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Response to short comment 1 

General Comment:  

In this manuscript, the authors generated a dense (monthly and ever higher such as 10 

days on average) continuous 18-year data set of changes in lake water level and storage 

for 52 large lakes on the Tibetan Plateau by combining multisource optical and 

altimetric information. Uncertainty in the optical water levels was evaluated by field 

experiments and rigorous uncertainty analysis, which is important to the generated data 

sets. The UAV imaging of lake shorelines for evaluating Landsat-based lake shoreline 

detection and the derivation of the mathematic expression of the uncertainty in the 

optical water levels look really interesting and solid. The magnitude of the uncertainty 

was found to be around 0.1 m, suggesting that the optical water levels are often more 

efficient and less noisy than altimetry data when the altimeter footprints on the lake 

surface are insufficient, especially for small lakes. 

I strongly believe that the data set is extremely valuable for the long-term and short-

term monitoring of lake water level and storage changes on the Tibetan Plateau, and are 

also useful for lake water level and storage studies in other areas. Many studies on this 

aspect present long-term trends in these lake water storage. But the authors of this study 

have additionally explored the potential of these multiple remote sensing data sets in 

monitoring short-term variability in lake water storage and lake overflow floods that 

are really new and look fantastic to me. 

Response: 

We thank Dr. Xu for thoroughly reviewing the manuscript and making such 

encouraging comments. It is important for us to receive these feedbacks to further 

improve the data set and the manuscript. Comments and issues raised by Dr. Xu have 

been addressed and are illustrated as follows. 

Specific Comment： 

1) Pg. 6, Line 8: "the systematic biases between different altimetry data were removed 

by either comparing the mean water level of the overlap period or comparing the 

two water level time series with changes in lake shoreline, depending on the length 

of the overlap period" would be discussed in more detail. 

Response: 

We agree that the original description of the method in Pg.6, Line 8 is not quite clear 

and needs further clarification. The basic idea of removing the systematical bias is to 

calculate the mean of two altimetry-based water level time series from different sources 

during the overlap period. Then, the difference between the mean time series and either 

water level time series is removed to make both altimetry-based water level time series 
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consistent and form a longer water level time series. This process was subsequently 

applied to all water level time series with overlap periods to merge them into a single 

time series for each lake.  

However, the overlap period could be short between some altimeters such as Envisat 

and CryoSat (e.g., there are only one or two data points in the overlap period), or does 

not exist at all, such as ICESat and CryoSat. On these cases, optical water levels (i.e., 

changes in lake shoreline that need to be translated into water levels using linear 

regression with one of the altimetry water level series) are used to extend or create an 

overlap period that links the two altimetry missions. We chose a one-year or two-year 

optical water level series which has an overlap period with both altimetry water level 

series as the baseline, and calculated the differences between altimetry water levels and 

the baseline during the overlap period. Then the differences from altimetry water levels 

were removed.  

Therefore, three water level time series (i.e., one optical water level series and two 

altimetry water level series) from different sources are merged together. The reason why 

we used one-year or two-year optical water levels is because a longer overlap period 

may introduce some unexpected errors, such as a rapid increase in water level, which 

may, however, not be detected by optical water levels (only if the lakeshore slope 

happened to be steep in the exact region of increases in water level, which, for most 

cases, can be avoided by checking R2 of linear regression when generating optical water 

levels). 

This part will be modified in the revised manuscript. 

Modifications: a separate paragraph summarizing the altimetry data merging process 

was added to the end of section 3.2. 

2) Pg. 28, Lines 78: "where optical water levels can provide a near real-time 

monitoring of changes in lake water level and storage that are crucial to flood early 

warning and risk management." However, I have not seen the results. 

Response: 

Thanks for this comment. The expression here is indeed a perspective as to the potential 

and advantages of optical water levels rather than a strong statement. In this study, we 

provided water levels of Lake Salt, which has limited altimetry information but mainly 

consists of optical water levels. Though we used Landsat ETM+ and OLI images, i.e., 

four observations were available in ~ one month, more than half of the images were 

useless due to cloud contamination or gaps. Therefore, the temporal resolution of 

optical water levels in Lake Salt is still ~ 1 month, which cannot be regarded as near 

real time monitoring at this stage. Nevertheless, the temporal resolution of optical water 

levels can be further improved by adding other missions such as Sentinel-2 that has a 

higher temporal resolution than Landsat series. A new data set termed harmonized 

Landsat and Sentinel-2 Reflectance Product has been generated recently, which we 

believe would improve the quality of optical water levels and make it near-real-time 



 

3 

 

observation. 

 

Response to short comment 2 

General Comment: 

This is a valuable and interesting manuscript. The authors have exploited multisource 

remote sensing (i.e., multiple altimetric missions and Landsat archives) to create dense 

time series of lake water level and storage changes across 52 large lakes on the Tibetan 

Plateau. There are some previous studies focusing on changes in water level and storage 

on the Tibetan Plateau; however, these studies just got relatively lower temporal 

sampling and little altimetric information was used. It may limit the accuracy of trends 

in lake water level/storage in some cases and short-term monitoring of lake overflow 

flood. Therefore, I am firmly convinced that the densified water-level dataset derived 

by the authors can have tremendous practical value in studying water storage changes 

and regional hydrological processes on the Tibetan Plateau.  

Response: 

We thank Dr. Wu for these encouraging and constructive comments. As Dr. Wu's 

indicated, this work aims to provide improved lake water level and storage change 

estimates in terms of temporal resolution as well as accuracy. We appreciate all these 

comments from the community. Our responses to these comments are given as follows.  

Specific Comment: 

1) As far as I am concerned, deriving altimetry water levels through multiple altimetry 

missions (including Jason-1/2/3, ENVISAT, ICESat-1, and CryoSat-2) is the key 

component. I think the manuscript needs a more detailed description of this 

methodology in section 3.1. 

Response: 

Thanks for this comment. It is indeed important to clarify the method we used and 

developed to derive lake water levels from altimetry data. The waveform retracking 

methods in this section could be the most important part regarding technical details. 

Here we provided a general equation (Eq 1) for surface height calculation mainly 

because different sensors have different correction items, e.g., the saturation correction 

for ICESat (laser altimeter) was not applicable to radar altimeters. 

As for waveform retracking correction, which is crucial to radar altimeters, we 

performed existing algorithms (e.g., the NTTP method for Croysat-2) or used a default 

method provided by the altimetry product (e.g., the ICE-1 retracking method). These 

methods have been widely tested and recommended based on in situ measurements. 

However, there can be a paradox when several studies suggested different methods for 

the same altimeter. If so, we can only apply the rule of thumb to choose those that 
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balance the robustness, computational cost, and accuracy (e.g., the Improved Threshold 

Method for Jason-1/2/3). 

In fact, the original idea of the NTTP, ICE-1, and Improved Threshold Method is quite 

similar. All of them adopt a threshold defined as the percentage of waveform peak to 

determine the retracking gate, and then transfer the difference between the retracking 

gate and the nominal gate into range correction by multiplying the gate range (cΔt/2, 

where c is the speed of light and Δt is the time duration of a gate). The differences lie 

in the choice of thresholds as well as the calculation of waveform peaks. Therefore, we 

think it would be more suitable to provide some general information in the manuscript 

about threshold retracking schemes and to clarify the similarities and differences among 

the retracking methods we used. 

This part will be modified in the revised manuscript. 

Modifications: A separate paragraph was inserted following the 3rd paragraph of section 

3.1 to briefly introduce the threshold waveform retracking scheme. 

2) To validate the derived optical water levels, the authors used pressure type water 

level sensors to measure water pressure and converted them into water depths. How 

to convert the water depths into the actual water level and unify to the same 

reference datum with optical water levels? It should be clarified 

Response: 

Thanks for this comment. The water level measured by the pressure type sensor is the 

water depth (~20 m) of the installed location, while the water level acquired from 

optical images/satellite altimeters is the surface height with respect to EGM96 which 

generally has a value ~4000 m. To make them comparable, we calculated water level 

anomalies for the both time series. This part will be illustrated in detail in the revised 

manuscript. 

Modifications: An explanation was inserted to the 1st paragraph of section 4.2. 

3) Pg.1, Line 14 "(>100km2) " should be " (>150km2) "? 

Response: 

Thanks for this comment. Actually, we do have investigated almost all Tibetan lakes 

larger than 150 km2 (except for one or two lakes with too limited altimetry/optical data) 

and several lakes between 100‒150 km2 (e.g., Lake Salt). This part will be modified in 

the revised manuscript to avoid confusion. 

Modifications: An explanation was inserted to the Abstract to clarify the lake area. 

4) The legend of Figure 11 should be revised (add unit and scale). 

Response: 

Thanks for this comment. It will be corrected in the revised manuscript. 



 

5 

 

Modifications: Unit and scale were added to Figure 11. 

5) Figure 16, miss unit in y axis 

Response: 

Thanks for this comment. It will be corrected in the revised manuscript. 

Modifications: Unit of y axis was added to Figure 16. 

 

Response to referee comment 1 

Comment: 

In this study, the authors developed a lake level dataset with dense samples for large 

lakes in 2000‒2017 in the Tibetan Plateau (TP). The lake level product is validated by 

in situ water level measurements for Yamzhog Yumco. The water volume changes of 

52 lakes with lake level were also estimated. This dataset is very valuable for studies of 

lake variations and their response to climate change in the TP and lake water balance. I 

recommend this manuscript to publish in ESSD, but some improvements based on 

comments below are necessary. 

Response: 

We really appreciate these overall comments and recommendation by this reviewer.  

Our point-by-point responses to the reviewer's comments are given as follows. 

General comments: 

1) The uncertainties for lake volume changes and other number should be added 

through the manuscript. 

Response: 

Thanks for this comment. They will be added into the revised manuscript. 

Modifications: Uncertainties were added for every lake volume/water level number, 

most of them appear in the Application section. 

2) What is optical water level? It is estimated by the correlation between lake area and 

level, and then to reconstruct the corresponding lake level using known lake area? 

Response: 

Thanks for this comment. As illustrated in Page 10, line 20, the generation of optical 

water levels is similar to the description in this comment but is based on changes in lake 

shoreline observed in a smaller ROI (region of interest) rather than the whole lake area 

(e.g., the yellow square shown in Page 12, Figure 3 (b)). The reason for this is due to 

the increasing computational cost and probability of cloud/gap contamination with 
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increasing areas of ROI. On the other hand, it is pointed out in section 4.2 that if the 

ROI had a larger width (here 'width' is in the direction parallel to the shoreline), the 

uncertainty of optical water level would decrease. Therefore, the choice of the ROI is a 

trade-off between the accuracy and data availability or computational cost. 

3) How all the lake level datasets are converted to same geoid? 

Response: 

Thanks for this comment. For altimetry water levels, the initial reference ellipsoid and 

geoid are different for different satellite missions/products. Information on the 

reference ellipsoid and geoid is listed in Supplement Table 1: 

Supplement Table 1 

Altimetry mission Reference Ellipsoid Geoid 

Envisat WGS84 EGM2008 

ICESat T/P EGM96 

CryoSat-2 WGS84 EGM96 

Jason-1/2/3 T/P EGM96 

As mentioned in the manuscript, different altimetry water levels were merged by 

comparing the overlap period (more details are available in the response to short 

comment 1). Systematical biases caused by the geoid and reference ellipsoid were 

removed during this process. 

For optical water levels, they were generated using linear regression with a certain 

source of altimetry water level data so they have the same reference ellipsoid and geoid 

with the respective altimetry data used in the regression. And they can be merged with 

other altimetry data by comparing the overlap period as well. 

However, there is a correction that must be made to the manuscript in Page 8, Line 18. 

"…all water levels were with respect to EGM96…" was incorrect. For the 12 lakes with 

Jason data, all kinds of water levels were converted into T/P, EGM96, because the 

Jason-1/2/3 data were used as the baseline (i.e., the longest records will be used as the 

baseline). For the rest of the lakes we mainly used Envisat data as the baseline to merge 

all the water levels. Therefore, for lakes without Jason data but having Envisat data, the 

water levels were converted into WGS84, EGM2008 (see Supplementary Table 1 

above). For lakes without either Jason or Envisat data, Cryosat-2 data were used as the 

baseline, so water levels for these lakes were converted to WGS84, EGM96. We will 

provide a supplement document to mark out the Reference Ellipsoid and Geoid for each 

lake. 

Modifications: "…all water levels were with respect to EGM96…" was removed from 

the manuscript; a table containing reference ellipsoid and geoid for each lake was 

provided in the supplementary file. 

4) In this study, lake boundaries were extracted using GEE. The visual checking and 
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manual editing of delineated lake boundaries with original Landsat images are very 

necessary. How this was done at GEE platform? 

Response: 

Thanks for this comment. Lake areas or lake boundaries were used in two situations in 

this study: the first is during the process of generating hypsometric curves and the 

second is during the selection of altimeter footprints. We used lake areas derived from 

GEE in the first situation but used an existing dataset based on manual delineation 

produced by Wan et al. 2016 in the second situation. Therefore, problems raised in this 

comment may only exist in the first situation. 

Visual checking can be hard to perform on GEE due to a large number of images we 

used, but we did visually check and preclude some of the images that resulted in outliers 

in the extracted lake surface areas (e.g., the entire ROI was covered by snow resulting 

in the failure of the Otsu method). It is true that manual editing of lake boundaries is 

important if we only use a small number of images (e.g., less than 10 images) to derive 

hypsometric curves (which is common in similar studies, e.g., most hypsometric curves 

provided by Hydroweb used less than 10 data pairs).  

Nevertheless, for most lakes (42 out of 52) in our study, we used more than 20 data 

pairs (i.e., lake water area and corresponding lake water level) to fit hypsometric curves. 

More data pairs we used make the hypsometric curves more robust, even though there 

may be some misclassification in a single image. This is evidenced by the fact that most 

R2 values for the hypsometric curves are higher than 0.9. In addition, all the images 

used in the regression analysis met the criterion of cloud contamination less than 5%, 

which has largely reduced uncertainty in the extracted lake water area. 

5) How the in situ water level for Yamzhog Yumco is converted to consistent reference 

ellipsoid with satellite altimetry data? For validation of lake water classification 

with UAV, how about classification accuracy? 

Response: 

Thanks for this comment. As illustrated in our response to short comment 2, the in situ 

water levels of Yamzhog Yumco were made comparable with the satellite 

altimetry/optical water levels by calculating the anomalies of each water level time 

series. 

Lake water classification with UAV images was performed by manually identifying the 

lake shoreline using ArcGIS. Therefore, the uncertainty in the UAV derived lake 

shoreline is considerably small, because the spatial resolution of the UAV image is ~5 

cm. 

Specific Comments:  

1) Page1: "There are more than 1,200 alpine lakes larger than 1 km2 (Zhang et al., 

2017a)" This result should come from Zhang, G. et al., 2014. Lakes' state and 
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abundance across the Tibetan Plateau, Chinese Science Bulletin, 59(24):3010−3021. 

Please correct this cite here. 

Page 2: ETM should be ETM+, not a superscript symbol of +, others are similar. 

