
seNorge_2018, daily precipitation and temperature datasets over
Norway
Cristian Lussana1, Ole Einar Tveito1, Andreas Dobler1, and Ketil Tunheim1

1Norwegian Meteorological Institute, Oslo, Norway

Correspondence: Cristian Lussana (critianl@met.no)

Abstract. seNorge_2018 is a collection of observational gridded datasets over Norway for: daily total precipitation; daily

mean, maximum and minimum temperatures. The time period covers 1957 to 2017, and the data are presented over a high-

resolution terrain-following grid with 1 km spacing in both meridional and zonal directions. The seNorge family of observa-

tional gridded datasets developed at the Norwegian Meteorological Institute (MET Norway) has a twenty-year long history

and seNorge_2018 is its newest member, the first providing daily minimum and maximum temperatures. seNorge datasets5

are used for a wide range of applications in climatology, hydrology and meteorology. The observational dataset is based

on MET Norway’s climate data, which has been integrated by the ”European Climate Assessment and Dataset” database.

Two distinct statistical interpolation methods have been developed, one for temperature and the other for precipitation. They

are both based on a spatial scale-separation approach where, at first, the analysis (i.e., predictions) at larger spatial scales

are estimated. Subsequently they are used to infer the small-scale details down to a spatial scale comparable to the lo-10

cal observation density. Mean, maximum and minimum temperatures are interpolated separately, then physical consistency

among them is enforced. For precipitation, in addition to observational data, the spatial interpolation makes use of infor-

mation provided by a climate model. The analysis evaluation is based on cross-validation statistics and comparison with a

previous seNorge version. The analysis quality is presented as a function of the local station density. We show that the oc-

currence of large errors in the analyses decays at an exponential rate with the increase in the station density. Temperature15

analyses over most of the domain are generally not affected by significant biases. However, during wintertime in data-sparse

regions the analyzed minimum temperatures do have a bias between 2◦C and 3◦C. Minimum temperatures are more chal-

lenging to represent and large errors are more frequent than for maximum and mean temperatures. The precipitation analy-

sis quality depends crucially on station density: the frequency of occurrence of large errors for intense precipitation is less

than 5% in data-dense regions, while it is approximately 30% in data-sparse regions. The open-access datasets are available20

for public download at: daily total precipitation (DOI:https://doi.org/10.5281/zenodo.2082320 Lussana, 2018b) ; daily mean

(DOI:https://doi.org/10.5281/zenodo.2023997 Lussana, 2018c) , maximum (DOI:https://doi.org/10.5281/zenodo.2559372 Lus-

sana, 2018e) and minimum (DOI:https://doi.org/10.5281/zenodo.2559354 Lussana, 2018d) temperatures
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1 Introduction

Long-term observational gridded datasets of near-surface meteorological variables are widely used products. In climatology,

they have been used for example to monitor the regional climate (Simmons et al., 2017) and to validate and bias-correct climate

simulations (Kotlarski et al., 2017). In meteorology, they are used at national meteorological institutes, such as the Norwegian

Meteorological Institute (MET Norway), to monitor and report the weather conditions. In hydrology, they are used as external5

forcing for hydrological and snow modeling (Saloranta, 2012; Skaugen and Onof, 2014; Magnusson et al., 2015).

seNorge_2018 is a collection of four long-term observational datasets over Norway covering the 61-year time period 1957-

2017 for: daily total precipitation (RR), daily mean temperature (TG), daily minimum (TN) and maximum (TX) temperatures.

It builds upon the previous work on establishing MET Norway’s observational datasets (Tveito and Førland, 1999; Lussana

et al., 2018a, b) and the core of its statistical interpolation method is the Optimal Interpolation (OI, Gandin and Hardin, 1965;10

Kalnay, 2003). A review of the relevant literature for our spatial interpolation applications is given in the paper by Lussana

et al. (2018a).

Like the previous versions of seNorge, precipitation and temperature data are provided on a high-resolution grid with 1

km grid spacing in both meridional and zonal directions. seNorge_2018 aims at achieving a higher effective resolution of

the analyzed (or predicted) fields than the previous versions. The difference between grid spacing and resolution is described15

by Grasso (2000). In the context of numerical modeling, Walters (2000) defines the ”effective resolution as the minimum

wavelength the model can describe with some required level of accuracy (not defined)” and it concludes that as many as 10

gridpoints may be required to properly represent a field. As pointed out by Pielke (2001), there is a subjective component in

the number of gridpoints needed to resolve a feature in a field. It is worth spending a few more words on effective resolution

in OI. In contrast to in-situ observations which represent point values, our gridded analyses produce areal averages. What this20

means is that for each grid point, we calculate weighted averages of the nearest observations. The extensions of the spatial

supports for those averages depend on the settings of the statistical interpolation, which, in turn, are optimized on the station

spatial distribution. The larger the extensions of the spatial supports, the lower the effective resolution of the analysis fields. As

demonstrated in the Appendix C of Uboldi et al. (2008), an OI scheme is realizing a low-pass filter whose cut-off wavelength

is determined by the OI settings.25

The main original aspect of our research is that the spatial interpolation methods automatically adapt OI settings to the

local station density, such that in data-dense regions the spatial supports of the areal-averaged analyses are smaller than in

data-sparse regions. In other words, the effective resolution of the analysis fields is higher in data-dense than in data-sparse

regions. The user of the seNorge_2018 must be aware that (i) the comparison between different sub-regions over the domain

is influenced by the respective local station densities, and (ii) variations in the observational network over time will affect30

temporal trends derived from this dataset. According to Masson and Frei (2016), to overcome those limitations a further post-

processing of seNorge_2018 would be required so to create a new dataset, less accurate but suitable for the investigation of

long-term variations and trends.
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The following definitions of spatial scales are used in the text. Regional scale coincides with the whole domain. Given the

importance of the observational network, at an arbitrary point we refer to scales that are defined with respect to the station

distribution in its surroundings. Sub-regional scale (or local scale) defines an area -around the point- that includes dozens

of observations (10-100). Small-scale defines an area that includes few observations (1-10). Unresolved scale refers to those

spatial scales that are smaller than the average distance between a station and its closest neighbours, such that atmospheric5

fields could not be properly represented by the observational network.

