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Abstract. Using the full total of available 5,520 observatories covering the whole territory of Spain (about 1 station per 90 

km2 considering the whole period), a daily gridded maximum and minimum temperature was built covering a period from 

1901 to 2014 in peninsular Spain and 1971-2014 in Balearic and Canary Islands. A comprehensive quality control was applied 10 

to the original data and the gaps were filled on each day and location independently. Using the filled data series, a grid of 5 x 

5 km spatial resolution was created by estimating daily temperatures and their corresponding uncertainties at each grid point. 

Four daily temperature indices were calculated to describe the spatial distribution of absolute maximum and minimum 

temperature, number of frost days and number of summer days in Spain. The southern plateau showed the maximum values 

of maximum absolute temperature and summer days, while the minimum absolute temperature and frost days reached their 15 

maximums at northern plateau. The use of all the available information, the complete quality control and the high spatial 

resolution of the grid allowed for an accurate estimate of temperature that represents a precise spatial and temporal distribution 

of daily temperatures in Spain. STEAD dataset is publicly available at http://dx.doi.org/10.20350/digitalCSIC/8622 and can 

be cited as Serrano-Notivoli et al. (2019). 

1 Introduction 20 

Despite a clear improvement over the last decades in meteorological measurement techniques, the inclusion of automated 

systems with near-real-time information submission, or the increasing number of stations with a growing number of recorded 

variables, the existing climatic information is still unrepresentative in many territories. The low density of stations in isolated 

areas and the great variability in the number and location of observations over time represent a substantial problem. Despite 

these problems, or perhaps due to them, different teams dedicated great effort to creating reliable gridded climatic datasets 25 

covering large time periods. Between all the climate variables, temperature datasets are among the most popular, such as the 

CRUTEM (1850-2017) (Jones et al., 2012), the dataset of Willmott and Matsura (2001) covering 1900-2014 period, 

WorldClim (1970-2000) (Fick and Hijmans, 2017), GISTEMP (1880-2017) (Hansen et al., 2010), or BEST (1850-2017) 

(Rohde et al., 2013). In this regard, temperature has been also widely studied in Spain, in terms of its spatio-temporal 
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distribution (e.g. Peña-Angulo et al., 2016) and temporal trends (e.g. González-Hidalgo et al., 2015; 2018). Nevertheless, most 

of the existing works addressed coarse temporal scales or used individual stations for detailed regions (e.g. Villeta et al., 2018).  

Monthly gridded datasets have enabled a better understanding of the climatic dynamics of the planet, especially as an element 

of quantification and validation of climate change, due to their ability to reproduce the mid-frequency variability of 

temperature. However, most of the methodologies used in those works are not suitable for addressing the variability of 5 

temperature at the daily scale, due to the higher spatial and temporal variability and because of the larger number of input 

stations required to build a reliable dataset. Although climate change in respect to temperature is often quantified in terms of 

changes in its mean values, most of the risks attributed to climate change are, however, related to temperature extremes that 

occur at shorter time scales, such as the daily scale. The study of climate change signals in temperature extremes is therefore 

still largely pending due to the absence of reliable daily datasets representative of most of the territories. This absence of daily 10 

gridded datasets, with several remarkable exceptions (e.g. Cornes et al., 2018; Lussana et al., 2018), is linked to: i) an absence 

of contrasted reconstruction methodologies owing to the different temporal and spatial structure of daily data in contrast to 

monthly or annual values; and ii) an absence of contrasted quality control protocols for daily time series. 

In addition, the reliability of a dataset not only depends on the resolution but on the consistency of the data. Quality control 

processes are crucial to create trustworthy datasets and, although the many existing approaches (e.g. Haylock et al., 2008; 15 

Klein-Tank et al., 2002, Klok and Klein-Tank, 2009) apply basic procedures, some others go beyond and check for spatial 

consistency (e.g. Lussana et al., 2018; Feng et al., 2004), which is recommended when using high-density networks. 

The same problems intervene, though more severely, in global datasets. At the sub-regional and local scales, the understanding 

of high-resolution climatic variability is of key importance in a context of global change, and these datasets often are not 

adequate to address specific research questions such as extremes or small variations affecting other components of the natural 20 

system, due to a low spatial or temporal resolution. 

Daily scale in temperature information is of key importance in many areas. The E-OBS dataset (Cornes et al., 2018), at a 

maximum spatial resolution of 0.1 degree, is the best example of daily gridded dataset for large international areas thanks to 

the integration of thousands of transboundary climate data. However, it does not pretend to be comprehensive for specific 

regions (Van Den Besselaar et al., 2015) and a deeper analysis with more information is required for higher spatial scales. The 25 

Spanish territory exhibits a great climatic variability with very different regimes in a relatively small area that leads to high 

risks such as increments in the frequency and magnitude of extreme events. Currently, there are only two daily gridded datasets 

available for Spain: E-OBS (the Spanish part of the European dataset) and Spain02 (Herrera et al., 2016). Although both of 

them have been checked for their reliability, and are useful for specific purposes, they have limitations that prevent several 

climatic analyses. For instance, in their construction they did not consider all the available information but only a few stations 30 

as basis for creating the grid (229 and 250, respectively), prioritizing the longest data series over a higher spatial density. This 

approach is suitable for wide-ranging temperature studies, yet insufficient when addressing small areas with great variability. 

The experience acquired in the SPREAD dataset (Serrano-Notivoli et al., 2017a) development set the basis for a solid and 



3 
 

reliable daily gridded precipitation datasets creation. Using the same framework with a complete renewal of the core 

calculations, we developed a new methodology for daily temperature datasets reconstruction and grids creation. 

This article introduces the STEAD (Spanish TEmperature At Daily scale) dataset, a new high-resolution daily gridded 

(maximum and minimum) temperature dataset for Spain covering the period 1901-2014 for peninsular Spain and 1971-2014 

for Balearic and Canary Islands. Based on the available quality-controlled temperature information in Spain (more than 5,000 5 

stations), we used the same spatial resolution as SPREAD, its corresponding precipitation dataset. We propose: 1) a 

methodology for an exhaustive quality control; and 2) a reconstruction methodology using all the available information and 

based on local regression models. 