Response: 

Thanks for this comment. They will be modified in the revised manuscript. 

Modifications: The reference (Zhang, G. et al., 2014) was added in the 1st paragraph of 

introduction and “ETM+” was change into “ETM+” everywhere. 

2) Page 4: "examine long-term", 2000‒2017 is not long-term. 

Response: 

Thanks for this comment. "Long-term" will be changed into "multiyear". 

Modifications: “long-term” was changed into “multiyear” everywhere. 

3) "The TP can be generally divided into 12 major basins... ". Two suggested reference 

here: 

Wan, W. et al., 2016. A lake data set for the Tibetan Plateau from the 1960s, 2005, 

and 2014, Scientific Data, 3:160039. 

Zhang, G. et al., 2013. Increased mass over the Tibetan Plateau: From lakes or 

glaciers?, Geophysical Research Letters, 40(10):2125−2130. 

Response: 

Thanks for this comment. They will be added into the manuscript. 

Modifications: The two references (Wan, W. et al., 2016, Zhang, G. et al., 2013) were 

added in the 1st paragraph of section 2.1. 

4) Lake Selin Co-> Selin Co, others are similar 

Response: 

Thanks for this comment. They will be modified in the revised paper. 

Modifications: “Lake Selin Co” was changed into “Selin Co”; “Lake Nam Co” was 

changed into “Nam Co”: “Lake Zhari Namco” was changed into “Zhari Namco”; “Lake 

Goren Co” was changed into “Goren Co”; “Lake Urru Co” was changed into “Urru Co”; 

“Lake Yamzhog Yumco” was changed into “Yamzhog Yumco”. 

5) Page 5: "a lake shape data set generated by Wan et al. (2016) was used". This lake 

shape data was derived from GF data. How about the shift of lake outline? Did you 

check it with original Landsat images or Google Earth? 

Response: 

Thanks for this comment. Yes, we did notice that lake outlines derived from GF data 
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that were only used for generating the 2014 subset of the data set by Wan et al. (2016)) 

have a shift relative to those derived from Landsat ETM+ and CBERS-1 that were used 

for the 2005 subset of the data set). Therefore, we only used the 2005 subset of the data 

set to select altimetry footprints in our study. 

6) "We managed to make use of some images with gaps in generating lake shore 

changes." How to understand it? 

Response: 

Thanks for this comment. As shown in Figure 3 (b), the ROI we used to derive lake 

shoreline changes is small enough to be fitted into an ETM+ image strip (valid pixels) 

between two gaps (no-value pixels). In this way, we can make use of some images with 

gaps. However, the gaps are shifting so we set a criterion (no-value pixels in the ROI 

should be less than 2%) to remove those images for which the ROI is contaminated by 

shifting gaps. 

7) "A half of them were excluded from the final results due to cloud contamination or 

gaps." How this is determined? Some lakes are missed? How to make sure a high-

quality output of lake boundary, especially lake with little ice or turbid water? 

Response: 

Thanks for this comment. As illustrated in the manuscript, we have excluded images 

which have more than 5% cloud pixels or 2% no-value pixels in the selected ROI. "A 

half" is an approximation for the portion of effective images when generating optical 

water levels. To further show this, we randomly chose five lakes to present the portion 

of effective images: 

Supplement Table 2 

Lake name TM ETM+ OLI Total 

Jingyu 90/287 225/360 58/128 373/775 

Zhari Namco 127/308 47/229 178/371 352/908 

Mapam Yumco 50/57 216/274 85/121 351/452 

Lumajiangdong Co 74/183 78/561 68/250 220/994 

Aqqikkol Lake 169/387 108/557 109/246 386/1190 

Total 510/1222 674/1981 498/1116 1682/4319 

Effective ETM+ images have a lower portion due to gaps. But for Landsat TM and OLI 

images, the portion is appropriately 1/2. However, the portion of effective images that 

can be used to derive lake water areas, instead of optical water levels mentioned earlier, 

is much smaller, sometimes less than 10%, which is due to the increasing probability 

of cloud/gap contamination with increasing areas of ROI. 

We did consider the impact of lake ice or snow on the accuracy of lake area/lake 

shoreline extraction. Both MNDWI and NDWI were not able to well discriminate lake 

ice and water as what we had expected (i.e., if lake ice was eliminated, the extracted 
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lake area would be smaller than its real size). We noticed that the MNDWI cannot 

completely discriminate snow and water either, resulting in artificial increases in lake 

areas in winter when the lake bank was covered by snow. Therefore, the NDWI was 

used to better discriminate snow from water/floating lake ice in winter. However, if 

there was snow cover on the lake ice, the NDWI could also produce artifacts in the 

derived lake area and we had to remove these outliers manually as we mentioned earlier. 

As for the turbid water problem which mainly occurred in summer, we examined the 

study lakes and found that both MNDWI and NDWI can precisely locate the lake 

boundary, even though the near-shore water color was affected by turbid inflow as 

shown in Supplement Figure 1: 

 

Supplement Figure 1: Water classification results at the estuary of Lake Kusai based on 

the MNDWI and NDWI during the flood season. 

The difference between the MNDWI and NDWI is that the MNDWI is able to detect 

shallower turbid water than the NDWI (e.g., shallow rivers can be detected by MNDWI 

in Supplement Figure 1), which is important in determining the accurate position of 

lake shorelines. If the NDWI was used in summer, less information on changes in lake 

shoreline (i.e., optical water level) would be detected. On the other hand, rivers and 

other small water bodies near the lake can lead to noise to the extracted lake area due 

to the sensitivity of the MNDWI. Therefore, we carefully chose the ROI to avoid rivers 

or small water bodies. A comparison between the MNDWI and NDWI was performed 

by (Huang et al., 2018) based on UAV images, which also shows that the MNDWI has 

better performance than the NDWI under the condition without snow cover. 

8) Table 2: "d, m, km" can be put first row of table, then others below can be removed. 

Response: 

Thanks for this comment. Yes, it will be modified in the revised manuscript. 
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Modifications: Units of Table 2 were moved to the first row. 

9) "Either comparing the mean water level of the overlap period or comparing the two 

water level time series with changes in lake shoreline" How about the uncertainty 

and it is reasonable? 

Response: 

Thanks for this comment. The uncertainty of this method is important, because errors 

induced by this data merging method will evolve into the merged water levels and 

become remaining systematical biases. Such biases will cause artificial rises or falls of 

the merged lake water levels, jeopardizing the consistency of the merged lake water 

levels between different time periods and sensors. Therefore, the consistency of the 

merged water levels can reflect the remaining systematical biases and the uncertainty 

of the data merging method that caused these biases.  

However, it is a dilemma that evaluating the consistency of the merged water levels is 

difficult to perform without continuous in situ observations over multiple years. As far 

as we know, there are few continuous measurements of lake water levels in the Tibetan 

Plateau due to the equipment failure in the frozen season (e.g., caused by fierce winds, 

waves, and freezing process). For instance, several water level sensors have been set up 

in Nam Co since 2005 (Song et al., 2015), but the in situ water level measurements of 

Nam Co presented in the literature were discontinuous in the frozen season.  

Therefore, the best available reference we used to assess the consistency of the multiple 

altimetry water levels when there is no overlap period is the optical water level. Optical 

water levels are generally continuous in our study period and could even be more 

reliable than intermittent ground observations. Given the fact that continuous ground 

observations do not exist, are not accurate enough, or are not accessible if any, the 

altimetry data merging method proposed in this study is a reasonable and effective way 

to generate longer and denser time series on lake water levels. 

10) As the differences of extracted lake outlines, it is better to use a unique NDWI or 

MNDWI in classification of water and other land-cover in the study period? In 

addition, the differences from NDWI or MNDWI are not apparent? 

Response: 

Thanks for this comment. Based on response to Comment 7, it is clear that either NDWI 

or MNDWI has pros and cons and may perform quite differently. Therefore, a 

combination of the two water indices is a reasonable solution and has been used in this 

study. 

11) "We selected images with less than 5% cloud cover". Some images with free-cloud 

coverage on lake shorelines are still useful? 

Response: 

Thanks for this comment. Yes, they are. Moreover, the cloud mask algorithm imbedded 
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in the Landsat QA band is quite sensitive. Sometimes an image with light cloud in ROI 

slightly higher than 5% is still useful, because water indices are not largely affected. A 

20% threshold was used by (Huang et al., 2018), which also produced satisfactory 

results. 

12) Figure 11: background of this figure is not clear? 

Response: 

Thanks for this comment. Yes, the background has been changed into green now. 

13) Figure 12: What is a high peak in Figure 12 in about 2010? 

Response: 

Thanks for this comment. It may have been caused by an outlier that was not removed 

prior to uploading the generated data set. In the uploaded data set, such a peak does not 

exist. It will be corrected in the revised paper. 

Modifications: Figure 12 (now Figure 13) was revised with outliers removed. 

14) Figure 13: The trend of lake storage change is more robust than the result from Yao 

et al (2018) from Yao, F. et al., 2018. Lake storage variation on the endorheic 

Tibetan Plateau and its attribution to climate change since the new millennium, 

Environmental Research Letters:1-16. What is the cause for this difference? 

Response: 

Thanks for this comment. As illustrated in Line 5‒7 in the manuscript Page 23, our data 

(a combination of the merged optical water levels and altimetry water levels) have 

higher sampling frequency than (Yao et al., 2018a), resulting in a more robust 

estimation of the trend in the lake water levels. As shown in Figure 12, there are several 

abrupt changes with magnitudes up to ~3 km3 in lake storage observed by (Yao et al., 

2018a), which is not likely to happen, given that there is no report on basin 

flood/upstream lake overflow. This could be due to the uncertainty in the lake area they 

derived and applied to estimate changes in lake storage. We also noticed that lake areas 

derived from Landsat archives could be much noisier than lake shoreline changes, due 

to cloud contamination/temporary small water bodies within the ROI. Therefore, we 

have calculated changes in lake storage with water levels and hypsometric curves, 

instead of directly using water levels and lake areas to reduce the uncertainty in derived 

lake areas. 

15) Figure 15: How to understand the difference of lake level between these different 

datasets, especially polylines for optical water level? 

Response: 

Thanks for this comment. 

First, the difference between altimetry water levels in our data set and the Hydroweb 
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data set mainly comes from following processes: (1) different reference ellipsoids and 

geoid models, (2) different retracking methods, and (3) different schemes of removing 

systematical bias. The last process is the most significant difference that could make 

our data set more consistent compared with the optical water levels as we explained in 

response to specific comment 9. 

Second, the difference between the optical water levels and altimetry water levels 

mainly comes from different mechanisms of observations. Altimetry water levels are 

based on the time delay between the generated and received signal measured by 

altimeters. Each cycle corresponds to one water level value averaged from several 

footprints across the lake. Therefore, the number of footprints in a cycle is crucial to 

the accuracy of altimetry water levels. Footprints falling on a study lake are determined 

by the orbit of the satellite altimetry and the size of the lake, both of which are fixed.  

On the other hand, optical water levels are derived from optical images, which could 

be affected by cloud cover. Therefore, there is not a fixed temporal resolution for optical 

water levels. As illustrated in section 4, optical water levels are mainly affected by the 

slope of lake shore, the width of ROI, the spatial resolution of the optical image, and 

the accuracy of the water classification method. Some of these factors, such as the width 

of ROI, spatial resolution, and slope can be well handled. Therefore, optical water levels 

are less noisy than altimetry water levels. 

16) "5.3 Lake overflow flood monitoring". Many similar Chinese papers have been 

published. It is not need to include in the Title of this manuscript and put some in 

discussion is enough? In addition, some sentences such as equation can be moved 

into Method section? 

Response: 

We have revised the title of this manuscript according to this comment. Content 

associated with lake overflow flood monitoring is no longer reflected in the title, but 

has been put in the method and discussion sections. These modifications will be shown 

in the revised paper after considering all reviewers' suggestions. 

Modifications: The title has been changed with “overflow” removed and part of the 

section has been moved into the supplementary file. 

17) Xiaojun et al., 2012 -> Yao et al., 2012 

Response: 

Thanks for this comment. It will be modified in the revised manuscript. 

18) "Water loss was more likely to be found among the southern TP lakes. In the Selin 

Co basin, a more complicated spatial pattern of lake storage changes was detected, 

as small lakes were slowly losing water whereas the large lake was gaining water, 

which we speculated to be caused by lake-river interactions that need further 

investigation." These conclusions have found in previous studies. The summary 
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here should more focus on the lake level data developed in this study. 

Response: 

Thanks for this comment. It will be modified in the revised manuscript. 

Modifications: This part was revomed from the 2nd paragraph of conclusion.  

19) Section 4 is too long? It can be shortened? 

Response: 

Thanks for this comment, we plan to move part of the content in section 4 into the 

supporting information. 

Modifications: Part of section 4 was removed into the supplementary file. 

 

Response to referee comment 2 

Comment: 

This study combines altimetry data that measure lake levels directly with shoreline 

positions from optical data to create extended and denser lake level time series for the 

largest lakes of the TP. In that sense, the resulting dataset differs from existing lake level 

time series and seems thus a valuable resource for the scientific community as well as 

other users. The study is relevant for ESSD and worth publishing. To properly 

document the data and methods and to comply with ESSD's guidelines, the manuscript 

needs to be improved - in particular to better describe important parts of the methods, 

include/consider uncertainties, and properly validate the time series against existing 

data sets. 

Response: 

We really appreciate the overall evaluation, insightful comments, and recommendation 

by this reviewer. Our point-by-point responses to the reviewer's comments are given as 

follows. 

General comments: 

1) The study would benefit from a clearer story line and justification how this 

work/data fills a current knowledge gap. I only understood the plot halfway through 

the methods. What are the shortcomings of the existing studies/datasets, and how 

do you overcome these with your study? This is especially important for the 

introduction, but also the abstract and conclusion would benefit from an easier to 

understand quick summary. See also comment paragraph P8, L11ff below. 

Response: 

Thanks for this constructive comment. As suggested by this Reviewer in specific 
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comments, we have reorganized several paragraphs and enhanced how our study and 

developed data set fill a current knowledge gap in the introduction, abstract and 

conclusion sections. Abstract and conclusion sections have also been improved by 

reducing all redundant information. Details can be found in the attached modified 

manuscript. 

2) Method: the important novelty of your approach is the use of shoreline positions 

from optical data to increase the temporal resolution and extend the length of the 

water level time series. To do so, you relate shoreline positions to lake level 

elevations from spaceborne altimetry data, using a statistical relationship between 

the two. Currently, the statistics part is not well enough described, and uncertainties 

from the found relationship do not seem to be propagated to your final "optical water 

levels". I suggest you extend this part to provide more transparency and include also 

a discussion of the uncertainties, considering in particular the assumption of a linear 

relationship (?) and whether it is appropriate to extrapolate beyond the range of 

measured lake levels. 