The presented research includes several other original aspects. In the case of precipitation, the measurements have been

adjusted for the wind-induced under-catch in a way that is consistent with the method proposed by Wolff et al. (2015). A

multi-scale OI scheme has been implemented on precipitation relative anomalies with respect to a reference field that captures

the field variability at unresolved spatial scales. Furthermore, a Box-Cox transformation has been used to get the precipitation10

relative anomalies into a normal shape as required by OI. The use of a reference field as a first-guess for the precipitation

patterns has been proven to be a successful approach by Masson and Frei (2014). They found that daily precipitation over

the Alpine region is well represented by using the seasonal precipitation mean as a single predictor field in Kriging with

external drift. The precipitation observational network is extremely sparse over significant portions of our domain, such as

in mountainous regions, where the vast majority of stations are located on the valley floors (Lussana et al., 2018a); and in15

the Arctic region. As a consequence, we have chosen not to use precipitation climatologies derived by observational gridded

datasets. Instead the reference is derived from long-term averages calculated from the output of a high-resolution numerical

model. We have used a regional climate simulation with a resolution of 2.5 km, based on the dynamical downscaling of the

global reanalysis ERAInterim and available for the time period 2003-2016, to derive the monthly reference fields, as this has

been proven skillful for such an application (Crespi et al., 2018).20

In the case of temperature, seNorge_2018 is the first seNorge dataset including daily minimum and maximum temperatures.

The three temperature variables are treated separately with the same interpolation method. With respect to seNorge2 (Lussana

et al., 2018b), the regional spatial trend of temperature is obtained as the blending of a much larger number of sub-regional

trends. The analysis method has been implemented on a gridpoint-by-gridpoint basis so to take advantage of a local Kalman

gain. As a result, the effective resolution of the analyzed fields is optimized over the domain.25

The structure of the paper is as follows. Section 2 presents the observational network and the regional climate simulation

used as the precipitation reference. The spatial interpolation methods are described in Section 3. Finally, Section 4 presents the

results and the validation of seNorge_2018. With its intricate coastline and complex terrain, Norway is an excellent region for

testing spatial interpolation schemes under challenging conditions. In this sense, the evaluation presented can be useful to infer

the performances of the presented methods over other regions as well.30

2 Data

The in-situ observations are retrieved from MET Norway’s climate database and the European Climate Assessment and Dataset

(ECA&D, Klein Tank et al., 2002). The spatial domain covers the Norwegian mainland, plus an adjacent strip of land extending
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into Sweden, Finland and Russia in order to reduce boundary effects along the Norwegian border. The observations have been

quality controlled by experienced staff and with the help of automatic procedures, such as the spatial consistency test described

by Lussana et al. (2010). The variables are defined as following: TG is the 24-hour average between 06:00 UTC of the day,

reported as time-stamp and 06:00 UTC of the previous day; RR is the accumulated precipitation over the same time interval

as TG, moreover RR data has been corrected for the wind-induced under-catch of the gauges; TX and TN are, respectively,5

the maximum and minimum observed temperatures between 18:00 UTC of the day reported as time-stamp and 18:00 UTC of

the previous day. TG and RR share the same day-definition so as to better serve hydrological applications, while for historical

reasons TX and TN have a different day definition.

The measured RR value (i.e.,RRraw) at an arbitrary location is adjusted for wind-induced under-catch of solid precipitation

by means of a procedure similar to the one presented by Wolff et al. (2015):10

α = τ1 + (τ2− τ1){exp[(TG−Tτ )/sτ ]/(1 + exp[(TG−Tτ )/sτ ])} (1)

γ = [1−α] exp
[
−(W/θ)β

]
+α (2)

RR = γ−1 RRraw (3)

where TG is extracted from the analysis field (Sec. 3.1) so to always have a temperature estimate; W is the ten-metre wind

speed at the station location extracted from a gridded dataset derived from numerical model output. The (NORA10, Reistad15

et al., 2011) wind speed dataset, which covers the whole time period 1957-2017, has been downscaled onto the 1 km grid

by using a quantile mapping approach (Bremnes, 2004) to match the climatology of the high-resolution numerical weather

prediction model (AROME-MEtCoOp, Müller et al., 2017). The wind dataset is available for public download at http://thredds.

met.no/thredds/catalog/metusers/klinogrid/KliNoGrid_16.12/FFMRR-Nor/catalog.html. In the original paper by Wolff et al.

(2015), they were considering sub-daily precipitation measurements and both temperature and wind were measured at the20

same location as precipitation. We are operating under different conditions and the requirement of having temperature and

wind measurements together with precipitation would reduce the number of suitable observations to a very small subset. As a

consequence, in Eqs. (1)- (2) we had to use parameter values which are different from those used by Wolff et al. (2015). We

have decided to use seNorge version 1.1 (Mohr, 2008, 2009) as a reference for the extreme values returned by the precipitation

adjustment. seNorge version 1.1 includes a precipitation correction based on geographical parameters, summarized in site25

exposure classes such that a systematic increase of precipitation is carried out. The correction presented in Eqs. (1)- (3) takes

advantage of wind and temperature estimates but we do not expect the extreme values of those two corrections to differ

significantly. The parameter values used in Eqs. (1)- (3), which have been optimized to better match seNorge version 1.1

extremes, are: θ = 4.7449, β = 0.6667, τ1 = 0.4930, τ2 = 0.9134, Tτ = 0.9134, sτ = 0.7759.

Figure 1 shows the observational network and its evolution in time. The number of available observations was rather stable30

from 1957 to 2000. In the following decade, the number of RR observations dropped to 500, which was the minimum value, and

then it gradually increased again to over 600 in the recent years. The number of temperature observations has been constantly

increasing since year 2000, and for 2017 there are about twice as many stations as in 1957. The meteorological stations have

been mainly installed to monitor the weather in cities and villages, so the network is denser in urban areas. In the mountainous
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regions, the digital elevation model can reach 2000 m but most of the stations are located below the elevation of 1000 m. A

difference in the station density between the southern and the northern portion of the domain is also clearly visible, with a

higher density in the south of Norway. Ideally, spatial interpolation would require a denser network of observations where the

variance of a variable is larger, in order to get a fine-scale representation of the temperature field where it varies the most.

However, this is hardly the case in most situations because of the inherent difficulties in station installation and maintenance5

over complex terrain and in remote areas. As a result, we should expect better performances of the interpolation methods over

urban areas and larger analysis uncertainties over data-sparse areas, such as mountainous regions.

