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1 Response to Xingwang Fan

(1) It is interesting to find that Figure 11 shows an increase of globally-averaged LAI-VOD temporal correlation in the order of

C-, X-, and Ku-band. Is this pattern related to the penetration depth of microwave bands, i.e., Ku-band contains more informa-

tion on top-layer leaves which are captured by LAI? While Figure 6 shows a decrease of globally-averaged LAI-VOD spatial10

correlation in the same order. Is this pattern related to the relatively homogeneous C-band penetration depth at global scale?

This is very intriguing, we did not realize this before. First thing to note is that for Figure 11 for each location the Spear-

man correlation between the LAI and VOD time series is calculated and then averaged globally, while for Figure 6 directly

the correlation between the hovmoeller diagrams is determined. As such Figure 11 represents the globally averaged temporal15

correlation, while Figure 6 is related to both spatial AND temporal correlation.

As such we think that the order of correlations in fig 11 is a result of Ku-band and LAI being more affected by the top veg-

etation canopy than the other bands. However, Figure 6 is a more complicated matter. It could also be that the differences in

correlation are due to the differing spatial extent. For example, C-band has more spatial gaps due to more RFI being present

than in the other bands. The C- and X-band coverage agrees better with the LAI coverage than Ku-band since all points of a20

latitude are averaged. Therefore, we should not over-interpret these coefficients. As such we will remove them from the paper

to avoid confusion or wrong conclusions.
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[12 : 7] The VOD patterns strongly correlate with LAI, quantified by a Spearman coefficient of 0.67, 0.66 and 0.58 between

LAI and C-, X- and Ku-band respectively.25

[14 : 1] the Spearman correlation coefficient is 0.29, 0.29 and 0.26 between LAI and C-, X- and Ku-band anomalies respectively.

(2) Instead of jointly retrieving VOD and SSM, is it possible to retrieve VOD using other sources of SSM data, e.g., GLDAS,

SMOS and SMAP as inputs? An increase in SSM data quality/consistency likely improves the retrieval of VOD.

30

Radiative Transfer Model inversion approaches like LPRM aim to retrieve VOD and SSM in a consistent manner that guar-

antees energy conservation laws. When forcing the retrieval with external soil moisture data sets you also force the VOD to

fit the observed brightness temperatures, which is certainly not a guarantee for a good VOD retrieval. LPRM is a proven and

tested methodology for retrieving both SSM and VOD simultaneously. For example, using modeled data from a reanalyis data

set like GLDAS-Noah or ERA5 would also introduce errors (e.g. related to errors in precipitation forcing) that would directly35

translate back into the skill of the VOD retrieval. SSM derived from SMAP or SMOS has other uncertainties. In summary, to

guarantee consistency and independency of SSM and VOD retrievals, no external SSM data set is used in the retrieval of VOD.

(3) It is a common practice to reduce random errors (noise) by averaging multi-sensor concurrent data. Is it your plan to

incorporate more microwave sensors in the future versions of VODCA? Such sensors can include, e.g., FY-3B (X band from40

2011-07-12 to present) and FY-3C (X band from 2014-05-29 to present).

We are definitely looking to include as many different sensors as possible to further reduce random errors. But we were

not able to get access to Fen Yung data or WindSat data past 2012, even though we would very much like to include it. More

realistically, future VODCA versions will include GPM-based retrievals.45

(4) Do the anisotropic effects of vegetation absorption/emission play a role in VOD retrieval? That is, to what extent the

cosine mapping function (in eq. 2) applies in the 0.25 grid, because this function is derived for horizontally homogeneous

canopy. This assumption is generally unsatisfied within the 0.25 grid on the earth surface. Thus, the accuracy of VOD may

differ with incidence angle. The MODIS maximum-value compositing NDVI (and then LAI), however, is inclined to select50

near-nadir pixels. In this sense, the temporal consistency is well maintained. I wonder if LAI-VOD temporal correlation is also

affected by land surface heterogeneity which decreases the accuracy of VOD.

Anisotropy primarily plays a role in observations of reflected radiance. This is the case e.g. for solar-reflective observations

(bi-directional reflectance distribution function) like those used for MODIS LAI retrievals, or from active microwave obser-55

vations, which are affected by canopy structure. Emitted radiance can generally be considered anisotrope. For almost all of

the currently used soil moisture retrieval algorithms it is an accepted and applied assumption to have polarization-independent

VOD. H and V-polarizations do not result in differences in VOD retrievals (Owe et al., 2001) and is actually the basis of LPRM.
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The purpose of the maximum-value compositing technique for NDVI data aims to reduce the effects of off-nadir observations

and to reduce the effect of low NDVI values on the vegetation signal that are for example caused by snow cover or atmospheric60

distortions. The maximum NDVI value within a period hence helps to extract a vegetation-sensitive NDVI and to reduce other

effects. As VOD retrievals are not affected by snow cover or atmospheric distortions, there is no need to apply the maximum

value composite technique to VOD time series (unless there is a biogeophysical interest in maximum VOD values).

2 Response to reviewer #1

2.1 Main discussion points65

1) The use of regression-based cdf-matching is argued to be an important component of accurate bias-correcting. This may

well be, but as currently written the paper is not convincing. The analysis in Figure 2 is not clear on this front without a label to

the color map. Please include a scale bar on this Figure. Even if the numbers are normalized, how much of a difference does it

make? 0.5% 1%? 10% 50%? Also, it would be useful to include an additional Figure that shows the exact difference between

the: piece-wise CDF-matching and least-squares methods, either by replacing one of the panels or adding it as a third panel.70

More important, though, is the fact that no comparison between the data set of Liu et al and this new data set is created. In the

actual practice of the VOD data set, how closely related are the two data sets? Are there any changes induced to say, the trends?

What about other statistics, or simply some sense of say, how often the VOD differs by more than some small threshold (0.05

or so) as a result of this change? Such information needs to be included in several Figures and is crucial not only to judge the

improvement created by this new data set, but also towards understanding the quality of the large number of papers that have75

been written analyzing the Liu et al (2011) data set.

– We did not include a scale bar to the plot because it is a synthetic experiment and as such the absolute values are a

function of the parameters (e.g. the distribution the values are sampled from) and therefore not very useful. But we agree80

that labeling the scale bar would help to get a feeling for the magnitude of the values, see Fig. 1 for new version with a

normalized scale bar.

– In response to the comment that it would be useful to include an additional figure that shows the exact difference between

the piece-wise CDF-matching and least-squares methods, we tried to make a illustrative figure showing the differences

between the two methods. Unfortunately, it ended up being more confusing than helpful. For this reason we suggest to85

use figure 1 (with the modified scale bar) to show that only the first and last percentile bins are affected.

– Comparing VODCA to Liu et al’s data set is a good idea. In the revised manuscript, for several analyses we will compare

the finished VODCA products to Liu et al’s data set. In summary, we found that the most important difference is that

VODCA consists of independent daily observations while the Liu data set seems to have some smoothing applied to the
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original observations. This becomes evident for days where no microwave observations are available: In Liu’s data set90

such short-term gaps are filled, although we could not find in literature how this was exactly done.

We see more or less the same trends in VODCA-Ku as in the Liu et al. data set (Fig. 2). Using daily data, the Liu data

set correlates more strongly with LAI than VODCA (Fig. 3, left column), probably because of the applied temporal

smoothing. But if both data sets are downsampled to monthly time steps, VODCA correlates more strongly with LAI

than Liu et al’s data set (Fig. 3, right column). Based on our analyses we conclude that papers written on the basis of Liu95

et al’s data set are still valid, but that VODCA will add value to future studies because it covers a longer time span, has

temporally-independent daily VOD values, provides separate products for different frequencies, and reduced noise.

We will include the comparison of the VODCA data set with Liu’s data. The main changes to the manuscript will be:

– Page 17, subsection "4.4.1 Correlation between VOD and LAI" now also compares Liu et al’s data set with LAI.100

– Updated most hovmoeller (see fig. 4) plots to also include Liu et al’s data set. We will not update the fractional coverage

hovmoeller, as the smoothing present in Liu et als data set leads to inflated values.

– Added figure 2 to section "4.4.2 Trend—analysis of VOD, LAI and Vegetation Continuous Fields" with description.

2) Figure 7 on page 14: The values mentioned in the text here are pretty low Spearman correlations so it is difficult to test

if the LAI anomalies line up with the VOD anomalies or not. Furthermore, this analysis in and of itself does not indicate105

successful bias removal. It would be more useful to focus instead on whether there are any changes at the breakpoints in when

different data sets are available (which are known a priori) rather than comparing across the entire record. Please use the meth-

ods developed for soil moisture in Su et al, Geophysical Research Letters, 2016 (“Homogeneity of a global multi-satellite soil

moisture climate data record”) to test for breakpoints.

110

We agree with the reviewer that computing the correlations per "blending period" gives more insight in the skill to detect

anomalies per period. Due to the absence of a VOD reference data set, the Su et al methods cannot be applied. Instead, we

calculated the correlation of VODCA and LAI for the different blending period, similar to Dorigo et al. (2015). The results

(Fig. 5) show that the spatial distribution of the correlation between VOD and LAI is time-invariant for all VODCA bands.

This demonstrates that the temporal dynamics are consistent over the whole time period.115

Correlation analysis between LAI and VOD per blending period (fig. 5) will be added to the results.

3) I strongly urge the authors to reconsider the choice not to include daytime retrievals in the VODCA (page 4, line 20).

While the idea that daytime retrievals are more error-prone because of greater differences between soil and canopy temperature

is common in the microwave radiometry community, few studies have been done document the extent of this error. Recent re-120

sults suggest, for example, that PM soil moisture retrievals are not always more error-prone than AM ones (particularly under

densely vegetated conditions), see Fan et al, Remote Sensing, 2015 (“The Impact of Local Acquisition Time on the Accuracy
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Figure 1. Reworked figure 2: Simulated variance of slopes of old a new CDF matching method. New are the scale bar tick labels

(a) Liu et al trends (b) VODCA-Ku trends

Figure 2. Liu et al and VODCA trends from 1993-01 to 2012-12 (will be included in revised manuscript).
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(a) Monthly Liu et al (b) Monthly VODCA-C

(c) Monthly VODCA-X (d) Monthly VODCA-Ku

Figure 3. Correlation of monthly LiuVOD and the VODCA products with MODIS LAI. For this analysis, the data are first resampled to

monthly averages, then only the months where all four data sets have values are used.

of Microwave Surface Soil Moisture Retrievals over the Contiguous United States”). Given the significant potential for diurnal

changes in VOD to be useful for studying vegetation water stress (see Konings and Gentine, Global Change Biology, 2017

(“Global variations in ecosystem-scale isohydricity”), such a data set could be quite useful. A flag could still be included for125

the nighttime data to suggest greater uncertainty.

While technically it would be possible to produce a daytime product using the same methods, the daytime LPRM-VOD

products are still very experimental. Currently, we don’t want to release a daytime product to prevent users from making

false scientific conclusions based on potential data artifacts. Our experience from ESA CCI Soil Moisture has taught us, that130

despite providing quality flags and extensive documentation, many users do make wrong use of data sets. A release of daytime

products requires a proper evaluation, a comparison with nighttime products and an assessment of differences. Such an analysis

is beyond the scope of this paper. However, we consider such an analysis essential and will likely address it in the near future.

Once our scientific understanding and confidence in the day-time products is mature enough, we will include this in a future

release of VODCA.135

4) Relatedly (page 7, line 14), the above-cited Konings and Gentine paper has shown there is a significant expected diurnal

cycle in VOD (see also Konings et al, Geophysical Research Letters, 2017 “Active microwave observations of diurnal and
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(a) Mean

(b) Anomalies

Figure 4. Hovmoellers diagrams of monthly VOD values (top) and monthly VOD anomalies (bottom) including the merged VOD dataset by

Liu et al.
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Figure 5. Correlation between VODCA and MODIS LAI, raw time series and anomalies, for different blending periods.
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seasonal variations of canopy water content across the humid African tropical forests” for the active equivalent of this, with

more complete diurnal measurements). As such, presenting the data to be “resampled to a specific time” as in page 7, line 14,140

is misleading. At the very least, the data should be presented as averaged over a certain period. If that is the case, and if the

authors really insist on not using daytime data, it would still be cleaner to just present it as a day-long average.

We concur, this is a bit poorly worded and can be misunderstood.

We are adjusting the relevant passages of the manuscript to talk of "nightly averages" instead.145

5) Little literature exists on whether sensor differences are really more significant than algorithmic differences. This may ex-

plain why SMOS and SMAP baseline retrievals were found by the authors to have little consistency; those retrieval algorithms

are fairly different – not something specific about L-band frequency. L-band VOD has been shown to have significant utility

over X-band and likely C-band (see Brandt et al, Na-ture Ecology and Evolution, 2018 “Satellite passive microwaves reveal150

recent climate-induced carbon losses in African drylands”). While I recognize that it may genuinely be impossible to create an

L-band product using the methodology employed here (without re-running the LPRM on SMOS and SMAP so that a common

algorithm is present), a more detailed treatment should be provided than just lines 21-23 on page 3. Please make it clear that it

is not possible for you to create the L-band product, not “does not warrant a product for it”, which suggests L-band data is not

useful. Also, can you include the low temporal correlation in a supplemental plot?155

We agree that a more sophisticated argumentation would be appropriate at this point. Also Reviewer #2 was pointing this

out. In a preliminary analysis, we used L-band VOD products from SMAP and SMOS retrieved with LPRM. The temporal

correlation between the daily LPRM-SMOS and LPRM-SMAP values is very low (globally in average about 0.1, while the

correlation coefficients in the other bands achieved values of 0.6 to 0.7, Fig. 6). Lower temporal dynamics and hence correla-160

tions are expected for L-band in comparison to shorter wavelengths because L-band largely penetrates the canopy with strong

seasonal changes in leaf biomass and is more sensitive to the woody parts. Hence, the relatively small intra-annual dynamics

are more sensitive to noise in the data. This is not a problem exclusive to LPRM-derived L-band VOD products. To the best of

our knowledge, all studies involving L-band VOD use temporally averaged data rather than using daily values. For example,

Brandt et al. (2018) averaged all SMOS-IC data between 2010 and 2016 and analyzed only spatial correlations, disregarding165

temporal dynamics.

We also applied the VODCA merging procedure to L-band VOD data from LPRM-SMAP and LPRM-SMOS. The auto-

correlation analysis showed that the obtained VODCA-L-band VOD has a lower temporal autocorrelation than the original

LPRM-SMAP VOD (Fig. 7). This indicates that the level of noise in L-band was increased with the merging. Hence for L-

band, the merging results in a lower-quality data set. In addition, the low density of observations in LPRM-SMOS causes a170

highly unbalanced temporal coverage of VOD values (Fig. 8). Given this unbalanced data coverage there is a high risk that

users might wrongly use this dataset for e.g. trend analysis. However, we are convinced that there is a large potential to pro-

duce a more reliable multi-sensor/multi-product merged L-band data set in the future, e.g. by using alternative L-band retrievals
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(a) L-band LPRM-SMAP vs. LPRM-SMOS (b) Ku-band AMSR-E vs. WindSat

Figure 6. Correlations between different sensors of the same band. The Ku-band WindSat vs. AMSR-E plot is similar to all other sensor

combinations in the Ku, X, and C band.