Section 2 describes the input data and section 3 explains the methodology used to apply the quality control, fill the gaps in the 

original series and the gridding process. Section 4 shows the results of the method applied to the Spanish temperature network 10 

as well as the validation of the reconstruction and gridding procedures. Also, a brief description of four climatic indices based 

on daily temperature is shown. Results are discussed in section 5 and summarized in the conclusions at section 7 after the 

specification of the availability of the dataset in section 6. 

2 Input data 

We used the full total of available 5,520 observatories covering the whole territory of Spain, which was divided in three areas 15 

to compute the grid: 1) Peninsular Spain (492,175 km2) with 5,056 stations covering the period 1901-2014; 2) Balearic Islands 

(4,992 km2), with 124 stations covering 1971-2014 and 3) Canary Islands (7,493 km2) covered 1971-2014, using 340 stations 

(Figure 1 bottom panel). The data sourced from the Spanish Meteorological Agency (AEMET) and from the Spanish Ministry 

of Environment and Agriculture (MAGRAMA). Daily maximum and minimum values of temperatures series were used from 

all the observatories. 20 
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Figure 1: Location of the temperature stations and categorisation by percentage of recorded data. 

The mean number of stations per year increased all over the studied period (Figure 2b). The first years of the 20th century had 

only a few stations available (Brunet et al., 2006; González-Hidalgo et al., 2015) with a great distance between them. Then, 

the number increases with the break of the Civil War (1936 – 1939) until the decade of the 1990s. Until then, all the information 5 

sourced from AEMET and from that, MAGRAMA stations began to register data until the end of the period (2014). As noted 

in González-Hidalgo et al. (2015), the mean distance between stations (65.9 km for the whole period) barely changed from 

middle century as well as their mean elevation (between 500 and 550 m a.s.l.). Before that, the mean altitude experimented 

hard changes due to the removing or relocation of existing stations and new incorporations. 

 10 
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Figure 2: Median altitude of the stations by year (a, black), median distance between stations (b, red) and median number of stations 
per year (b, blue). Coloured shadings indicate intervals between 25th and 75th percentiles. 

 

Furthermore, the first 40 years of the 20th century showed a high intra-annual variability in altitudes (Figure 2, grey shaded 5 

areas) and, to a lesser extent, in distance between stations (Figure 2, red shaded areas), being almost negligible in the number 

of stations (Figure 2, blue shaded areas). This higher inter- and intra-annual variability in the first years than the rest of the 

period showed that the few available stations were very different between each other. The variability is reduced from 1950 

onwards while the number of stations is increased.  

We used a 5 x 5 km regular grid covering the whole peninsular Spain, Balearic and Canary Islands to estimate maximum and 10 

minimum temperature values from the quality-controlled and serially-complete original series. The predictor parameters (i.e. 

latitude, longitude, altitude and distance to the coast) for each grid point were computed as the median of all the possible values 

of those parameters, covering an area of 5 x 5 squared km in which the grid point is the centroid. Despite the differences in the 

data availability through time, the methodological process creates spatial references that are standardized with the temporal 

structure of the series to avoid biases or incoherencies. In this regard, the chosen spatial resolution accurately reflects the local 15 
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characteristics of daily temperature in most of the temporal period, while the provided uncertainty values help to understand 

the reliability of the estimates when the original data have higher variability. 

3 Methods 

The first stage is a quality control of the original dataset to remove the most obvious wrong data. From this starting point the 

process (Figure 3) is based on the computation of reference values (RV), which are computed for each location and day and 5 

then compared with the original values to assess the quality of the data. After a process of standardization, new values are 

estimated for those days without observations (or removed in the quality control process) to obtain serially-complete data 

series. In a final stage, the complete series are the basis to create new data series for specific pairs of coordinates that may or 

not form a regular grid, including a measure of uncertainty for each location and day. The key stages of the methodological 

process (calculation of RV, quality control, gap filling and gridding) are the same to that used to create the SPREAD dataset 10 

(Serrano-Notivoli et al., 2017a). However, the method basics are completely different since the RV creation has been refined, 

the quality control has been adapted to temperature data, and the gap filling and gridding processes include now an improved 

standardization procedure. 
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Figure 3. Methodological protocol in a nutshell. Grey boxes represent products; yellow boxes are correction processes; and blue 
boxes involve Reference Values (RV) calculations. 

3.1 Initial quality control  

The initial quality control (iQC) includes five basic criteria over maximum (Tmax) and minimum (Tmin) temperature: i) 5 

Internal coherence, ii) removal of months containing less than 3 days of data, iii) the removal of those days out of range 

considering: Tmax >= 50 ºC or Tmax<= –30 ºC and Tmin >= 40 ºC or Tmin <= –35ºC; iv) removal of all days in a month with 

a standard deviation equal to zero (suspect repeated values in the series); and v) removal of all days in a month if the sum of 

the differences between maximum and minimum temperatures is equal to zero (suspect duplicated values in TMAX and 

TMIN). 10 

3.2 Reference values (RV) as key process for quality control and reconstruction 

Further steps in the quality control and the reconstruction process are based on the computation of reference values (RV). RV 

are obtained by using a k-nearest neighbors regression approach, which is applied to maximum and minimum temperature and 
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to each day and location independently. The RV are estimated through the combined use of Generalized Linear Mixed Models 

(GLMM) and Generalized Linear Models (GLM). The predictors (independent variables) were latitude, longitude, altitude and 

distance to the coast. The inclusion of these four independent variables and the building of independent models for each site 

and day considering only the neighborhood of the site of interest allows for large flexibility and enables capturing local features 

that may not be captured using other methods which result in larger spatial and temporal regularization. 5 

The methodological procedure is as follows: i) Rough Monthly RV, which are average monthly estimates (i.e. a climatology), 

obtained using GLMM and all the available data; ii) then, Fine Monthly RV, which are monthly time series of temperature, 

computed using GLM and data from only the 15 nearest neighbours, and including the Rough Monthly RV obtained in the 

previous stage as a covariate; iii) finally, Daily RV are computed using GLM and data from the 15 nearest daily observations, 

plus the Fine Monthly RV of the corresponding month as added covariate. The whole process is explained in detail in the 10 

following sections. 
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3.2.1. Rough Monthly RV (rmRV) 

Monthly time series of daily temperature means and standard deviations were computed. Only the months with complete daily 

observations were used to fit the model. We used latitude, longitude, altitude and distance to the coast as fixed factors, and the 

year as random factor. The introduction of the year as random factor allows for isolating the fact that one particular year might 

be colder or warmer than the average on the whole dataset, and thus eliminates the random variability arising from the fact 5 

that the time period with observed data changes from station to station. The model, fitted independently for each month of the 

year and for each one of the four dependent variables defined above, can be represented as: 