As stated in the Introduction, the spatial interpolation depends on the station density. For this reason, the Integral Data

Influence (IDI: Uboldi et al., 2008; Lussana et al., 2010) has been introduced as a diagnostic parameter and it is shown in the

bottom panels of Fig. 1. IDI is similar to the degrees of freedom introduced by Cardinali et al. (2004) and it has been used10

also to evaluate the distribution of weather stations (Horel and Dong, 2010). In practice, IDI is obtained as the result of an OI

performed by arbitrarily assigning the value of 1 to the observations (i.e., maximum amount of available information) and the

reference value of 0 to the background (i.e, basic amount of information available everywhere). The analytical function that

usually represents the background error correlation in OI, in the case of IDI is representing the station influence on the analysis

according to a predefined metric. This metric is defined as a function of the geographical parameters. For an arbitrary point in15

space, the geographical parameters are stored in a vector r having four components: latitude, longitude, altitude and land area

fraction (i.e. fraction of land in the 1 km square box centered at the point). The land area fraction is introduced here and used in

Sec. 3. Functions are applied to pair of points, such as: d(r,s) returns the horizontal (radial) distance in km between r and s;

z (r,s) returns their absolute elevation difference; w (r,s) returns their absolute land area fraction difference. The correlation

function between two points r and s is based on Gaussian functions of the form:20

fu (r,s;D) = exp

{
−1

2

[
u(r,s)
D

]2}
(4)

where: u() is an arbitrary function, such as the ones previously defined, applied to the points; D is a reference length scale

governing the decreasing rate. We have chosen to model the station influence using Gaussian functions. For TG, TX and TN,

the station influence is factorized into the product of two Gaussian functions: one depending on distances, such that in Eq. (4)

u= d() and D =50 km; the other depending on elevation differences, with u= z() and D =200 km. In the case of RR, the25

station influence depends only on distances, therefore u= d() and D =10 km. The values of the de-correlation length scales

used for temperature are consistent with the findings of Sec. 3.1, while for precipitation the value chosen is representative of

the smallest spatial scales used in the iterative cycle. Elevation plays always a predominant role for temperature and even only

a few stations at higher elevations can provide a reasonable approximation of the sub-regional near-surface temperature lapse

rate. Then, it is important to know where this information is not available and the temperature IDI map in Fig. 1 shows those30

regions. On the other hand, for precipitation we have decided to not consider elevation because we are aware that our network

is very sparse at higher elevations and for this reason we have introduced a reference field, as stated in the Introduction. The

precipitation IDI map in Fig. 1 highlights the potential of our stations to interact on the horizontal plane. In the following, the

cross-validation (CV) approach is used such that the summary statistics derived at station locations can be considered valid for

5
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gridpoints. The CV-IDI at station locations (i.e., IDI at a station location computed without considering the presence of that

station) is introduced to link the CV statistics to the IDI of the hypothetical gridpoint represented by a station location. In the

two maps of Fig. 1, the IDI is shown over the 1 km grid for TG and RR. The IDIs for TX and TN are very similar to the TG map.

In the vicinity of an observation the IDI field tend to stay close to 1 whereas for data sparse areas its value is close to 0. The

IDI and CV-IDI values have been divided into classes: values smaller than 0.45 defines observations/gridpoints in data-sparse5

regions (i.e., where the station influence on the analysis is very limited); values larger than 0.85 defines observations/gridpoints

in data-dense regions (i.e., where the station influence on the analysis is substantial), then two intermediate classes have been

defined to have an idea of the behaviour of the spatial interpolation scheme in the transition between data-dense and data-sparse

regions. Fig. 1a and Fig. 1b show the close relationship between CV-IDI and the station density. In Fig. 1a the distribution of

CV-IDI values is shown by boxplots: the horizontal line is the median of the distribution, the box width is the interquartile10

range. As shown by Fig. 1c, at station locations the IDI values are confined into a smaller range of values than the CV-IDI.

Even an isolated station constitutes more information than the background alone, while an isolated gridpoint must have IDI

equals to 0 as it is CV-IDI at an isolated stations.

The reference datasets used for precipitation are based on hourly precipitation provided by the climate model version of

HARMONIE (version cy38h1.2), a seamless NWP model framework developed and used by several national meteorological15

services. HARMONIE includes a set of different physics packages adapted for different horizontal resolutions. For the high-

resolution, convection permitting simulations in this case, the model has been set-up with AROME physics (Seity et al., 2011)

and the SURFEX surface scheme (Masson et al., 2013). The climate runs have been carried out within the HARMONIE script

system, covering the period July 2003 to December 2016 on a 2.5 km grid over the Norwegian main land. More details on the

climate model can be found in Lind et al. (2016), references therein and on https://www.hirlam.org/trac/wiki/HarmonieClimate.20

The numerical model does not include measurements from the network of rain-gauges. The mean monthly total precipitation

fields have been computed considering the available hourly data and they have been used as reference fields for the spatial

interpolation of precipitation as described in Sec. 3.2.

3 Methods

The notation used is based on both Ide et al. (1997) and Sakov and Bertino (2011). The number of gridpoints ism. The number25

of observations is p. Upper-case bold symbols are used for matrices, lower-case bold symbols for vectors and italic symbols

for scalars. For an arbitrary matrix X, Xi means the ith column; Xi,: the ith row; and Xij the element at the ith row and

jth column. For an arbitrary vector x, xi denotes the ith element. The superscripts on the upper left hand corner of a symbol

identify: analysis a; background b; observation o. Upper accents have been used too. In the case of temperature, where we

iterate over the gridpoints, the notation
i

X indicates that matrix X is valid for the ith gridpoint and in this sense we may refer30

to it as a local matrix. In the case of precipitation, where we iterate over spatial scales, the same notation
i

X indicates that

matrix X is obtained as a function of the ith spatial scale. Upper accents are not used only for matrices, for instance the in-situ

6
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observations are stored in the p-vector yo but in the following we will refer to the
i
p-vector

i
yo of the nearest observations to

the ith gridpoint.

3.1 Temperature

The same interpolation scheme is used for the mean, the maximum and the minimum daily temperature. The physical consis-

tency among them is assured by post-processing the independently analyzed datasets, such that for each gridpoint: minimum5

temperature is always smaller or equal to the mean, maximum temperature is always bigger or equal to the mean.

The spatial interpolation is implemented on a gridpoint-by-gridpoint basis. It combines a regional pseudo-background field,

that is the weighted average of numerous sub-regional fields, with the observations. The temperature analysis at the generic ith

gridpoint is written as:

xai = xbi +
i

Ki,:

(
i
yo− i

yb
)

(5)10

i
yo and

i
yb are the

i
p-vectors of the nearest stations to the ith gridpoint.