(a) SMOS change (b) SMAP change

Figure 7. Ar(1) change of SMAP and SMOS due to merging. Note that the original SMAP time series has less noise than experimental

VODCA-L

from SMOS-IC or MTDCA. Yet, the current VODCA methodology cannot be easily applied to L-band data. Hence alternative

blending approaches first need to be thoroughly assessed, which goes beyond the scope of the current paper.175

We will add a paragraph in the introduction explaining in detail the reasoning behind not producing VODCA-L. We will also

include figures 6 and 7 in the supplement for that purpose and expand the discussion regarding the possibility of an L-band

product. We will also take care to talk specifically of LPRM-L-VOD and not L-VOD in general.

180

2.2 Minor discussion points

1) Section 3.1 Regarding the 2 AMSR2 C-band channels: was any statistical evaluation done to see how different the retrievals

from the two channels were, when taken in isolation?

VOD from the two C-band channels from AMSR2 is highly correlated (Fig. 9), so using 7.3 GHz instead of 6.9 Ghz will185

have little impact. Actually, the 7.3 GHz channel was purposely added to AMSR2 to mitigate RFI in the 6.9 GHz channel. We
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Figure 8. Fractional coverage hovmoeller plot, also including experimental VODCA-L.

will add this plot to the supplement and add to the main text:

[8 : 3] As the two C-bands are highly correlated, the use of one or the other has a minor impact on the quality of the dataset

(Fig. 9).190

2) Page 9 lines 2-3: Please provide more information on how the bin sizes are chosen.

Agreed, this is in need of some clarification. We added following sentences to the end of the relevant paragraph:
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Figure 9. Correlation between the AMSR2 6.9 and 7.3 GHZ band

[9 : 2] The bin size of 20 was chosen as compromise between data coverage and often used bin sizes. A bin size of 50195

observations is often used as a rule of thumb for univariate regression to get robust estimates (Green, 1991). However, our

main goal was rather to prevent time series with very few observations from learning spurious scaling parameters and we also

did not want to loose all time series with less than 50 values. As such 20 was chosen as a compromise.

3) Page 10 line 11: How often does removal of such unphysical values happen? This is important information as these values200

are made unphysical as a direct consequence of the cdf-matching variant employed here.

A fraction in the order of 1/106 to 1/108 of values are lost this way, so almost nothing gets lost. Anyway, the only way to

prevent any CDF-matching technique to produce values below zero is to force its intercept trough zero. But this would mean

that potentially it becomes a very bad fit for the value range where the data is actually located. We added the clarification to the205

manuscript.

[10 : 11] These values are deemed unreliable and are removed. However, this occurs very rarely, only a fraction of about

1/106 to 1/108 of values are lost in this way.

210

4) Page 10, line 1-2: How many observations is deemed enough? Please include in text (not just Figure 3 for clarity. Relat-

edly, Figure 3 is not consistent with the text in Section 3.2.4 (since for example, the figure pseudo-code does not mention the
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use of the first and last two years). This makes it actively confusing – please make sure Figure 3 is fully complete.

As a threshold, we used the same number of observations as for the bins reported on Page 9 lines 2-3, i.e. 20 (otherwise the215

matching may become too unreliable).

About Fig. 3: The usage of the first/last 2 years is mentioned in the pseudo-code but we agree that it does not mention that

the minimum of 20 observations need to come from the last two years of AMSR-E and the first two years of AMSR2. But

anyway, since reviewer M. Piles finds the Figure unnecessary and we also were never content with it, we will remove Figure 3220

entirely without replacement.

Figure 3 will be removed from the manuscript.

3 Response to Maria Piles225

3.1 Main discussion points

1. Their approach for the merging builds from the one used for the ESA CCI Soil Moisture product and the previous long-term

VOD product from Liu et al., 2011, with improvements to make it more robust to the presence of outliers. The improvement

shown with respect to the previous version is not convincing. What is the numerical range of the colorbar in Fig. 2? Can the

authors also show results with real data? Also, the authors say (page 8, line 31) they dynamically increase the step size of the230

percentiles “if only a few” observations are available. It would be important to be more specific here and show how the method

is sensitive to the choice of this parameter. In general, an improved characterization of their matching approach is needed.

We agree that Figure 2 does not give a full insight into the improvements of the methods. However, with the lack of any

reference data, making some test with real data is unfeasible. Using synthetic data has the advantage that the results are not235

skewed by some external effect, but only depend on the methods used. These simulations show that for exactly the same set of

input data, the new CDF-matching method gives much more reliable scaling parameters for the first and last bins. We will add

a normalized scale bar for reference to quantify the change. A bin size of 20 was chosen as compromise between data coverage

and often used bin sizes. A bin size of 50 observations is often used as a rule of thumb for uni-variate regression to get robust

estimates (Green, 1991). However, our main goal was rather to prevent time series with very few observations from learning240

spurious scaling parameters and we also did not want to loose all time series with less than 50 values. As such 20 was chosen

as a compromise.

[9 : 2] The bin size of 20 was chosen as compromise between data coverage and often used bin sizes. A bin size of 50

observations is often used as a rule of thumb for uni-variate regression to get robust estimates (Green, 1991). However, our245
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main goal was rather to prevent time series with very few observations from learning spurious scaling parameters and we also

did not want to loose all time series with less than 50 values. As such 20 was chosen as a compromise.

2. The authors report there is a flag indicating the matching method (page 10, line 8) and a flag indicating which sensors

contributed to a measurement (page 11, line 2). It would be very useful if they could relate those flags to the quality of the final250

product and make recommendations to the user. Perhaps the authors could consider dedicating a specific section of the paper

to their quality flags and assessment.

First of all, we want to point out that right now only the C-band can have any bad quality flags due to irregular processing,

the other bands always use the standard processing chain. The 6.9 and 7.3 GHz C-bands are highly correlated (Fig. 9), showing255

that using the lower frequency instead of 6.9 GHz has little impact on the results. For the other flags it is really hard to make

any recommendations as they depend a lot on what the data are used for and there is a wide range of possible uses that we

cannot foresee. Still, we will add to the supplement a summary of all available quality flags.

Supplement: We added a section about quality flags, their meaning with links to relevant sections in main text.

In main text, following line is added together with the figure:260

[8 : 3] As the two C-bands are highly correlated, the use of one or the other has a minor impact on the quality of the dataset

(Fig. 9).

3. I would strongly recommend the authors to consider including the daytime observations to the data set. Although it is265

well-known that daytime retrievals are expected to have a higher error than nighttime ones due to the thermal equilibrium

assumed in the inversion, the difference between day and night canopy water have been shown useful for certain science stud-

ies (e.g. see Konings & Gentine, Global variations in ecosystemscale isohydricity, Global Change Biology, 2016). Also, their

combination could be potentially useful for some applications to enhance the temporal coverage.

270

While technically it would be possible to produce a daytime product using the same methods, the daytime LPRM-VOD

products are still very experimental. Currently, we do not want to release a daytime product to prevent users from making

false scientific conclusions based on potential data artifacts. Our experience from ESA CCI Soil Moisture has taught us, that

despite providing quality flags and extensive documentation, many users do make wrong use of data sets. A release of daytime

products requires a proper evaluation, a comparison with nighttime products and an assessment of differences. Such an analysis275

is beyond the scope of this paper. However, we consider such an analysis essential and will likely address it in the near future.

Once our scientific understanding and confidence in the day-time products is mature enough, we will include this in a future

release of VODCA.
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4. The validation does not show the value of the multi-frequency retrievals, nor discusses in detail their differences with280

respect to the optical indicators they selected. The authors should elaborate more on their results with focus on the different

bands and perhaps consider a comparison of the sensitivity of the different VOD to biomass (e.g. see Nemesio-Rodríguez et

al., biogeosciences, 2018)

While we are eager to analyze the usability of the different frequencies for various applications, this is not the focus of a285

data set paper. The primary goal of the manuscript is to introduce the new VODCA data set, give insights into its methodology,

and demonstrate in various ways if the values we produce and the dynamics that we see in the data set are plausible. This focus

is also outlined in the aims and scope of the journal: https://www.earth-system-science-data.net/about/aims_and_scope.html.

Focusing too much on the interpretation of the results would derail the topic and further increase the length of the paper (it

already now is on the long side).290

3.2 Minor discussion points

1. Page 1, line 10. The authors should introduce in the abstract the previous long-term VOD data set and clarify the novelties

of their newly presented data set, i.e. frequency-specific VOD, extended period, improved matching.

295

While Liu et al’s data set has a much more prominent role in the revised manuscript, the abstract becomes too long and

confusing if we describe two VOD data sets and their differences already there. However, the extended period, the new matching

technique, and the separate frequency-specific VOD data sets are already mentioned.

2. Page 1, line 24. Is the trend measured by all frequencies? Are there any differences? It would be nice to complement the300

validation and include the value of having frequency-specific VOD here.

Thanks for the suggestion, this is indeed something that needs to be specified. We only looked at Ku-band long term trends

(because it is 10 years longer than X-band).

305

[1 : 24] We added: "Trend analysis of Ku-Band VODCA shows that between 1987 and 2017 there has been ..."

3. Page 2, line 2. The authors could (at least) indicate how the multi-frequency VOD could actually complement optical

measurements (e.g. canopy water vs. greenness)

310

This is a good idea, we added a sentence on the uniqueness of the observations.
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[3 : 2] We added: "In summary, VODCA shows vast potential for monitoring spatial-temporal ecosystem changes comple-

mentary to existing long-term vegetation products from optical remote sensing as VOD is unaffected by cloud cover or high sun

zenith angles. In addition, VOD is sensitive to vegetation water content and hence complements optical indices of vegetation315

greenness and leaf area.

4. Page 2, line 14. Additional references are needed in the intro and the discussion regarding multi-frequency VOD estimates

and sensitivity to different parts of the canopy. I point out two articles hereafter, but recommend nonetheless the authors to do

a bibliography search: F. Tian et al., Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite,320

nature ecology and evolution, 2018N. Rodríguez-Fernández et al., An evaluation of SMOS L-band vegetation optical depth

(L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa, biogeosciences, 2018

Thanks for the suggestion, we added your proposed as well as additional references.

325

Changed sentence: Short wavelengths experience a higher attenuation by vegetation (and hence relate to higher VOD values)

than longer ones (Liu et al., 2009; Owe et al., 2008; Kerr et al., 2018). As a consequence, VOD estimates from long wavelengths

are sensitive to deeper vegetation layers (e.g. stem biomass) while VOD estimates from short wavelengths are more sensitive

to canopy moisture content (Chaparro et al., 2018; Tian et al., 2018; Fan et al., 2018; Konings et al., 2019).

330

5. Page 3, line 23. Do the authors mean there is a low temporal correlation of SMAP and SMOS VOD products? Which

products? Please, provide appropriate references or supporting material for this statement. Perhaps the addition of L-band could

be directly included as future work, latest products from the two missions (SMAP MTDCA and SMOS-IC for instance) seem

to agree well.

335

We agree that a more sophisticated argumentation would be appropriate at this point. Also Reviewer #1 was pointing this

out. In a preliminary analysis, we used L-band VOD products from SMAP and SMOS retrieved with LPRM. The temporal

correlation between the daily LPRM-SMOS and LPRM-SMAP values is very low (globally in average about 0.1, while the

correlation coefficients in the other bands achieved values of 0.6 to 0.7, Fig. 6). Lower temporal dynamics and hence correla-

tions are expected for L-band in comparison to shorter wavelengths because L-band largely penetrates the canopy with strong340

seasonal changes in leaf biomass and is more sensitive to the woody parts. Hence, the relatively small intra-annual dynamics

are more sensitive to noise in the data. This is not a problem exclusive to LPRM-derived L-band VOD products. To the best of

our knowledge, all studies involving L-band VOD use temporally averaged data rather than using daily values. For example,

Brandt et al. (2018) averaged all SMOS-IC data between 2010 and 2016 and analyzed only spatial correlations, disregarding

temporal dynamics.345

We also applied the VODCA merging procedure to L-band VOD data from LPRM-SMAP and LPRM-SMOS. The auto-

correlation analysis showed that the obtained VODCA-L-band VOD has a lower temporal autocorrelation than the original
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LPRM-SMAP VOD (Fig. 7). This indicates that the level of noise in L-band was increased with the merging. Hence for L-

band, the merging results in a lower-quality data set. In addition, the low density of observations in LPRM-SMOS causes a

highly unbalanced temporal coverage of VOD values (Fig. 8). Given this unbalanced data coverage there is a high risk that350

users might wrongly use this dataset for e.g. trend analysis. However, we are convinced that there is a large potential to produce

a more reliable multi-sensor merged L-band data set in the future, e.g. by using alternative L-band retrievals from SMOS-IC

or MTDCA. Yet, the current VODCA methodology cannot be easily applied to L-band data. Hence alternative blending ap-

proaches first need to be thoroughly assessed, which goes beyond the scope of the current paper.

355

We added a paragraph in the discussion explaining the reasoning behind not producing VODCA-L. We also included figures

6 and 7 in the supplement for that purpose and expand the discussion regarding the possibility of an L-band product. We will

also take care to talk specifically of LPRM-L-VOD and not L-VOD in general.

6. Page 4, line 10. A reference to the tau-omega model is needed. Please include: T. Mo, B. Choudhury, T. Schmugge, and T.360

Jackson, “A model for microwave emission from vegetation-covered fields,” J. Hydrol., vol. 184, no. C13, pp. 101–129, Dec.

1982

We already referenced this paper just before at line 5 but we agree that it is not prominently enough. We changed the

sentence:365

"LPRM v6 (van der Schalie et al., 2017; Owe et al., 2008; Meesters et al., 2005) retrieves soil moisture and VOD at the same

time from vertical and horizontal polarized microwave data and is based on a radiative transfer model first proposed by Mo et

al. (1982).

The model assumes..."370

7. Table 1: It would be interesting to add ascending and descending times for each sensor as well as their incidence angles,

spatial and temporal resolutions. The authors could perhaps add a little discussion on the impacts of mixing the different times

and observation geometries (spatial resolution, incidence angle, etc).

375

This is a very good idea, we added the equatorial crossing times to the table - for more there is unfortunately not enough

space. Unfortunately not much knowledge is currently available regarding the effect of mixing VOD observations, therefore

we added a paragraph to the discussion.

– Updated table with equatorial crossing times380

– Expanded discussion with a subsection (5.5) about VOD merging.
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8. Page 4, line 24: it is unclear how the different data sets can be accessed (web-page?). Please, specify which ones are

available and which ones are not (perhaps on Table 2 also).

Agreed, this is necessary information in a data set paper.385

We added following paragraph:

[4 : 24] While LPRM v6 is not publicly available, older versions are available trough GFSC: https://disc.gsfc.nasa.gov/

datasets/LPRM_AMSR2_D_SOILM3_001/summary

390

9. Page 9, Line 25. I understand AMSR-E is used as a reference for having the highest overlap. But perhaps AMSR-2 could

also be chosen for being a more advanced instrument with improved capabilities, or also a modeled VOD could potentially be

used. Please, include a discussion for this choice (or provide a reference) and why it was chosen over the alternatives.