Response: 

Thanks for this very insightful comment. As suggested by this Reviewer, we have 

extended section 3.2 (optical water level) and provided a discussion in section 4.2 to 

better evaluate the uncertainty in the regression relationship and how it propagates into 

optical water levels. The extrapolation problem is discussed in section 4.2 as an 

interpretation of the propagated regression uncertainty and in this response letter too 

(specific comment 8 of the method section). We believe that the impact of extrapolation 

of optical water levels possibly occurring in the time gap between two altimetry time 

series has been well addressed in this response letter (specific comment 8 of the method 

section) and will be added to the supplementary file. However, we acknowledge that 

little information is available to quantify the effect of extrapolation during the time 

window from 2000‒2002, as little altimetry information is available due to either poor 

quality or limited observations, and available DEM is too coarse to describe the micro 

topography of the lake bank. We have informed potential readers/users of such a risk in 

the validation and conclusion sections of the revised manuscript.  

3) Dataset: I'm missing a detailed description of the final dataset and its attributes and 

uncertainties, e.g. after the validation section. 

Response: 

Thanks for this comment. The description of the dataset is combined with the data 

availability following the validation part now. 

4) Validation (and uncertainties):  

a) What is the accuracy/uncertainty of the altimetry products, and how does this 

propagate to your optical water levels? Consider also the uncertainty of the 

statistical relationship (s) you compute to derive the optical water levels.  
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Response: 

Thanks for this insightful comment. We used the standard deviation of water levels 

from valid footprints in a cycle to represent the uncertainty in the altimetry product. 

The valid footprints are referred to as the footprints selected with the histogram method 

as illustrated in the manuscript. For most cases they comprise more than 80% of all 

available footprints in a cycle. As suggested by this Reviewer, a thorough discussion of 

the error propagation from the altimetry data to the optical water level through the 

statistical relationship has been added in section 4.2. 

b) The theoretical computation of an uncertainty (most of 4.2) based on a single 

UAV image is not convincing to me as it is based on a single image pair only 

with unknown coregistration accuracy (see comment below). The lack of 

hands-on data basis and the extensive length of the theoretical part makes this 

off-topic. Maybe this could fit as supplementary information in a separate 

document. 

Response: 

Thanks for this insightful comment. We have redone the uncertainty analysis based on 

high-resolution optical images from GF-2 (i.e., China's high spatial resolution satellite) 

and investigated a total of 4128 Landsat shoreline pixels after performing co-

registration (the co-registration error was estimated to be ~2 m). Based on the new 

experiments and results, we have modified part of section 4.2, making it more 

convinced. Considering the excessive content of section 4, we will move part of the 

theoretical derivation to a supplementary file as suggested by this Reviewer. 

c) Rather than treating the comparison to the LEGOS Hydroweb data as an 

application case this should be part of the validation section. How do your time 

series compare to the other datasets listed in table 1? 

For data description, uncertainties and validation see ESSD's guidelines at 

https://www.earth-syst-sci-data.net/10/2275/2018/, in particular sections 3.3, 3.5 and 

3.6. 

Response: 

Thanks for this comment. We have moved part of the comparison with Hydroweb data 

to the validation section. We chose to make a comparison with the Hydroweb because 

Hydroweb data have exploited most altimetry missions and provided densest altimetry 

water levels among all listed studies (also for most lakes the systematic biases between 

altimetry missions seem to have been well removed), very typical for altimetry-based 

lake studies. Other altimetry-based lake studies may include more lakes, but based on 

the published results they are subject to some systematic biases. Therefore, we have 

taken the Hydroweb data as the benchmark to see if there are improvements or 

advantages in our generated product. 

We did compare our lake data with that of Yao et al. (2018b) and show the importance 
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of temporal resolution, as we are not comparable with the lake quantity of these kind 

of studies based only on Landsat images and DEM. Studies that primarily use Landsat 

images and DEM are able to cover a larger number of lakes and are not subject to 

systematic biases as those using various altimetry data sources. However, most of those 

studies have a low temporal resolution (e.g., annually or even lower) due to the 

difficulty of acquiring quality optical images covering entire lake areas at a high 

temporal resolution, as opposed to our study that needs optical images covering a small 

portion of the lake shore.  

 

Specific Comments: 

A simpler title might make it easier to understand what the study is about. Especially 

the rather unclear terms "densified" and "developed optical water levels" should be 

replaced. Focus on the data and not the application cases. 

Response: 

Thanks for this constructive comment. The tentative title of this study has been revised 

as: "Generation of high temporal resolution water level and storage change data sets for 

lakes on the Tibetan Plateau during 2000‒2017 using multiple altimetric missions and 

Landsat-derived lake shoreline positions and areas" for your kind suggestion.  

Abstract 

1) The abstract could be more to the point. Add some information on the performance 

of your data (uncertainties and validation). Consider removing already published 

findings (applications).  

Response: 

Thanks for this constructive comment. We have removed numerical results similar to 

some published work such as lake storage trends and lake overflow amount. More 

information on the validation and uncertainty has been added, as we performed 

additional experiments with high-spatial-resolution images. Details can be found in the 

revised manuscript. 

Modifications: Numbers of lake volume changes were removed from the abstract; 

validation of the optical water level was emphasized. 

2) L12: which altimetric missions? If there are too many to list all, specify how many 

and which types (e.g. Lidar altimetry, interferometric SAR altimetry...) 

Response: 

Thanks for this comment. All altimetric sensors used in this study have been listed in 

Table 2. For the sake of brevity, we decide not to list them in the abstract. 

3) L13: avoid putting important information in brackets. Monthly to weekly time 
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series? L16: "partial altimetry data" and "optical water levels" are unclear terms  

Response: 

Thanks for this constructive comment. This sentience has been modified. Brackets in 

L13 have been removed and a brief explanation to optical water levels has been added. 

4) L19: "densified" is unclear  

Response: 

Thanks for this comment. It has been replaced with "merged". 

5) L20ff: Are these groundbreaking new numbers/findings? Consider removing them 

and focus on the dataset. 

Response: 

Thanks for raising this comment. These numbers are actually not that different from 

published studies, but they can serve as an independent source of information from 

relevant studies, as we have generated a new dataset with temporal resolution being 

greatly improved and systematic biases being well removed. We have removed these 

numbers and placed more emphasis on the dataset itself.  

Introduction 

1) P2, L3: A strong motivation for TP lake studies not mentioned here is to find out 

why they are expanding, i.e. a good data set will contribute to a better understanding 

of climate and circulation patterns and changes thereof. This is important as the TP 

has a strong influence on both regional climate. 

Response: 

Thank you so much for this comment. We have added this to the first paragraph of 

introduction to clearly state the motivation of TP lake studies that a good data set should 

contribute to a better understanding of climate and circulation patterns and changes.  

2) P2, L6: source of that number? 

Response: 

The source is (Messager et al., 2016). 

3) P2, L8: I wonder why you selected exactly these references? There are many more 

lake studies on the TP. References for the method (general) and local application 

should be separated. 

Response:  

Thanks for this comment. We agree that more general studies instead of local 

applications may be cited. Now we have cited the earliest one that we can find to 

represent this kind of studies using remotely sensed water surface height and extent 
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performed by Frappart et al. (2005). 

Modifications: References here were changed into (Frappart et al. 2005) 

4) P2, L11: It is better to introduce radar and lidar separately as the systems and data 

are quite different. Also, these data are not meant for ice berg height - you probably 

mean ice sheet surface elevation or sea ice freeboard? 

Response: 

Yes, this makes sense. We have separately introduced laser and radar altimeters and 

added a supplementary description of the two types of altimeters to underscore the 

differences between them in this paragraph. We agree that the altimetry data are not 

meant for ice berg height. It has now been corrected in the revised manuscript. 

Modifications: “ice berg” was changed into “ice sheet/ice freeboard”. 

5) P2, L16: The satellite is called ICESat, not ICESat-1. Change everywhere.  

Response: 

Done. 

6) P2, L25: it seems you mainly mean (and in your study only use) optical data. Do 

you have an example for a sensor and study that used SAR data?  

Response: 

Yes, SAR images from Sentinel-1 were used by Huang et al. (2018) from our group to 

derive the effective river width, which is calculated with the river surface area divided 

by the river length. The automatic extraction of the river surface area is similar to that 

of the lake surface area or lake shoreline changes. We may take advantage of SAR data 

in future studies. 

7) P2, L26: why exactly these references? These are not the only or first such studies.  

Response: 

It is true there are many published studies on water classification/extraction. We chose 

these two references mainly because they are similar in study area, data source, and 

publishing time, showing a good comparison between methods. We would like to show 

a change in this kind of studies and to stress the point that manual extraction of lake 

boundary could be labor-intensive and low-efficiency. 

8) P2, L33: references for the water index and Otsu algorithm? 

Response: 

Done. 

9) P3, L10f: remaining bias: is this not true for your study, too? Or how do you 

avoid/remove such bias?  
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Response: 

We have done our best to remove the systematic bias between different altimetry 

missions by using optical water levels as reference data, which is rarely seen in the 

literature. Hwang et al. (2019) showed that the systematic bias among different 

altimeters is hard to remove unless in situ water level measurements or Jason-1/2/3 data 

are available. Our method could provide a better solution to this problem. We would 

not say there is no remaining systematic bias in our data, but we are confident that the 

biases have largely been reduced. Even though there might be some concern about the 

accuracy of the optical water levels because altimetry information is involved in the 

generation, they are currently the best available long-term reference data for ungauged 

lakes. 

10) P3, table1: Does this table include all studies, or how did you select? Either remove 

all that do not compute lake levels, otherwise consider also including "complete" 

TP water studies for a larger number of lakes than the ones you are listing (e.g. 

Pekel et al (2016) to whom you refer to earlier, or Yang et al. 2019, doi:10.5194/tc-

2018-238; Treichler et al. 2018, doi:10.5194/tc-2018-238...)  

Response: 

Thanks for this constructive comment. We consider it is quite reasonable to exclude 

those references without water levels, as our study focuses on improving the quality of 

merged water levels and subsequently improving lake storage change estimation. 

Modifications: (Wan et al., 2016) and (Yang., 2017) were removed from Table 1. 

11) P4, L4: the meaning of "hypsometric curve" is unclear to me in this context. 

Response: 

We noticed that in some studies hypsometric curves represent the total area above a 

certain elevation, which means that at the lowest elevation the hypsometric curve 

reaches its maximum value. However, in this study, hypsometric curves represent the 

lake surface area at a given water level, which means that the curve reaches its 

maximum value when the water level is maximized. We adopted this denotation as same 

as the LEGOS Hydroweb. To make it clear, we have added an explanation in brackets 

in the context. 

Modifications: An explanation in brackets was added following “hypsometric curve”. 

Study area and data 

1) Parts of this (e.g. from P5, L24, or P6, L1ff) rather belongs to the method section. 

Response: 

Thanks for this comment. We have moved partial content to the method section. For 

instance, we have moved P5 L24‒L26 to the second paragraph of section 3.2. 
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2) P4, L16: "as opposed to many other places..." - I tend to disagree, as nearly all seem 

to have expanded. Can you justify or explain more clearly? 

Response: 

We only studied 12 lakes outside the endorheic basin for the recent twenty years, which 

possibly caused such an impression that all lakes have experienced expansion. Exorheic 

lake shrinkage in the TP in the past 50 years can be seen from (Zhang et al., 2019) as 

shown in the figure below. 

 

In addition, most global endorheic basins have experienced water loss in recent years, 

whereas the endorheic region in the TP has gained water (Wang et al., 2018). This 

phenomenon has also drawn a lot of attention for the endorheic basin in the TP. 

3) P5, L4ff: why did you choose these lakes in particular? And where is Lake Yamzhog 

Yumco? An overview map might be useful. 

Response: 

The reasons why we chose Yamzhog Yumco and Nam Co are threefold: (1) they are 

close to the city, making it easier for logistics and transportation; (2) they are both large 

lakes, typical in our study; and (3) one of them is located in the endorheic basin (Nam 

Co), and the other is from the exorheic basin (Yamzhog Yumco), increasing the 

representativeness of the experiment. 

Following figure will be added into the manuscript to clearly show the two experiment 

locations: 
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4) P5, L17: "moderate set of orbital parameters" is unclear 

Response: 

Thanks for this comment. We have made it clear. We meant to show that Envisat has a 

lower orbit than Jason-1/2/3 but higher than ICESat, thereby for sampling frequency: 

ICESat<Envisat<Jason-1/2/3, and for spatial coverage: ICESat>Envisat>Jason-1/2/3. 

Modifications: “moderate set of orbital parameters” was removed, replaced by “…a 

lower orbit than Jason-1/2/3 but higher than ICESat…” 

5) P5, L30: when were the drone data acquisitions? 

Response: 

The drone images were acquired in the morning on May 19 and 21, 2018, for Yamzhog 

Yumco and Nam Co respectively. The Landsat images used for validation purposes 

were both acquired on May 19, 2018. 

6) P5, L31: "similar" in what sense? What have Huang et al done? 

Response: 

Huang et al. (2018) used UAV images to evaluate the performance of water auto-

extraction with four water indices based on Landsat 8 images. The accurate water 

surface boundary was extracted manually from the UAV images using ArcGIS, and then 
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water extraction results from Landsat using different water indices were compared with 

the accurate water surface area from the UAV images. Our data source and method are 

similar, but focused on different targets. On the other hand, we have performed a 

systematic analysis to link the uncertainty in water surface area extraction to the 

uncertainty in optical water levels. 

7) P6, table 2: Some of the missions included many instruments (e.g. ENVISAT: 10 

sensors). You need to specify which sensor and data you used. Here, you distinguish 

between "radar" and "interferometer", which is also based on radar 

(SAR/interferometric radar altimeter). This is confusing, and it would be useful to 

explain the technologies/differences either in the introduction or in a separate 

paragraph in the data or methods section 

Response: 

Thanks for this constructive comment. It is important to clarify the sensors and data we 

used, and they have been added to the table now. The classification of different radar 

altimeters in the original manuscript might be confusing as indicated by the reviewer. 

Therefore, we have provided a brief explanation after the first paragraph of section 2.2 

on the mechanism of different altimeters including SIRAL onboard CryoSat-2. 

Modifications: Information of sensor name and type was added into Table 2, as well as 

data record name; A separate paragraph was added following the 1st paragraph of 

section 2.2 to clarify the difference between different altimeters. 

 

Methods 

1) The first paragraph seems to explain what this study is about and would thus fit 

(better?) to the introduction (it is missing there!). 

Response: 

Thanks for this comment. They have been moved to the introduction section. 

2) P6, L8: "comparing the mean water level of the overlap period" is vague. Explain 

better. 

Response: 

Thanks for raising this issue. It has been explained in detail in our response to short 

comment 1 (the first question in short comment 1). We have also added a separate 

paragraph at the end of section 3.2 to better explain this part. 

3) P7, figure 1: refer to the figure in the text, e.g. when you introduce the data and 

where you are talking about overlap periods. Consider adding the optical data to the 

figure to show the overlap periods you use to create the optical lake level-lake 

surface elevation relationship. 
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Response: 

Yes, we have added references to Figure 1 in three places where we think it is necessary. 

