., 2014; Vicente-Serrano et al., 2014), this is the first suitable ET, database for use in climate studies covering the
full study area with a high spatial resolution and over a long time period.

As the number of weather stations collecting all variables required to calculate ET, was very low, the proposed methodology
took advantage of two estimation processes: gap filling and spatial interpolation. The performances of the processes were
carefully studied to detect the possible negative impacts on the generation of the ET, database. In general, no relevant problems
were detected for most of the climatic variables. The wind speed displayed the worst performance in each of the estimation
processes due to its high spatial and temporal variability.

The PM-IC strategy, which consisted of interpolating climatic variables prior to calculating ET,, was previously used to
model other regions (Mardikis et al., 2005; McVicar et al., 2007) and was determined to be the best method for estimating
ET, in the event of missing data in Spain (Tomas-Burguera et al., 2017). Another strategy, known as PM-CI, calculated ET,
prior to interpolation and was also appropriate for use. The main advantage of the PM-CI over PM-IC strategy was that only
one interpolation was required. The main disadvantage was that much of the available data was not used. In the case of Spain,
the use of the PM-CI strategy would have restricted the calculation of ET, to nearly 50 weather stations, which is the number
of weather stations used in previous studies (Vicente-Serrano et al., 2014). On the other hand, the use of the PM-IC strategy
allowed the use of more data, especially of temperature data, from more than 1000 weather stations. As 80 % of the ET,
variability was related to the variability in temperature and radiation (Mendicino and Senatore, 2013; Samani, 2000), using as
many temperature observations as possible was important for ensuring the quality of the obtained results.

A comparison against an independent subset of climatic data collected over the 2010—2014 period showed the presence of

a positive bias in the wind speed during winter over the northeastern region of the Iberian Peninsula. The overestimation of the
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wind speed in this region could be explained by the fact that a low number of observations were used in that region, and most of
the observations used were located in places affected by tramontana events. Fortunately, the higher bias was detected in winter,
when ET, values were lower and the importance of this variable for some uses (e.g. irrigation schedule) was also lower. Two
factors appeared to be relevant for wind speed estimation problems: i) the high spatial variability of the wind speed (Luo et al.,
2008) and ii) the fact that the wind speed was not normally distributed. Both the gap filling and interpolation processes tend to
perform better when applied to normally distributed data.

These comparisons also detected some problems related to the dewpoint temperature values predicted during summer. An
inverse bias was detected between the inland and maritime regions. During the summer months, the humidity contrast between
the inland and maritime regions was high in the Iberian Peninsula, as maritime regions experienced a higher humidity due
to the contributions of the sea breezes. The detected overestimation of the dewpoint temperature during the summer across
the continental regions led to an underestimation of the vapor pressure deficit and also to an underestimation of ET,. This
effect suggested that the ET, values were underestimated to some degree across the continental regions of Spain, whereas the
maritime regions may have been affected by an overestimation.

The performance of the homogenization process was tested, and changes in the spatial mean values of the first decades were
detected in some of the climatic variables. Although the maximum and minimum temperatures were affected by an increase in
their spatial mean, the wind speed was affected by a decrease in the spatial mean. Due to counteracting effects, the ET, mean
spatial value was not affected by this problem.

Considering that each estimation process was affected by uncertainty, the uncertainty in ET, after applying the two estima-
tion processes was obtained. For simplicity, the climatic variables were considered to be independent in the final step of the un-
certainty estimation, which involved the propagation of the uncertainty of each climatic variable through the Penman—Monteith
equation.

Haylock et al. (2008) pointed out that the variance of the kriging, which in this paper was used to estimate the uncertainty
of each climatic grid, is not a true estimation of the uncertainty; however, an evaluation of the uncertainty estimations of
each variable showed a good agreement between the MAE values and the estimated uncertainty values. Unfortunately, the
uncertainty of ET, could not be verified because an independent subset of observatories that collected all variables was required
to calculate ET,, but was not available.

This dataset was first developed as an input to generate, in combination with the precipitation data, grids of drought indices
over the study area (Vicente-Serrano et al., 2017). Due to the relevance of ET, and the high number of possible uses of these
data, the ET, climate grid is now being made available to other research groups. As with drought studies, in some cases, the
interest was focused on the combined analysis of ET,, and the precipitation data. This could be the case for hydrological studies
in which the AED data can explain some of the most important processes taking place in a catchment. The combined analysis
may provide better estimations of water balance and aridity indices. The present dataset covered a long period of time, thereby
enabling studies of the temporal evolution of these indices.

Irrigated agriculture is another sector interested in these data, as the water balance is important both for irrigation planning

and for irrigation scheduling. The development of modern irrigation systems has rendered irrigation a significant economic
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activity in some regions of Spain, such as the Ebro basin (Vidal-Macua et al., 2018), reinforcing the importance of the dataset
in that region. More accurate models of ET, is also useful for rainfed agriculture. Hence, the whole agricultural sector could
benefit from this dataset.