 

 𝒚	~	𝒩(𝑿𝜷+ 𝒁𝒃,			𝜎-)
𝒃	~	𝒩(𝟎,			𝑮) 	 (1) 

 10 

where 𝒚	 is a known vector of observations with mean 𝐸(𝒚) = 𝑿𝜷	 and variance 𝑣𝑎𝑟(𝒚) = 𝜎-; 𝜷 is an unknown vector of 

fixed effects; 𝑏 is an unknown vector of random effects, with mean 𝐸(𝒃) = 𝟎 and variance-covariance matrix 𝑣𝑎𝑟(𝒃) = 𝑮; 

and 𝑿 and 𝒁 are known model matrices containing the values of the fixed and random variables for the observations 𝒚. The 

models were fit by the maximum likelihood method using the R package lme4 (Bates et al., 2015). 

Once the model parameters 𝜷,𝒃 and 𝜎 are obtained, best linear unbiased predictions (BLUPs) of the mean and standard 15 

deviation of daily temperature are calculated for each station (i), year (y) and month (m). At this stage a global model is fit, 

since all the data are used to fit the model and therefore the coefficients are assumed to be constant in space, an assumption 

that it is a rough simplification of reality. On the other hand, this configuration allowed us to include all the data for estimating 

the random year effect. The obtained estimates of mean and standard deviation for maximum and minimum temperature 

represent highly spatially regularized patterns of monthly temperature, and do not consider local spatial variability in the 20 

influence of the covariates. 

3.2.2. Fine Monthly RV (fmRV) 

In a second stage, monthly time series of the mean and standard deviation of daily temperature were computed again, but using 

a local (k-nearest neighbors) regression approach. For each station, the model was fit to data from the 15 nearest observations 

of each month plus the rmRV values calculated in the previous step. Inclusion of the latter as if they were legitimate 25 

observations incorporates a certain amount of spatial regularization that helps alleviating a problem that may arise when using 

a purely local regression approach, i.e. an excess of spatial variability, especially in areas where the model extrapolates (in 

latitude, longitude, altitude or distance to the coast) with respect to the neighboring locations. A Generalized Linear Model 

was thus built for each station and month: 

 30 

 𝒚′	~	𝒩(𝑿′𝜷′,			𝜖)	 (2) 
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were 𝒚′ is the local neighbourhood dataset, including the Rough Monthly RV with mean 𝐸(𝒚′) = 𝑿′𝜷′; 𝜷′ is an unknown 

vector of local fixed effects; 𝑿′ is a known model matrix containing the values of the covariates at the 15 neighbouring sites; 

and 𝜖 is an unknown random error, which in the case of the mean temperature was assumed to be normally distributed with 

zero mean, 𝜖	~	𝒩(0,			𝜎′-)	, and in the case of the temperature standard deviation was modelled as following a Poisson 5 

distribution, thus taking only positive values. The obtained estimates of mean and standard deviation for maximum and 

minimum temperature incorporate the local variability that was lacking in the estimations of the previous step. 

An example of rmRV and fmRV for a specific month is shown in the supplemental material (Figure S2). 

3.2.3. Daily RV (dRV) 

In a third stage, daily maximum and minimum temperatures were predicted based on the 15 nearest observations and the fmRV 10 

for the corresponding month, using once again a GLM with Gaussian link: 

 

 𝒚′′	~	𝒩(𝑿′𝜷′′, 𝜎′′-)	 (3) 

 

where 𝒚′′ is the local daily neighbourhood dataset, including the fmRV with mean 𝐸(𝒚′′) = 𝑿′′𝜷′′	 and variance 𝑣𝑎𝑟(𝒚′) =15 

𝜎′′-; 𝜷′′ is an unknown vector of daily local fixed effects; and 𝑿′ is a known model matrix containing the values of the 

covariates at the 15 neighbouring sites. The daily estimates of each station (𝑑𝑅𝑉=,>,?,@) are then standardized (4) with the fmRV 

(𝑓𝑚𝑅𝑉_𝑚𝑒𝑎𝑛=,?,@ and 𝑓𝑚𝑅𝑉_𝑠𝑑=,?,@) data to keep an equivalent standard deviation as the monthly prediction: 

 

𝑑𝑅𝑉_𝑠𝑡𝑑=,>,?,@ =
H>IJK,L,M,N	O	P?IJ_?QRSK,M,NT

P?IJ_U>K,M,N
            (4) 20 

 

3.3. Quality control 

After the initial quality control and the RV calculation, we have the original dataset without the most obvious anomalies and 

an estimate for each observation. Clearly, the iQC is not enough to remove inconsistencies in temporal and spatial fields. Here 

is presented a novel approach of an exhaustive quality control over daily temperature data based on paired comparisons 25 

between observations (𝑇𝑜𝑏𝑠=,>,?,@) and standardized predictions (𝑑𝑅𝑉_𝑠𝑡𝑑=,>,?,@). All stages of this process are carried out 

independently for maximum and minimum temperature. What we call deep quality control (dQC) considers similarities 

between observations and estimates through: i) a correlation analysis between daily observations and predictions at each 

analyzed location, year and month and ii) a quantification on how the differences between daily observed and predicted values 

(anomalies) are spatially and temporarily distributed. 30 
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The process is iterative, which means that when dQC finishes in the first run, and the suspect detected data are removed from 

the original dataset, the RV are computed again over this dataset and the dQC runs again. This is iterated until dQC does not 

detect any suspect data.  