In addition, the optical data are presented in Figure 1. However, it is not easy to show 

the time period we used to derive optical water levels from altimetry data, because for 

different altimetry missions may be used to derive optical water levels for different 

lakes. For instance, if Jason-1/2/3 data are available, optical water levels are generated 

by fitting with the merged Jason-1/2/3 water levels. If ICESat and CryoSat-2 data are 

available for a lake, optical water levels are generated first by fitting with CryoSat-2 

data. After the extended CryoSat-2 data are merged with the ICESat data, the optical 

water levels generated throughout the entire study period are checked again by fitting 

with the merged altimetry water levels to see if there is an extrapolation problem. We 

will discuss this issue in detail in response to the specific comment 8 below in this 

section. 

Modifications: Reference to Figure 1 was added in several places; More information 

about the second regression was added. 

4) P7, L18: It is very unclear what "ENVISAT product" you used. 

Response: 

Thanks for this comment. It has been changed to Envisat/RA-2. 

5) P7, L23: "highest bucket" is an unclear term. What elevation bin spacing did you 

choose for your frequency histograms? It seems you are losing information by 

binning your surface elevation measurements. How does that affect the accuracy of 

the extracted lake level elevations? I assume you have t-distributed data, i.e. roughly 

bell-shaped elevation distributions with long tails. It might be more appropriate to 

use the median elevation measurement, maybe in combination with a threshold to 

remove biased measurements in the tails. From reference DEMs, you should know 

the true surface elevation (of the lake shore). 

Response: 

Thanks for this insightful comment. We used a 0.6-meter bin space to generate a 

histogram and the 'highest bucket' represents the histogram bin with the highest 

frequency. It has now been clarified in the revised manuscript. We do not think much 

information is lost, as for most cycles (>70%) there are more than 80% measurements 

falling into the highest bin. We first used the median value of each cycle to represent 

the lake water level, which is noisier/less smoother than that using the histogram. It 

turns out that a 0.6 m bin space is large enough to capture valid measurements in a cycle. 

It is true that a bell distribution is quite common for most lakes. But setting constant 

thresholds to remove outliers for each lake does not seem to work well in our study. We 

did try this method before but it always ends up in how to choose an appropriate 

threshold. If the threshold is too large, invalid measurements will be involved in a lake. 

Otherwise, certain amount of information would be lost. For instance, Lake Kusai 
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experienced a water level jump up to ~10 m in 2011. If we do not know this information 

before, then a threshold must be larger than ± 10 m from the mean water level/DEM to 

capture the water level jump, which will definitely introduce a number of inaccurate 

measurements in normal cycles. 

6) P8, L4ff: How large are the biases you found? Are they constant over time and in 

space? I assume you compute this per lake? 

Response: 

Thanks for this comment. The spatial distribution of systematic biases seems quite 

random to us, varying from place to place, even the sign of the systematic biases is not 

stable between two certain altimeters (except for Jason-1/2/3). The range of biases is 

within ± 5 m. Fortunately, the systematic bias is quite stable in time, as we compared 

the merged altimetry data with the optical water levels. If the bias is not stable in 

time/elevation, which means that the additive correction is not effective enough, the 

multiplicative correction may be needed. Overall, we did not see the necessity of using 

the multiplicative correction nor did we find any relative research reporting such 

corrections. 

7) P8, L13: it is unclear what you mean with "merging using optical water levels" 

Response: 

It should be clear now as we have provided a separate paragraph at the end of section 

3.1 to summarize the merging process. Thanks for this comment.  

8) paragraph P8, L11ff: Only after reading this paragraph I think I finally understood 

the purpose of this study: You want to generate continuous lake level (volume?) 

series for as many lakes as possible. This requires elevation (and areal?) data from 

different sensors, as missions only last for a few years. As an additional challenge, 

the satellites in question have different orbits that only cover some lakes each, so 

not all elevation datasets can be used for each lake. For each lake, you therefore 

combine lake level elevation time series from the different sensors with data for that 

lake, using the overlap periods to correctly align the records, i.e. you remove 

potential elevation bias between the time series and make sure they are consistent. 

Where there is no sufficient overlap, you use optical data as a proxy: you create a 

statistical relationship between lake levels (from altimetry data) and corresponding 

shoreline position (from optical data acquired at the same time), and then apply 

(extrapolate?) the relationship to (optical) shoreline positions for time periods 

where you lack surface elevation data, but do have optical data. I propose you add 

something like this to the introduction. Secondly, this paragraph would be much 

easier to understand if you first introduce optical water levels and refer to Figures 2 

and 3 in the text. Given the importance of the relationship for your results you might 

want to explain your method in more detail. An important missing detail is whether 

you only interpolate or also extrapolate beyond the available data range? 
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Response: 

We really appreciate these accurate and comprehensive summary and highlights on our 

work. As the referee suggested earlier, we have enhanced the introduction section to 

clarify the purpose and underscore the contributions of this study. We have added 

references to Figure 2 and Figure 3 in this paragraph and we have moved part of it to 

the end of the optical water levels section (section 3.2). The interpolation and 

extrapolation may be the most concerned issue here. Below we provide a few examples 

to justify our methodology.  

Note that we have performed two regressions to generate the optical water levels. For 

the first regression, we only used one altimetry data product and optical images-derived 

lake shoreline positions. After merging the altimetry water levels, we performed the 

second regression using the merged altimetry water levels and the optical water levels 

temporally close to the altimetry water levels throughout the entire study period. This 

information is missing in the original manuscript and we will add it in the revised 

manuscript/supplementary file. Here we show that part of the extrapolation problem is 

evitable in nature with the second regression: 

a) When and where does extrapolation exist? 

First, extrapolation here means the extrapolation of the linear relationship 

developed from the regression analysis between altimetry water levels and lake 

shoreline changes. For instance, if the altimetry water levels used for the 

regression analysis have a range of 4500‒4502 m, then the generated optical 

water levels beyond/below this range are regarded as extrapolated values. On 

the other hand, if an optical water level H1 acquired in 2003 is within 4500‒

4502 m, though the altimetry water levels used for such a regression were from 

2010 to 2017, H1 is still regarded as an interpolated value because it is within 

the elevation range of the linear regression. 

As shown in following figures (both are conceptualized examples, optical water 

levels are fitted with the second altimetry product), when seasonal signal is 

dominated in the time series, there is no need for extrapolation. The red line in 

the optical water levels (which serves as the merging reference to altimetry data 

1) are within the range of the linear regression. The merging between the two 

altimetry water levels can subsequently be achieved by removing the difference 

(symmetrical bias) of the mean water levels between altimetry data 1 and 

altimetry data 2 during the reference period (the red solid line) from altimetry 

data 1 (typically ICESat data). 
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When a multiyear trend is dominated in the time series, the merging reference 

is out of the range of the regression relationship, and then extrapolation may 

occur. Both situations are common in our study. The first situation comprises 

60% of all study lakes, and extrapolation can take place in ~40% lakes. The two 

altimetry datasets in the extrapolation case can still be merged using the similar 

procedure and optical water levels shown in the interpolation case above. 

 

b) How does extrapolation become a problem? 

In the merging process, extrapolation becomes a problem only if the lake bank 

slope experiences an abrupt change at the exact elevation where both altimetry 

products fail to cover, as illustrated in the following figure: 
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Such a situation may happen, but the possibility is relatively low. If it happens, 

the extrapolation will result in a remaining systematic bias in the merged 

altimetry water levels and consequently jeopardizing the accuracy of the optical 

water levels. 

c) How can the problem be avoided? 

By performing the regression analysis twice, it is possible to detect if there is an 

abrupt change in lake bank slope. If the situation in b) does happen, we can 

easily see from the scatterplot of the second regression analysis that the linear 

assumption is no longer met (i.e., the scatterplot would show two 

slopes/curvature). Once an obvious failure in the second linear regression 

occurs, we will re-choose the region of interest (ROI) and go through the entire 

process of generating optical water levels again. However, it only happened 

twice or three times in our study. 

We will provide the details of generating the optical water levels discussed above in the 

supplementary file as they may be too detailed for general readers. 

9) P9, Figure 2: refer to the figure in the text, e.g. where you introduce the data sets 

and in section 3.1 

Response: 

Yes, we have added reference to Figure 2 (now Figure 3, because we inserted a new 

figure after Figure 1) in the first paragraph of section 2.2 and fourth paragraph of section 

3.1. 

10) P9, 3.2: The optical water levels should be introduced before P8, L15ff. 

Response: 
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The sequence has been changed. 

11) P10, L4ff: the part about "shifting gaps" and the ROI is unclear. Do you mean that 

the Landsat 7 gaps are not always exactly at the same place? Did you choose your 

ROIs such that they never contain no-data pixels? How did you ensure that, given 

the large amount of Landsat 7 data? 

Response: 

Yes, the position of gaps in Landsat 7 data is various with time. But they are more like 

vibrating around a fixed location. So, narrowing down the width of ROI can assure 

higher data availability. It is true that filtering a large amount of Landsat 7 archives is 

really tough, but our study was primarily based on GEE and we performed an invalid-

pixel detection to get rid of images with missing pixels in the ROI. The algorithm is 

straightforward: comparing the valid pixel number in the ROI with that from an intact 

image. If the missing pixels in the ROI exceed 2% then the image will be excluded. 

Using 2% instead of 0% is due to the consideration of the algorithm robustness, but 

there is not much difference in the results as the ratio of in-valid pixels is either very 

high (>20%) or extremely close to zero. 

12) P10, L17: reference for the Otsu method? 

Response: 

It has been added. 

13) P10, L22: How did you decide whether to use a linear or 2nd order polynomial fit? 

Response: 

Thanks for raising this comment. In fact, it only happened in two lakes: Zhari Namco 

and Chibzhang Co, where we already have Jason-1/2/3 data for altimetry data merging. 

For other lakes we only performed linear regression, and if the scatterplot of the 

regression has a clear curvature, we will re-choose the ROI (see our response to 

comment 8 in the method section). For Zhari Namco and Chibzhang Co, if we use linear 

regression, a clear discrepancy will show up at either low water levels or high water 

levels. Therefore, using a higher order regression is a choice. 

14) P10, L25: How did you determine cloud cover? 

Response: 

The cloud cover was calculated in GEE based on the quality band of Landsat 5/7/8. 

Pixels in the quality band categorized as cloud or cloud shadow will be masked with a 

mask function provided in GEE. Then, the cloud/cloud shadow pixels will be regarded 

as invalid pixels and a corresponding rate can be calculated by dividing invalid pixels 

with the total pixels in the ROI. If the cloud rate is higher than 5%, the image will be 

discarded. 

15) P11, L2: How much data pairs did you end up with per lake, and how did you select 
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pairs with regard to acquisition dates? I assume you did not always have altimetry 

and shoreline data from the same date (?) 

Response: 

We have an average of 55 data pairs for the second regression of optical water levels. 

About 70% of the study lakes have more than 20 data pairs. The time difference of data 

pairs is within 5 days. However, if there are not enough data pairs (<10 pairs) with a 

time difference smaller than 5 days, we will increase the time difference to 10 days. 

Only for a lake named Xuru Co, where altimetry information is very limited, we 

increased the time difference to 30 days. 

16) P11, figure 3: c) You might want to colour the dots according to time to check for 

(and show the readers that there is no) temporal bias. From d), it seems optical water 

levels are somewhat too high around 2004 and 2015, but too low around 2009? 

Response: 

Yes, this is a nice suggestion. Based on the following figure, it seems that in 2009 the 

optical water levels might be a little lower than expected. It may be caused by the 

uncertainty in altimetry water levels. In 2009 the main data source is Envisat, which 

has poorer quality than other altimetry products (except Jason-1) in our study. Overall, 

the impact of this problem is quite limited as the linear relationship is still strong. 

 

Modifications: Figure 4 (c) was replaced. 

17) P12, L9: How did you derive these ROIs? Are they drawn manually? 

Response: 

Yes, they are drawn manually. Selection criterion is illustrated in the manuscript. 

However, it still requires some experience. 

18) P12, L15: regression between the lake area and ..? 
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Response: 

It is between lake area and merged lake water levels, including altimetry water levels 

and optical water levels, but most data pairs are lake areas and optical water levels, 

because they usually come from the same Landsat image. 

19) P13: As far as I am aware, Strahler's catchment hypsometric model is based on river 

catchments with a pour point, not endorheic lake catchments as it is the case for the 

TP. I am not entirely sure what you used this model for (to compute lake water 

volumes?), but I am not convinced that this is a correct approach. I am also not sure 

why you need that relationship at all? If you have lake area and lake level time 

series, you can directly compute volume changes from these? 

Response: 

Thanks for raising this comment. We intended to provide some justification that a 

parabolic relationship between the lake area and lake water level is reasonable. But it 

seems that such a justification is unnecessary and inappropriate because the assumption 

of exorheic basins is not met. We will remove this analysis from the revised manuscript.  

The reason why we use the lake area-water level relationship to calculate the volume 

change is the lack of lake water areas with a sufficient temporal resolution. In general, 

we only have ~20 lake area observations for each lake, because the ROI for lake area 

extraction is much larger than that of lake shoreline changes, reducing the data 

availability. If we use the volume formula for computation, we can only get ~20 volume 

change values. With a lake area-water level relationship, we can derive the lake volume-

water level relationship and convert all water level estimates into lake volume changes. 

Modifications: The Strahler’s model was removed from the manuscript. 

20) P14, Figure 6: It is unclear what the parameters y, x, z, a and d represent. 

Response: 

Thanks for this comment. We will remove this part from the revised manuscript. 

21) P14, table 3: state nr. of data pairs (optical shoreline position + altimetric lake level) 

rather than optical data points 

Response: 

Yes, they have been added. 

 

Validation 

1) P16, L5: unclear sentence 

Response: 

The sentence has been reorganized. 
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Modifications: Part of the 1st paragraph of Section 4.1 was reorganized to show that the 

focus is the uncertainty of optical water levels. 

2) P16, L25: the drone GPS tracker alone might not be very accurate, you may easily 

get a skewed/stretched image composite. Did you use ground control points? 

Response: 

We did not get ground control points. It is true that there may be skewing or stretching 

distortions in UAV images. So, we redid the experiment with some commercial high-

resolution data such as GF-2 (China's High Resolution Satellite, GF-2, with a 

panchromatic resolution of 0.8 m), which has larger coverage and more ground features 

for co-registration with Landsat OLI image. 

Modifications: The UAV image-based validation was removed and replaced by GF-2 

image-based validation, the later has undergone co-registration. 

3) P16, L27: This seems a rather dodgy way to determine the resolution of your image 

composite. 

Response: 

Yes, it is not very rigorous, and we have abandoned it. 

4) P17, figure7: which lake? images a) and e) should have the same size/spatial 

resolution. An overview map would be useful. 

Response: 

Thanks for this comment. We performed UAV scanning and water level sensor 

installation in both lakes. However, the water level sensor in Nam Co was broken down 

soon after installation and did not provide much information. Figure 7 shows pictures 

acquired at the Nam Co experiment spot. An overview map has been added into the 

study area section (section 2.1), as the referee suggested before. We decided not to use 

the UAV image as a validation basis, but we keep it here to show the environment at 

the experimental spot. In addition, the up-left image from Landsat 8 has been changed 

into an overview map of Nam Co and the experiment location. 