AMSR2 has a very similar design and skills as AMSR-E but has only little overlap with the other data sets. We do not want395

to use modeled VOD as a reference as we want to stay as close to the observations as possible. Using modeled VOD may

introduce biases, e.g. related to uncertainties in the forcing data set.

We added a reference to CCI SM which uses AMSR-E as reference for the same reason.

400

10. Page 6, line 1. Please, indicate how to access the ancillary data used in the corresponding subsection (LAI and VCF).

We added the links to it (they already were in the acknowledgements and references).

11. Page 6, line 4. What do the authors expect from the comparison of VOD and LAI? A rationale of why they chose LAI

over other indices (e.g. NDVI, EVI) and whether they expect a higher correlation with any of the specific VOD products is405

needed

It serves two purposes. Mainly, the lack of ground truth makes the validation of VOD data difficult. At field studies with

different crop types, it has been shown that VOD is closely related to LAI (Sawada et al., 2016). LAI has been also used to assess

other VOD products from active sensors (Vreugdenhil et al., 2017). For the assessment of VOD, we prefer LAI in comparison410

to NDVI because NDVI saturates earlier at high biomass levels than LAI. However, we do not expect the correlation to be

very high as, as you mentioned earlier, LAI is a measure of leaf area while VOD is related to vegetation water content. As the

higher frequencies (Ku-band) are more sensitive to the vegetation canopy than the low frequencies (L-band), we expect higher

correlations between Ku- and X-band VOD with LAI than between L-band VOD and LAI.

415
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We expanded the motivation a bit to explain better why LAI was chosen.

12. Page 7, line 8: How is the VOD climatology from AMSR-E derived? Please provide details.

This paragraph is just a summary, the details are in the subsequent subsection. By climatology we mean that if a sensor420

observes a specific combination of earth surface properties, LPRM will derive a specific VOD value. However the use of the

term climatology is truly confusing in this context.

Alternatively we propose:

425

[7 : 8] Second, bias between the different sensors is corrected for by scaling them to VOD from AMSR-E C-, X-, and Ku-

band, respectively.

13. Page 7, line 26. I agree with the authors that negative VOD retrievals are physically impossible. However, they are most

probably linked to uncertainties/simplifications on the physical model used in the inversion, and their direct truncation may430

lead to erroneous trends for specific areas. One alternative could be to let the user truncate the values after temporally aver-

aging the data set according to the needs of their study. This is the procedure followed for instance in the SMOS-IC product

(Fernández-Moranet al., remote sensing, 2017). I would ask the authors to consider this option or at least, mention it in the

discussion.

435

We agree that your proposed method is the correct way to release a data set based on a single sensor, and we also thought

about doing it this way. But the trouble is that we average multiple sensors and redistribute only the averaged values. If

we average the negative values with positive values from other sensors, we are averaging two observations with very little

confidence in one of those. This leads to a lower-quality average than if we just discarded the negative value. We also considered

to keep negative values if no other sensor has a valid value at that date. But that would mean that the time series will be spliced440

with values that are both negative AND are the result of only one sensor and therefore are of a lot lower quality than the other

values in the time series. We might do something like that in a future version, but there are many open questions to it; it would

also require a large rework of the code.

14. Page 8, line 2. How different are the retrievals from the two C-band channels? Again the authors include a flag but this445

flag is not useful if it is not related to a quality indicator or any further recommendation is given.

We agree and calculated the temporal correlation between the C1 and C2 band, which are strongly correlated (Fig. 9)
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Addition to manuscript (inclusive figure which isin supplement):450

[8 : 3] As the two C-bands are highly correlated, the use of one or the other has a minor impact on the quality of the dataset

(Fig. 9).

15. Page 8, line 22. I infer from the text that there is a need to a new cdf-matching technique due to the presence of outliers455

in the VOD data set. Could this cdf-matching also improve the VOD data in Liu et al 2009, 2011? Could this cdf-matching im-

prove the soil moisture merging within ESA CCI? The authors could perhaps elaborate on this, to better motivate the approach.

Yes, this is a general purpose method that can be used in similar situations. The the code will be included in https://github.

com/TUW-GEO/pytesmo in the future. We are right now (literally) evaluating this method in the ESA CCI SM product.460

We will add a sentence to the manuscript mentioning the general usability of the method:

[8 : 22] We propose here improvements to this method to derive more robust scaling parameters that are not specific to VOD

data but rather should be generally applicable in similar situations.465

16. Page 10, line 11. Does this happen very often? Could this be one aspect to improve to increase coverage?

A fraction in the order of 1/106 to 1/108 of values are lost this way, so only very little temporal coverage increase is to be

gained here.470

Added:

[10 : 11] These values are deemed unreliable and are removed. However, this occurs very rarely, only a fraction of about

1/106 to 1/108 of values are lost in this way.475

17. Page 10, line 18. Have the authors tried with the median statistic? It is less sensitive to ouliers.

No, we have not but this is a good idea. As it will only make a difference if three or more sensors have a value at a certain

date, the expected change would be small. And since we already released the data as a requirement to submit a manuscript480

here, it likely would not make a difference big enough to warrant a new release of its own. As such we will evaluate this for

the new version.

[11:12] Alternatively, one could also take the median instead of the mean. This would likely be more robust to outliers but

would only make a difference if three or more concurrent values exist. As such the difference would likely be very small and
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thus this is not explored in detail.485

18. Figure 3. I do not think this Figure is necessary.

This Figure has been changed many times, we were never content with it. As also reviewer #1 finds it "actively confusing"

and it is redundant with the text, we agree and will happily get rid of it.490

19. Figure 4. What is the dominant vegetation in the chosen pixel? Perhaps the author could also include an example of time

series in which TMI is also used, for completeness.

It is in Austria, mostly farmland, taking a look at google maps it is about 20% forest, also the Danube flows through it. We495

would rather reduce the number of Figures as we already have a lot of them. We like the current location because it shows a

case where AMSR2 cannot directly be scaled to AMSR-E.

Updated first sentence of figure 4 caption:

Example X-band time series (15.125°E, 48.125°N in Austria, mostly farmland with about 20% forest cover) at (a) different500

processing steps and (b) violin plot showing the effect of CDF-matching on the distribution of VOD.

20. Page 12, line 3. The authors could also perhaps refer to the L-band VOD spatial patterns, which are consistent and cor-

relate well with canopy height (e.g. Konings et al., L-band vegetation optical depth and effective scattering albedo estimation

from SMAP, Remote Sensing of Environment, 2017).505

[13:5] Similarly to previous findings based on L-band (Konings and Gentine, 2017), this figure also shows that on average

VOD is highest in forests and lowest over bare ground.

21. Figure 6. It is hard to see the seasonal patterns. The authors could perhaps consider showing only the period 2002-2017510

(or even shorter)

One of the main purposes of this Figure is to illustrate the temporal and spatial extent of the different VODCA products.

Therefore we show the full temporal coverage.

515

22. Page 15, line 1. It is unclear how the authors measure the spatio-temporal coverage. Is Fig. 8 showing the fraction of

days each month as stated in the label? The final temporal resolution shown in the Figure and referenced in the text above is

unclear.
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We agree, the sentences describing the calculation were a bit convoluted. The calculation for each month and latitude is:520

"number of observations of all pixels of a latitude" / ("number of land pixels of a latiude" x "number of days in month").

We reworked the label to figure 8:

Hovmoeller diagrams showing for each latitude and month the fraction of days per month with observations. The number of

observations of a latitude and month are counted and then divided by the number of days per month and the number of land525

grid points at that latitude.

23. Page 15, line 14. What do the authors understand by a “CDF-matching failure”? could it be for one specific reason (e.g.

see comment #15 above), or several? please,be more specific.

530

CDF matching fails if not enough AMSR-E data is available to retrieve robust scaling parameters. The rules are explained in

detail in section 3.2.4, "Practical implementation and exceptions". We agree that not having a reference here to that subsection

makes it hard for a reader to retrieve that information.

We will summarize the reason shortly together with a reference to section "Practical implementation and exceptions" in page535

15, line 14.

24. Page 19, line 29. This advice is helpful but it could really be useful and applicable if converted into a criteria that con-

tributes to a quality flag. There is clearly a need for a quality flag.

540

This is already included as a quality flag (bit-flag: 11), but we did not mention it in the text. Currently it is only described

in the methods, page 10, line 6-7 ("The published data sets contain a flag indicating the matching method, allowing the user to

remove the AMSR2 observations matched directly to AMSR-E if desired."

To make it clearer, we will mention the existence of this flag again on page 19, line 29. Also, as already previously mentioned,545

we will add a section to the appendix listing all flags, their meaning and their effects on the data quality.

25. Fig. 12. I would suggest to include subfigures f and g into a separate Figure, for clarity.

We concur, separating them by time span makes it clearer. We separated them.550

26. Page 21, line 17. Only Ku band spans three decades, this sentence is a bit misleading.
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True, this is not precise. How about:

555

[21 : 17] We present to the scientific community VODCA, three long-term VOD data sets spanning up to three decades that

can be used to study dynamics in the biosphere.

27. Page 21, line 21. From section 4.2., it is unclear that the resulting VOD data sets provide observations “on a daily basis”.

560

Agreed, better to describe actual temporal coverage and not base sampling frequency. How about:

[21 : 21] ... with the added benefit of having observations unaffected by cloud cover, allowing generally for more than 40%

of days having a valid VOD value.

565

28. Page 21, line 24. The authors could perhaps consider mentioning at some point in the manuscript that their work is

particularly relevant in the context of the prospect launch of the multi-frequency candidate mission Copernicus Microwave

Imaging Radiometer (CIMR, www.cimr.eu)

While we agree with the sentiment, this would only fit in if we would have already talked about this extensively in a previous570

section. Each other sentence is summarizing a (sub)section, so even if we would mention CIMR before it would still not fit in

the conclusions.
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The main changes to the manuscript are as follows:

– Reworked large parts of abstract and introduction to make them more concise.

– Shortened the introduction to remove redundant text that repeated the abstract.

– Used Liu’s VOD (section 2.2.1) to assess the quality of VODCA (section 4.4.1) and to see whether the studies performed

with LiuVOD would have gotten similar results as with VODCA (section 4.4.2 and added LiuVOD to hovmoeller plots).5

– Added a stability analysis to check if temporal dynamics of VODCA stay constant over time (section 4.1)

– Added a discussion about the absence of L-band (section 5.4).

– Added short brief discussion about merging different observation times, spatial footprints, incidence angles (section 5.5)

– Updated the look of many figures to improve their readability and make the look nicer.

– Added summary of quality flags and description of variables in data to supplement.10

Other than that there are numerous minor changes, mostly in response to the reviewers comments.
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Abstract. Since the late 1970s, spaceborne microwave sensors
:::::::::
radiometers

:
have been providing measurements of radiation

emitted by the Earth’s surface. From these measurements it is possible to derive vegetation optical depth (VOD), a model-

based indicator related to vegetation densityand its relative water content
:::
the

::::::
density,

::::::::
biomass,

:::
and

:::::
water

::::::
content

::
of
:::::::::
vegetation.

Because of its high temporal resolution and long availability, VOD can be used to monitor short- to long-term changes in

vegetation. However, studying long-term VOD dynamics is generally hampered by the relatively short time span covered by5

the individual microwave sensors. This can potentially be overcome by merging multiple VOD products into a single climate

data record. But
:::::::
However, combining multiple sensors into a single product is challenging as systematic differences between

input products , e.g.
:::
like

:
biases, different temporal and spatial resolutions and coverage , need to be overcome.

Here, we present a new series of long-term VOD products, which combine multiple VOD data sets derived from several
:::
the10

::::
VOD

:::::::
Climate

:::::::
Archive

::::::::::
(VODCA).

:::::::
VODCA

:::::::::
combines

:::::
VOD

:::::::
retrievals

::::
that

::::
have

:::::
been

::::::
derived

:::::
from

:::::::
multiple

:
sensors (SSM/I,

TMI, AMSR-E, Windsat , and AMSR-2) using the Land Parameter Retrieval Model. We produce separate VOD products for

microwave observations in different spectral bands, namely Ku-band (period 1987-2017), X-band (1997-2018) , and C-band

(2002-2018). In this way, our multi-band VOD products preserve the unique characteristics of each frequency with respect

to the structural elements of the canopy. Our approach to merge the single-sensor VOD products is similar to the one of the15

ESA CCI Soil Moisture products (Liu et al., 2012; Dorigo et al., 2017)
:::::::
merging

::::::::
approach

:::::
builds

:::
on

::
an

:::::::
existing

::::::::
approach

::::
that

:
is
:::::
used

::
to

::::::
merge

::::::
satellite

::::::::
products

::
of

:::::::
surface

:::
soil

::::::::
moisture: First, the data sets are co-calibrated via cumulative distribution

function matching using AMSR-E as scaling reference. We
::
To

:::
do

:::
so,

:::
we apply a new matching technique that scales outliers

more robustly than ordinary piece-wise linear interpolation. Second, we aggregate the data sets by taking the arithmetic mean

between temporally overlapping observations of the scaled data, generating a VOD Climate Archive (VODCA).20

The characteristics of VODCA are assessed for self-consistency and against other products: spatio-temporal
:
.
:::::
Using

:::
an

::::::::::::
autocorrelation

::::::::
analysis,

::
we

:::::
show

:::
that

:::
the

:::::::
merging

::
of
:::
the

::::::::
multiple

:::
data

::::
sets

::::::::::
successfully

:::::::
reduces

::
the

:::::::
random

::::
error

:::::::::
compared

::
to

::
the

:::::
input

::::
data

::::
sets.

:::::::::::::
Spatio-temporal

:
patterns and anomalies of the merged products show consistency between frequencies and

both with observations of
::::
with Leaf Area Index derived

::::::::::
observations

:
from the MODIS instrument as well as

::::
with Vegetation25

1



Continuous Fields from
:::
the AVHRR instruments. Trend analysis

::::::::
Long-term

::::::
trends

::
in

:::::::
Ku-Band

::::::::
VODCA shows that since 1987

there has been a decline in VOD in the tropics and in large parts parts of east-central and north Asiaalong with a strong increase

:
,
::::
while

::
a
:::::::::
substantial

:::::::
increase

::
is

::::::::
observed in India, large parts of Australia, south Africa, southeastern China and central north

America. Using an autocorrelation analysis, we show that the merging of the multiple data sets successfully reduces the random

error compared to the input data sets. In summary, VODCA shows vast potential for monitoring spatio-temporal ecosystem5

behaviour complementary to
:::::::::::::
spatial-temporal

:::::::::
ecosystem

:::::::
changes

::
as

:
it
::

is
::::::::
sensitive

::
to

:::::::::
vegetation

:::::
water

::::::
content

::::
and

:::::::::
unaffected

::
by

:::::
cloud

:::::
cover

::
or

::::
high

:::
sun

::::::
zenith

::::::
angles.