 

 5 
Figure 4. Methodological protocol for quality control. 

3.3.1. Correlation analysis 

This analysis is based on the correlation between observations and standardized predictions, and it is independent for each 

series of daily observations in each month. Considering a single site (𝑖), month (𝑚) and year (𝑦) the correlation (𝐶𝑂𝑅=,?,@) 

between observed and predicted daily data is computed and then compared with the correlation of its 15 nearest stations in the 10 

same month and year (𝐶𝑂𝑅𝑣=,?,@). The index ZCOR (𝑍𝐶𝑂𝑅=,?,@) is then computed as the number of standard deviations that 

the observed correlation deviates from the observed at their neighbours (5): 

𝑍𝐶𝑂𝑅=,?,@ =
]^_IK,M,NO?QRSH^_I`K,M,NTa

U>(^_I`K,M,N)
         (5) 

At this point, the correlations and their deviations are used to remove all daily data from the site 𝑖 and month 𝑚 if:  

Original dataset

RV calculation

Iteration until no suspect cases

TMIN > TMAX | TMAX >= 50 | TMAX <= -30 | TMIN <= -35 | TMIN >= 40 

• Remove days with:

n < 3 | standard deviation in TMAX or TMIN == 0 | Σ TDIFF == 0

• Remove complete  months with:

Independent process for TMAX and TMIN

• Correlation analysis
• Spatial anomalies
• Temporal anomalies
• Spatio-temporal anomalies

Analysis between observations and 
standardized predictions:

RV calculation

Cleaned dataset

Initial QC

Deep QC



12 
 

a) 𝐶𝑂𝑅=,?,@ ≤ 0 or,  

b) 𝐶𝑂𝑅=,?,@ > 0	𝐴𝑁𝐷	𝑍𝐶𝑂𝑅=,?,@ < 0	𝐴𝑁𝐷	𝑝H𝑍𝐶𝑂𝑅=,?,@T < 0.001 

being 𝑝 the p-value of 𝑍𝐶𝑂𝑅=,?,@. A negative 𝑍𝐶𝑂𝑅=,?,@ indicates a lower observed correlation than the neighbours and 

𝑝H𝑍𝐶𝑂𝑅=,?,@T < 0.001 indicates that it is highly unlikely that the correlation is plausible in the referred spatial and temporal 

context. 5 

This part of the quality control procedure aims to detect, amongst others, (partially) repeated sequences of data, duplicated 

months or sequences in consecutive years, shifted dates in series or, for instance, sequences of data extremely abnormal in 

their spatial context. All of these anomalies, which are hard to detect with classical approaches, can be potentially identified 

in this stage. 

3.3.2. Daily differences 10 

Using the differences between the observations and the standardized predictions (𝑇𝑑𝑖𝑓=,>,?,@ = 𝑇𝑜𝑏𝑠=,>,?,@ − 𝑑𝑅𝑉_𝑠𝑡𝑑=,>,?,@), 

two types of anomalies are computed: 

• Spatial anomaly: Each difference is compared with the differences of their 15 nearest stations (𝑇𝑑𝑖𝑓_𝑣=,>,?,@). The 

index 𝑍𝑑𝑖𝑓_𝑠𝑝𝑎𝑡𝑖𝑎𝑙=,>,?,@ is then computed as the number of standard deviations that the observed difference deviates 

from their neighbours (6): 15 

𝑍𝑑𝑖𝑓_𝑠𝑝𝑎𝑡𝑖𝑎𝑙=,>,?,@ =
]m>=PK,L,M,N	O	?QRSHm>=P_`K,L,M,NTa

U>(m>=P_`K,L,M,N)
       (6) 

• Temporal anomaly: Each difference is compared with the differences in same station in the rest of the days of the 

same month and year (𝑇𝑑𝑖𝑓_𝑡=,>,?,@). The index 𝑍𝑑𝑖𝑓_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙=,>,?,@ is then computed as the number of standard 

deviations that the observed difference deviates from the rest of the days of the month in same station (7): 

𝑍𝑑𝑖𝑓_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙=,>,?,@ =
]m>=PK,L,M,N	O	?QRSHm>=P_nK,L,M,NTa

U>(m>=P_nK,L,M,N)
      (7) 20 

The daily data from the site 𝑖 and month 𝑚 is removed if the absolute value of the mean of both spatial and temporal anomalies 

is higher than the value representing the probability of 𝛼	< 0.0001 (8): 

𝛼RpU]q>=PMrstK,L,M,Na
< 0.0001       (8) 

When the suspect data has been removed using the daily similarities and differences criteria, the RV are computed again and 

the quality control process starts over. This procedure is repeated until no suspect data is detected and removed (see Figure S6 25 

in supplemental material). 

 

3.4. Gap filling 
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Once quality control process is finished, a final set of RV are computed from the cleaned dataset for those locations and days 

with missing data. These RV corresponding with days without observations will fill the gaps, completing the series of original 

debugged observations (𝑇_𝑓𝑖𝑙𝑙=,>,?,@). 

 

3.5. Gridding and uncertainty 5 

With the aim of obtaining a gridded product (a regularly distributed set of data series over space), new RV are created for each 

location (𝑖𝑑), month (𝑚) and year (𝑦) of the grid in three steps: 

1) Grid fmRV (𝐺𝑓𝑚𝑅𝑉_𝑚𝑒𝑎𝑛=>,?,@ and 𝐺𝑓𝑚𝑅𝑉_𝑠𝑑=>,?,@) are created using the filled dataset (𝑇_𝑓𝑖𝑙𝑙=,>,?,@); 

2) Grid dRV (𝐺𝑑𝑅𝑉=>,>,?,@) are created using the original filled dataset (𝑇_𝑓𝑖𝑙𝑙=,>,?,@) and the computed mean monthly 

references; 10 

3) Finally, the estimates are standardized using the standard deviation monthly references (9): 

𝐺𝑑𝑅𝑉_𝑠𝑡𝑑=>,>,?,@ = 	
v>IJKL,L,M,NO	vP?IJ_?QRSKL,M,N

vP?IJ_U>KL,M,N
       (9) 

 

In addition to the estimates of temperature for each grid point (in the second step of gridding process), we computed their 

corresponding uncertainty, which was calculated as the standard error of the difference between the predicted and the observed 15 

values of the 15 neighbours in each day and location. 