The local Kalman gain in Eq. (5) is:

i

Ki,: =
i

Gi,:

(
i

S + ε2
i

I
)−1

(6)

i

I is the
i
px

i
p identity matrix and ε2 ≡ σ2

o/σ
2
b is the ratio between the constant observed (σ2

o) and pseudo-background (σ2
b )

error variances that has been set to 0.5, as for seNorge2 (Lussana et al., 2018b). The local pseudo-background error correlation15

matrices are defined on the basis of the correlation function between pair of points ρT (rj ,rk) as:

ρT (rj ,rk) = fd
(
rj ,rk;Dh

i

)
fz (rj ,rk;Dz) [1− (1−wmin)|w(rj ,rk)|] (7)

such that the correlation between the jth gridgpoint and the kth station is
i

Gjk = ρT (rj ,rk). Analogously, the correlation

between the jth station and the kth station is
i

Sjk = ρT (rj ,rk). The Gaussian functions f are defined in Eq. (4). A formulation

similar to Eq. (7) has been used in the paper by Lussana et al. (2009), in that case the land area fraction has been replaced20

by the land use. wmin sets the minimum value for the factor related to land area fraction when w(ri,rj) is maximum (i.e.,

equals to 1). Dz and wmin are fixed over the domain, while Dh
i is allowed to vary between gridpoints, although with some

restrictions. In an ideal situation of a very dense observational network, one may consider to rely on adaptive estimates for

the three parameters. This is not the case for our station distribution, so we have opted for a ”hybrid” configuration (i.e., Dz

and wmin fixed; Dh adaptive) that would return robust estimates. The impact of large land area fraction differences on ρT is25

less dramatic than those of large horizontal or elevation differences and it also impacts only a limited number of stations along

the coast. Eventually, we have manually set wmin = 0.5 to achieve the desired effect of attenuating the influence of coastal

areas over inland areas and vice versa, while at the same time avoiding the introduction of sharp gradients between those two

regions. The optimization procedure for Dh
i and Dz is described in the following of this section.

7
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The pseudo-background xbi in Eq. (5) is the blending of n sub-regional pseudo-backgrounds and it is in many ways similar

to those described by Lussana et al. (2018b). Each sub-regional pseudo-background is defined by a centroid and it includes

only the 30 stations closest to this centroid. The pseudo-background field with centroid at rc is the m-vector
c
xb and its value at

the ith gridpoint is
c
xbi . The seNorge_2018 domain has been divided on a 50x50 grid, each cell is a 24 km by 31 km rectangular

box and the nodes (i.e., centres of the cells) are the ”candidate” centroids. If a node is inside the domain and has at least 305

stations in a neighbourhood of 250 km, then it is a suitable centroid. Those 30 temperature observations are used to estimate

a sub-regional pseudo-background field as a function of the elevation only. The analytical function used to model the vertical

profile of temperature is the one proposed by Frei (2014) for the alpine region and its parameters have been obtained by fitting

the function to the aforementioned 30 observations. We assume that 30 observations can provide a reliable fitting. The generic

cth pseudo-background field
c
xb is derived directly from the digital elevation model by assuming that the cth sub-regional10

vertical temperature profile is valid for the whole domain. The number of sub-regions n is usually between 500 and 600 and

there are significant overlaps between neighbouring sub-regions, such that the continuity of the regional pseudo-background is

guaranteed. Finally, xbi is a weighted average of n values:

xbi =
∑n
c=1

c
xwi

c
xbi∑n

c=1

c
xwi

(8)

where the weights at the ith gridpoint
c
xwi are the n IDI values (Sec. 2) and

c
xwi is computed considering only those stations15

included in cth sub-regional pseudo-background field. The settings used in the IDI calculation are similar to those used for

precipitation in Fig. 1, in the sense that the station influence decays with horizontal distance only and its de-correlation length

scale is set to 27.5 km, that is the average of a box width and height on the 50x50 grid.

The optimization of Dz and Dh
i of Eq. (7) is based on the statistics of the innovation (i.e. observation minus background) at

station locations. As described by Desroziers et al. (2005), the elements of the background error covariance matrix at station20

locations, which is modeled by us as σ2
bS, should match the innovation sample covariances. In Tables 1-3, the values of

the parameters determining σ2
bS are shown for a selection of year (1960, 1970, . . .) in the assumption of a constant Dh (i.e.,

Dh
i =Dh, ∀i= 1, . . . ,m). Note that we have also added the average number of stations available for a specific year, the average

distances between them and the estimated observation error variance, which is not strictly required to compute S and it is set to

be half of σ2
b in our analysis. The TN error variances are significantly higher than those for TG and TX, thus indicating that TN25

is a more challenging variable to interpolate. Dh and Dz do not differ significantly among TG, TX and TN, probably because

the common observational network is the main constrain in determining their value. This justifies our choice to set Dz = 210

m for the three variables. The parameter values in the Tables are more influenced by the majority of stations that are located

in station-dense areas. Therefore, the value of Dh = 55 km can be considered as a suitable reference for the minimum allowed

Dh
i value. The procedure used for the Dh

i estimates is similar to the one described for the regional pseudo-background field.30

Dh
i is a weighted average as the one reported in Eq. (8) where

c
xbi is replaced by the cth length scale, which is constant for all

gridpoints. For the cth sub-region this length scale is set to the average distance between a station and its nearest 4 stations,

provided that this distance is larger than Dh = 55 km, otherwise Dh = 55 km is used. In this way, the analysis in data-sparse

8
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regions is the result of an interaction between a few (approximately four) stations. At the same time, we take advantage of

data-dense areas to increase locally the effective resolution of the analysis without destroying the continuity of the field. Note

that the use of extremely different Dh values between data-dense and sparse areas (i.e., with differences around one order of

magnitude or more) would result in a rather confusing field to look at. In those cases it would be better to split the domain in

sub-domains and operate independently on them.5

3.2 Precipitation

The multi-scale OI analyses are the results of successive approximations of the observations over a sequence of decreasing

spatial scales that at station locations converge to the observed values.

The interpolation scheme is not applied directly to the RR values (the vector of the raw observed values adjusted for the

wind-induced under-catch is indicated as yrr) but to their anomalies relative to a reference field of monthly precipitation (see10

Sec. 2, indicated with the abbreviation ref in the following). In addition, a Box-Cox transformation with power parameter set

to 0.5 is used and the transformation is indicated with the function g(). A similar transformation has been suggested by Erdin

et al. (2012), though in the context of combination of radar with gauge data. The ith element of yo used in multi-scale OI is:

yoi = g
(
yrr
i /y

ref
i

)
(9)

The analysis procedure can be written as:15

xa = g−1
[
M2 ◦M3 ◦ . . . ◦Ml

(
l
xa
)]
�xref (10)

where the three fundamental operations are: (1) the composition of several applications of the same statistical interpolation

model down a hierarchy of spatial scales of {l km, . . . ,3 km,2 km}, such that the results of a model application are used to

initialize the successive one, ◦ stands for model composition andMl stands for the application of the statistical model to the

length scale of l km, besides
l
xa is the average of the yo elements; (2) the Box-Cox inverse-transformation g−1(); (3) the20

elementwise multiplication of vectors � so to transform the relative anomalies into RR values and at the same time include the

effects of unresolved spatial scales. Ideally, the sequence of spatial scales to be used in Eq. (10) should be bounded between

a very large scale (e.g, half the largest domain dimension) and a fine scale corresponding to the average distance between two

stations in data-dense areas. The number of scales in between those two extremes is not critical for the final results, provided

that they are enough to guarantee a continuous analysis field in all situations. For seNorge_2018, we are using approximately25

100 scales with a minimum of 2 km and a maximum of 1400 km. The sequence is unevenly spaced as the difference between

two consecutive scales is somewhat proportional to their values.