:::
As

::::
such

::
it

:::::::::::
complements existing long-term vegetation products from optical remote

sensing
:::::
optical

:::::::
indices

::
of

::::::::
greenness

::::
and

:::
leaf

::::
area.

The VODCA products (Moesinger et al., 2019) are open access and available under Attribution 4.0 International at https:10

//doi.org/10.5281/zenodo.2575599

Copyright statement. COPYRIGHSTATEMENTTEXT

1 Introduction

Vegetation attenuates microwave radiation that is emitted or reflected by the Earth surface. The degree of attenuation can be

derived from
::::::
passive

::::
and

:::::
active

:
microwave satellite observations and is commonly referred to as Vegetation optical depth15

::::::
Optical

:::::
Depth

:
(VOD) (Jackson and Schmugge, 1991)

:::::::::::::::::::::::::::::::::::::::::::::
(Jackson and Schmugge, 1991; Vreugdenhil et al., 2016). The amount of

attenuation depends on various factors, e.g. the densityand type ,
::::
type

:::
and

:::::
water

:::::::
content of vegetation, and the wavelength of

observation
::
the

::::::
sensor (Jackson and Schmugge, 1991; Owe et al., 2008). Short wavelengths experience a higher attenuation by

vegetation (and hence relate to higher VOD values) than longer ones (Liu et al., 2009; Owe et al., 2008)
:::::::::::::::::::::::::::::::::::::::::
(Liu et al., 2009; Owe et al., 2008; Kerr et al., 2018)

. As a consequence, VOD estimates from long wavelengths contain more information on
::
are

::::::::
generally

:::::
more

:::::::
sensitive

::
to deeper20

vegetation layers (e.g. stems) than
::::
stem

::::::::
biomass)

:::::
while

:
VOD estimates from short wavelengths (Chaparro et al., 2018)

:::
are

::::
more

::::::::
sensitive

::
to

::::
leaf

:::::::
moisture

:::::::
content

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chaparro et al., 2018; Tian et al., 2018; Fan et al., 2018; Konings et al., 2019). VOD

increases with the Vegetation Water Content (VWC) (Jackson and Schmugge, 1991) and therefore by extension is related to

the Above-Ground dry Biomass (AGB) (Liu et al., 2015) and its Relative Water Content (RWC) (Momen et al., 2017).

25

Satellite-derived VOD has a wide range of potential applications, including biomass monitoring (Liu et al., 2015; Brandt

et al., 2018b), drought monitoring (Liu et al., 2018), phenology analyzes (Jones et al., 2011) and fire risk management (Fan et al., 2018)

:::::::
analyses

::::::::::::::::
(Jones et al., 2011)

:::
and

:::::::::
estimating

:::
the

:::::::::
likelihood

::
of

:::::::
wildfire

::::::::::
occurrence

:::::::::::::::::::::::::::::::::::
(Fan et al., 2018; Forkel et al., 2017, 2019)

. VOD also correlates with various optical remote sensing indicators of plant productivity, e.g., Gross Primary Production

(GPP) (Teubner et al., 2018), Leaf Area Index (LAI) (Vreugdenhil et al., 2017),
::::::::
vegetation

::::::::
greenness

::::
like Normalized Differ-30

ence Vegetation Index (NDVI), Enhanced Vegetation Index, and Normalized Difference Water Index (Grant et al., 2016).
:
,
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:::
and

::::
Leaf

::::
Area

::::::
Index

:::::
(LAI)

:::::::::::::::::::::
(Vreugdenhil et al., 2017)

:::
and

::::::
hence

:::
also

::::::
relates

::
to

:::::
plant

::::::::::
productivity

:::::::::::::::::::::::
(Teubner et al., 2018, 2019)

:
. VOD has some distinct advantages over optical vegetation indexes

::
for

:::::::::
vegetation

:::::::::
monitoring, such as a slower saturation

and the resulting higher sensitivity to high biomass areas such as rain-forests (Liu et al., 2015) ,
::::::::::::::
(Liu et al., 2015) or the ability

to be retrieved despite of cloud cover (Liu et al., 2011a)
:::::
which

:::
are

::::
both

::::::::::::
advantageous

:::
for

:::::::::
monitoring

:::::::
tropical

:::::
forest

:::::::
regions

:::::::::::::::::::
(van Marle et al., 2016).5

VOD products have been derived from multiple spaceborne
::::::::::
space-borne

:
microwave sensors that have been in orbit since

the late 1970s (Owe et al., 2008). These sensors have varying lifetimes and characteristics, resulting
:
, e.g.

:
, from differences

in microwave frequency used, measurement incidence angles, orbit characteristics, radiometric quality
:
, and spatial footprints.

This complicates their joint use in studying long-term VOD dynamics. To overcome this issue, Liu et al. (2011a) proposed a10

long-term (1987-2008) harmonised
:::::::::
harmonized

:
multi-sensor VOD data set by merging VOD products derived from the Spe-

cial Sensor Microwave/Imager (SSM/I), the Microwave Imager onboard the Tropical Rainfall Measuring Mission (TMI), and

the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) through the Land Parameter Retrieval

Method (LPRM; Owe et al. (2008)
:
). Their methodology was inherited from the methodology used to produce the first long-

term satellite-based climate data record of soil moisture within the the Climate Change Initiative of the European Space Agency15

(ESA CCI Soil moisture; (Dorigo et al., 2017, 2012; Liu et al., 2011c, 2012; Gruber et al., 2019)). In their methodology, all

available observations were harmonised
::::::::::
harmonized with respect to C-Band (6.9 GHz) VOD observations from AMSR-E,

which was assumed to provide the highest quality observations (Liu et al., 2012). Only in periods where AMSR-E C-band

observations were not available, other products were used instead. This approach ignores the fact that in a statistical sense a

high quality
::::::::::
high-quality product can be fused with a low quality

::::::::::
low-quality product to create a product with a higher quality20

than either of the original products. This was systematically demonstrated for the merging of two level 2 soil moisture products

(Gruber et al., 2017). Since the release of the multi-satellite VOD product by Liu et al. (2011a), significant progress has been

made towards a better understanding of the VOD signal, and it .
::
It was shown that also the individual bands carry valuable in-

formation for different applications (Teubner et al., 2018; Chaparro et al., 2018), which prompts the generation of
:::::::::::
demonstrates

::
the

:::::
need

:::
for frequency-specific VOD data sets. In addition, new sensors have been

::::
were launched, allowing the observational25

VOD records to be extended to the running present.

In this paper, we present a new series of long-term, harmonised
::::::::::
harmonized VOD climate data records,

:::::
called

:::
the

:::::
VOD

::::::
Climate

:::::::
Archive

::::::::::
(VODCA),

:::::
which

:::
are

:
derived from multiple single-sensor level 2 products. Our data sets use

:::::::
VODCA

::::
uses

a similar core methodology as in Liu et al. (2011a) and in ESA CCI Soil Moisture but significantly progresses the current30

state-of-the-art, based on the
:::::::::::::::::
(Gruber et al., 2019)

:::
but

::::::::::
incorporates

:::
the

:::::
latest insights on VOD and climate data record produc-

tion gathered during the last few years, and by introducing
::::::::
introduces

:
recent satellite missions. We combine VOD observations

from SSM/I, TMI, AMSR-E, WindSat, AMSR2 into global, harmonised long-term VOD products at a 0.25° spatial sampling

and covering the period 1987-2018. Similar to the approach of Liu et al. (2011a), we use Cumulative Distribtion Function

(CDF) matching techniques to scale all VOD data sets to the distribution of AMSR-E. However, since VOD is a function of35
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the frequency and, consequently, different canopy information is stored in different bands, we do not amalgamate all bands but

instead produce three individual products: one for Ku-band, one for X-band, and one for C-band. Even though VOD products

also exist in L-band derived from the sensors SMAP and SMOS, preliminary analysis concluded that their short overlapping

time span and low temporal correlation between them do not warrant a product for it. Also, we discuss the susceptibleness of

piece-wise linear CDF-matching to extreme values and as solution propose a new hybrid CDF-matching technique that scales5

very high and very low values more robustly. Besides, in contrast to Liu et al. (2011a) we merge the scaled observations by

taking the arithmetic mean whenever more than one observation is available. From a statistical perspective this should lead to

data sets with reduced random error compared to the input products.First, we describe the input VOD data sets, followed by

an overview of the fusion methodology. We then describe the main characteristics of the merged data sets in terms of spatial

and temporal coverage and patterns, and their random error characteristics. The
::
We

::::::
check

:::
the spatio-temporal characteristics10

are checked for plausibility by comparing them to those of related satellited-derived biogeophysical products , e.g. Vegetation

Continuous Fields (VCF) and LAI. We
:::
and

:
complement the data set assessment by a trend analysis. The assessment will be

concluded with the
::
We

::::::::
conclude

:::
the

:::::
paper

::::
with

:
a
:
discussion on current limitations and ways forward.

2 Input data

2.1 VOD data sets15

2.1.1 The land-parameter retrieval model (LPRM)

LPRM
::
v6

:
(van der Schalie et al., 2017; Owe et al., 2008; Meesters et al., 2005)

::
is

:::::
based

::
on

::
a
::::::::
radiative

::::::
transfer

::::::
model

::::
first

:::::::
proposed

:::
by

::::::::::::::
Mo et al. (1982)

:::
and

::::::::::::
simultaneously retrieves soil moisture and VOD at the same time from vertical and horizontal

polarized microwave dataand is based on a radiative transfer model (Mo et al., 1982). The model assumes that the earth emits

microwave radiation depending on its surface temperature Ts and emissivity e which is a function of its dielectric constant20

k, which in turn is dependent on the surface soil moisture. Part of this radiation is then absorbed or scattered by water in the

vegetation depending on its transmissivity Γ and single scattering albedo w while the vegetation itself also emits radiation

depending on its temperature Tv . The resulting brightness temperature Tb measured at the sensor can then be modeled as

Tbp = TsepΓ + (1−Γ)Tv(1−w) + (1− ep)(1−w)Tv(1−Γ)Γ (1)

where the subscript p denotes either a vertical or horizontal polarization. Further, VOD (τ ) is related to Γ and the incidence25

angle u by:

Γ = exp

(
−τ

cos(u)

)
(2)

Since observations from the sensors used in this study are available in both horizontal and vertical polarization, eq. 1 is used

to open a system of linear equations. While the the absolute measured TbH is lower than TbV , it is more sensitive to changes

in soil moisture while TbV is more sensitive to vegetation and surface soil temperature. This relationship in combination with30
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the application of a separate retrieval algorithm to determine the temperature from 37-GHz vertical polarization measurements

(Holmes et al., 2009) allows to solve the system analytically as described in Meesters et al. (2005).

The actual temperatures are difficult to estimate during daytime due to surface heating, while during nighttime, soil and

vegetation are in a near
:::::
nearly

:::
in thermal equilibrium. This implies that nighttime retrievals are expected to have a lower5

temperature-related error than daytime retrievals (Owe et al., 2008). Therefore, to minimize error sources, only nighttime

retrievals are used in VODCA.
:::::
While

::::::
LPRM

:::
v6

::
is

:::
not

:::::::
publicly

::::::::
available,

:::::
older

::::::::
versions

:::
are

:::::::
available

::::::
trough

:::::::
GFSC: https:

//disc.gsfc.nasa.gov/datasets/LPRM_AMSR2_D_SOILM3_001/summary

2.1.2 Sensor specifications

The used VOD data sets were derived from brightness temperature measurements of various spaceborne
:::::::::
space-borne

:
sensors10

active since 1987 (Fig. 1).

The Advanced Microwave Scanning Radiometer (AMSR-E) onboard AQUA
:::::
Aqua retrieved microwave observations from

2002 to 2011 in six bands, of which we only consider the C-, X-, and Ku-band. Their spatial footprint is 75× 43 km, 51× 29

km and 27×16 km respectively. AQUA is on an sun-synchronous circular orbit, passing the equator at 1:30 PM ascending and15

1:30 AM descending mode (Knowles et al., 2006; Kawanishi et al., 2003).

The Advanced Microwave Scanning Radiometer 2 (AMSR2) is an improved version of AMSR-E onboard GCOM-W1 con-

tinuing AMSR-E’s measurements since 2012 with similar bands, orbit and overpass times but with a slightly higher spatial

resolution: 62× 35 km, 42× 24 km and 22× 14 km, for C-, X-, and Ku-band respectively. In addition, AMSR2 also contains20

a second C-band (7.3 GHz) that can be used to cover areas where RFI
::::::::::::::
Radio-Frequency

::::::::::
Interference

:::::
(RFI)

:
is present in the

primary C-band channel (6.9 GHz) (Meier et al., 2018). During preliminary analysis, we discovered that the AMSR2 Ku-band

VOD retrievals have an apparent break in late 2017. Since then, the values observed are globally systematically lower than

before, indicating possibly a calibration error in Ku-band brightness temperatures. While the exact reasons are unknown to us,

until the matter is resolved we do not include Ku-band data after 2017-08-01 into VODCA. This shortens the Ku-band VOD25

product by 16 months. VOD retrievals from X- and C-band AMSR2 seem unaffected and are used until the end of 2018.

The Special Sensor Microwave Imager (SSM/I) is onboard a series of DMSP satellites. We use the VOD data retrieved from

F-8, F-11 and F-13. From the 7 available bands of SSM/I we use only VODfrom Ku-band which has a resolution of 69× 43

km. The equatorial crossing time varies between the DMSP satellites, but all are on sun-synchronous orbits (Wentz, 1997).30

Among other sensors
:
,
:
the Tropical Rainfall Measuring Mission (TRMM) carried the TRMM Microwave Imager (TMI).

TRMM is the only satellite used which has a non-near-polar orbit with an inclination of 35 degrees. Up to 2001 it had an

altitude of 350 km, which then got boosted to 400 km leading to a slight decrease in spatial resolution. TMI was active from

5
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1997 to 2015. Of the 9 channels we only use its X- and Ku-band, which has
::::
have

:
a spatial resolution of 63× 37 km / 72× 43

km and 30× 18 km / 35× 21 km pre/post boost, respectively (Kummerow et al., 1998).

WindSat onboard Coriolis was launched in 2003 on a sun-synchronous orbit providing radiometric measurements in five

bands, of which the C-, X- and Ku-band were used to derive VOD. The spatial resolution is 39× 71 km, 25× 38 km and5

16× 27 km. Due to some periods of non-operation, WindSat contains temporal data gaps (Gaiser et al., 2004). Unfortunately

we were unable to gain access to data past July 2012, even though WindSat is still operational.

01.01.1987 01.01.2019
88 89909192 93949596 97989900 01020304 05060708 09101112 13141516 1718

SSM/I

TMI

AMSR-E

WindSat

AMSR2

TMI

AMSR-E

WindSat

AMSR2

AMSR-E

WindSat

AMSR2
C-Band

X-Band

Ku-Band

Figure 1. Time periods of the sensors used for each band.

Table 1. The input VOD data sets used with their temporal coverage,
::::
local

::::::::
ascending

:::::::
equatorial

:::::::
crossing

::::
times

::::::
(AETC)

:
and used frequencies

[
:::
GHz] for each product.