Modifications: An overview map was added to Figure 7. 

5) P17, L9ff: extrapolated or interpolated? Provide the parameters and statistical 

relationship here, maybe even in an additional figure. 

Response: 

The optical water levels of Yamzhog Yumco used for validation are interpolated. The 

statistics of regression are already shown in Figure 3. 

6) P18, figure 8b: add 1:1 line and error bars for the data points 

Response: 
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Yes, they have been added as shown in the figure below. 

 

7) P18, 19: How did you coregistrate the UAV image composite and Landsat image? 

It seems a spatial shift will completely alter the (relative) shoreline position and 

thus the basis for your entire analysis: In Figure 9, shifting the shoreline only 

slightly in e.g. north-south direction will greatly change water/land (sub) pixel 

counts and thus the basis for the relationship in (b). In my opinion, an error analysis 

would require several image pairs (UAV and satellite-borne) and a solid 

coregistration basis, e.g. river/road crossings as clear tie points, or at least a round 

lake or elongated peninsula rather than a straight shore line. 

Response: 

This is a very constructive comment. We agree that there might be a spatial shift in the 

UAV image. Therefore, we no longer use the UAV image because there are very few 

ground features for image co-registration. Instead, we purchased some high-resolution 

commercial images obtained by GF-2 (0.8 m resolution at the panchromatic band) to 

repeat the analysis. The GF-2 images cover a much larger area and more diverse ground 

features, making it easier for image co-registration. The following figure shows control 

points that we selected for one of the GF-2 images. The co-registration error is 1.2 GF-

2 pixels, say ~1 m. The other two GF-2 images have a co-registration error of 2.45 

pixels and 2.72 pixels, respectively, corresponding to ~2 m. 
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Modifications: Co-registration Information of GF-2 images and Landsat images was 

added to the study data section and validation section. 

8) P18, L7: what do you mean with "concurrent"? What dates? 

Response: 

It means the "same period" image. We have changed this expression. 

9) P22, L1ff: Do not forget the local conditions: ice, snow, wet, dry, muddy shore 

conditions or also waves greatly affect the water classification result. 

Response: 

Thanks for this comment. Yes, the local condition is an important factor affecting the 

water area classification accuracy. Therefore, we chose three high resolution images 

acquired in different seasons and different places representing typical local conditions 

around the TP lakes, covering turgid water (wet season), lake ice, and dry season. As 

for vegetation, most of the TP lakes do not have much vegetation on the lake bank, with 

the Landsat images unable to detect information on vegetation. 

 

Applications 

1) P22, L10f: Are these your own numbers? How do they compare to previous 

estimates? 

Response: 

Yes, they are results generated from our product. There has not been any published 

study that has exactly the same study period or lakes as what we did. But for the overlap 

periods and lakes, the results are similar. We have made many comparisons with 

published studies or open source data, including the comparison between our product 

and Hydroweb data in Figure 14 in the original manuscript (now Figure 11). 

2) P22, L14ff: mark all lakes mentioned in the text in the map. If they are very close 
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to each other, an extra zoom-in map might be useful. 

Response: 

Yes, this has been done, as shown in the figure below: 

 

3) P23f: restructure section 5 to avoid splitting the Selin Co basin analysis in two 

sections (5.1 and 5.3). How much of this is new, i.e. has not been published before? 

How does your dataset make a difference? 

Response: 

Thanks for this comment. We have only talked about Lake Kusai in section 5.3. All 

discussion about Selin Co is shown in section 5.1. There are some published studies 

that report the unusual spatial pattern of lake area/water level/storage changes in the 

Selin Co basin. However, there is no discussion about the reason. We proposed a 

possible explanation. On the other hand, given the complexity of modeling a multi-lake 

endorheic basin (Zhou et al., 2015), our product does provide a chance for investigating 

the structure of such a endorheic basin with complicated lake-river systems. For 

instance, the height of outlet of three upstream lakes in the Selin Co basin may be 

inferred from the dense time series from our product with the help of a 

hydrologic/hydrodynamic model. 

4) P23, L5ff: You mention only the study of Yao et al. (2018). How about other 

publications? Also, from figure 12 it seems quite clear that the Yao data contains 

two outliers. Consider using a robust fitting method rather than regular linear 

regression. 

Response: 

Thanks for this comment. Song et al. (2013) notice the decreasing trend of the three 

lakes in the upstream of Selin Co during 2003 to 2009 when ICESat data are available, 
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but there are no comments or discussion about the reason. We found that Hydroweb 

data do not catch the decreasing trend of Urru Co after 2000. Jiang et al. (2017) did not 

investigate the decreasing trend of Urru Co from 2003 to 2015 as their altimetry data 

from ICESat and CryoSat were not linked together but separately discussed instead. 

Hwang et al. (2019) reported a similar problem as Jiang et al. (2017). Other studies do 

not present specific statistics for the comparison nor do they cover those lakes.  

With a robust linear fit method (Theil-Sen estimator), the result from Yao et al. (2018b) 

did show a decreasing trend, consistent with our result. But they clearly did not use a 

robust fitting in their published paper/dataset. 

 

5) P24, L10: Depicting intra-annual variation is a strength of your dataset that you 

might want to emphasize more. 

Response: 

Yes, we did describe the intra-annual variation in the lakes we studied.  

6) P24, 5.2: Rather than treating the comparison to the LEGOS Hydroweb data as an 

application case this should be part of the validation section! 

Response: 

Yes, we have moved part of section 5.2 to the validation section (section 4.3). 

7) P25, L8: "some kind of" bias removal: be more specific. The magnitude of the 

vertical shift between the two datasets fits to e.g. geoid/ellipsoid height confusion, 

but the temporal variability of the shift is worrying. Rather than speculating about 

the cause and assuming that the Hydroweb data is wrong you ought to find the 

reason for the differences - which may lie in your data processing/method. 

Response: 

Thanks for raising this insightful comment. The reason for the vertical shift between 

our product and Hydroweb data possibly lies in different geoids/reference ellipsoids, as 
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illustrated in our response to referee comment 1 (General comment 3). However, we 

respectfully disagree on the point of the temporal variability in the vertical shift.  

In the manuscript, we just indicate that partial Hydroweb data are not quite consistent 

with the optical water levels (e.g., in the three lakes shown in Figure 15), which are able 

to provide a straightforward answer to "in which period the lake has higher water level". 

As we have clarified in the revised manuscript, such a relationship on relative 

magnitudes reflected by the optical water levels does not change with the linear fitting 

parameters (unless using a negative slope, which is impossible) and that is why we 

regard it as robust. What we did was merging different altimetry data sources based on 

the reference provided by the optical water levels. Therefore, it is not likely to be a 

problem for this straightforward and robust scheme for merging altimetry data. 

8) P25, L13ff: "reverse relationship" and the conclusion you draw (Hydroweb may 

"underestimate decreasing trends"): unclear what you mean 

Response: 

Thanks for raising this comment. We apologize for making a wrong expression in the 

original manuscript: the conclusion should be "…there is a possibility that Hydroweb 

data overestimate the increasing trend of water levels in Taro Co from 2003 to 2015". 

As shown in Figure 15 (a), the last two measurements from ICESat should equal or be 

even larger than the first two/three measurements from CryoSat/Saral based on optical 

water levels, but the Hydroweb data show a reverse relationship that the last two ICESat 

measurements is 0.3~0.4 m smaller than the first two CryoSat/Saral measurements. 

This phenomenon suggests that ICESat water levels of Taro Co from Hydroweb is 

0.3~0.4 m lower than the expected (in other words, CryoSat/Saral time series from 

Hydroweb is 0.3~0.4 m higher than the expected). It would therefore result in an 

overestimation of increases in lake water levels in Taro Co during the time window. In 

addition, the optical water levels in Taro Co were interpolated with the developed 

statistical relationship. Therefore, the discrepancy between Hydroweb and our product 

is not attributed to the extrapolation of the optical water levels. 

9) P25, figure 15: What are the red/blue shaded areas? (a) compare the series after 

removing the shift. Sadly, the series (b) and (c) are no where discussed. The 

temporally varying offsets between the series from different data sources should be 

analysed and removed, or at least explained. 

Response: 

Thanks for this comment. The red and blue areas were meant for 

highlighting/comparing the periods when an obvious discrepancy between Hydroweb 

data and optical water levels from our product occurs. As for Figure 15 (a), we have 

removed the systematic vertical offset between our dataset and Hydroweb data of Taro 

Co, which is shown in the figure below: 
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As we suggest earlier in the response letter, there might be a remaining systematic bias 

between ICESat and CryoSat/Saral data from Hydroweb. Based on optical water levels, 

the peak water level of 2009 shall be higher than that of 2010 (again, such a relationship 

does not change regardless of the uncertainty in the linear fitting parameters during the 

generation of optical water levels), which means that the last two ICESat measurements 

are supposed to be higher or equal the first a few CryoSat/Saral measurements. 

However, this is not seen in the Hydroweb data for this specific lake. 

As for Figure 15 (b) and (c), they show other examples of possible remaining systematic 

biases in Hydroweb data. The explanation is exactly the same as that of Figure 15 (a) 

and we did explain the discrepancy in the manuscript for Figure 15 (a). Thanks for your 

kind attention to this. 

10) P26, figure 16: again, there seems to be some time-dependent offset between the 

optical and altimetry-based lake levels, e.g. optical levels are too high around 2005 

in the top left panel, and too low around 2005 vs. too high from ca. 2013 in the 

middle right panel. Can you explain this? 

Response: 

Thanks for this insightful comment. Though there seems to be an offset at around 2005, 

the actual deviation between the optical and altimetry water levels here (ICESat data) 

is about 0.2~0.3 m, which is within the uncertainty range of altimetry measurements 

for inland water bodies. Instead of a time-dependent offset, we think it is more like a 

random error, which can be caused by the loss of valid altimeter footprints of that cycle, 

e.g., a random shift of ground tracks resulting in a smaller cross section and fewer 

footprints on the lake. It is also suggested that optical water levels may be more robust 

and less noisy than altimetry data. This is the same for the middle right panel. It should 

be noted that in the middle right panel, Envisat/RA-2 was used, which has a larger 

uncertainty than ICESat. Therefore, it is not surprising that altimetry dots seem to be 

more randomly distributed. 

11) P28, figure 17: What does the blue shaded area show? What data are you showing 

in these time series? Is the right panel a zoom-in of the left panel? 
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Response: 

The blue shade shows the period when an outburst happens. The data we show in Figure 

17 are lake water storage changes for relevant lakes during the outburst event. Their 

locations are shown in Figure 18 (b) and (c). And yes, the right panel is a magnified 

plot of the blue shade in the left panel. 

12) P28, L17: "Team, 2017": check author name 

Response: 

Yes, we have checked the reference. It has been cited dozens of times in other journal 

papers according to the Google Scholar. 

 

13) P29, figure 18: acquisition dates of the images in b) and c)? 

Response: 

Figure 18 (b) was acquired in December, 2010. Figure 18 (c) was acquired in December, 

2013. The outburst took place at the end of 2011. These are images from the Google 

Earth (i.e., the image source is Landsat but experienced merging processes, e.g., 

merging of images acquired from the same month) and we do not know the exact 

acquisition date. 

Modifications: The acquisition time was added in the annotation of Figure 18. 

14) P29ff: The entire overflow analysis (lots of new methods introduced) seems to be a 

study on its own and somewhat out of place in the applications (results) section of 

this paper. 

Response: 

Thanks for this comment. We have shortened this section and moved some of the 

analyses into the supplementary file. But we would like to keep this part, because some 

information (e.g., height and width of the outlet) of the overflow lake, Lake Kusai, is 

critical to downstream residents and emergency administrations, given that there are 

reports showing high overflow/outburst risks of Lake Salt in the near future. 

Modifications: Part of the overflow modeling was moved to the supplementary file. 

Conclusions 

1) A short summary of your methods should be provided, in particular the novelty of 

using shoreline positions from optical data to interpolate between available lake 

level measurements. 
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Response: 

Yes, this has been added. 

2) P31, L7: rephrase the sentence to avoid brackets. 

Response: 

Done. 

3) P31, L10f: Unclear what you mean. From the comparison you provide currently, I 

am not yet convinced that your dataset is more correct than the Hydroweb data. 

Response: 

Thank you for this comment. We have put more detailed explanations (most of them 

are already discussed in this response letter) in the second paragraph of section 5.2 and 

hopefully this would convince the reviewers and readers. Based on the overall 

comparison shown in previous Figure 14 (now Figure 11), our product is generally 

consistent with Hydroweb data, and has a higher temporal resolution.  

But there are indeed some discrepancies between the two products over some lakes 

during some time windows as what we illustrated earlier. Hydroweb is a decent global 

dataset whereas our dataset is more a regionally based product. It is not uncommon in 

the remote sensing community that a regionally based dataset may have some 

advantages than a global dataset in some aspects due to the improvement of the 

algorithm for the data generation and use of more detailed (a priori) information derived 

from optical images to densify the spaceborne altimetry water levels with systematic 

errors being well removed. The developed method we present has potential to improve 

lake water level and storage changes in different regions globally at large. 

4) P31, L18: "rigorous uncertainty analysis": As mentioned above, I am not convinced 

about the theoretical uncertainty exercise you provide. 

Response: 

Thanks for this comment. We have redone the uncertainty analysis with more high-

resolution images and corresponding Landsat images. We have also provided co-

registration accuracy and considered different seasons and locations as the reviewer 

suggested. This part should now be convincing the reviewer and general readers. 

5) P31, L25ff: These insights about extrapolating using the derived statistical 

relationship are very important, but currently not quantified, mentioned or discussed 

anywhere else in the paper. 

Response: 

Thanks for this constructive comment. We will put the discussion of extrapolation 

we made in this response letter (specific comment 8 in the method section) into the 

supplementary file. Clearly, our discussion mainly focuses on the period during 
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which various altimetry data sources are merged, but does not include the period 

before 2002 when little altimetry information is available and DEM is too course 

(for instance, SRTM DEM has a 1 m vertical resolution with more than 10 m vertical 

uncertainty according to Mukherjee et al. (2013)) to provide a detailed description 

on the lake shore micro topography. Therefore, we do not have much information 

and materials to discuss about the extrapolation before 2002.  

We have informed readers in the manuscript that this is a possible issue but it may 

only exist in the first 2‒3 years of the dataset for lakes with strong signal from 

multiyear trends as opposed to seasonal variations. After all, compared with the 18-

year study period, the impact of extrapolation of the optical water levels during 

2000‒2002 would be quite limited. 
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A list of modifications in the manuscript 

 

Modification position is referred to the marked-up manuscript. 

Comment Modification Modification position 

Modifications based on SC1 

SC1 General comment None None 

SC1 Specific (1) A separate paragraph summarizing the 

altimetry data merging process was 

added to the end of section 3.2. 