3.6 Validation 

The validation process consisted in the comparison between the observations and the estimates computed for each one of those 

observations. The assessment was carried out through seven statistical and graphical analyses: 

i) A graphical comparison and Pearson correlation coefficient calculation of the means of all the 5,520 stations considered in 20 

the study. Also, the 95th percentile of maximum temperature and 5th percentile of minimum temperature were considered to 

ascertain the accuracy of the extremes’ prediction; 

ii) a graphical representation of the Pearson correlation frequencies, by months, to show the agreement between observations 

and estimates;  

iii) a graphical representation of counts of temperature values, by categories based on absolute values. This is useful to show 25 

potential biases in specific ranges of temperature;  

iv) a collection of statistical tests to compare observations and estimates by altitudinal ranges using daily values. The tests 

include the mean of observations (OBSm), the mean of estimates (PREDm), the mean absolute error (MAE), the mean error 

(ME), the ratio of means (RM) and the ratio of standard deviations (RSD); 

v) same as (iv) but by months instead of elevations; 30 

vi) a graphical representation of the count of temperature differences between observations and estimates; and 

vii) a graphical representation of the temporal evolution of mean annual uncertainty. 
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3.7 Example of applications: daily spatial distribution and uncertainties of temperatures 

Based on the gridded dataset created from the original data and with the described method, we computed four indices to show 

the potential applications of the grid: 1) the mean annual maximum value of daily maximum temperature; 2) the mean annual 

minimum value of daily minimum temperature; 3) the average annual count of days when daily minimum temperature is below 

0 ºC (frost days); and 4) the average annual count of days when daily maximum temperature is over 25 ºC (summer days). All 5 

the indices were presented with their corresponding uncertainty estimate. 

4 Results 

4.1 Quality control 

Although the quality control was carried out separately, it removed approximately a 7.4% of the original daily values both in 

maximum and minimum temperatures (Table 1). The initial quality control process (iQC) removed a sum of 59 days out of 10 

range (less than 0.01% of the total) and 1,349 months (0.53%) containing 4,308 days (0.04%) that did not fulfill with the 

minimum standards set at the beginning (see section 3.1). Furthermore, the deep quality control (dQC) removed between 4.5 

and 5.6% of the months and days considering the similarities between the observations and the estimates, being the number of 

removed data slightly higher in minimum temperatures. Most of the correlations in removed data were negative or very low 

(Figure 5), which indicates that the observations were very different from the estimates built with their surrounding original 15 

values. The average correlations in removed data were negative both in maximum and minimum temperature, showing that 

the similarities were very low. 

 

 

Figure 5. Correlation frequencies between observations and estimates of removed data in quality control process. Maximum (a) and 20 
minimum (b) temperatures are shown. 

The number of removed days in maximum temperatures was higher when considering the daily spatio-temporal anomalies 

(Figure 6a), without a significant bias in positive nor negative differences (Figure 6b) in contrast to minimum temperatures 

(Figure 6e) where negative differences prevailed.  
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The removed values do not necessarily correspond with climatic extremes but with values that are out of the spatio-temporal 

context of its neighboring observations. The fact that the maximum frequency of removed data matches with the average of 

maximum and minimum temperatures (Figure 6a and d) suggests that there is no bias in the suspect data detection and, indeed, 

the deletions are due to errors in original data (which we intend to detect) and not to climatic extremes. Furthermore, when 5 

looking at the removed data by differences between observations and estimates (Figure 6b and e), it is noted that the maximum 

frequency of deletions corresponds to differences near to ±10 ºC, which is not unusual if we think that, probably, those 

removals are due to recording or transcription errors, related with missing decimals.  

Despite the fact that the magnitudes of some of the removed data do not represent anomalous values (Figure 6c and f), they 

correspond to significant anomalies in their spatial and temporal context. Beyond the magnitude in absolute terms, the 10 

differences between observations and estimates suggest, with an 𝛼 < 0.0001, that those values are very unlikely to be 

representative in their spatio-temporal context. 

 

 
Figure 6. Daily maximum (orange, upper line) and minimum (blue, bottom row) temperature data removed by quality control 15 
process. Left column: removed data by magnitude; central column: removed data by differences between observations and 
estimates; and right column: temporal anomalies (Zs) vs spatial anomalies (Zs).  

 
Table 1. Number of removed days and complete months based on the quality control criteria. 
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 Count 
Daily similarities (number of removed months and days) 
TMAX Number of removed months 15,641 (4.48%) 
 Number of removed days 450,502 (4.12%) 
TMIN Number of removed months 19,492 (5.58%) 
 Number of removed days 566,435 (5.27%) 
Daily differences (number of removed days) 
TMAX Number of removed days 551,275 (3.27%) 
TMIN Number of removed days 299,804 (2.09%) 

 

Using the reconstructed series, we built a 5x5 km spatial resolution gridded dataset of maximum and minimum temperature. 

The values were estimated for 1901-2014 period in peninsular Spain and for 1971-2014 period in Balearic and Canary Islands. 

A measure of uncertainty was added to each day and grid point of the dataset. 

4.2 Quality-controlled dataset: Observations – estimates comparison 5 

Daily temperatures were estimated at the same location and days as the original data series but without considering the original 

values in each case using a leave-one out cross validation (LOO-CV). The comparison between the estimated temperatures 

and the observations showed very high correlation considering the average by stations for maximum (Figure 7a) and minimum 

temperatures (Figure 7c) (Pearson correlation coefficients of 0.97 and 0.96 respectively) as well as the extremes, considering 

the 95th percentile of maximum temperature (Figure 7b) with a Pearson correlation of 0.95 and the 5th percentile of minimum 10 

temperature (Figure 7d) with 0.96. 
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Figure 7. Comparison between observations and estimates, by stations (n = 5520), of the mean maximum temperatures (a) and their 
95th percentiles (b) and of the mean minimum temperatures (c) and their 5th percentiles comparison (d). Dashed lines represent ±1 
standard deviation of the data. 

The mean Pearson correlations between the daily observations and the estimates, by months, were 0.87 and 0.82 in maximum 5 

and minimum temperature, respectively (Figure 8). However, more than 80% of the months in maximum temperature and 

more than 68% in minimum got a correlation higher than 0.8. Low correlations (Pearson < 0.5) represented 3% and 5% of the 

months in maximum and minimum temperature, respectively. 

 

 10 

Figure 8. Correlation frequencies between daily observations and estimates, by months, in the final dataset. Maximum (orange) and 
minimum (blue) temperatures are shown.  
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The frequency of observed temperature and their estimates (Figure 9) showed a good general agreement. Although maximum 

temperature was slightly overestimated in lower values (from 0 to 10 ºC), it was slightly underestimated in higher ones (from 

20 to 35 ºC). The higher differences in minimum temperature were found in low values (an overestimation from -5 to 0 ºC) 

and in mid values (an underestimation from 10 to 20 ºC). 

 5 

Figure 9. Comparison of frequencies by categories between observed (solid) and predicted (transparent) maximum (red) and 
minimum (blue) temperatures. 