Sensor Time period used
:::::
AECT C-Band X-Band Ku-Band Reference

AMSR-E Jun 2002 - Oct 2011
::::
13:30

:
6.93 10.65 18.7 van der Schalie et al. (2017)

AMSR2 Jul 2012 - Jan 2019
::::
13:30

:
6.93 & 7.3 10.65 18.7 van der Schalie et al. (2017)

SSM/I F08 Jul 1987 - Dec 1991
::::
18:15

:
19.35 Owe et al. (2008)

SSM/I F11 Dec 1991 - May 1995
::::

17:00
:
-
::::
18:15

:
19.35 Owe et al. (2008)

SSM/I F13 May 1995 - Apr 2009
::::

17:45
:
-
::::
18:40

:
19.35 Owe et al. (2008)

TMI Dec 1997 - Apr 2015
:::::::::::
Asynchronous 10.65 19.35 Owe et al. (2008)

WindSat Feb 2003 - Jul 2012
::::
18:00

:
6.8 10.7 18.7 Owe et al. (2008)

2.2 Evaluation data

2.2.1
:::
Liu

::
et

:::
al.

::::
VOD
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:::
We

::::::::
compared

:::
the

:::::::
VODCA

:::::::
datasets

::::
with

:::
the

:::::::::
previously

::::::
created

:::::::::::
multi-sensor,

:::::::::
multi-band

:::::
VOD

::::::
dataset

::::::::::::::::::::
(Liu et al., 2011b, 2015)

:
,
:::::::
hereafter

::::::
called

::::::::
LiuVOD.

::::::::
LiuVOD

:::::
covers

::::
the

:::::
period

:::::::
January

:::::
1993

::
to

:::::::::
December

:::::
2012

:::
and

::
is
:::::
based

:::
on

:::::
VOD

::::::::
retrieved

:::
via

:::::
LPRM

:::::
from

::::::
SSM/I

:::::::::
(Ku-band),

::::
TMI

::::::::
(X-band),

::::
and

::::::::
AMSR-E

::::::::::
(C/X-Band)

:::::::::::
observations.

:::
The

::::::
values

:::
are

:::::
scaled

::
to

::::::::
AMSR-E

::::
and

:::::::
methods

:::
are

::
in

:::::
place

::
to

:::
fill

::::
gaps

::::
due

::
to

::::::
frozen

::::::
ground

::::
and

::
to

::::::
correct

:::
for

::::::::::
large-scale

::::
open

:::::
water

:::::::
bodies.

:::
We

::::::
expect

::::
that

:::
the

:::
data

::::
that

:::
are

:::::::
publicly

:::::::
available

:::::
were

::::::
subject

::
to

:::::
some

:::::::
temporal

:::::::::
smoothing

:::::
since

:::
the

:::
data

:::
are

::::::
mostly

::::::::
gap-free.

::::::::::::
Unfortunately,

:::
we5

::::
could

::::
find

:::
no

:::::::
mention

::
of

:::
this

::
in

:::::
either

::
of

:::
the

::::
two

::::::
papers

:::
and

::::
their

::::::::::::
supplementary

:::::::::::
information.

2.2.2 MODIS leaf area index

To vertify
:::::
verify

:
the plausibility of VODCA we compare it to MODIS leaf area index (LAI), MOD15A2H version 6 (Myneni

et al., 2015). LAI is the one-sided ratio of
:::
ratio

:::
of

::::::::
one-sided

:
leaf area to ground area and is estimated from the red and NIR

MODIS data
::::::::::::
solar-reflective

::::::
MODIS

::::::
bands using a look-up-table based approach with a back-up algorithm that uses empirical10

relationships between NDVI, LAI and fraction of photosynthetically active radiation (FPAR).
::::
Field

::::::
studies

::::
with

::::::::
different

::::
crop

::::
types

:::::::
showed

::::
that

:::::
VOD

::
is

::::::
closely

::::::
related

::
to
:::::

LAI
:::::::::::::::::
(Sawada et al., 2016)

:
,
:
a
::::::::::
relationship

::::
that

:::
has

:::::
been

::::::
already

:::::
used

::
to

::::::
assess

::::
VOD

::::::::
products

::::::
derived

:::::
from

:::::
active

::::::
sensors

:::::::::::::::::::::
(Vreugdenhil et al., 2017)

:
. The data is available globally since 2002 with an 8-day

temporal resolution, and is for comparison purposes spatially downsampled from its native resolution of 500 metres to a quarter

degree grid
:
.
:::
The

:::::::
original

::::
data

:::
are

:::::::
available

:::
on https://lpdaac.usgs.gov/data_access/data_pool .

:
15

2.2.3 AVHRR vegetation continuous fields

We us
:::
use the vegetation continuous fields (VCF) version 1 by Hansen and Song (2018); Song et al. (2018) which show

::::::
derived

::::
from

::::
data

::
of

:::::::::
Advanced

::::
Very

:::::
High

:::::::::
Resolution

::::::::::
Radiometer

::::::::
(AVHRR)

::::::::::
instruments

::::::::::::::::::::::::::::::::::::
(Hansen and Song, 2018; Song et al., 2018)

:
.
:::
The

:::::
VCF

::::::
product

::::::
shows the fractional cover of bare ground, short vegetation and tree canopy, where trees are defined as all

vegetation taller than 5 metres in height and short vegetation all shorter vegetation . They produced
:
is

:::::::
defined

::
as

:::::::::
vegetation20

::::::
smaller

::::
than

:
5
:::::::
metres.

:::::
VCFs

:::
are

:::::::
provided

:::
as yearly files from 1982 to 2016 indicating the fractional coverage during the local

annual peak of growing season. The VCF are derived from data of Advanced Very High Resolution Radiometer (AVHRR)

instruments
::::::
product

::
is distributed by the Land Long Term Data Record (LTDR) project.

::
at https://search.earthdata.nasa.gov

Given the relation of vegetation height (Lefsky et al., 2005) and VOD to biomass
::::
VOD

::::
with

:::::::::
vegetation

:::::
height

::::
and

:::::::
biomass25

:::::::::::::::::::::::::::::::
Giardina et al. (2018); Liu et al. (2015), it seems sensible to assume that VOD would be highest / medium / lowest in areas

with high tree canopy / short vegetation / bare ground coverage, respectively. We
::::::
increase

:::::
from

:::::
areas

::::
with

::::
bare

::::::
ground

::::
and

::::
short

:::::::::
vegetation

::
to

::::
areas

::::
with

::::
high

::::
tree

:::::
cover.

::::::
Hence,

:::
we use the VCF data for two purposes. First (sec. 4.1), we

:
to

:
calculate the

mean VCF from 2002 to 2016 and compare it to the mean of the VODCA products from 2002-2017 . Second (sec. 4.4.2)
::::
4.1).

::::::::::
Furthermore, we calculate the VCF trends from 1987 to 2016 and compare it to the

:::::
trends

::
in

:::
the merged Ku-band VOD of the30

same time period to spot differences in trends
:::
over

:::
the

:::::
same

:::::
period

::::
(sec.

:::::
4.4.2). Song et al. (2018) also calculated and distributed

VCF trends by first determining whether there is a significant trends
::::
trend with a Mann-Kendall test and then calculating the

slope with a Theil-Sen estimator. Both are non-parametric tests that are robust to outliers, but using different methods to mask

7
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for significance and estimate the slope can lead to significant slopes that are still very small. To alleviate the
::::
avoid

::::
this issue,

we too
:::
also

:
calculate the slope using a Theil-Sen estimator , but we

:::
and use the Theil-Sen estimator also to determine a 95%

confidence interval for the slope and remove any slopes where the zero-slope is within the confidence interval.

3 Methods

The
::
For

::::
each

::
of

:::
the

::::::::
VODCA

::::::::
products,

::
we

:::
use

:
almost exactly the same methodologyis used for the product of each .

::::::::::
Exceptions5

::
to

:::
this

::::::::
common

:::::::::::
methodology

:::
are

:::::::::
described

::
at

:::
the

:::
end

:::
of

:::
the

:::::::::
respective

:::::::::
subsection.

:::::
Each

:
product is computed without any

influence of the others, with exceptions being described at the end of the respective section. The main difference between

the three products is the time period spannedby each product, resulting from the varying availability of input data (Fig. 1).

The fusion process involves three main processing steps.
:
:
:
First, preprocessing involves masking for spurious observations

and spatial and temporal collocation of the data sets. Second, bias between the different sensors is corrected for
:::::::
removed

:
by10

scaling them to the VOD climatology of AMSR-E C-, X-, and Ku-band, respectively
::::
VOD. Ultimately, the collocated and

bias-corrected observations of all data sets are merged in time and space.

3.1 Preprocessing

Level 2 VOD data in swath geometry were first projected onto a common regular 0.25◦ × 0.25◦ latitude-longitude grid using

nearest neighbour resampling. The different sensors visit the same spot on the Earth surface at different times of the day. To15

facilitate further processing, all observations are temporally resampled to UTC midnight. This is done as in ESA CCI soil

moisture (Dorigo et al., 2017) by taking for every 0:00 UTC the closest observation
::
we

:::
do

:::
not

::::
take

:::
into

:::::::
account

:::
the

:::::
exact

::::
time

::
of

::::::::::
observation.

:::::::
Instead,

:::
we

:::::::
selected

:::
for

:::::
every

::::
UTC

::::::::
midnight

:::
the

::::::
closest

:::::::::
nighttime

::::
value

:
in a window of ±12 hours if any is

available
:::::
which

::
is

:::::::::
identically

::
as

::
in

:::
the

:::::
ESA

:::
CCI

::::
soil

:::::::
moisture

:::::::::
processor

:::::::::::::::::
(Dorigo et al., 2017).

:::::
Since

::
in

::::::::::
subsequent

:::::::::
processing

::::
steps

:::
the

:::::
values

:::
of

:::::::
different

::::::
sensors

::::
with

::::::::
different

:::::::::::
measurement

:::::
times

:::
will

:::
be

:::::::
merged,

:::
one

:::
can

::::::::
consider

:::
the

:::::::
resulting

::::::
values

::
as20

::::::
nightly

:::::::
averages.

Basic masking operations were applied to remove potentially spurious observations. Specifically we mask for radio frequency

interference (RFI)
::::
RFI, low land surface temperatures (LST), and VOD values ≤0 as follows:

– RFI: Artificial microwave emitters on the Earth’s surface distort the signal received by the satellite, causing the resulting25

VOD values at those locations to be unreliable. RFI is typically frequency-specific. RFI flags were already provided with

the level 2 VOD data and were based on de Nijs et al. (2015). Any observations affected by RFI are removed.

– LST: Due to the different dielectric properties of ice and water
:
, reliable retrievals can only be made if the ground is not

frozen. Therefore, we remove observations where the LST is below 0◦ C. Masking for LST was based on the temperature

retrievals of from Ka-band (Holmes et al., 2009), which is found on all the multi-channel instruments used in VODCA,30

and were provided with the level 2 VOD data.
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– Negative VOD values: VOD retrievals <0 are physically impossible and are therefore removed from the data sets. We

also remove VOD values of 0.0 (floating point zero). The reasoning is twofold: First, it is physically only possible to get

floating point zero VOD if there is virtually no vegetation, making it very unlikely for most parts of the globe. Second,

we observed that this case occurs surprisingly often , also in non-desert regions, and that these values never fitted well

with the other observations. This indicates that most VOD values of zero are artifacts that have to be removed.5

The above masking is applied independently to all sensors and bands. A special case is AMSR2, which has two channels in

C-band, i.e. at 6.9 and 7.3 GHz. If possible, the observations from the 6.9 GHz band are used, but if the observation in this

channel is masked, the 7.3 GHz observation is used instead (if unmasked) to fill gaps.
::::
This

::::
only

::::::
causes

:
a
:::::
minor

:::::::::
reduction

::
in

::::::
quality,

::
as

:::
the

::::
two

:::::::
C-bands

:::
are

:::::::
strongly

::::::::
correlated

::::::::::::::
(Supplementary

:::::
Figure

:::
1).

:
A flag indicating the channel ultimately used in

the merged data set for each observation is provided in the metadata.10

3.2 Cumulative distribution function (CDF) matching

We use a new implementation of the CDF-matching technique , based on a combination of piece-wise linear interpolation and

linear least squares regression. CDF-matching is used to correct for systematic differences between the VOD values of each

sensor, which may result , e.g. , from the individual sensor designs, incidence angles, spatial footprints and the slight differ-15

ences in the frequencies used. The goal of CDF-matching is to scale a source data set such that its empirical CDF becomes

similar to the empirical CDF of the reference data set. CDF-matching is applied on a per-pixel basis and has been successfully

used for similar tasks that require the correction of higher order differences between data sets (Liu et al., 2009, 2011a, 2012;

Dorigo et al., 2017).

20

3.2.1 Ordinary piece-wise linear CDF-matching

Piece-wise linear CDF-matching (Liu et al., 2009, 2011a; Dorigo et al., 2017) predicts for each [0, 5, 10, 20, 30, ... , 80, 90, 95,

100] percentile of the source data the same percentile of the reference data set. Values between the nth and nth+1 percentile

are then scaled using linear interpolation. While the scaling parameters are determined only from temporally overlapping ob-

servations, during prediction there can be values outside the training range. These values are scaled by extrapolating the first25

or last percentile interval. This method preserves the ranks of the source and computes rather fast. However, the first and last

percentiles are defined by the lowest and highest observations, respectively, in both source and reference time series. Hence, a

single outlier can greatly affect the parameters of these percentiles, making them unreliable.
:::
We

:::::::
propose

::::
here

::::::::::::
improvements

::
to

:::
this

:::::::
method

::
to

::::::
derive

:::::
more

:::::
robust

:::::::
scaling

:::::::::
parameters

::::
that

:::
are

::::
mot

:::::::
specific

::
to

:::::
VOD

::::
data

:::
but

::::::
rather

::::::
should

:::
be

::::::::
generally

::::::::
applicable

::
in

::::::
similar

:::::::::
situations.30
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3.2.2 Improvements

We improved the original method by fitting a linear model using the sorted observations smaller than the second percentile with

an intercept through the second percentile. This gives more reliable scaling parameters for low values since all the data between

the lowest and second-lowest percentiles are used instead of just the lowest value. In case a different number of observations

exists in the source and reference, the data with less observations is padded by linear interpolation during training. In a similar5

fashion, a model is fitted for observations above the penultimate percentile.

We further increase the robustness of the CDF-matching parameters by dynamically increasing the step size of the percentiles

if only few observations are available. The number of observations varies greatly from grid point to grid point and from sensor

to sensor. If too few observations exist between two subsequent matching-percentiles (a "bin"), the CDF-matching may overfit,

leading to unreliable parameters. To counteract this, we dynamically reduce the number of bins and increase the size of the10

bins based on the number of observations.