P20, L4-L14 

SC1 Specific (2) None None 

Modifications based on SC2 

SC2 General comment None None 

SC2 Specific (1) A separate paragraph was inserted 

following the 3rd paragraph of section 

3.1 to briefly introduce the threshold 

waveform retracking scheme 

P11, L21-L25 

SC2 Specific (2) An explanation was inserted to the 1st 

paragraph of section 4.2. 

P26, L7-L8 

SC2 Specific (3) An explanation was inserted to the 

abstract to clarify the lake area. 

P1, L18 

SC2 Specific (4) Unit and scale were added to Figure 

12 

P36, L4 

SC2 Specific (5) Unit of y axis was added to Figure 16 P42, L7 

Modifications based on RC1 

RC1 General (1) Uncertainties were added for every 

lake volume/water level number, most 

of them appear in the Application 

section 

everywhere 

RC1 General (2) None None 

RC1 General (3) "…all water levels were with respect 

to EGM96…" was removed from the 

manuscript; a table containing 

reference ellipsoid and geoid for each 

lake was provided in the 

supplementary file 

P12, L21; 

Supplementary file part 1 

RC1 General (4) None None 

RC1 General (5) Same as SC2 Specific (2) Same as SC2 Specific (2) 

 

RC1 Specific (1) The reference (Zhang, G. et al., 2014) 

was added in the 1st paragraph of 

introduction and “ETM+” was change 

into “ETM+” everywhere 

P2, L7 

everywhere 

RC1 Specific (2) “long-term” was changed into everywhere 



“multiyear” everywhere 

RC1 Specific (3) The two references (Wan, W. et al., 

2016, Zhang, G. et al., 2013) were 

added in the 1st paragraph of section 

2.1. 

P6, L7 

RC1 Specific (4) “Lake Selin Co” was changed into 

“Selin Co”; “Lake Nam Co” was 

changed into “Nam Co”: “Lake Zhari 

Namco” was changed into “Zhari 

Namco”; “Lake Goren Co” was 

changed into “Goren Co”; “Lake Urru 

Co” was changed into “Urru Co”; 

“Lake Yamzhog Yumco” was changed 

into “Yamzhog Yumco” 

everywhere 

RC1 Specific (5) None None 

RC1 Specific (6) None None 

RC1 Specific (7) None None 

RC1 Specific (8) Units of Table 2 were moved to the 

first row 

P9, L26 

RC1 Specific (9) None None 

RC1 Specific (10) None None 

RC1 Specific (11) None None 

RC1 Specific (12) the background of Figure 12 has been 

changed into green 

P36, L4 

RC1 Specific (13) Figure 13 was revised with outliers 

removed 

P37, L5 

RC1 Specific (14) None None 

RC1 Specific (15) None None 

RC1 Specific (16) The title has been changed with 
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Abstract. The Tibetan Plateau (TP) known as Asia'’s water towers is quite sensitive to climate change, reflected by changes 

in hydrological state variables such as lake water storage. Given the extremely limited ground observations on the TP due to 

the harsh environment and complex terrain, we exploited multisource remote sensing, i.e., multiple altimetric missions and 15 

Landsat archives to create high temporal resolution dense time series (with monthly and even higher such as 10 days on 

average)to weekly temporal resolution of lake water level and storage change time series at weekly to monthly timescales s 

acrossfor 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2>100 km2) on the TP during 2000‒

2017 (the data sets areis available online with a DOI: https://doi.org/10.1594/PANGAEA.898411). Field experiments were 

carried out in two typical lakes to validate the remotely sensed results. With Landsat archives and partial altimetry data, we 20 

developed water levels from lake shoreline changespositions (namely i.e., optical water levels) that cover most of TP 

lakesthe study period and serve as an ideal reference for merging multisource lake water levels. The  with systematic biases 

being removed. To validate the optical water levels show an uncertainty of ~, field experiments were carried out in two 

typical lakes, whileand theoreticalal uncertainty analysis was performed based on high -resolution optical images (0.18 m 

that) as well. The RMSE of the optical water levels is 0.11 m compared with the in situ measurements, which is consistent 25 

with the theoreticalal analysis. The accuracy of the optical water levels that can be derived in relatively small lakes is 

comparable with most altimetry data and largely reduce the lack ofprevails in relatively small lakes. The The resulting 

merged optical and altimetric dense lake water levels (optical and altimetric observations with systematic errors well 

removed for most of lakes. The densified lake water levels provided critical andwater levels) can provide accurate 

information on the multiyearlong-term and short-term monitoring of lake water levels and storage changes on the TP. We 30 

found that the total storage of the 52 lakes increased by 97.3 km3 at two stages, i.e., 6.68 km3/yr during 2000‒2012 and 2.85 

https://doi.org/10.1594/PANGAEA.898411
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km3/yr during 2012‒2017. The total overflow from Lake Kusai to Lake Haidingnuoer and Lake Salt during Nov 9‒Dec 31 in 

2011 was estimated to be 0.22 km3, providing, asand well as critical information on lake overflow flood monitoring and 

prediction as the expansion of some TP lakes becomes a serious threat to surrounding residents and infrastructure. 

1 Introduction 

The Tibetan Plateau (TP), providing vital water resources for more than a billion population in Asia, is a sensitive region 5 

undergoing rapid climate change (Field et al., 2014). There are more than 1,200 alpine lakes larger than 1 km2 (Zhang et al., 

2017a; Zhang et al., 2014) on the TP where glaciers and permafrost are also widely distributed. With little disturbance by 

human activity in this area, lake storage changes may serve as an important indicator that reflects changes in regional 

hydrological processes and responses to climate change. Wang et al. (2018) showed that global endorheic basins are 

experiencing a decline in water storage whereas the endorheic basin on the TP is an exception. Given the fact that TP lakes 10 

have been expanding for more than 20 years (Pekel et al., 2016), pasture, farmland, and infrastructure near the lake shore 

face the risk of inundation.a high quality data sets on lake water level and/or storage wouldcould be the basis for 

investigating its causes (e.g., climate change/ or variationvariability) and interactions with the water/energy cycles and 

human society (e.g., increasing risks of inundation and overflow floods). Therefore, it is imperative to largely improve the 

monitoring of TP lakes. 15 

As an important component of the hydrosphere, terrestrial water cycle, and global water balance, millions of inland water 

bodies such as lakes, wetlands, and human reservoirs have been investigated globally and their total storage was estimated to 

be 181.9 × 103 km3  based on statistical models (Lehner and Döll, 2004; Messager et al., 2016; Pekel et al., 2016). Lake 

storage changes that play an important role in the , which is more concerned in the regional water balance, can be derived 

from observed changes in lake water level and area (Crétaux et al., 2016; Crétaux et al., 2011b; Song et al., 2013; Yao et al., 20 

2018b; Zhang et al., 2017a).remotely sensed changes in lake water level and area (Frappart et al., 2005). Most of these two 

kinds of observations in related studiesLake water levels and areas are mostly  were obtainedderived from satellite remote 

sensing due to the scarcity of in situ data across the TP where the harsh environment and complex terrain make in situ 

measurements difficult to perform and costly and risky. (Crétaux et al., 2016; Song et al., 2013; Yao et al., 2018b; Zhang et 

al., 2017a). Changes in lake water level can be monitored using satellite altimetry with a radar or laseraltimeters initially 25 

designed for sea surface topography or ice sheet/sea ice freeboard height or ice berg measurements. Altimeters determine the 

range between the nadir point and satellite by analysing the waveforms of reflected electromagnetic pulses.  

The waveforms of radar or laser pulse may, however, be contaminated by signal from complex terrain when applied to 

inland water bodies, butThere are two mainmajor categories of satellite altimeters,  (i.e., laser and radar). Laser altimeters, 

e.g., ICESat, operating in the near infrared wave lengthband has a smaller size of footprints and generally higher accuracy 30 

than radar altimeters, facilitating applications in glacier/ice mass balance studies (Neckel et al., 2014; Sandberg Sørensen et 
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al., 2011). Rader altimeters, operating in the microwave band, have larger footprints and are more likely to be contaminated 

by signals from complex terrain when applied to inland water bodies. Nevertheless, it is possible to remove these impacts 

with waveform retracking algorithms (Guo et al., 2009; Huang et al., 2018; Jiang et al., 2017). Zhang et al. (2011) mapped 

water level changes in 111 TP lakes for the period 2003–2009 period using ICESat-1 data that have a temporal resolution of 

91 days. ICESat-1 data have relatively denser ground tracks but a lower temporal resolution than most of other altimetric 5 

missions. This means that ICESat-1 covers more lakes but provide few water level observationss for each lake. After 

ICESat-1 was decommissioned in 2010, CryoSat-2 data spanning the periodstarting from 2010–2015 were adopted in related 

studies (Jiang et al., 2017), due to its similar dense ground tracks and competitive precision as ICESat-1. Other altimetric 

missions, such as TOPEX, Jason-1/2/3, ERS-1/2, and ENVISATEnvisat also have some but relatively limited applications in 

monitoring changes in lake water level on the TP due to sparse ground tracks. In this study, multisource altimetry data (i.e., 10 

Jason-1/2/3, ENVISATEnvisat, ICESat-1, and CryoSat-2) were combined if available for the study lakes, with the optical 

water levels developed in this study as a critical reference to densify increase the altimetric water level observations and 

merging data from multiple altimetric missions. 

Changes in lake area can be captured by optical/SAR images from medium or high spatial resolution remote sensing data, 

such as Landsat TM/ETM+ETM+/OLI. Extraction of lake water bodies can be manually (Wan et al., 2016) or automatically 15 

(Zhang et al., 2017b) achieved. Automatic water extraction methods based on the water index and auto-thresholding are 

more efficient in dealing with a large amountmass of remote sensing images. Even so, acquisition and preprocessing of such 

a large amount of historical images data (~10TB) covering TP lakes are still intractable for researchers with limited 

computational resourcesresources. With the help of cloud-based platforms, such as the Google Earth Engine (GEE) that 

significantly reduces data downloading and preprocessing time, tens of thousands of images may be processed online in days 20 

instead of months (Gorelick et al., 2017). In this study, more than twenty thousand Landsat TM/ETM/OLI images were 

processed online using GEE to extract lake water bodies based on the water index and Otsu algorithm.In this study, more 

than twenty thousand Landsat TM/ETM+/OLI images were processed online using GEE to extract lake water bodies based 

on the water index (McFeeters, 1996) and Otsu algorithm (Otsu, 1979). 

There are somehave been studies focusing on changes in lake water storage on the TP over recent decades, e.g., Zhang et al. 25 

(2017a) examined changes in lake water storage for ~70 lakes from the 1970s to 2015 with ICESat-1 altimetry data and 

Landsat archives. An individual lake area data set from the 1970s and annual area data after 1989 were used. Due to the short 

time span of ICESat-1, they used the hypsometric method to convert lake areas into water levels. Yao et al. (2018b) used 

DEMs and optical images to develop hypsometric curves for lakes on the central TP, and estimated annual changes in lake 

water storage for 871 lakes  from 2002 to 2015 for 871 lakes. These studies have a wide spatial coverage of lakes but 30 

relatively lower temporal sampling and little spaceborne altimetric information, which may limit the accuracy of trends in 

lake water level/storage in some cases and short-term monitoring of lake overflow floods. The LEGOS Hydroweb provides a 

lake data set, including multisource altimetry-based changes in lake water level and storage as well as hypsometric curves 
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for 22 TP lakes (Crétaux et al., 2016; Crétaux et al., 2011b). The data set incorporated incorporates more spaceborne 

altimetric information and provided has adata of higher temporal resolution. However, there may be a remaining bias when 

different sources of altimetric data were are merged, due to the lack of some important reference that can be derived from 

optical remote sensing images to be shown in this study. We term the reference data as the 'optical water level' to be 

introduced in section 3.2. Here, we list recent studies and data sets (Table 1) to provide a concise summary on remote 5 

sensing the progressmonitoring of remote sensing-based water levels and storage changes monitoring on TP lakesover lakes 

on the TP. 

Table 1. Recent studies and data sets on TP lakes. H, A, V in the table denote lake water level, area, and volume, respectively. 

Reference No. of 

study 

lakes 

Data type Time span Temporal resolution Source data 

(Song et al., 

2013) 

30 H, A, V, and 

hypsometric 

curve 

4 records for 1970s, 1990, 

2000 and 2011 

Decadal Altimetry data: 

ICESat-1 

Optical data: 

Landsat TM/ETM+ETM+ 

(Crétaux et 

al., 2016) 

22 H, A, V, and 

hypsometric 

curve 

1995‒2015 

Relative bias partially 

removed (only for altimeters 

with overlapping period) 

Sub-monthly for lakes 

with T/P, and Jason-1/2 

data, and ~monthly for the 

rest lakes 

Altimetry data:  

T/P, ERS-2, GFO, Envisat, Jason-1/2, 

SARAL, ICESat-1, and CryoSat-2  

Optical data: 

Landsat TM/ETM+ETM+/OLI and 

MODIS 

(Wan et al., 

2016) 

>1000 A 3 records for 1960s, 2005, 

and 2014 

Decadal Optical data: 

Landsat ETM+/OLI, CBERS-1 CCD, and 

GF-1 WFV 

(Jiang et 

al., 2017) 

70 H 2003‒2015 

Relative bias between 

ICESat and CryoSat-2 

unremoved 

~Monthly Altimetry data: 

ICESat-1, and CryoSat-2 

(Yang et al., 

2017) 

874 A 2009‒2014 Monthly data for 24 

largest lakes, and yearly 

data for the rest lakes 

Optical data: 

Landsat TM/ETM+/OLI and HJ-1A/1B 

(Zhang et 

al., 2017a) 

60~70 H, A, V, and 

hypsometric 

curve 

One record for 1970s, and 

annual data for 1989‒2015 

Annual Altimetry data: 

ICESat-1 

Optical data: 

Landsat TM/ETM+ETM+/OLI 

(Li et al., 

2017b) 

167 H 2002‒2012 ~Monthly Altimetry data: 

ICESat-1 and Envisat 

(Yao et al., 

2018b) 

871 H, A, V, and 

hypsometric 

2002‒2015 

 

Annual Optical data: 

Landsat TM/ETM+ETM+/OLI and HJ-



5 

 

curve 1A/1B 

DEM data: 

SRTM and ASTER 

(Hwang et 

al., 2019) 

59 H 2003‒2016 

Relative bias partially 

removed (only for lakes 

with Jason data/in situ data) 

Sub-monthly for lakes 

with Jason-2 data, and 

~monthly for the rest lakes 

Altimetry data: Jason-2/3, SARAL, 

ICESat-1, and CryoSat-2  

(Jason-3 data for validation) 

Our study 52 H, A, V, and 

hypsometric 

curve 

2000‒2017 

All relative biases removed 

Sub-monthly for most 

lakes 

Altimetry data: Jason-1/2/3, Envisat, 

ICESat-1, and CryoSat-2  

Optical data: 

Landsat TM/ETM+ETM+/OLI 

The overall objective of this study was to examine multiyearlong-term and short-term changes in water level and storage 

across 52 lakes with surface areas larger than 150 km2 on the TP by merging multisource altimetry and optical remote 

sensing images to generate a much denser (monthly or higher such as 10 days on average), more coherent lake water level 

and /storage change data sets of high temporal resolutions ranging from weekly to monthly timescales duringcovering the 

period 2000‒2017 and the hypsometric curve (i.e., the lake area-water level relationship) for each study lake. To investigate 5 

changes in lake storage, changes in lake water levels and  lake areas need to be derived from multisource remote sensing. 