This dataset could be interpreted as the first available AED climate grid across Spain, which is quite relevant to the develop-
ment of spatial and temporal climatology studies that could confirm the previously detected positive trends of certain variables
across the study area. This database could also be used for regional (or global) climate model assessment in the context of
climate change studies.

Calculating ET,, using PM assumed a well-watered reference surface, which can differ significantly from the actual condi-
tions present in a semiarid region, as is the case across most of our study area. A scarcity of soil moisture can decrease the air
humidity and increase the air temperature compared with well-watered conditions due to the effects of the land—atmosphere
continuum. Both changes, which especially affect the aerodynamic component of ET,, may have a noticeable effect on ET,,
meaning that an overestimation can occur under semiarid conditions (Bouchet, 1963; Allen et al., 1998). Such an overestima-
tion would be higher during the warm season when these conditions prevail. The possible overestimation due to the use of PM

in a semiarid environment should be considered by potential users of this database.

6 Data availability

The four files generated in this dataset (weekly values of reference evapotranspiration, uncertainty estimation of the weekly
values of reference evapotranspiration, aerodynamic component values of the weekly reference evapotranspiration, and the
radiative component values of the weekly reference evapotranspiration) can be accessed and downloaded via two different
sources.

>From Digital CSIC, which is a long-term repository managed by the Spanish Research Council (CSIC), users can download
the files in netCDF format through http://dx.doi.org/10.20350/digital CSIC/8615 (Tomas-Burguera et al., 2019)

The data can also be accessed at the web page http://speto.csic.es, which is a map visualization tool. Users can visualize the
data generated at different time steps, download the complete netcdf files, or download a complete time series for a chosen
point as a comma-separated value (csv) file. As the spatial resolution of the data is 1.1 km over continental Spain and the
Balearic Islands, the total number of grid points is slightly higher than 400,000. The weekly temporal resolution yielded 2592

different weekly maps for each of the four available files.
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Figure 1. Temporal evolution of the data availability.
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Interpolation ETo calculation

Figure 2. Main steps involved in generating the ET, database. First, we interpolated each climatic variable, then calculated ET,.
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Table 1. Number of weather stations per variable.

Available
Variable All period 2010-2014  Selected
Maximum temperature 4306 1186 1246
Minimum temperature 4303 1195 1217
Relative humidity 899 648 164
Wind speed 797 583 67
Sunshine duration 271 80 92

Table 2. Gap filling statistics. Values for the following validation statistics are provided: i) Mean Absolute Error (MAE), ii) Coefficient of
determination R?, iii) Mean Error (ME), iv) Percent Bias (PBIAS), v) ratio of Mean values (rM), and vi) ratio of Standard Deviation (rSD).

Variable MAE R* ME PBIAS ™M rSD
Maximum temperature (°C) 092 097 0.00 0.00 0.99 1.00
Minimum temperature (°C)  0.83 095 0.00 0.00 0.99 1.00
Dewpoint temperature (°C) 1.04 091 -0.01 -0.15 0.99 1.00
Sunshine duration (h) 0.63 091 -0.01 -0.23 0.99 1.00
Wind speed (kmh~1) 232 053 0.08 0.64 1.00 1.05

Table 3. Percentage of data affected by inhomogeneities.

Weekly data  Original data  Filled data

Maximum temperature (°C) 14.8 13.7 17.0
Minimum temperature (°C)  16.7 14.8 20.3
Dewpoint temperature (°C)  14.1 11.2 18.2
Wind speed (ms™1) 3.1 1.8 8.9

Sunshine duration (h) 10.1 7.2 16.8
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Table 4. Spatial and temporal validation of the interpolation process. Values for the following validation statistics are provided: i) Mean
Absolute Error (MAE), ii) Coefficient of determination R2, iii) Mean Error (ME), iv) Percent Bias (PBIAS), v) ratio of Mean values (rM),

and vi) ratio of Standard Deviation (rSD).

Variable Validation MAE R? ME PBIAS ™ 1SD
Maximum temperature (°C) Temporal 1.02 098 -0.02 0.00 0.99 0.99
Spatial 1.02  0.82 -0.02 0.00 0.99 0.92
Minimum temperature (°C) Temporal 1.11 0.97 0.03 0.01 1.00 0.98
Spatial .11 0.78 0.04 0.00 1.00 0.89
Dewpoint temperature (°C)  Temporal 1.01 095 0.05 0.02 1.00 0.98
Spatial 1.02 0.82 0.06 0.00 0.99 0.89

Sunshine duration (h) Temporal 0.65 093 0.00 048 1.00 0.97
Spatial 0.64 0.70 0.00 0.12 1.00  0.85
Wind speed (ms~1) Temporal 0.75 0.54 0.05 12.31 1.12  0.87

Spatial 075 0.06 0.06 244 1.02  0.46
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