3.2.3 Stability of parameters

To evaluate whether the new matching technique is more robust to outliers than the original piecewise linear cdf
::::
CDF matching

method, we simulate the variances of the derived parameters of each bin for a varying number of training observations using

artificial values. The use of artificial values allows us to test the method without being influenced by the artifacts inherent to15

real data. To achieve this, we sample a set of source and reference values from a standard normal distribution, and then deter-

mine the resulting CDF-matching parameters. For each evenly spaced percentile bin, we determine the slope in radians. This is

repeated a few thousand times for various numbers of values (representing time series with a varying number of observations),

each time drawing new values. If a CDF-matching method is robust, the determined slopes should have low variance due to

the values always being drawn from the same distribution.20

We run this both with piece-wise linear CDF-matching and our new method. However, for this simulation we do not dynam-

ically decrease the number of bins, as we are solely interested in the performance of the linear regression scaling the first and

last percentile. Both methods are tested with the same randomly drawn data.

25

The resulting variances in the slope, for each percentile bin, for both methods, depend on the number of observations used

for the parameter determination. This is shown in Fig. 2. The results in the middle bins are exactly the same, as the same

methodology in used for these bins. However, in the case of linear piece-wise interpolation, the slope parameters of the first

and last bins have a much higher variance than the middle bins as they are affected by outliers. In contrast, the slopes determined

by the least-squares method have a much lower variance. In both cases we can also see that the more observations we have, the30

lower the variance of the slope parameter is, showcasing the reasoning behind reducing the number of bins dynamically if too

few observations are available.
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Figure 2. Variance of the derived slope, depending on the number of observations and the percentile bin for both piece-wise linear CDF-

matching
::::::::
techniques. The color is log normalized.

3.2.4 Practical implementation and exceptions

While there is no "true" reference to scale to, AMSR-E has almost global coverage and has a long temporal overlap with all

other sensors but AMSR2. Hence, the empirical CDFs of WindSat, TMI and SSM/I are directly scaled to the one of AMSR-E
:
,

::::::
similar

::
to

::::::::::::::::
Dorigo et al. (2015). To preserve any potential trends in both source and reference data, only dates when both have

a valid observation are used. If at a certain location less than 20 temporal overlapping observations exist, no reliable scaling5

parameters can be determined and the source time series is dropped.
:
A
:::
bin

::::
size

::
of

:::
20

:::
was

::::::
chosen

::
as

:::::::::::
compromise

:::::::
between

::::
data

:::::::
coverage

::::
and

::::
often

:::::
used

:::
bin

:::::
sizes.

::
A

:::
bin

::::
size

::
of

::
50

:::::::::::
observations

::
is

:::::
often

::::
used

::
as

::
a
:::
rule

:::
of

:::::
thumb

:::
for

:::::::::
univariate

:::::::::
regression

::
to

::
get

::::::
robust

::::::::
estimates

::::::::::::
(Green, 1991).

::::::::
However,

:::
our

:::::
main

::::
goal

:::
was

::::::
rather

::
to

::::::
prevent

::::
time

:::::
series

::::
with

::::
very

::::
few

::::::::::
observations

:::::
from

:::::::
learning

:::::::
spurious

::::::
scaling

:::::::::
parameters

::::
and

::
we

::::
also

:::
did

:::
not

:::::
want

::
to

::::
loose

:::
all

::::
time

:::::
series

::::
with

:::
less

::::
than

:::
50

::::::
values.

:::
As

::::
such

::
20

::::
was

::::::
chosen

::
as

:
a
:::::::::::
compromise.10

AMSR2 does not share any temporal overlap with AMSR-E and therefore cannot be directly scaled based on overlapping

observations. Instead, for X- and Ku-band, scaled observations of TMI can potentially be used to bridge this gap. This is done

according to the following logic(Fig. ??): If possible, AMSR2 is scaled to the rescaled TMI. Should there not be enough over-

lapping observations, the scaling parameters are determined from all observations of the first two years of AMSR2 and the last15

two years of AMSR-E. While this removes any potential trends in the first two years of the AMSR2 period, these trends are still

assumed to be smaller than the removed bias. Last, if there are also not enough AMSR2 or AMSR-E observations available in

those years, the whole AMSR2 time series is dropped. For C-band, which is not covered by TMI, the AMSR2 data are always

matched directly to AMSR-E following the approach above
::
by

::::
using

:::
the

::::
last

:::
and

::::
first

:::
two

:::::
years

::
of

::::
both

::::::
sensors. The published

11



data sets contain a flag indicating the matching method, allowing the user to remove the AMSR2 observations matched directly

to AMSR-E if desired.

Since the scaling parameters are determined using only a subset of all observations, during prediction there can be values

outside the training range. The regression is not forced to go through the origin, therefore if the predicted values can potentially5

be smaller than 0. These values are deemed unreliable and removed.
::
are

::::::::
removed.

::::::::
However,

::::
this

::::::
occurs

::::
very

::::::
rarely,

::::
only

::
a

::::::
fraction

::
of

:::::
about

::::::
1/106

::
to

:::::
1/108

::
of

::::::
values

:::
are

:::
lost

::::
this

::::
way.

Pseudo-code showing the CDF-matching logic of AMSR2

3.3 Merging10

For all bands, the CDF-matched time series of all individual sensors are merged into a single long continuous time series. For

a certain pixel at a certain time step, three possible scenarios can occur:

1. If on a certain date no sensor has an observation, a data gap will result in the final product;

2. If only one sensor has an observation, the CDF-matched value will be directly integrated in the final product;

3. If multiple sensors have an observation on a certain date, their arithmetic mean is taken.15

This means that the number of sensors contributing to each observation within a time series can vary greatly. For each

observation in the final product there is a flag indicating which sensors have contributed to it. Although more sophisticated

weighted merging methods based on least squares have been proposed to merge multiple satellite observations (Gruber et al.,

2017, 2019), estimating these weights, i.e. indicators of the relative quality of the individual data sets, is a non-trivial task. This

particularly applies to VOD, for which no appropriate independent reference data exist. However, in most cases, the arithmetic20

mean appears to be a robust approximation of optimal merging (Liu et al., 2012).

:::::::::::
Alternatively,

:::
one

:::::
could

::::
also

::::
take

:::
the

::::::
median

::::::
instead

::
of

:::
the

::::::
mean.

::::
This

:::::
would

:::::
likely

:::
be

::::
more

::::::
robust

::
to

::::::
outliers

:::
but

::::::
would

::::
only

::::
make

::
a
::::::::
difference

::
if

::::
three

:::
or

::::
more

:::::::::
concurrent

::::::
values

::::
exist

:::
and

:::
as

::::
such

:::
the

::::::::
difference

::::::
would

:::::
likely

::
be

::::
very

::::::
small.

4 Properties of the long-term VOD data sets

4.1 Spatial patterns and temporal dynamics25

Figure 3 shows an example of X-band VOD time series in Austria at different stages of merging procedure together with

MODIS LAI. The original VOD time series have visible systematic differences between each sensor. The CDF-matched VOD

time series have been scaled to AMSR-E and visually do not show systematic differences between sensors. The statistical

distributions of VOD from the sensors are similar after matching (Fig. 3 b). This example grid point is north of 38N and thus

outside the spatial coverage of TMI, therefore AMSR2 has been scaled to AMSR-E directly using non-temporally overlapping30
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observations. The merged VOD time series shows comparable seasonal dynamics like LAI.

Figure 3.
:::
Top:

:
Example X-band time series

::
for

::
a

:::
grid

:::
cell

::
in
::::::

Austria
:
(lon / lat: 15.125/

:::
°E, 48.125

:::
°N,

:::::
mostly

:::::::
farmland

::::
with

:::::
about

::::
20%

::::
forest) at different processing steps(a) and violin plot showing the effect of CDF-matching on its distribution (b). Time series of the original

VOD data of all available sensors for that band at that location are shown in the top panel, the CDF-matched series in the middle panel,

and the final merged VOD (VODCA) is shown together with MODIS LAI in the bottom panel. In the bottom panel VOD and LAI are both

normalized, VOD is downsampled by moving average to match the temporal 8-day resolution of LAI.
::::::
Bottom:

:::::
Violin

:::
plot

:::::::
showing

::
the

:::::
effect

:
of
::::::::::::

CDF-matching
::
on

:::
the

:::::::
statistical

:::::::::
distribution

::
of

::::
VOD.

:

The global spatial patterns of average VOD between June 2002 and June 2017 is shown for each band in Figure 4 (a-c).

This period was selected because all bands have global coverage in this time period. All bands show similar spatial patterns,

matching the ones of the VCF land covers (Fig. 4 (e), with high VOD in tropical and northern forests and lower VOD in5

grassland and desert regions. The same pattern is also visible in canopy height (Simard et al., 2011) and MODIS LAI (Fig. 4

(d), even though the LAI in the tropical forests is much higher than in the boreal forests, while VOD is similarly high in both

regions. Based on the principle that the penetration of microwaves increases with wavelength, the maximum VOD is highest at

13



shorter wavelengths (Ku-band) and smallest at longer wavelengths (C-band). This can also be seen in Figure 4 (f) which shows

the average VOD of each band for locations dominated by TC, SV or BG, respectively. This
:::
high

::::
tree

:::::
cover

:::::::::
(vegetation

::::::
height

:
>
::::
5m),

:::::
short

:::::::::
vegetation

::
(<

::::
5m)

::
or

::::
bare

:::::::
ground.

::::::::
Similarly

::
to

:::::::
previous

:::::::
findings

::::::
based

::
on

::::::
L-band

::::::::::::::::::::::::
(Konings and Gentine, 2017)

:
,

:::
this figure also shows that as expected, on average VOD is highest in forests and lowest over bare ground.

5

(a) C-band (b) X-band

(c) Ku-band (d) MODIS LAI

(e) Tree cover (TC), short vegetation
(SV) and bare ground (BG) coverage

(f) Mean VOD of each band depend-
ing on VCF class

Figure 4. Global spatial patterns of average multi-sensor VOD from each band (2002 to 2017), average MODIS LAI (2002 to 2017) and

average VCF (2002 - 2016
::::::::
2002-2016

:
and distribution of VOD for locations with

:::
high

:::
tree

:::::
cover

:
(TC

:
),
::::
short

::::::::
vegetation

:
(SV

:
) and

:::
bare

::::::
ground

:
(BG

:
) greater than 0.8. The error bars indicate the standard deviation within each group.

The temporal dynamics of VOD across different latitudes shows plausible seasonal patterns of vegetation
::::::::
phenology

:
(Fig.

5). In general, summer months have the highest VOD: in the Tropics and Subtropics due to increased precipitation during that

time, while in northern/southern regions due to the increased temperature and consequent vegetation growth and (leaf) biomass

gain. The VOD patterns strongly correlate with LAI, quantified by a Spearman coefficient of 0.67, 0.66 and 0.58 between LAI

and C-, X- and Ku-band respectively10

14



Figure 5. Hovmoeller diagrams showing the monthly mean VOD per latitude for each Band of VODCA,
:::::::

LiuVOD
:
and for LAI

The VOD time series do not show any visible artificial breaks, indicating that the biases have overall been successfully

removed from the individual sensors before merging. To make potential artificial breaks more visible, we investigated the

seasonal anomalies per latitude (Fig. 6). The anomalies , using the period from 2002 to 2017 as reference, are calculated by

collecting all the observations of a latitude, calculating the monthly mean, subtracting the multi-year monthly average and re-

moving any potential linear trends using ordinary least squares regression. Hence the anomalies should either represent natural5

variability or artifacts due to shifts in available sensors. In the latter case, one would expect global anomalies to be visible

either due to bias or differing spatial extent.

Most anomalies are limited in both space and timeand ,
:
their start or end does not coincide with a change in sensors ,

::
and

:
indi-

cating that they are due to natural causes. MODIS LAI shows similar anomalies as the VOD products, the Spearman correlation

coefficient is 0.29, 0.29 and 0.26 between LAI and C-, X- and Ku-band anomalies respectively.
::::::::
Anomalies

:::
in

:::::::
MODIS

::::
LAI10

::::
show

::::::
similar

:::::::
patterns

::::
like

::::::::
VODCA

:::::::::
anomalies,

:::::::
showing

::::
that

::::::
surface

::::::
events

::::::::
manifest

::
in

::::
both

::
in

::
a
::::::
similar

::::
way.

::::
The

::::::::
LiuVOD

::::::::
anomalies

:::
are

::::
very

:::::::
similar

::
to

:::
the

::::::::
VODCA

:::::::::
anomalies,

:::
the

:::::::
biggest

::::::::
difference

:::::
being

::::
that

:::
the

::::::
texture

::
is
::::

less
::::::
coarse

:::
due

:::
to

:::
the

:::::::
temporal

:::::::::
smoothing

:::::::
present.

::
To

::::::
further

::::::
assess

:::
the

:::::::
stability

::
of

::::::::
VODCA,

:::
the

::::::::::
correlation

::
of

:::::
VOD

::::
with

::::
LAI

:::
was

:::::::::
calculated

:::
for

::::::::
different

:::::::
blending

:::::::
periods15

::::::
similar

::
as

::
in

:::::::::::::::::
Dorigo et al. (2015)

::::::
(Figure

::
7).

::::
The

:::::::
blending

:::::::
periods

:::
are

::::::
chosen

:::
for

::::
each

::::
band

::::
such

::::
that

::::
each

::::::
period

::::::::::
corresponds

::
to

:
a
::::::::
different

::
set

:::
of

:::::
input

::::::
sensors

:::::::
(Figure

::
1)

::::
and

:::
that

:::::
each

:::::
period

::
is
:::::
long

::::::
enough

::
to

::::::::
calculate

:::::::
reliable

::::::::::
coefficients.

:::::
Both

:::
the

15



Figure 6.
:::::::::
Hovmoeller

:::::::
diagrams

::::::
showing

::::::::
anomalies

::
of

:::
the

::::::
monthly

:::::
means

:::
per

::::::
latitude

::
for

::::
each

::::
band

::
of

:::::::
VODCA,

:::::::
LiuVOD

:::
and

:::
for

:::
LAI

:::::::::
correlation

:::::::
between

:::
the

::::
raw

::::
time

:::::
series

::
as

::::
well

:::
as

:::
the

::::::::
anomalies

:::::::
indicate

::::
that

:::
the

::::::::
temporal

::::::::
dynamics

:::
are

:::::::::
consistent

::::
over

:::
the

:::::
whole

:::::
length

:::
of

::
the

:::::
time

:::::
series.

:

4.2 Spatio-temporal coverage

The temporal and spatial coverage of the merged VOD time series for each band is shown in Figure 8. The coverage of the

merged products is defined by the spatial and temporal coverage of sensors (Fig. 1). For any band in any time span with at least5

one sensor, most parts of the globe have for at least 40% of all days an observation, while in any time period with at least two

sensors about 70% of all days have a valid observation. TMI is the only sensor with a non-polar orbit of 35◦N/S, leading to

an increased coverage in that region in Ku- and X-band from 1997-2015. The latitude affects the coverage in multiple ways:

Northern regions are generally more often covered by the polar-orbiting satellites but on the other hand, frozen grounds and

snow cover inhibit the retrieval of VOD in Winter
::::::
winter. The low coverage band near 23◦N is the result of LPRM not converg-10

ing on a valid solution in very arid regions due to the extreme soil dielectric constants in these regions (de Jeu et al., 2014).