 First, water levels from various satellite altimeters (seeFigure 1) for each lake as well as changes in lake shoreline positions 

and lake areas from optical remote sensing images (i.e., Landsat TM/ETM+ETM+/OLI) were derived. Second, the 

systematic biases between different altimetry data were removed by either comparing the mean water levels of the overlap 

period (see Figure 1) or comparing the two water level time series with changes in lake shoreline positions, depending on the 10 

length of the overlap period (details can be found in section 3.1). TheL lake shoreline changesposition-derived water levels, 

termed as the optical water levels against altimetry water levels in this study , can serve as a unique source of information 

reflecting water levels changes as well as a data merging reference. We will show that after deriving two or three regression 

parameters, llake shoreline changespositions can well representreflect  lake water levels with comparable accuracy as 

altimetry-derived water levels. Third, with information on changes in lake water levels and water areas derived from 15 

altimetry data and optical remote sensing images, the hypsometric curve that describes the relationship between the lake 

water level and lake water storage changes can be derived. Fourth, the integral of the hypsometric curve was performed to 

convert lake water levels time series  into lake storage change time seriess. for each study lake.  

Results of this study provide a comprehensive and detailed assessment of changes in lake level and storage on the TP for the 

recent two decades, and short-term monitoring of lake overflow floods for some lakes. This study could largely benefit more 20 

detailed investigations into lakes, lake basins, and regional climate change, because the generated data set has the highest 

temporal resolution during the study period. with systematic biases well removed. To ensure the data quality, field 

experiments were carried out and in situ data were collected to examine the uncertainty in the derived optical water levels. 

Details will be illustrated in the following sections. 
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Figure 1. Spatial (the number of lakes covered) and temporal coverage and their overlap periods of multiple satellite altimetry 

missions used in this study, including Jason-1/2/3, Envisat, ICESat, and CryoSat-2. 

 

2 Study area and data 5 

2.1 Study area 

The TP can be generally divided into 12 major basins (Wan et al., 2016; Zhang et al., 2013), among which the Inner/Central 

TP (CP) is the only endorheic basin and home to most TP lakes including ~300 TP lakes larger than 10 km2. Therefore, it 

was chosen as the main study area. The endorheic basin covers an area of ~710,000 km2 (~28% of total TP) with a mean 

elevation of ~4,900 m and has a semi-arid plateau climate with annual precipitation ranging from 95.66 100‒ 294.95300 mm 10 

(Yao et al., 2018b) (Li et al., 2017c). Most lakes in the endorheic basin were expanding under the influence of climate 

change/variability as opposed to many other places in the TP, e.g., Lake SelinSelin Co exceeded Lake Nam Nam Co in area 

and consequently became the largest lake in the endorheic basin between 2011–2012 and expanded by 26% over the past 40 

years (Zhou et al., 2015), whereas Lake YamYamzhog Yumco (outside the endorheic basin, 350 km to the southeast of Selin 

Co) shrunk by ~11% during 2002–2014 according to Wan et al. (2016). Located in the southeast endorheic basin, the Lake 15 

Nam Nam Co basin covering about 10,800 km2, with 19% of the basin lake water area and a mean lake elevation of ~4,730 

m was chosen as a field experiment spot. The mean annual temperature and precipitation of Lake Nam Nam Co are 1.3 °C, 

and 486 mm, respectively (Li et al., 2017a). The other experiment spot was Lake YamYamzhog Yumco, which has a mean 

lake elevation of ~4,440 m. Subjected to steep mountainous terrain, the lake has a narrow-strip shape with complex 

shorelines. The basin of Lake YamYamzhog Yumco covers ~6,100 km2, with mean annual temperature and precipitation of 20 

2.8 °C and ~360 mm, respectively (Yu et al., 2011). An overall map of experiment lakes is shown in Figure 2. 
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Figure 2 Experiment locations: Nam Co and Yamzhog Yumco. Nam Co is located in the endorheic basin of the TP, while Yamzhog 

Yumco is located in the  Yarlung Zangbo River basin (the Uupper Brahmaputra River) River basin. Both lakes are close to the 

city Lhasa City. 

2.2 Data 5 

Multisource altimetry data were used in this study as shown in Table 2Table 2. The earliest record dates back to 2002 (i.e., 

ENVISATEnvisat and Jason-1) and the latest record ends in 2017 (i.e., Jason-3 and CryoSat-2, see Figure 1). Most of the 52 

lakes examined in this study were covered by ICESat-1, ENVISAT, Envisat, and CryoSat-2 data. Jason-1/2/3 data were 

available only on 12 lakes due to the relatively sparse ground tracks or data quality issues. Note that Jason-2 inherited the 

orbit of Jason-1 after its launch in 2008, whereas Jason-1 was shifted into an interleaved orbit and continued functioning 10 

until 2013, thereby increasing the spatial coverage of Jason altimetry series to some degree, e.g., Jason-1 data in Lake 

Qinghai, the largest lake on the TP, were only available after 2008 due to the orbit shift. ICESat-1 and CryoSat-2 data have 

the best spatial coverage but relatively long repeat cycles of 91 days and 369 days, respectively  (Bouzinac, 2012; Zhang et 

al., 2011). The ENVISATEnvisat mission has a lower orbit than Jason-1/2/3 but higher than ICESat, resulting in a moderate 

set of orbital parameters to balance its spatial coverage and a temporal resolution of 35 days (Benveniste et al., 2002). In 15 



8 

 

order tTo determine if the altimetry data fall into the study lakes, a lake shape data set generated by Wan et al. (2016) was 

used. E.. An example of using the lake shape data set to determine altimetry data falling into the lake boundaries is given in 

Figure 3(a), showing that dg., Data from all altimeters are available in Zhari Namco in a lake named Zhari Namco, as shown 

in Figure 3. 

5 

 

Figure 3. (a) Ground tracks of multiple altimetric missions over Zhari Namco and (b) the merged altimetry water levels for Zhari 

Namco. 

It should be noted that different altimeters vary with wavelengths of electromagnetic radiation and mechanism. For instance, 

Jason-1/2/3  (using the Ku and C bands) and Envisat/RA-2 (using the Ku and S bands) work in the Llow rResolution mMode 10 

(LRM). These dual-frequency radar altimeters can provide more accurate range corrections due to the Iionospheric effect 

(Tournadre, 2004). The so-called LRM is typical for the early version of satellite altimeters such as TOPEX/Poseidon. There 

are more advanced modes, such as  (SAR and InSAR) for recent radar altimeters, which generally have smaller footprints 

than the LRM mode. CryoSat-2/SIRAL working at a single Ku band has three modes including LRM, SAR, and InSAR, 

which were designed to have an increasing resolution in turn and work in different zones. The InSAR mode uses interference 15 
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phenomena so that shift of the nadir point across the track can be detected, improving the altimeter's performance on ice 

sheets with slopes (Bouzinac, 2012). The ICESat/GLAS , as we mentioned before, is a laser altimeter working in the near 

infrared band.with wavelengths of electromagnetic radiationsthe lrm (LRMsLRMwere 

We used Landsat TM (2000–2011), /ETM+ETM+(2000–2017), /OLI (2013–2017)  Ssurface Reflectance reflectance data 

sets provided by GEE to generate information on lake shoreline positions and lake area changess. TM images covered 2000–5 

2011, whereas ETM+ETM+ images covered 2000–2017 and OLI images covered 2013–2017. Though Landsat ETM+ETM+ 

suffered was subjected to sensor failure and all the ETM+ETM+ images contain gaps after 2003 (Markham et al., 2004), we 

managed to make use of some images with gaps in generating lake shore changes. .   All the images were processed online 

using GEE API. Preprocessing such as radiometric calibration, atmospheric correction, as well as geometric correction was 

already performed in the production of the data sets. There were more than 20,000 images processed and a half of them were 10 

excluded from the final results due to cloud contamination or gaps.  

We collected daily in situ water level measurements in Lake YamYamzhog Yumco for validation purposes with a pressure-

type water level sensor. The in situ water level measurements spanned a half year from May to October 2018. We also 

performed unmanned aerial vehicle (UAV or drone) imaging over a 1 km‒lake bank in Lake YamYamzhog Yumco and 

Lake Nam Nam Co. The UAV images were used to evaluate the accuracy of lake shore extraction from Landsat data, which 15 

is similar to Huang et al. (2018). In addition, we performed a rigorous statistical analysis of the uncertainty in the derived 

optical water levels by taking the UAV-derived water area ratios as the ground truth of sub-pixel water area ratios of Landsat 

image pixels (see Section 4). for obtaining a better knowledge on the  of experimental environment. 

In addition, GF-2 images were used to performed a rigorous statistical analysis of the uncertainty in the derived optical water 

levels by taking the GF-2 derived lake shoreline positions as the ground truth to analyse the sub-pixel water area ratios of 20 

Landsat image pixels (see Section 4). GF-2 images have a spatial resolution of 0.8 m for the panchromatic band and pre-

processing including orthorectification and radiometric calibration werewas performed performed. Before analysis, we 

performed an image to image registration with manually selected tie points between GF-2 and corresponding Landsat OLI 

images until the co-registration error meets a satisfactory value ofreduced to  ~2 m. 

Table 2. Multisource altimetry data used in this study 25 

Mission Sensor 

type(Typ

e) 

Data 

record 

Duration Repeat 

cycle 

(day) 

Footprint 

interval 

(m) 

Footprint 

diameter 

(km) 

Lake no. 

with data  

Data 

source 

Jason-1 Poseidon-2 

(Radar) 

S-GDR 2002‒2013 10 d ~300 m 2‒4 km 12 Aviso 

Jason-2 Poseidon-3 

(Radar) 

S-GDR 2008‒ 10 d ~300 m 2‒4 km 12 Aviso 

Jason-3 Poseidon-

3B (Radar) 

S-GDR 2016‒ 10 d ~300 m 2‒4 km 12 Aviso 

ENVISA

TEnvisat 

RA-2 

(Radar) 

GDR 2002‒2010 35 d ~390 m 3.4 km 35 ESA 
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CryoSat-

2 

Interferometer

SIRAL 

(Radar) 

InSAR 

Level 1 

2010‒ 369 d (Sub 

cycle 30 d) 

~280 m ~1.65 km 

(across 

track)  

~), ~0.300 

m (along 

track) 

51 ESA 

ICESat-1 GLAS 

(Laser) 

GLAH 14 2003‒–
2009 

91 d ~170 m ~0.070 m 42 NASA 

3 Methodology 

To investigate changes in lake storage, changes in lake water level and lake area need to be derived from multisource remote 

sensing. First, water levels from various satellite altimeters (see Figure 1) for each lake as well as changes in lake shoreline 

and area from optical remote sensing images (i.e., Landsat TM/ETM+/OLI) were derived. Second, the systematic biases 

between different altimetry data were removed by either comparing the mean water level of the overlap period or comparing 5 

the two water level time series with changes in lake shoreline, depending on the length of the overlap period. The lake 

shoreline changes, termed as the optical water levels against altimetry water levels in this study, can serve as a unique source 

of information reflecting water level changes as well as a data merging reference. We will show that after deriving two or 

three regression parameters, lake shoreline changes can well represent lake water levels with comparable accuracy as 

altimetry-derived water levels. Third, with information on changes in water level and water area derived from altimetry data 10 

and optical remote sensing images, the hypsometric curve that describes the relationship between the lake water level and 

lake water storage changes can be derived. Fourth, the integral of the hypsometric curve was performed to convert water 

level time series into lake storage change time series. Details will be illustrated in the following sections. 

 

Figure 1. Spatial (the number of lakes covered) and temporal coverage and their overlap periods of multiple satellite altimetry 15 
missions used in this study, including Jason-1/2/3, ENVISAT, ICESat-1, and CryoSat-2. 

3.1 Altimetry water level 

The first step of deriving altimetry water levels is to select correct ground tracks and valid footprints falling on the lakes. 

Because there is a random ground track shift at ~1 km in different cycles for most altimetry missions, it is uncertain that 



11 

 

valid lake footprints can be obtained for each cycle, even though the nominal ground track seems to crossing cross the lake. 

This problem can be addressed by comparing the geographic coordinates of the footprints with a lake shape data set (Wan et 

al., 2016). After picking out the valid footprints, the lake surface height can be calculated for each footprint. All radar 

altimetry data share a relationship: 

𝐿𝑆𝐻 = 𝐴𝑙𝑡 − (𝑅𝑎𝑛𝑔𝑒 + 𝑐𝑜𝑟)   Eq 11 

where LSH represents the lake surface height with respect to the geoid; . Alt represents the altimeter height with respect to 5 

the reference ellipsoid; . Range represents the distance between the altimeter and lake surface; and . cor represents several 

range corrections due to atmospheric effects, sensor design defects, or geophysical effects. Radar altimeters and laser 

altimeters need different corrections, given that they are working in different wavelengths and have very different designs. 

For instances, corrections for radar altimeters includincludeing waveform retracking correction, wet/dry troposphere 

correction, ionosphere correction, pole/solid tide correction, and geoid correction. Laser altimeters also need atmospheric 10 

delay correction, geoid/pole tide correction, and geoid correction. Unlike radar altimeters, saturation correction instead of 

waveform retracking correction is more important to laser altimeters. 

 The retracking range correction plays an important role in removing the contamination of land signal when the radar 

altimetry data are applied to inland water bodies. In this study, Jason-1/2/3 data were retracked using a classical waveform 

retracking algorithm named , i.e., the improved threshold method (ITR), whereas CryoSat-2 data were retracked using the 15 

narrow primary peak threshold (NTTP) method (Birkett and Beckley, 2010; Cheng et al., 2010; Jain et al., 2015). Retracking 

corrections were not performed for ENVISATEnvisat and ICESat data, because the ENVISATEnvisat/RA-2 product already 

provided a retracked range using the ICE-1 method and the ICESat GLAH14 product already included several corrections 

(such as saturation correction) that are sufficient for most applications including studies on inland water bodies (Zhang et al., 

2011).  20 

The original idea of the NTTP, ICE-1, and Improved Threshold MethodITR is quite similar. All of them adopt a threshold 

defined as the percentage of the waveform peak to determine the retracking gate, and then to transferconvert the difference 

between the retracking gate and the nominal gate into range correction by multiplying the gate range (c∆t/2, where c is the 

speed of light and ∆t is the time duration of a gate). The differences lie in the choice of thresholds as well as the calculation 

of waveform peaks. For instance, ICE-1 uses a 30% threshold whilewhereas ITR uses a 50% threshold. 25 

 

For each cycle of an altimeter, it is common that more than one footprint fall on a study lake, thereby providing several LSH 

observations on the same day. After removing outliers with the three-sigma rule, frequency distributions of the LSHs from 

the same cycle were calculated. The mean value of the highest bucket of the histogram bin with the highest frequency was 

selected to represent the LSH for the cycle. Meanwhile, the frequency of the chosen bucket histogram bin was reserved to 30 
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evaluate the data quality for the cycle, e.g., a cycle was marked as high quality if the frequency is higher than 0.8, moderate 

quality if it is only higher than 0.5, and poor quality if the frequency is lower than 0.5. The LSH from each cycle constituted 

the lake water level time series for the study lake. LSHs that were marked as poor quality and obviously deviated from the 

moving average were removed from the altimetry-based lake water level time series. 