In regard of monthly aggregates (Table 2), the ratio of means (RM) was 1 in all cases in TMAX, showing a similarity in the 

means between observed and estimated temperature, while the coldest months (November to February) showed a slight 

underestimation in TMIN. A bias in variance estimation was observed with ratios of standard deviation (RSD) under 0.95 in 10 

all months in TMAX and under 0.93 in TMIN.  However, ME values were very low in both cases and ME values near to zero 

in all cases. Pearson correlations between observations and estimates were over 0.90 in all months in TMAX and ranging from 

0.85 in July and August to 0.93 from November to February in TMIN. 

  
Table 2. The leave-one-out, cross-validation (LOO-CV) statistics showing the goodness of fit between maximum and minimum 15 
temperature observations and estimates of monthly aggregates. MAE: mean absolute error (ºC); ME: mean error (ºC); RM: ratio 
of means; RSD: ratio of standard deviations; Pearson: Pearson correlation coefficient. Results were constrained to 2 decimal digits. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  
TMAX MAE 0.62 0.61 0.63 0.66 0.70 0.78 0.84 0.80 0.71 0.64 0.60 0.62 
 ME -0.01 -0.01 -0.01 -0.01 -0.03 -0.04 -0.03 -0.02 -0.02 -0.01 -0.01 0.00 
 RM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 RSD 0.88 0.92 0.92 0.92 0.93 0.92 0.89 0.88 0.91 0.94 0.91 0.87 
 Pearson 0.93 0.96 0.96 0.95 0.96 0.95 0.91 0.91 0.94 0.96 0.94 0.91 
TMIN MAE 0.81 0.81 0.82 0.77 0.79 0.83 0.90 0.90 0.87 0.84 0.81 0.81 
 ME 0.01 0.02 0.01 0.03 0.03 0.05 0.02 0.02 0.03 0.01 0.01 0.02 
 RM 0.94 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96 
 RSD 0.90 0.92 0.86 0.87 0.89 0.87 0.84 0.84 0.87 0.89 0.92 0.91 
 Pearson 0.93 0.93 0.88 0.89 0.89 0.88 0.85 0.85 0.88 0.91 0.93 0.93 
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The number of stations decreases as the elevation increases (Table 3). In Spain, only 1.8% of temperature stations are over 

2,000 m a.s.l. while a 37.40% are below 300 m a.s.l. This great difference, also shown in precipitation (Serrano-Notivoli et al., 

2017a), necessarily affects the estimation of the variable. A slight underestimation was observed in TMIN from 1,300 to 2,000 

m a.s.l. and an overestimation in TMAX from 1,500 m a.s.l. The figures showed also a good agreement at all elevation ranges 5 

with the largest differences at high elevations (slight overestimation in TMAX and underestimation in TMIN). The MAE 

values were increased along with the elevation in TMAX from 0.65 to 1.21, while in TMIN were more constant. The ME also 

experimented an increase with the elevation in TMAX, but in TMIN all the values were near to zero. 

 
Table 3. The leave-one-out cross-validation (LOO-CV) statistics showing the goodness of fit between observations and estimates of 10 
daily maximum and minimum temperature separated by altitudes (m a.s.l.). N: number of stations; OBSm: mean observed 
temperature (ºC); PREDm: mean predicted temperature (ºC); MAE: mean absolute error (ºC); ME: mean error (ºC); RM: ratio of 
means; RSD: ratio of standard deviations. Results were constrained to 2 decimal digits.  

 Altitude 
(m) 0-100 100-

300 
300-
500 

500-
700 

700-
900 

900-
1,100 

1,100-
1,300 

1,300-
1,500 

1,500-
2,000 >2,000 

TMAX N 1,028 1,036 943 874 807 422 227 81 73 27 
 OBSm 22.40 21.80 20.90 20.30 18.50 17.20 16.00 15.10 11.60 9.30 
 PREDm 22.70 21.90 20.90 20.40 18.50 17.20 16.00 15.20 11.90 10.10 
 MAE 0.66 0.65 0.68 0.71 0.76 0.80 0.86 1.06 0.99 1.21 
 ME 0.07 -0.03 -0.06 -0.04 0.01 -0.07 -0.09 0.21 0.36 0.54 
 RM 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.01 1.03 1.05 
 RSD 1.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.01 1.07 
TMIN N 1,028 1,036 943 874 807 422 227 81 73 27 
 OBSm 11.90 10.00 8.90 8.00 6.30 5.40 4.60 4.20 3.20 1.70 
 PREDm 12.10 10.10 8.90 8.00 6.30 5.30 4.70 4.10 2.30 1.40 
 MAE 0.82 0.80 0.82 0.86 0.85 0.95 0.97 0.97 0.91 0.88 
 ME 0.00 0.08 0.02 -0.04 0.03 0.11 -0.12 -0.05 -0.55 -0.13  
 RM 1.00 1.01 1.00 1.00 1.01 1.02 0.97 0.99 0.88 0.92 
 RSD 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.95 0.96 

 

Approximately, a 70% of the differences between observations and estimates both in TMAX and TMIN were lower than 1 ºC 15 

(Figure 10a), which assures the feasibility of the predicted series. Also, most of the spatial and temporal anomalies 

(approximately 80%) were lower than 1 (Figure 10b and c). 
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Figure 10. Comparison of observations and estimates in the final dataset. Left column: maximum (orange line) and minimum (blue 
line) temperature differences between observations and estimates; central and right columns: temporal anomalies (Zs) vs spatial 
anomalies (Zs) of final dataset. 

The uncertainty of the estimates showed a decreasing temporal evolution (Figure 11a) from the 1960s, while a positive trend 5 

was found in the first half of the period, especially in the first 15 years, coinciding with the moment of less observations and 

higher distance between them (see Figure 2b, c). The values in maximum temperature were lower than minimum until the 

1950s an then they were similar during a couple decades until they converge at the end of 1980s, when they diverged and the 

uncertainty in maximum temperature decreased at a higher rate than minimum. Likewise, the annual mean error (Figure 11b) 

showed a great variability until the end of 1940s with similar values in TMAX and TMIN, when they separate being TMAX 10 

over TMIN in the rest of the series. Since the 1970s, an approach between the two series is shown, being nearer to zero TMAX 

than TMIN, which is always in negative values. 
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Figure 11. Annual evolution of median daily uncertainty (a) and mean error (b) of maximum and minimum temperature in 
peninsular Spain. 