The step-by-step description of the model
s
xa =Ms

(
s+1
x a
)

for the arbitrarily length scale of s km is:

s
xb =

s

Ψ
s+1
x a (11)

s

K =
s

G
(
s

S + ε2
s

I
)−1

(12)30

s
xa =

s
xb +

s

K
(

yo−
s

H
s
xb
)

(13)
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In order to reduce the multi-scale OI computational expenses, the original 1 km grid is aggregated onto a new coarser grid, with

aggregation factor equal to the integer value nearest to s/2 km. The aggregation groups several smaller rectangular boxes into

a bigger one (e.g., if s= 8 km then 16 of the 1 km by 1 km boxes are aggregated into a single box measuring 4 km by 4 km).

The analysis at scale s+ 1 is used as the background for scale s in an OI scheme. The analysis values are transferred between

the two non-matching grid by the operator
s

Ψ of Eq. (11), that is a bilinear interpolation mapping vectors on the (s+ 1)-grid5

to vectors on the s-grid. The observation operator
s

H of Eq. (13) is also a bilinear interpolation transforming vectors on the

s-grid to observation vectors. ε2 is set 1, which means that observations and background are assumed the have the same error

variances. The background error correlation matrices of Eq. (12) are defined on the basis of the correlation function ρR:

ρR (rj ,rk) = fd (rj ,rk;s) (14)

The Gaussian function f is defined in Eq. (4). Note that the length scales enter multi-scale OI of Eq. (10) through the correlation10

function of Eq. (14). An OI scheme such as the one presented in Eq. (11)- (14) is realizing a low-pass filter whose cut-off

wavelength is approximately s km (Uboldi et al., 2008) so every iteration over a smaller spatial scale returns a field with more

fine-scale details in it. For a given element of the observation vector, there may be a ”critical” scale at which the background

coincides exactly with the observed value such that its contribution to the innovation in Eq. (13) (i.e., the term in parenthesis)

is equal to zero and its analysis value would not change over the subsequent iterations. That critical scale is variable across the15

domain and depends on the local station density.

4 Results

The evaluation is based mostly on cross-validation exercises and comparison against the seNorge2 datasets of RR and TG.

The cross-validation analyses (i.e., CV-analysis) is the analysis value at a station location obtained considering all the available

observations except the one measured at that location. The summary statistics of the following variables are used: CV-analysis20

residuals (i.e, CV-analyses minus observations); analysis residuals (i.e, analyses minus background); and innovations (i.e.,

background minus observations). At a generic station location, background and CV-analysis are independent from the obser-

vation, while the analysis has been computed using the observation. The CV-analysis residual distributions are used in place of

the unknown analysis error distributions at gridpoints. For temperature, the comparison between the statistics of CV-analysis

residuals and innovations quantifies the improvement of the analysis over the pseudo-background at gridpoints. The statistics25

of analysis residuals reveal the filtering properties of the statistical interpolation at station locations that are related to the obser-

vation representativeness error (Lussana et al., 2010; Lorenc, 1986). The mean absolute error (MAE) and the root mean square

error (RMSE) quantify the average mean absolute deviation and the spread, respectively, of the aforementioned variables. The

fraction of errors (i.e., absolute deviations) greater than 3◦C has been used as a measure of the tails of the distribution of

deviation values. Note that the threshold of 3◦C is used in MET Norway’s verification practice to define a significant deviation30

that undermine the user confidence in the forecast. In the case of temperature, we have used a leave-one-out cross-validation

approach. For precipitation, the algorithm makes the leave-one-out cross-validation approach computationally too expensive.

10
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Thus, for each day a random sample of 10% of the available stations have been reserved for cross-validation and not used in

the interpolation.

4.1 Temperature

The main factors determining the quality of the temperature datasets are: the season of the year, the station density and the

terrain complexity. We have also investigated the variations of the performances of our interpolation scheme between two5

different time periods, 1961-1990 (61-90) and 1991-2015 (91-15), and the evaluation scores are similar to the ones presented

in the following for the whole 61-year time period.

In Figures 2-3 the TG, TX and TN evaluation results are shown for summer and winter, respectively, as a function of CV-IDI

(Sec. 2). The background, analysis and CV-analysis are evaluated through the statistics of innovation, analysis residuals and

CV-analysis residuals, respectively. For each of the four CV-ID classes (Sec. 2), the mean value of the score is displayed. The10

CV-analysis and background always score better in data-dense areas, as expected. On the contrary, the analysis may show

the best results in data-sparse regions because an isolated observation constrains the analysis to fit its value almost exactly.

For all variables, the spatial interpolation scheme generally performs better during summer than winter when small-scale

processes (e.g., strong temperature inversion) are more frequent. The TG analysis error distribution at gridpoints, as estimated

by CV-analysis residuals, shows that: during summer, the MAE is between 0.5◦C and 1◦C and its RMSE is also around 1◦C,15

errors larger than 3◦C are unlikely even in data-sparse regions; during winter, MAE and RMSE double their values and the

differences between data-dense and data-sparse regions are larger, the probability of having large errors is approximately 25%

in data-sparse regions. The TX analysis error behave similarly to TG, it is worth remarking that the spatial interpolation method

during summer performs better on TG than on TX, while in winter the opposite occurs. TN is the most challenging variable to

represent, possibly because atmospheric processes at unresolved spatial scales occur more frequently for this variable than for20

the others. The distribution of the TN analysis error at gridpoints has a much larger spread than those of TG and TX, the TN

RMSE is: between 1.5◦C and 2◦C in summer; up to approximately 4◦C during winter in data-sparse regions. The tail of the

TN distribution is also longer and large errors are more frequent than for the other daily temperatures. At the same time, the

average bias (MAE) is also larger. Our results indicate that a denser station network would be needed to deliver TN products

having the same quality as TG and TX.25

In Figure 4 the TG dataset is compared with seNorge2 over two multi-year time periods for the winter season. In the other

seasons the two datasets are much more similar, the patterns of deviations still follow those of Fig. 4 but the differences are

almost always between −2◦C and 1◦C. The maps show the average daily difference between the analyses of the two datasets.