In some locations the merged VOD products have fewer observations than in the original products. This data loss can be

caused by a failure of the merging procedure. The matching can fail due to
:
,
::
in

:::::
detail

:::::::::
explained

::
in

::::::
section

:::::
3.2.4.

:::::::::
Matching

::::::
failures

:::
are

::::::
always

::
a
:::::
result

::
of

:
insufficient AMSR-E data and hence the data loss occurs in similar regions for all sensors of15

one band. The lack of AMSR-E data is in most cases due to either RFI or low temperatures in mountainous regions. As an

example Figure 9 shows, for all bands, where the CDF-matching failed for WindSat data. Ku-band is the least affected (Fig.
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Figure 7. Hovmoeller diagrams showing anomalies of the monthly means per latitude for each band of
::::::::
Correlation

:::::::
between VODCA and

for
:::::

MODIS
:
LAI,

:::
raw

::::
time

:::::
series

:::
and

::::::::
anomalies,

::
for

:::::::
different

:::::::
blending

::::::
periods.
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Figure 8. Hovmoeller diagrams showing
::
for

::::
each

::::::
latitude

::::
and

:::::
month

:
the fraction of in days each month per latitude that have an

observation
:::::
month

::::
with

::::::::::
observations. For this figure, the

:::
The

:
number of observations for each

:
of

::
a latitude and month are counted and

then divided by the number of land grid points and days per month
::

and
:::
the

::::::
number

::
of

:::
land

::::
grid

::::
points

::
at
:::
that

::::::
latitude.

9 (c)), where only about 2% of the grid points are lost, mostly in the Himalayas. In X-band the matching fails for about 5%

of the grid points, mostly in large parts of the Sahara (Fig. 9 (b)). C-band is most affected by data loss (10%), mostly in some

parts of the USA where additional RFI prevents accurate retrievals (Fig. 9 (a)) (Njoku et al., 2005).

4.3 Random error characteristics

To validate the performance of our merging approach we evaluate the change in autocorrelation as an indicator for precision.5

Merging overlapping observations from multiple sensors is supposed to result in data that has a higher precision than the data

of any of the individual sensors. But without a higher-quality external reference data set, assessing the change in precision is

non-trivial. However, we can assume that there is supposed to be a high degree of temporal autocorrelation between subsequent

observations because VOD is related to gradual changes in plant water content and biomass (Momen et al., 2017; Konings et al.,

2016). Therefore we calculated the difference between the first-order temporal autocorrelation before and after merging.10

The autocorrelation coefficient is strongly dependent on the temporal resolution. As seen in sec. 4.2, the temporal resolution

of VODCA increases if multiple sensors are available. Therefore directly comparing the autocorrelation coefficients between

the individual sensors and the merged products would lead to an increase in autocorrelation that is related to the temporal
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(a) C-band (b) X-band

(c) Ku-band

Figure 9. Data loss of during CDF-matching of different WindSat bands. CDF-matching failed for the red grid points and therefore the data

of WindSat at that location is dropped. Very similar looking maps exist for the other sensors in the supplement Fig. 4

resolution rather than to the precision. Therefore the temporal resolution is kept unchanged by using only observation dates

existing both in the pre-merge and post-merge data set.

The autocorrelation differences for X-band are shown in Figure 10. The other bands show similar results and are available

in the supplement Figs.
:::::::::::
supplementary

:::::::
Figures

:
1-3. The autocorrelation of the merged time series is on average higher than5

the autocorrelation of the input series, indicating an overall decrease in noise. However, sometimes the gain in autocorrelation

of one sensor mirrors the loss of the autocorrelation of the other, likely due to the former sensor being more noisy than the

latter, e.g. in Alaska or east Russia in X-band of AMSR-E vs. WindSat. This means that locally, sometimes a single sensor

has a higher precision than VODCA. But there are also regions where the merged VOD autocorrelation is higher than any of

the input time series, e.g in Europe or central north America. This is likely to occur when all sensors have a similar precision,10

meaning that none of them is dragging the precision of the others down.

A noteworthy case is TMI where the autocorrelation of the merged time series is almost always higher. This could mean that

the TMI data is very noisy and is dragging the overall quality of the merged data down. We investigated this possibility by

experimentally not including TMI in VODCA. This resulted in average in a lower gain in autocorrelation for the other data

sets, indicating that the TMI data is still positively contribute
::::::::::
contributing to the precision of the merged products by reducing15

the noise of the end product(result not shown).
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(a) AMSR-E (b) WindSat

(c) AMSR2 (d) TMI

Figure 10. First-order auto-correlation change due to merging of X-band data for each sensor.

4.4 Comparison of VOD
:::::::
VODCA with LAI

:
,
::::::::
LiuVOD and Vegetation Continuous Fields

4.4.1 Correlation between VOD and LAI

4.4.1
::::::::::
Correlation

:::::::
between

:::::
VOD

::::
and

::::
LAI

A direct validation of VODCA is not possible because of the lack of appropriate in situ measurements. Hence it is only possible

to assess dynamics in VOD with dynamics in related variables such as LAI or land cover. Globally, LAI and VOD
:::::::
VODCA5

time series and their seasonal anomalies are positively correlated over large areas (Fig.
:::::
Figure

:
11). For all bands, the highest

correlations with LAI can be found in grassland-dominated regions such as in African Savannahs, Australia and in parts of

South America. Correlations are usually lower in forested regions and even slightly negative in parts of tropical forests such as

in the Amazon. The negative correlations in tropical forests could be caused by drought periods where vegetation water content

and hence VOD should decline but LAI possibly increases (Myneni et al., 2007; Saleska et al., 2007), although a green-up of10

the Amazon under drought is highly debated (Samanta et al., 2010, 2012; Morton et al., 2014). However, this comparison of

VOD
:::::::
VODCA and LAI demonstrates that the merged VOD products reflect

::::::::
VODCA

::::::
reflects plausible seasonal and short-term

changes in vegetation and will likely provide additional information on vegetation dynamics on top of LAI and other related

optical biophysical vegetation products from optical remote sensing.

15

::
To

:::::
assess

::::::::::
differences

:::::::
between

:::
the

:::::::
temporal

::::::::
dynamics

::
of
::::::::
VODCA

:::
and

::::::::
LiuVOD,

:::
we

::::::::
compared

::::
both

::
to
:::::::
MODIS

:::::
LAI.

:::::::
Because

:::::::
LiuVOD

::
is

:::::::::
temporally

:::::::::
smoothed,

:::::::::
comparing

:::::
daily

::::::
values

::
is

::::::::::
inadequate.

::::::
Instead,

:::
we

::::
first

::::::::
resample

::::
both

:::::::
datasets

::
to
::::::::

monthly

:::::::
averages

:::
and

::::::::
calculate

:::
the

:::::::::
Spearman

:::::::::
correlation

::
to
::::

the
:::
also

::::::::
monthly

:::::::
averaged

::::::::
MODIS

::::
LAI,

::::
only

:::::
using

:::::
dates

:::::::
existing

::
in

:::
all

:::::::
datasets.

:::
The

:::::::::::::
downsampling

::::
leads

::
to

:::::::
slightly

:::::
higher

:::::::::
correlation

::::::::::
coefficients

::::::
(Figure

::::
12)

:::
than

:::::
using

:::
the

:::::
daily

:::::
values

:::::::
(Figure

:::
11)

:::
due

::
to

:::::::::
decreased

:::::
noise,

:::::
while

:::
the

::::::
spatial

:::::::
patterns

::::
stay

:::
the

:::::
same.

::::
The

::::::
highest

:::::::::
correlation

::::
has

:::::::
VODCA

:::::::
X-band,

:::::
with

:
a
::::::
global20
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::::::
average

::
of

:::::
0.42,

::::::::
followed

::
by

::::::::
VODCA

::::
Ku-

:::
and

:::::::
C-band

::::
with

::::
0.39

::::
and

::::
0.37

::::::::::
respectively.

:::::::
Lowest

::
in

:::::::
average

::
is

::::::::
LiuVOD

::::
with

::::
0.33.

::
It

:::::
could

::
be

::::
that

:::
the

:::::
lower

:::::::::
correlation

::
is
::
a
:::::
result

::
of

:::::
being

::
a

:::
mix

:::
of

:::::::
multiple

:::::
bands

::
or

:::::::
because

:::
the

::::::::
VODCA

:::::::
products

::::
use

::::
more

:::::
input

:::::::
datasets,

::::::::
resulting

::
in

:::::
more

:::::::
accurate

::::::
values.

:::::
Either

:::::
way,

:::
this

::::::::
indicates

:::
that

:::
the

::::::::
VODCA

::::::::
products

::::::
capture

::::::::
temporal

::::::::
dynamics

:::::
better.

:

(a) C-band absolute (b) C-band anomalies

(c) X-band absolute (d) X-band anomalies

(e) Ku-band absolute (f) Ku-band anomalies

Figure 11.
:::::::
Spearman

:::::::::
correlation

::::::::
coefficient

::::::
between

:::::::
VODCA

::::
VOD

:::
and

:::::::
MODIS

:::
LAI

:::
for

:::
each

:::::
band.

:::
The

:::
left

::::::
column

:::::
shows

::
the

:::::::::
correlation

::
for

:::
the

::::::
absolute

:::::
signal,

:::
the

::::
right

::::::
column

::
for

:::
the

::::::::
anomalies

::::
from

::
the

::::::::
long-term

::::
VOD

::::::::::
climatology.

4.4.2 Trend—analysis of VOD, LAI and Vegetation Continuous Fields5

4.4.2
:::::::::::::
Trend-analysis

::
of

::::::::
VODCA,

::::::::
LiuVOD,

::::
LAI

::::
and

::::::::::
Vegetation

::::::::::
Continuous

::::::
Fields

To evaluate the relationship between C-, X-, Ku-band VOD
::::::::
VODCA,

:::::::
LiuVOD, MODIS LAI and VCF changes and to gain a

first insight into the long-term changes in VOD we assess linear trends in the data sets. Yearly averages are used to determine

the trends and their confidence intervals via the Theil–Sen estimator. Trends whose upper and lower confidence interval do not

have the same sign or either of them is zero are regarded as non-significant and are not displayed . Fig. 11
::
in

::::::
Figures

:::
13,

::
15

::::
and10

::
14

:
.
::::::
Figures

:::
13 (a-c) show the C-, X- and Ku-band

:::::::
VODCA trends from 2002-06-19 to 2017-06-19 during which all bands have

global coverage. The trends are visually very similar in all bands, confirmed by the spatial Spearman correlation coefficients
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(a) LiuVOD (b) VODCA-C

(c) VODCA-X (d) VODCA-Ku

Figure 12. Spearman correlation coefficient between merged VOD
:::::::::
Correlation

::
of

::::::
monthly

:::::::
LiuVOD and

::
the

:::::::
VODCA

:::::::
products

:::
with

:
MODIS

LAIfor each band. In
::
For

:::
this

:::::::
analysis,

:
the left column

:::
data

:
are the coefficients between the raw values

:::
first

::::::::
resampled

::
to

:::::::
monthly

::::::
averages,

in the right between
:::
then

::::
only the anomalies

:::::
months

:::::
where

::
all

::::
four

:::
data

:::
sets

::::
have

:::::
values

:::
are

::::
used.

of 0.88 between the C- and X-band trends, 0.89 between C- and Ku-band and 0.91 between X- and Ku-band, calculated using

only locations where both bands have a significant trend. This further reinforces that all bands react very similarly to vegetation

changes. The spatial overlap of trends is shown in Fig. 11
:::::
Figure

::
13

:
(d), where each location is classified based on the sum of

positive and the sum of negative trends. Locations with no significant trend in any band are not displayed. The three classes

with contradicting trends (1|1, 2|1, 1|2) are rare as together they make up only 4.2% of the displayed points. Conversely, 48% of5

the land points are covered by the four classes with at least two agreeing trend directions without any contradicting trend (2|0,

3|0, 0|2, 0|3). The agreement in trends between frequencies indicates that the longer Ku-band series can be used as indicator of

the shorter X- and C-band series in trend analyses. Further, the LAI trends of the same time period (Fig. ??
::
13 (e)) match the

VOD trends very well overall, even though in detail the strength and location of the trends vary.

10

:::
The

:::::
trends

:::
of

:::::::
Ku-band

:::::::
VODCA

::::
and

:::::::
LiuVOD

::::
were

::::::::::
determined

::::::
(Figure

:::
14)

::
to

:::::
asses

:::::::
whether

::::::
studies

:::
that

::::
have

:::::
been

::::::::
analyzing

::::
VOD

::::::
trends

::::
using

::::::::
LiuVOD

:::::
would

:::
get

:::::::
different

::::::
results

:
if
::::
they

:::::
were

:::::::
repeated

:::::
using

:::::::
VODCA

:::::::
Ku-band

:::::::
instead.

:::::::
Ku-band

::::::::
VODCA

:
is
::::
used

:::::::
because

::
it
:::
has

:::
the

::::::
longest

:::::::
overlap

::::
with

:::::::
LiuVOD

::::::
(1993

::
to

:::::
2012).

::
On

::
a
:::::
global

:::::
scale,

:::
we

:::
see

:::
the

::::::
almost

:::::
exact

:::::
same

:::::::
patterns

::
in

::::
both

:::::
VOD

:::::
series,

::::::::
therefore

::::::
studies

:::::::::
performed

::
at

::::
that

::::
scale

::::::
would

::
get

:::::::
similar

:::::
results

:::
for

::::
both

::::
data

::::
sets.

::::::::
However,

:::
on

:
a
::::
local

:::::
scale

:::
the

:::::::
patterns

:::::
differ

::::::::::
simethimes;

:::
E.g.

:::
in

::::
most

::
of

::::::
Turkey

::::::::
Ku-band15

:::::::
VODCA

::::::
shows

::
an

::::::::
increase,

:::::
while

:::::::
LiuVOD

::::::
shows

:
a
::::::::
decrease

::
in

:::::
VOD.

:::
As

::::
such

:::::::
regional

:::::::
studies

:::::
might

:::
get

:::::::::::
case-by-case

::::
very

:::::::
different

::::::
results

::::::::
depending

:::
on

:::::
which

::::::
dataset

::
is
:::::
used.
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(a) C-band (b) X-band

(c) Ku-band (d) VODCA trends overlap

(e) LAI

Figure 13.
:::::
Trends

::
of

::::::
various

::::
bands

:::::::
between

::::
2002

::
to

::::
2017

::
of

::::
VOD

::::
(a-c)

:::
and

:::
LAI

:::
(e).

::::::::::::
Non-significant

::::
trends

:::
are

:::
not

::::::::
displayed,

::
the

:::::
trends

:::
are

:::::::
calculated

:::
by

:::::::
Theil-Sen

::::::::
regression

::::
using

:::::
yearly

:::::
mean

:::::
values.

:::::
Figure

:::
(d)

:::::
shows

::::
trend

:::::
classes

:::::
based

::
on

:::
the

::::::
number

::
of

::::
VOD

:::::
bands

::::::
showing

::
a

::::::::::::
positive|negative

:::::
trend.