 

4.3 Spatial distribution and uncertainty of daily maximum and minimum temperature 5 

The mean annual absolute daily maximum temperature (Figure 12a) showed a great variability, with highest values (> 44 ºC) 

in the central part of the Guadalquivir Valley and widespread areas with values over 40 ºC in southern half of Iberian Peninsula 

(IP), the lowest areas of the Ebro Valley and inner areas of larger islands, reflecting a continentality effect. The lowest values 

were found in highest elevations as the Pyrenees and the Iberian Range and also at northern IP. In this case, the uncertainty 

was inverse to the spatial distribution of the variable (Figure 12b), with higher values at north and at highest elevations in the 10 

Canary Islands, and lower in areas where maximum temperature is higher. On the other hand, the mean annual absolute daily 

minimum temperature presented a completely different spatial distribution (Figure 12c) especially in southern part of the IP, 

where there was a southwest-northeast gradient interrupted by high elevations of Sierra Nevada and Cazorla. The northern half 

of the IP showed a similar pattern to the previous index with coldest temperatures (< -10 ºC) coinciding with lower values of 
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maximum temperature. The uncertainty of this variable (Figure 12d) was lower than the previous one with almost all the 

Spanish territory below 1 ºC. The lowest values were found at northwest IP and the highest ones in coastal areas of Mallorca. 

 
Figure 12. Mean annual (1981-2010) values for a) absolute daily maximum temperature; c) absolute daily minimum temperature 
and their corresponding uncertainty (b, and d, respectively). 5 

4.4 Spatial distribution and uncertainty of frost days and tropical nights 

The mean annual number of frost days (Figure 13a) varied from less than 10 in coastal areas of IP and in all Balearic and 

Canary Islands, to more than 200 in highest elevations of the Pyrenees. Between these extremes, a similar increasing gradient 

as the minimum temperature was found in the southern part of the IP and in the Ebro Valley, while the northern plateau was 

dominated by a range of 50-100 days. The spatial distribution of the uncertainty (Figure 13b) coincided with the variable, with 10 

highest values where the number of frost days was higher. However, some exceptions were found: one at northeast IP, with a 

high uncertainty of relatively low number of frost days; and other at high elevations of the Pyrenees, where the uncertainty 

was low in regard of the high number of days. Low values of uncertainty in the Balearic and Canary Islands are due to the few 

frost days per year. 
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The mean annual number of summer days (Figure 13c) showed a similar spatial pattern than the maximum temperature but 

with a stronger effect of the orography. The highest values were found in the Guadalquivir Valley with more than 150 days, 

as well as in southern part of the Mediterranean coast and eastern Canary Islands. The lowest number of summer days (< 25) 

coincided with highest elevations of Central and Iberian Range, Pyrenees and Sierra Nevada. Also, all along the Cantabric 

coast showed values lower than 75 summer days. The uncertainty related to this index (Figure 13d) was higher than the frost 5 

days, with a clear gradient from less than 2 days in central southern IP to more than 3 days in all northern IP, the Iberian Range, 

the Canary Islands and most of the inner areas of the Balearic Islands. Although the occurrence of summer days in both groups 

of islands is relatively high, they obtained considerable values of uncertainty due to the high variability of temperatures 

between stations in these small areas. 

 10 
Figure 13. Mean annual (1981-2010) values for a) number of frost days ; c) number of summer days and their corresponding 
uncertainty (b, and d, respectively). 

5 Discussion 

This work introduces two important novelties in regard of high-resolution climatic analysis: i) a new methodology to 

reconstruct in situ temperature data series over time and space, and ii) a new daily gridded temperature dataset for Spain. 15 
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The method, which is based on reference values (RV) computed from nearest observations instead of reference series (RS), 

follows the protocol developed for precipitation reconstruction in Serrano-Notivoli et al. (2017b). However, we included the 

distance to the coast as a source of variation of the local models in addition to the three used in the previous work (altitude, 

latitude and longitude). This parameter has been proved to be important for temperature estimation (Fick and Hijmans, 2017) 

and lets the models be more flexible.  5 

One of the most valuable keys of the approach presented here is the use of all the available climatic information, which is 

crucial for a high-resolution output due to the observations network density has a major influence in gridded datasets results, 

controlling the skill of the final estimate of the variable (Hofstra et al., 2008). This is especially true in high percentiles, with 

a disproportionate effect in extreme values and, therefore, in extreme indices (Hofstra et al., 2010). Hence, a method using all 

the information instead of longest data series seems appropriate. Indeed, there are several temperature estimation methods in 10 

literature, and the choice of one or another is not a trivial matter since the gridded dataset will be built from estimates. The 

inference or interpolation of any climatic variable in different locations from the recording sites always implies some kind of 

variation in final estimates regarding the observations. The aim is, therefore, using an approach minimizing these errors. 

Previous comparatives of interpolation methods do not conclude on any definitive one. For instance, Shen et al. (2001) make 

a review of daily interpolation methods resolving that almost all of them smooth the data, and Jarvis et al. (2001) did not found 15 

large differences between them either. However, Hofstra et al. (2008) accept as more appropriate a global kriging for they 

work at European scale and others as Jeffrey et al. (2001) use simpler methods as thin splines.  

In this work, we use GLMMs and GLMs as a general approach to the daily temperature estimation, using as support monthly 

estimates based on daily data of months with complete observations. This part gives consistency to all the temporal structure 

of the data series, as similar approaches used in previous works (e.g. Jones et al., 2012). On the other hand, the use of 20 

regressions in temperature estimation is not new. For example, several works establish that regression models are more reliable 

than other interpolation methods for monthly temperatures (Kurtzman and Kadmon, 1999; Güler and Kara, 2014). Li et al. 