The lateral and bottom panels are shown so to give a better overview of the extreme values. For most of the Norwegian main-

land, seNorge_2018 is colder than seNorge2 and the larger differences are on the mountain tops and in the North, along the30

coast. The two periods show similar patterns, however for the 91-15 period there are some regions where seNorge_2018 is

warmer than seNorge2, such as: the plateau in the North between Finland, Russia and Norway, along the border between Swe-

den and Norway, and in the mountains of Southern Norway. The seNorge_2018 spatial interpolation procedure builds upon

the seNorge2 procedure and a number of modifications have been made, though keeping the scale-separation approach. In

11
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seNorge_2018 a single function has been used to model the sub-regional vertical profile, instead of the three different functions

used in seNorge2. At the same time, in seNorge_2018 the blending of sub-regional fields into a regional pseudo-background

field is based on a much larger number of sub-regional fields. However, we believe that the variations having the most sig-

nificant impacts on the differences shwon in Fig. 4 are in the OI settings. seNorge_2018 includes the land area fraction as an

additional parameter in Eq. (7) and this improvement causes the differences along the coastline, where stations having signif-5

icantly different land area fractions are less correlated. The evident difference between the two datasets is in the mountains,

with warmer valley floors and colder ridges in seNorge_2018. In particular, the highest peaks of the Scandinavian mountains

are on average up to 9◦C colder, while the valley floors are just a few degrees warmer. Those differences can be explained by

(1) the reduced Dz value in seNorge_2018 (Dz = 210 m instead of Dz = 600 m as in seNorge2), which narrows the vertical

layer where OI adjustments are effective, therefore temperatures in data-sparse high-altitude regions mostly coincides with10

background values; (2) the modified procedure for the pseudo-background calculation that realizes a smoother transition be-

tween neighbouring sub-regional pseudo-background fields. It should be mentioned also that there had been variations in the

observational datasets used for the production of the two gridded datasets. Even though the data sources are the same for both

seNorge datasets, seNorge2 is based on an observational dataset that has been produced in 2016, while seNorge_2018 benefits

from the latest efforts in data collection and quality control made by MET and the ECA&D team.15

In Figure 7, the expected percentage of large errors (i.e., analysis minus true temperature larger than 3◦C) at gridpoints is

shown for TG, TX and TN during wintertime. This information completes the evaluation presented in Figures 2-3 because it

shows the extensions on the grid of the regions characterized by the different data densities. The scatter-plots in the panels on

the bottom left of each maps are different representations of the data in the bottom row of Fig. 3, where the points represents

the percentage of large errors err at station locations as a function of CV-IDI. The lines in the scatter-plots are the best fit to20

the points of the Gaussian function:

err(x) = a exp

[
−0.5

(x− b)2
c2

]
(15)

where x is the CV-IDI for the function fitting performed at station locations, then the IDI fields shown in Fig. 1 are used as

x values to estimate err over the grid. The three parameters of the bell curve shape are: the value of the curve’s peak a; the

position of the center of the peak b, and c which controls the width of the bell. The Gaussian function provides reasonably25

good fits to the points, the relationship between the station density and the analysis quality is non-linear and the analysis

performances decay much faster in data-sparse than in data-dense regions. The parameters values for the three variables are:

TG a= 703.012, b=−2.626, c= 1.123; TX a= 856.420, b=−2.924, c= 1.114; TN a= 448.39, b=−2.891, c= 1.431.

The probability of having a large analysis error is remarkably small over the domain for TX, while for TN such large errors

are quite common. The situation for TG is somewhat in between those two extreme cases and large regions of the domain are30

unlikely to present large errors. Once again, it is evident that the worst performances occur in those regions characterized by

complex terrain and low station density, such as the mountainous region between Norway and Sweden in the northern part of

the domain.
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4.2 Precipitation

The main factors determining the quality of the precipitation dataset are: the station density and the terrain complexity. The

season of the year seems to have a smaller impact on the verification scores.

In Figure 5, the RR dataset is evaluated through the statistics of CV-analysis residuals. In general, the spatial interpolation

performs significantly better for station-dense areas, then the performances degrade faster for data-sparse regions as shown5

by the MAE and RMSE for observations greater than 1 mm/day. The ability in distinguishing between precipitation and no-

precipitation is shown by the Equitable Threat Score (ETS) with a threshold of 1 mm/day. In data dense areas the fraction of

correct predictions, accounting for hits due to chance, is approximately 70%, while the ETS goes down to 0.4 in data-sparse

regions. With respect to intense precipitation (i.e., observed values greater than 10 mm/day), the probability of having large

errors (i.e, absolute deviations between CV-analysis and observation greater than 50% of the observed value) is less than 5%10

in data-dense areas and around 30% in data-sparse areas.

The close relationship between the terrain and the annual total precipitation is shown in Fig. 6, where values up to 4700

mm/year are reconstructed along the Norwegian coast. Figure 6 shows also the differences between seNorge_2018 and seNorge2

mean annual total precipitation in the period 1957-2015. On average, seNorge_2018 has significantly higher precipitation val-

ues than seNorge2, especially in data-sparse mountainous regions, and this is due to: i) the correction of rain-gauge data for15

the wind-induced under-catch, that increase the observed precipitation mostly during winter, and ii) the modified statistical

interpolation scheme that uses more information in data-sparse regions, which often tend to increase the precipitation analysis

when compared to seNorge2. As described in the seNorge2 paper Lussana et al. (2018a), this dataset is likely to underestimate

precipitation so we have designed seNorge_2018 to returns higher precipitation values because this would better agree with

the Norwegian water balance and eventually improve the results of hydrological simulations based on seNorge_2018 than for20

seNorge2. This last point deserves to be verified in the near future.

As for temperature in Sec. 4.1, also for precipitation the expected percentage of large errors over the grid is shown in Fig. 7.

The three parameters of Eq. (15) for RR are: a= 50.438, b=−0.676, c= 0.846. The elevation is not considered in the RR

IDI definition, so the map look rather different from the temperature maps. For data-dense regions, the expected percentage of

large analysis errors for intense precipitation is less than 10%. With respect to the IDI calculation (Sec. 2), by setting D =1025

km in Eq. (4) (instead of D =50 km as for temperature) we have imposed a fast transition between data-dense and data-sparse

regions. For data-sparse regions the percentage of large errors is approximately 40%.

The evaluation carried out in Fig. 7 for both temperature and precipitation quantifies impacts on the analysis quality due to

variations in the station distribution, thus providing a useful tool in the strategic planning of future observational networks.

5 Conclusions30

seNorge_2018 provides 61-year (1957-2017) datasets of daily mean, maximum, minimum temperatures, and daily total pre-

cipitation over Norway and parts of Finland, Sweden and Russia. The plan at MET Norway is to update the historical dataset

once a year, while at the same time provisional daily estimates for the current year are computed every day. MET Norway has
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an open data policy and all the datasets, as well as most of the observations used in the calculations, are available for public

download via its web services.

The observational datasets have been obtained through statistical methods that build upon our previous works. The interpo-

lation schemes automatically adapts their settings to the local station density and this allows for an higher effective resolution

in data-dense areas, while in data-sparse regions the analysis is always the estimate of at least a few stations.5

The main factor determining the quality of the temperature analysis are: the season of the year, the station density and the

terrain complexity. In the case of precipitation, those factors are: the station density and the terrain complexity. Because of the

importance of the combination of station density and terrain, we have widely used the IDI concept in our evaluation.