::::
Their

::::
order

:::
and

:::::
color

::
are

::::::::
indicative

::
of

::
the

::::::::
likelihood

::
of

:::
the

::::
trend.

:

(a) Ku-band (b) LiuVOD

Figure 14.
:::::
Trends

:::::::
between

::::
1993

::
to

::::
2012

::
of

::::::
Ku-band

:::::::
VODCA

:::
(a)

:::
and

:::::::
LiuVOD

:::
(b).

:::::::::::
Non-significant

:::::
trends

:::
are

:::
not

:::::::
displayed,

:::
the

:::::
trends

:::
are

:::::::
calculated

:::
by

:::::::
Theil-Sen

::::::::
regression

::::
using

:::::
yearly

:::::
mean

:::::
values.

Taking advantage of the much longer length of the Ku-band, another trend analysis is done for this band using the data

from 1987 - 2017
::::
2016

:
(Fig. ??

::
15 (g)) to give a first impression of the changes within the last thirty years. Overall we see

a decline in VOD in the tropics, likely due to deforestation, and in large parts of Mongolia, attributed to variations in rainfall

and surface temperatures as well as increased life stock farming and wild fires (Liu et al., 2013). VOD increased strongly in

India and large parts of China, mostly due to an increase in croplands in the former case and due to both an increase in forest5
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and croplands in the latter (Chen et al., 2019). VOD also increased in northern parts of Australia, matching trends in FPAR and

precipitation seen in Donohue et al. (2009). Other regions with increasing VOD are south Africa and central north America.

Of a questionable nature is the wide spread positive trend in the Sahara given LPRMs struggle to retrieve VOD here. Most of

the changes observed for VOD are mirrored in the VCF changes from 1987 to 2016 (Fig. ??
::
15 (f), see sec. 2.2.3 for details).

The large bare ground losses in India, China and the north African shrubland manifest as positive VOD trends. Likewise, the5

deforestation in south America and land degradation with hotspots in Mongolia, Afghanistan or southwestern USA coincide

with a loss in VOD. Also the patterns of tree cover gain in eastern Europe and European Russia coincide with increased VOD.

While there do not seem to be any areas where VOD and VCF contradict each other clearly, some trends are only visible in

one of the data sets. For example the strong increase in VOD in southern Africa cannot be observed in VCF.

10

(a) Ku-band (b) Land cover changes

Figure 15. Trend-analyses for various bands and time spans
:::::
Trends

::::::
between

::::
1987

::
to

::::
2016 of

::::::
Ku-band

:
VOD (a-c, f), LAI (e

:
a) and tree canopy,

short vegetation and bare ground (gb). Non-significant trends are not displayed, the trends are calculated by linear regression
:::::::
Theil-Sen

:::::::
estimator using yearly mean values. Figure (d) shows trend classes based on the number of VOD bands showing a positive|negative trend.

Their order and color are indicative of the likelihood of the trend.

5 Current limitations and possible improvements

5.1 AMSR2 scaling to TMI

Upon closer inspection of the trends in Figure ??
::
13, we can see in north America a spatial break in X- and Ku-band trends at

35◦N.
:::::
North

::
of

:::
this

:::::::
latitude AMSR2 data of 2012-2014 have been

::::
were

:
matched to the AMSR-E data of 2010-2012north of this

latitude and in the south to temporally overlapping observations of scaled TMI ,
:::::
while

:::::
south

::
of

:::
this

::::
line

:::::::::
temporally

::::::::::
overlapping15

:::::
scaled

::::
TMI

::::::
values

::::
were

:::::
used

::
to

::::::
bridge

:::
the

:::
gap

::::::::
between

:::
the

:::
two

:::::::
sensors. Unusual low VOD values can be observed in time

series of that
:::
this

:
region in the years 2012 to 2015 in

::::
both

:
X-and Ku-band. This indicates that the CDF-matching does not

correct the bias between the sensors but artificially removes the difference that are
:
is
:
due to surface processes. Consequently,

the matched AMSR2 data has a slight positive bias north of 35◦N in large parts of north America. For users we advise to be

careful when using X- and Ku-band observations
:::::
values after July 2012 north/south of 35oN/S as well as C-band observations20

:::::
values

:
after July 2012 globally as the AMSR2 data might induce a bias.

:::::::
Currently

:::::
there

:::::
exists

:
a
::::
flag

:::::::::
indicating

:::
how

::::::::
AMSR2

24



:::
has

::::
been

:::::::::::::
CDF-matched.

::::
With

:::::::
ongoing

:::::::::
AMSR-E

:::
vs.

:::::::
AMSR2

:::::
Level

::
1

:::::::::::::
intercalibration

:::::
efforts

:::
by

::::::
JAXA

:::
we

::::::
expect

::
to

::::::
reduce

:::::::
spurious

::::::::::
observations

::
in
:::
the

::::::::
AMSR2

:::::
period

::
in

::
th

:::::
enear

::::::
future.

5.2 Data loss while CDF-matching

As described earlier, CDF matching
::::::::::::
CDF-matching

:
failed because of missing AMSR-E data in some regions, mostly in the

Himalayas (Fig. 9). One possible solution to avoid this data loss would be to substitute the CDF-matching parameters of these5

locations with the parameters from locations with similar dynamics in VOD. This could be done by clustering the time series

and using the parameters of another location within the same cluster. Taking this one step further, one could also investigate

the possibility of using all the data in one cluster to derive a single set of CDF-matching parameters and use these to scale

all the source time series within it. Not only would this allow to scale all the data without loss, but the increased number of

observations
:::::
values

:
available for each parameter determination would also lead to more robust CDF-parameters. However,10

generating meaningful clusters from hundreds of thousands long time series containing missing observations
::::::
values while

keeping the computational cost at bay is anything but trivial (e.g. Mikalsen et al. (2018)).
:::::::
Besides,

::::
even

::::::
though

:::::::
clusters

::::
may

::
be

::::::::
composed

:::
of

::::
time

:::::
series

::::
with

::::
very

::::::
similar

::::::::::::
characteristics,

:::
the

:::::
VOD

:::::
signal

::
at

::::
each

:::::::
location

::::
may

:::
still

:::::
have

::
its

::::::
unique

:::::::
features

:::::::
resulting

::::
e.g.,

::::
from

::::
land

::::::
surface

::::::::::::
characteristics

:::
or

::::::::
vegetation

:::::::
species

:::::::::::
composition.

15

5.3 Data gaps in the input data sets leading to increased noise

Averaging multiple temporally overlapping observations reduces noise (sec. 4.3). However, this can be only done if overlapping

observations exist. While
::::::::::
theoretically the maximum number of observations is limited to

::::::
defined

::
by

:
the number of available

sensors, usually less
:
in

:::::::
practise

::::::
usually

:::::
fewer observations are available due to gaps in the individual time seriesof each sensor.

Hencea potential short-time gap-filling of .
::::::
Hence,

:::::
filling

:::::
short

::::
gaps

::
in

:
the original time series of each sensor could

:::::::::
potentially20

increase the precision of VODCA. Since VOD changes slowly over time (Konings et al., 2016), it is intuitively clear that even

if a sensor has no valid observation on a certain date, the value is expected to be similar to the value of the dates before and

after. Therefore one could fill short gaps with a model that at least implicit
::::::::
implicitly uses autocorrelation for its predictions,

such as gaussian processes as in Camps-valls et al. (2017).
:::::::::::::::::::::
(Camps-valls et al., 2017).

:

5.4
::::::

L-band
:::::::
product25

::
An

:::::::
L-band

:::::::
product

:::::
would

:::
be

::
of

:::::
great

:::
use

:::
to

:::
the

::::::::
scientific

::::::::::
community,

::
as

:::::::
L-band

:::::
VOD

:::
has

::::
been

:::::::::::
instrumental

::
in

:::::::::
analyzing

::::::::
vegetation

:::::::
patterns

:::::
(e.g.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Brandt et al. (2018a); Tian et al. (2018); Brandt et al. (2018b); Chaparro et al. (2018)

:
).
:::::::::

Although
:::
we

:::::::
produced

:::
an

:::::::::::
experimental

::::::
L-band

::::::
product

::::::
based

::
on

::::::::::::
LPRM-SMAP

:::
and

::::::::::::
LPRM-SMOS

:::::
using

:::
the

:::::
same

::::::::::::
methodologies

::
as

:::
for

:::
the

::::
other

::::::
bands,

:::
the

::::::::
evaluation

::
of

::::
this

::::::
L-band

::::::
product

:::::::
showed

:::
that

::
it

::
is

:::
not

:::
yet

::
fit

::
for

::::::
release

:::
for

:
a
:::::::
number

::
of

:::::::
reasons.

:::::
First,

:::::::
merging

:::::
SMOS

::::
and

::::::
SMAP

::::
does

:::
not

:::::
result

::
in
::

a
::::
time

:::::
series

::::
that

::
is

:::::
longer

::::
than

::::
just

::::::
SMOS

:::::
alone,

::::::::
therefore

::
in

:::::
terms

:::
of

:::::::
temporal

::::::
extent30

::::::
nothing

::
is

::::::
gained.

:::::::
Second,

:::
the

::::::::
temporal

::::::::
coverage

:
is
::::::

highly
::::::::::
unbalanced,

::::
with

:::
the

::::::
SMAP

::::::
period

::::::
having

:
a
:::::
much

::::::
higher

:::::::
density.
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::::
This

::::::
carries

:::
the

::::
high

::::
risk

:::
that

:::::
users

:::::
might

:::::
apply

::::::::
unfitting

:::::::
methods

:::
to

:::
the

::::
data.

::::::
Third,

:::
the

:::::::::::::
autocorrelation

:::::::
analysis

::::::::
indicated

:::
that

:::::::::
VODCA-L

::::
has

:
a
::::::
higher

::::
level

::
of

:::::
noise

::::
than

::::
pure

::::::::::::
LPRM-SMAP.

::::::::::::
Nevertheless,

:::::
given

:::
the

::::
great

::::::::
scientific

::::::
interest

::
in
:::::::
L-band

:::::
VOD,

:::
we

:::::::
continue

:::::::
working

::
on

::
a

:::::::
VODCA

::::::
L-band

:::::::
product.

::::
Yet,

:
a
:::
lot

::
of

::::
work

::
is

:::
still

::::::::
required,

::::
such

::
as

::::::::
assessing

:::
the

::::::
impact

::
of

:::
the

::::
VOD

:::::::
retrieval

:::::::::
algorithms

:::::
(e.g.,

:::::
LPRM

::::::
SMAP

::::
and

:::::
SMOS

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(van der Schalie et al., 2017; Owe et al., 2008; Meesters et al., 2005)

:
,
::::::::
SMOS-IC

::::::::::::::::::::::::::
(Fernandez-Moran et al., 2017)

:::
and

::::::::
MT-DCA

::::::::::::::::::
(Konings et al., 2016)

:
),

:::
and

:::::::::
developing

:::::
more

::::::
suitable

:::::::
merging

:::::::::
algorithms5

:::
that

:::
can

::::
deal

::::
with

:::
the

::::
low

:::::::
temporal

:::::::::
variability

::
of

::::::
L-band

:::::
VOD

::::::::
compared

::
to
:::
the

:::::
other

::::::::::
frequencies.

:

5.5
:::::
Effect

::
of

:::::::
merging

::::::::
different

:::::::::::
observation

:::::
times

::::
and

:::::::::
geometries

::::::::
Litarature

:::
has

:::::
shown

::::
that

:::
the

:::::::::
observation

::::
time

:::
has

:::
an

:::::::
influence

:::
on

:::
the

:::::::
retrieved

:::::
VOD

:::::::::::::::::::::::::::::::::::::::::
(Konings and Gentine, 2017; Konings et al., 2017)

:::
and

:::
that

:::
the

::::::
spatial

:::::::
footprint

::::
and

:::::::::
resampling

::::::
method

::::
and

::
the

:::::::::
resmpling

::::::::
reference

::::
time

:::::
affect

:::
the

::::::
quality

::
of

::::::
merged

:::
soil

::::::::
moisture

:::::::
products

:::::::::::::::::
(Dorigo et al., 2015).

:::::::::
However,

::::::
overall

::::
very

::::
little

:::::::::
knowledge

::::::::
currently

:::::
exists

:::::
about

:::
the

:::::
effect

:::
of

::::::
mixing

::::::::::
observation10

::::
times

::::
and

:::::
sensor

::::::::::
geometries

:::::::::
(incidence

::::::
angles,

::::::
spatial

::::::::::
footprint,...)

::
of

:::::::
multiple

:::::
VOD

::::::
values.

:::::::
Further

:::::::
research

:::
on

::::
these

::::::
topics

:::::
would

:::::::
improve

:::
the

::::::::::::
understanding

:::
of

:::::
VOD

:::
and

::::
may

::::
lead

:::
to

::::
more

:::::::::
advanced

:::::::
merging

:::::::::
procedures

::::
that

::::
take

:::::
these

::::::
effects

::::
into

:::::::
account.

6 Conclusions

We present to the scientific community
::
In

:::
this

:::::
paper

:::
we

::::::::
presented

:
VODCA, three long term

::::::::
long-term

:
VOD data sets spanning15

the last three decades to
::
up

::
to

:::::
three

:::::::
decades

::::
that

:::
can

:
be used in studies of the biosphere. For the most part we

:::
We

:
were

able to remove
::::
most

:::
of the biases between the different input sensors by co-calibrating them to AMSR-E. The merging leads

to observations with less noise than the input data sets. The trends of the different VOD bands
:::::::
VODCA

::::::::
products (C-, X-,

Ku-band) correlate very strongly with each other and show similar spatial distributions and temporal dynamics as
:::::
trends

::
in

LAI and VCF, with the added benefit of having observations on a daily basis
:
.
:::::::::
Compared

::
to

:::
the

:::::
latter

::::::::
products,

::::::
which

:::
are20

:::::
based

::
on

:::::::::::::
solar-reflective

::::::
remote

::::::::
sensing,

:::::
VOD

:::
has

:::
the

::::::
benefit

:::
of

:::::
being

:
unaffected by cloud cover

:
,
:::::::
allowing

:::::::::
generally

:::
for

::::
more

::::
than

:::::
40%

::
of

::::
days

::::::
having

::
a
::::
valid

:::::
VOD

::::::::::
observation. A major ongoing issue is the potential bias in AMSR2 due to no

temporally overlapping observations with other sensors. This and other problems still have to be resolved and as such we plan

to maintain and improve VODCA with up-to-date data and continued development for the foreseeable future
::::::
Future

:::::
efforts

::::
will

::::
focus

:::
on

::::::::
resolving

:::
this

:::
and

:::::
other

:::::
issues

:::::
while

:::::
future

::::::::
VODCA

:::::::
releases

:::
will

:::::::::::
continuously

::::::
update

:::
the

::::::
climate

::::::
archive

::::
with

::::::
recent25

::::::::::
observations.

Data availability. The VODCA products (Moesinger et al., 2019) are open access (Attribution 4.0 International) and available at Zenodo

https://doi.org/10.5281/zenodo.2575599
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