(2018) built a high-resolution grid for urban areas in USA using geographically weighted regressions (GWR) and reported 

Pearson correlations between 0.95 and 0.97, similarly to the present work. However, Hofstra et al. (2008) found that, for 

European scale, daily temperature regressions worked worse than other interpolation methods. 25 

The present work constitutes a novelty regarding previous methodological approaches mainly due to: i) all the available 

information is used, being the longer series supported by shorter ones, and ii) it includes a comprehensive iterative quality 

control checking the spatial and temporal consistency of the data until no suspect values are detected. In addition to the 

developed validation process, the results in the form of spatial coherence show that the method is able to reproduce realistic 

climatic situations. The new approach of the quality control detects a number of suspect data in line with previous research, 30 

assuring the deletion of anomalies in a spatial and a temporal dimension. Although many works dedicate little efforts to this 

part of the reconstruction, it is one of the most important since it will have a decisive weight in the final result. For instance, 

Jeffrey et al. (2001) simply remove those data exceeding a fixed threshold in regard of the residuals of the splines; and in 

ECA&D (Klok and Klein-Tank, 2009) the quality tests are absolute, without a comparison with neighbouring data series. 
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Nevertheless, a similar approach to our spatial check of quality was developed in Estévez et al. (2018) but comparing nearest 

stations in all their data series instead of daily individual data. They used the spatial regression test (SRT) following You et al 

(2008) and Hubbard and You (2005). Others such Durre et al. (2010) also applied spatial consistency checks to test if 

temperature data lied significantly outside their neighbours. They flagged as suspect a 0.24% of all the (worldwide) data 

considering temperature, precipitation, snowfall, and snow depth, a quite low figure. 5 

One of the key elements in any gridded dataset creation is to provide an uncertainty value, which informs about the reliability 

of the data and should be a standard to all the climatic information. The uncertainty values presented in this work come from 

each of the individual models for each timestep and location, therefore it apprises about the changes in the reliability of the 

day-to-day data. Now, several datasets provide this kind of information, though it can be obtained from different methods. For 

example, Cornes et al. (2018) applied a smart calculation of the uncertainty using 100-member ensemble realizations for each 10 

day; Stoklosa et al. (2015) and Di Luzio et al. (2008) used PRISM (Parameter–Elevation Regressions on Independent Slopes 

Model) to compute uncertainty in two ways: i) a leave-one-out cross-validation (LOO-CV) as we do in the present work, and 

ii) modeling the uncertainty –which could lead to a propagation of the errors– using the prediction intervals of their weighted 

linear regression. In all cases the method is valid because the goal is to extract the potential bias for each considered timestep. 

Concerning to the new dataset, although some previous works created daily temperature datasets for Spain, only a few are 15 

gridded (only Herrera et al., 2016 built one for whole peninsular Spain and Balearic Islands) and none of them are dedicated 

to analyse the spatial distribution of daily temperature indices but the trends (e.g.: El-Kenawy et al., 2011; Fonseca et al., 

2016). We show here only four examples of the capabilities of STEAD dataset in the research of temperatures in Spain. The 

northern half of the IP showed a stronger influence of orography and Atlantic influences, just like in annual precipitation and 

maximum precipitation in 1 and 5 days (SPREAD, Serrano-Notivoli et al., 2017a), showing a potential covariability with other 20 

precipitation indices or temporal scales (Sánchez-Rodrigo, 2018 and 2014; Fernández-Montes et al., 2016). Besides, the 

availability of maximum and minimum temperature (STEAD) and precipitation (SPREAD) at same temporal (daily) and 

spatial (5x5 km) scale, opens up possibilities of new prospective research in many fields as agricultural climatology, natural 

hazards, paleoclimatic reconstructions or hydrological modelling, amongst others. 

In our attempt to create a useful reconstruction and gridding methodology, some of the stages of the method imply arbitrary 25 

decisions that could be changed based on user-defined options. For instance, we use 15 neighbouring observations to build the 

model but there is not an objective number. We are building these models with 4 cofactors, which need certain degrees of 

freedom. An increase in the neighbours could lead to a loss of local representativeness, but also a gain of statistical robustness 

and lower influence of anomalous data.  

In respect of the quality control process, the initial thresholds were set at the beginning only to remove outliers that are 30 

sometimes included in the original datasets (e.g. -999 or nonsenses as 54354 that is one of the removed values in this work) 

but that sometimes have a meaning to identify specific situations or local codes. There are a lot of sources and types of errors 

as repeated series, duplicities or coding errors, that we try to identify through a simple collection of criteria. For example, we 
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use the correlation between series and the differences between observations and estimates to remove data based on probability 

thresholds that we defined based on our experience, but maybe others could be useful depending on the dataset. 

The effort of this research has been mainly dedicated to create an accurate estimate of temperature using all the available 

information and providing a validation as complete and transparent as possible, as well as afford an uncertainty measure 

tailored for each value allowing the assessment of data in each day and location. 5 

6 Data availability 

The STEAD dataset is freely available in the web repository of the Spanish National Research Council (CSIC). It can be 

accessed through http://dx.doi.org/10.20350/digitalCSIC/8622, and cited as Serrano-Notivoli et al. (2019). The data is arranged 

in 12 files (daily maximum and minimum temperature estimations and their uncertainties for peninsular Spain, Balearic Islands 

and Canary Islands) in NetCDF format that allows an easy processing in scientific analysis software (e.g. R, Python…) and 10 

GIS (list of compatible software at http://www.unidata.ucar.edu/software). 

7 Conclusions 

We present a new high-resolution daily maximum and minimum temperature dataset for Spain (STEAD). Using all the 

available daily temperature data (5,520 stations, representing about 1 station per 90 km2 considering the whole period), a 5 x 

5 km spatial resolution grid was created. The original data were quality-controlled and the missing values were filled based on 15 

the monthly estimates and using the 15 nearest observations. A serially complete dataset was obtained for all stations from 

1901 to 2014 for peninsular Spain and from 1971 to 2014 for Balearic and Canary Islands. Based on this dataset, daily 

temperatures were calculated for each grid node, resulting in a high-resolution gridded dataset that we used to compute four 

daily temperature indices: mean annual absolute maximum and minimum temperatures, mean annual number of frost days and 

mean annual number of summer days. 20 

The spatial distribution of mean annual maximum and minimum temperatures showed a strong relationship with the altitude, 

(decreasing along with the elevation) and with the distance to the coast, revealing a high effect of continentality with increased 

values of the indices in both inner mainland Spain and islands. The mean annual number of frost days was higher in northern 

half of peninsular Spain and in high-elevation areas of the south, while the mean number of summer days obtained the highest 

values at south, in the Guadalquivir Valley and southern Mediterranean coast, progressively decreasing to the north. 25 

The use of all the available information in combination with a methodology based on local variations of temperature over a 

high-resolution grid, provided a daily dataset that is able to reproduce the high spatial and temporal variability. 
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