The new seNorge_2018 shows significant differences when compared to its predecessor seNorge2, both for TG and espe-

cially for RR. While first qualitative evaluations indicate that this is an improvement, an indirect evaluation where seNorge_201810

would be used as the forcing data for snow- and hydrological modeling is needed to confirm this.

seNorge_2018 is the first MET Norway’s observational dataset providing TX and TN from 1957. The temperature analysis

has the largest errors during winter and the TN is the most challenging variable to represent. For TG and TX, large analysis

errors are expected only in winter and limited to almost data-void areas, such as the mountain tops. TN may present large

analysis errors more often than TG and TX and for larger portions of the domain, especially in mountainous regions.15

The long-term average of the RR dataset is shaped by the monthly fields of a high-resolution numerical model, so to fill

the gaps in data-sparse regions that are common, given the high variability of daily precipitation. The ability of the method

to correctly distinguish between precipitation and no-precipitation depends critically on the station density. In the North, the

sparser observational network is associated with a high occurrence of large analysis errors. The evaluation shows that large

analysis errors are unlikely in the data-dense regions of Southern Norway, even for intense precipitation.20

6 Code and data availability

Acknowledgements. This research has been partially funded by the Norwegian project ”Felles aktiviteter NVE-MET tilknyttet nasjonal flom-

og skredvarslingstjeneste”.
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Lussana, 2018a).
seNorge_2018/catalog.html. The spatial interpolation software is avalalble at (DOI:https://doi.org/10.5281/zenodo.2022479

25

is daily updated by MET Norway and the most recent data are available at http://thredds.met.no/thredds/catalog/senorge/

The open-access datasets are available for public download at: daily total precipitation (DOI:https://doi.org/10.5281/zenodo.2082320

Lussana, 2018b) ; daily mean (DOI:https://doi.org/10.5281/zenodo.2023997 Lussana, 2018c) , maximum

(DOI:https://doi.org/10.5281/zenodo.2559372

Lussana, 2018e) and minimum (DOI:https://doi.org/10.5281/zenodo.2559354 Lussana, 2018d) temperatures. seNorge_2018
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regional climate model evaluation: A pan-European perspective, International Journal of Climatology, 0, https://doi.org/10.1002/joc.5249,30

https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5249, 2017.

Lind, P., Lindstedt, D., Kjellström, E., and Jones, C.: Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in

a Suite of High-Resolution Climate Models, Journal of Climate, 29, 3501–3518, https://doi.org/10.1175/JCLI-D-15-0463.1, 2016.

Lorenc, A. C.: Analysis methods for numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, 112, 1177–1194,

https://doi.org/10.1002/qj.49711247414, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49711247414, 1986.35

Lussana, C.: BLISS - Bayesian statistical interpolation for spatial analysis, https://doi.org/10.5281/zenodo.2022479, the Norwegian Meteo-

rological Institute, 2018a.

15

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-43

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 5 April 2019
c© Author(s) 2019. CC BY 4.0 License.



Lussana, C.: seNorge_2018 daily total precipitation amount 1957-2017, https://doi.org/10.5281/zenodo.2082320, the Norwegian Meteoro-

logical Institute, 2018b.

Lussana, C.: seNorge_2018 daily mean temperature 1957-2017, https://doi.org/10.5281/zenodo.2023997, the Norwegian Meteorological

Institute, 2018c.

Lussana, C.: seNorge_2018 daily minimum temperature 1957-2017, https://doi.org/10.5281/zenodo.2559354, the Norwegian Meteorological5

Institute, 2018d.

Lussana, C.: seNorge_2018 daily maximum temperature 1957-2017, https://doi.org/10.5281/zenodo.2559372, the Norwegian Meteorological

Institute, 2018e.

Lussana, C., Salvati, M., Pellegrini, U., and Uboldi, F.: Efficient high-resolution 3-D interpolation of meteorological variables for operational

use, Advances in Science and Research, 3, 105–112, 2009.10

Lussana, C., Uboldi, F., and Salvati, M. R.: A spatial consistency test for surface observations from mesoscale meteorological networks,

Quarterly Journal of the Royal Meteorological Society, 136, 1075–1088, 2010.

Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and Andersen, J.: seNorge2 daily precipitation, an observational gridded

dataset over Norway from 1957 to the present day, Earth System Science Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018,

https://www.earth-syst-sci-data.net/10/235/2018/, 2018a.15

Lussana, C., Tveito, O. E., and Uboldi, F.: Three-dimensional spatial interpolation of 2m temperature over Norway, Quarterly Journal of

the Royal Meteorological Society, 144, 344–364, https://doi.org/10.1002/qj.3208, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/

qj.3208, 2018b.

Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and Jonas, T.: Evaluating snow models with varying process representations

for hydrological applications, Water Resources Research, 51, 2707–2723, 2015.20

Masson, D. and Frei, C.: Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predic-

tors and circulation types, Hydrology and Earth System Sciences, 18, 4543, 2014.

Masson, D. and Frei, C.: Long-term variations and trends of mesoscale precipitation in the Alps: recalculation and update for 1901–2008,

International Journal of Climatology, 36, 492–500, 2016.

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P.,25

Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M.,

Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari,

M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The

SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geoscientific Model

Development, 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.30

Mohr, M.: New routines for gridding of temperature and precipitation observations for “seNorge. no”, Met. no Report, 8, 2008, 2008.

Mohr, M.: Comparison of versions 1.1 and 1.0 of gridded temperature and precipitation data for Norway, Norwegian Meteorological Institute,

met no note, 19, 2009.

Müller, M., Homleid, M., Ivarsson, K.-I., Køltzow, M. A., Lindskog, M., Midtbø, K. H., Andrae, U., Aspelien, T., Berggren, L., Bjørge, D.,

et al.: AROME-MetCoOp: a nordic convective-scale operational weather prediction model, Weather and Forecasting, 32, 609–627, 2017.35

Pielke, R. A.: Further Comments on “The Differentiation between Grid Spacing and Resolution and Their Application

to Numerical Modeling”, Bulletin of the American Meteorological Society, 82, 699–700, https://doi.org/10.1175/1520-

0477(2001)082<0699:FCOTDB>2.3.CO;2, https://doi.org/10.1175/1520-0477(2001)082<0699:FCOTDB>2.3.CO;2, 2001.

16

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-43

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 5 April 2019
c© Author(s) 2019. CC BY 4.0 License.



Reistad, M., Breivik, Ø., Haakenstad, H., Aarnes, O. J., Furevik, B. R., and Bidlot, J.-R.: A high-resolution hindcast of wind and waves for

the North Sea, the Norwegian Sea, and the Barents Sea, Journal of Geophysical Research: Oceans, 116, 2011.

Sakov, P. and Bertino, L.: Relation between two common localisation methods for the EnKF, Computational Geosciences, 15, 225–237,

2011.

Saloranta, T.: Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model, The Cryosphere, 6,5

1323–1337, 2012.

Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France Convective-Scale

Operational Model, Monthly Weather Review, 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011.

Simmons, A. J., Berrisford, P., Dee, D. P., Hersbach, H., Hirahara, S., and Thépaut, J.-N.: A reassessment of temperature variations and

trends from global reanalyses and monthly surface climatological datasets, Quarterly Journal of the Royal Meteorological Society, 143,10

101–119, https://doi.org/10.1002/qj.2949, https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2949, 2017.

Skaugen, T. and Onof, C.: A rainfall-runoff model parameterized from GIS and runoff data, Hydrological Processes, 28, 4529–4542, 2014.

Tveito, O. E. and Førland, E. J.: Mapping temperatures in Norway applying terrain information, geostatistics and GIS, Norsk Geografisk

Tidsskrift-Norwegian Journal of Geography, 53, 202–212, 1999.

Uboldi, F., Lussana, C., and Salvati, M.: Three-dimensional spatial interpolation of surface meteorological observations from high-resolution15

local networks, Meteorological Applications, 15, 331–345, 2008.

Walters, M. K.: commentary and analysis, Bulletin of the American Meteorological Society, 81, 2475–2479, https://doi.org/10.1175/1520-

0477(2000)081<2475:CAACOT>2.3.CO;2, https://doi.org/10.1175/1520-0477(2000)081<2475:CAACOT>2.3.CO;2, 2000.

Wolff, M. A., Isaksen, K., Petersen-Øverleir, A., Ødemark, K., Reitan, T., and Brækkan, R.: Derivation of a new continuous adjustment

function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study, Hydrology and Earth System Sciences,20

19, 951–967, https://doi.org/10.5194/hess-19-951-2015, https://www.hydrol-earth-syst-sci.net/19/951/2015/, 2015.

17

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-43

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 5 April 2019
c© Author(s) 2019. CC BY 4.0 License.



TG RR
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Figure 1. The observational network for the four variables: RR, TG, TX and TN. A detailed description is given in Sec. 2. The top panel

shows the time series for the number of available observations over the Norwegian mainland. On the bottom panels, TG (left) and RR (right)

observational networks are shown (TX and TN are similar to TG). The displayed fields are the IDI at gridpoints. Panels a (TG) and b (RR)

show the CV-IDI as a function of the distance to the nearest stations. In panel c, the two parameters measuring the local station influence on

the analysis, CV-IDI and IDI, are compared.
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Figure 2. TG, TX and TN, verification scores as a function of CV-IDI based on the summer seasons (June-July-August) within the 61-year

time period 1957-2017. The verification scores are based: for the analysis on the analysis residuals; for the CV-analysis on the CV-analysis

residuals; for the background on the innovation. On the top row, the mean absolute error (MAE). In the middle, the root mean square error

(RMSE). On the bottom row, the percentage of large errors. A large error is defined as the absolute value of innovation or residual larger than

3◦C.
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Figure 3. TG, TX and TN, verification scores as a function of CV-IDI based on winter seasons (December-January-February) within the

61-year time period 1957-2017. See Fig. 2.
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61-90 DJF 91-15 DJF

Figure 4. mean TG difference between seNorge_2018 and seNorge2 based on daily analysis in December, January and February. On the left

panel, the 30-year period 1961-1990 is considered. On the right, the mean is based on the 25-year period 1991-2015. The lateral and bottom

panels in both graphs show the projection of the differences on the y- and the x- axis, respectively.
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(a) (b)

(c) (d)

Figure 5. RR, CV-analysis scores as a function of CV-IDI based on CV-analysis residuals in the 61-year time period 1957-2017. Panel a,

Mean Absolute Error considering only observations greater than 1 mm/day. Panel b, Root-Mean-Squared Error considering only observations

greater than 1 mm/day. Panel c, Equitable Threat Score with threshold equals to 1 mm/day. Panel d, Percentage of large errors in case of

intense precipitation (i.e., greater than 10 mm/day). A large error is defined as the absolute value of a CV-analysis residual larger than 50%

of the observed value.
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Figure 6. RR annual total precipitation. On the left, the mean annual total precipitation based on the 61-year period 1957-2017: the lower

precipitation class includes values smaller than 400 mm; the upper precipitation class values between 3500 mm and 4700 mm. On the right,

mean annual total precipitation difference between seNorge_2018 and seNorge2 based on the 51-year period 1957-2015. On each graph, the

lateral and bottom panels show the projection of the differences on the y- and the x- axis, respectively.
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TG DJF TN DJF
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Figure 7. Expected percentage of large errors on the grid. The colour scale is the same for all the maps. Wintertime (DJF) temperatures

are considered, large errors are defined as deviations between analysis and unknown truth larger than 3◦C. All precipitation data has been

considered, large errors are deviations between analysis and unknown truth larger than 50% when the analysis value is greater than 10

mm/day. The insets show the relation between IDI and: (dots) the percentage of large errors observed at station locations (on the x-axis,

CV-IDI instead of IDI); (line) the best-fit function used to infer the expected percentage of large errors at gridpoints.
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Table 1. TG annual statistics: ”n” is the average number of stations; ”d” (km) is the average distance between a station and its nearest

third station; Dh (km), Dz (m), σ2
b ((◦C)2), σ2

o ((◦C)2) are the optimal values given the 1-year innovation statistics and the constraint

σ2
o/σ

2
b = 0.5.

year n d Dh Dz σ2
b σ2

o

1960 398 55 60 206 2.24 1.12

1970 669 42 45 217 1.86 0.93

1980 639 42 58 201 2.45 1.22

1990 600 44 57 202 1.33 0.66

2000 627 44 55 206 1.28 0.64

2010 639 45 52 206 2.45 1.23
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Table 2. TX annual statistics (see Table. 1).

year n d Dh Dz σ2
b σ2

o

1960 395 55 56 207 2.09 1.05

1970 669 42 57 201 1.67 0.84

1980 616 45 37 216 2.09 1.05

1990 563 47 55 206 1.40 0.70

2000 596 46 56 210 1.32 0.66

2010 638 45 57 206 2.09 1.04
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Table 3. TN annual statistics (see Table. 1).

year n d Dh Dz σ2
b σ2

o

1960 396 55 50 217 4.42 2.21

1970 670 42 53 222 3.80 1.90

1980 615 45 62 211 4.58 2.29

1990 560 47 52 210 2.88 1.44

2000 596 46 51 210 2.99 1.49

2010 637 45 64 212 4.70 2.35
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