It is not uncommon that systematic biases exist in different altimetry data sets due to the variations in orbit, the discrepancy 5 

between correction models, errors associated with sensors, and even the choice of the reference datum. After deriving lake 

water level time series for each altimeter, we first merged the Envisat and ICESat-1 water levels if both were available for a 

lake, because they have the longest overlap period (Figure 1). We chose Envisat-derived water levels as the baseline and 

removed the difference of the mean values of the overlap period betweenof the two products during the overlap period, 

because Envisat data are generally denser and longer than ICESat-1 data. A similar process was applied to Jason-1/2/3, as 10 

there are two overlap periods connecting the three altimeters together. (b) shows a result of altimetry data merging when all 

sensors are available.  

There are tradeoffs between CryoSat-2 and Jason-2/3 data in terms of spatial coverage and time span. CryoSat-2 data are 

available for all study lakes but they only have the an overlap period with Jason-2/3 data, whereas Jason-2/3 data are only 

available for 12 lakes. For most lakes without Jason-2/3 data, we merged CryoSat-2 data with either ICESat-1 or Envisat 15 

using optical water levels spanning from 2000 to 2017, because there is no overlap period between these altimetry water 

levels. Lake shoreline changes were firstly translated into optical water levels by fitting with CryoSat-2 data, functioning as 

extrapolation of CryoSat-2 to 1‒2 years. Then, we applied the same method of merging Jason-1/2/3, to merge the 

extrapolated CryoSat-2 data with either Envisat or ICESat-1 data. (See Figure 1). Details on optical water levels and how 

they aidaid in merging the altimetry water levels can be found in section 3.2 In doing so, we were able to remove all 20 

systematic biases between multisource altimetry-derived water levels. All the water levels were with respect to EGM 96. 

Figure 2 provides an example of ground tracks of altimetric missions and water level time series on Lake Zhari Namco. 
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Figure 23. (a) Ground tracks of multiple altimetry missions over Lake ZhariZhari Namco and (b) the merged altimetry water 

levels for Lake ZhariZhari Namco. 
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3.2 Optical water level 

For most lake basins, it is possible to find a relatively flat portionpart of lake banks with an average slope of 1/30 or even 

smaller, where obvious interannual or intra-annual changes in lake shoreline positionss can be detected using high-spatial-

resolution Landsat images (30 m). These locations can be found by comparing lake images from the first year and the last 

year of the study period if the lake shows a clear expanding/shrinking trend. Otherwise, we can compare images acquired in 5 

early summer when the LSH is at lowest with those acquired in late autumn when the lake expands to its limit. In this study, 

we assumed that the selected lake bank was flat enough such that the relationship between the changes in lake water level 

and shoreline position can be depicted in a linear or quasi-linear (parabolic) way. Thus, we can transform the the lake 

shoreline positions changes into optical water levels by fitting with altimetry water levels. The validity of this assumption 

can be evaluated with the coefficient of determination (R2) for each lake as shown in Table 3Table 3. For most lakes, the 10 

goodness of fit is higher than 0.7, suggesting the generally good fitting relationship between changes inthe lake water levels 

and shoreline positions. 

Though there were ~500 Landsat images obtained for the selected lake banks during the study period, many of them were 

largely affected by cloud or cloud shadow. All the images were processed online using GEE API. Pre-processing such as 

radiometric calibration, atmospheric correction, as well as geometric correction was already performed in the production of 15 

the data sets. In addition, the failure of Landsat 7 sensor SLC left all the Landsat 7 images with gaps after 2003 (Markham et 

al., 2004), making the available images even fewer. We managed to make use of some images with gaps in generating lake 

shoreline positionschanges. By choosing the region of interest (ROI) that is parallel to the Landsat 7 gaps, we can usemade 

most of the Landsat 7 images useable. However, the width of ROI must be reduced to avoid shifting gaps as shown in 

Figure 3 (b). (b). The gaps may vary with time but are more like vibration around the mid-point. The ROI did not fill the 20 

interval of gaps, because the wider the ROI, the higher possibility of shifting gaps cross it. 
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Figure 4. (a) Yamzhog Yumco and its surroundings. The DEM was extracted from the STRM Global 90-m DEM product; (b) ROI 

(yellow area) selected from a Landsat ETM+ image for detecting changes in lake shoreline and the gaps (black areas); (c) linear 

regression of lake shoreline positions that are represented by water area ratios in the ROI and altimetry water levels for Yamzhog 

Yumco; and (d) optical water levels and altimetry water levels for Yamzhog Yumco. 5 

Changes in lLake shoreline positionss were characterized by changes in the water surface area ratios detected in the ROI. To 

automatically extract changes in water surface areas from tremendous amounta mass of Landsat archives on GEE, the water 

index and Otsu threshold method were jointly used. We calculated the Normalized normalized Difference difference Water 

water Index index (NDWI) and the Modified modified Normalized normalized Difference difference Water water Index 

index (MNDWI) of the input images and compared their performance in different seasons. It was found that the MNDWI 10 

tends to be more sensitive to shallow water in summer, but is less effective than NDWI when the lake bank is covered by 

snow in the cold season as shown in Figure 4. Therefore, the two water indices were jointly used in this study by applying 

the MNDWI to images acquired during May to October and applying the NDWI to the rest months. The NDWI and 

MNDWI can be calculated as follows (McFeeters, 1996; Xu, 2005): 
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𝑁𝐷𝑊𝐼 =
𝐵𝑔𝑟𝑒𝑒𝑛−𝐵𝑁𝐼𝑅

𝐵𝑔𝑟𝑒𝑒𝑛+𝐵𝑁𝐼𝑅
    Eq 22 

𝑀𝑁𝐷𝑊𝐼 =
𝐵𝑔𝑟𝑒𝑒𝑛−𝐵𝑆𝐼𝑅

𝐵𝑔𝑟𝑒𝑒𝑛+𝐵𝑆𝐼𝑅
    Eq 33 

where 𝐵𝑔𝑟𝑒𝑒𝑛, 𝐵𝑁𝐼𝑅, and 𝐵𝑆𝐼𝑅  refer to surface reflectance of bands 2, 4, 5 for Landsat TM/ETM+ETM+ images and bands 3, 5, 

6 for Landsat OLI images. 

 

Figure 5. (a) A Landsat ETM+ image of the Aqqikkol Lake acquired in summer in 2001; (b) water area extractions using the 

MNDWI and NDWI, showing that the MNDWI performs better in detecting shallow water; (c) a Landsat OLI image of Nam Co 5 
acquired in winter in 2015; (d) water area extraction using the NDWI, showing good performance in distinguishing water from 

snow; and (e) water area extraction using the MNDWI, showing some confusion of water and snow. 

After calculating the water index, the grayscale image was binarized using the Otsu method. If the selected ROI comprises 

~50% water and ~50% land, the performance of the method is good, as the distribution of digital numbers of the grayscale 

image is close to the assumption of the bimodal histogram implicit in the Otsu algorithm (Kittler and Illingworth, 10 

1985).(Kittler and Illingworth, 1985; Otsu, 1979). The binarized images were further processed to provide the water surface 

area ratio in the ROI, which represents the changes in lake shoreline position. The time series of changes in llake shoreline 
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position time series were then converted into optical lake water levels using linear regression or second-order polynomial fit 

with altimetry-derived water levels (Figure 3 (c)-(d)).  (c)-(d)). For most cases, we only used linear regression, and only for 

2 lakes with Jason-1/2/3 data we performed the second-order polynomial fit, because a higher-order regression requires more 

input information to ensure the reliability.  

However, cloud, cloud shadow, and shifting gaps may contaminate the ROI and cause errors in the optical water levels. 5 

Therefore, the QA band of the Landsat Surface surface Reflectance reflectance product was used to filter the images. The 

dData would be excluded if the fraction of the cloud or cloud shadow-covered area in the ROI was higher than 5%. For 

every Landsat ETM+ETM+ image acquired after 2003, the pixel number of the ROI was counted and compared with those 

acquired before 2003. If the loss of pixels exceeded 2%, the ROI was considered to be affected by gap and the data were 

consequently excluded from the subsequent analysis. 10 
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Figure 34. (a) Lake YamYamzhog Yumco and its surroundings. The DEM was extracted from the STRM Global 90-m DEM 

product; (b) ROI (yellow region) selected from a Landsat ETM+ETM+ image for detecting changes in lake shoreline and the gaps 

(black region); (c) linear regression of the lake shoreline change and altimetry water level for Lake YamYamzhog Yumco; and (d) 

optical water levels and altimetry water levels for Lake YamYamzhog Yumco. 5 

A critical function of optical water levels is to aidaid in the merging of altimetry water levels when there wareas no 

overlapping periods between altimeters or the overlapping periods iswas too short. For lakes without Jason-1/2/3 data,  lake 

shoreline changes positions were firstly translated into optical water levels by fitting with CryoSat-2 data (), functioning as 

extrapolation of CryoSat-2 to 1‒2 years. Then, we applied the same method of merging Jason-1/2/3 , to merge the 

extrapolated CryoSat-2 data with either Envisat or ICESat data. In doing so, we were able to remove all systematic biases 10 

between multisource altimetry-derived water levels. After the merging of altimetry water levels, we will performed the 

regression analysis for the second time between the optical water levels and merged altimetry water levels to check if the 

linear relationship is stable during the entire study period and at different elevations. If the linear relationship iswas stable, 

the optical water levels will bewould be  merged with the altimetry water levels using the linear fitting parameters from the 

second regression analysis. Otherwise, there might may be a have a change in the lake bank slope and,  therefore, the 15 

extrapolation of CryoSat-2 data with optical water levels might not bewas not suited. If so,In this case,  we will reselected 
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the ROI to extract  the lake shoreline changespositions and redoid altimetry data merging until the optical water levels and 

merged altimetry water levels agreed well with each other one another in the second linear regression. Detailed analysis 

about the potential extrapolation issue can be found in the supplementary file. 

To summarize the altimetry data merging: In summary, the basic idea of removing the systematic biases of different 

altimetry-based water levels is to calculate the means of two altimetry-based water level time series from different sources 5 

during the overlap period. Then, tThe difference between the difference between the mean time seriess  and either is 

removed from one altimetry water level time series is removed to to make both altimetry-based water level time series 

consistent and to form a longer water level time series. This process was subsequently applied to all water level time series 

with overlap periods to merge them into a single time series for each lake. However, the overlap period could be short may 

not be long enough, between some altimeters such as Envisat and CryoSat-2 (e.g., there are only one or two dataare limited 10 

data points (e.g., 1‒2) induring the overlap period), or does not exist at all, such as ICESat and CryoSat-2. On these cases, 

optical water levels (i.e., changes in lake shoreline that need to be translated into changes in water levels using linear 

regression with one of the altimetry water level time series) are used to extend or create an overlap period that links the two 

altimetry missions.-based water level time series. 

 15 
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Figure 45. (a) Landsat ETM+ETM+ image of the Aqqikkol Lake acquired in summer in 2001; (b) water extraction result using the 

MNDWI and NDWI, showing that the MNDWI performs better in detecting shallow water; (c) Landsat OLI image of Lake Nam 

Nam Co acquired in winter in 2015; (d) water extraction result of the NDWI, showing good performance in distinguishing water 

from snow; and (e) result of the MNDWI, showing some confusion of water and snow. 

3.3 Hypsometry 5 

We derived the hypsometric curve for each study lake by polynomial fitting of the lake area and level time series. The lake 

area comprises two parts: the inner invariable part and the outer variable part. As the variable water area is was of more 

concern in this study, ROIs for extracting changes in lake area only cover the lake shoreline and its neighbouring areas as 

shown in Figure 6 Figure 5 . The inner part of the water body was calculated only once and considered as invariant, making 

the calculation more efficient on GEE. Meanwhile, more images are available as the area of ROI becomes smaller, because 10 

the possibility of clouds covering the ROI is reduced compared with an ROI covering the entire lake. The Landsat 

ETM+ETM+ images after 2003 were not included in this part of calculation as gaps negatively affected the ROI for lake area 

extraction. Similar to Section section 3.2, we selected images with less than 5% cloud cover on an ROI to generate time 

series of changes in lake area, obtaining 20‒~30 data points on average for regression. R2 values for each lake are listed in 

Table 3Table 3, indicating that most lake basins agree well with the parabolic hypsometric curve.  15 

 

Figure 65 . Programming interface of GEE. The red polygon was is the ROI for lake area change extraction of Lake SelinSelin Co. 

It can also be seen that most fitting functions have a positive parameter for the second-order term, which can be explained 

according to the knowledge on the hypsometric curve of catchments. This differs somewhat from the previous studies by 

Song et al. (2013) that shows a negative value for the second-order derivatives. After investigating a number of watersheds, 20 
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researchers suggested that the general hypsometric curve for the entire catchment can be expressed as: (Strahler, 1952; 

Willgoose and Hancock, 1998): 

𝑦 = [
𝑑 − 𝑥

𝑥
∙

𝑎

𝑑 − 𝑎
]

𝑧

 
 

Eq 4 

where y corresponds to the normalized elevation and x corresponds to the normalized area above the elevation. a, d, and z are 

fitting parameters. The hypermetric curve generated by this model always has a ′toe′ as shown in Figure 6, where the 

second-order differential of the curve is negative. This means that at the low elevation of the catchment, with decreasing 5 

(increasing) elevations, the area above (below) the elevation increases more slowly (faster). Lakes are always formed at the 

lowest portion of a catchment, so the hyperosmotic curve for a lake basin can be the toe part for the entire catchment. This 

suggests that if we use the parabolic curve to fit the lake area and water level time series, there should be a positive second-

order parameter so that with increasing water levels, the lake area increases faster. The last step was to integrate the 

hypsometric curve to generate the volume-elevation relationship and convert the lake water levels into storage changes. 10 

 

Figure 6. Strahler’s hypsometric model for catchment with a=0.01 and d=1. 

Table 3. Information on regression analysis of study lakes. 

Lake Name Lake Area 

km2 

No. of optical 

water level 

R2 of optical water 

level (No. of data 

pairs) 

R2 of hypsometric curve 

(No. of data pairs) 

Hypsometric function 

Ake Sayi Lake 260.74 113 0.8951 (14) 0.9556 (21) S=0.45dh2+11.26dh+163.97, dh=H-4846 
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Aqqikkol Lake 538.21 354 0.9717 (44) 0.9353 (36) S=2.36dh2+0.21dh+370.29, dh=H-4252 

Ayakkum Lake 987.23 183 0.9651 (50) 0.9695 (57) S=0.16dh2+65.72dh+658.28, dh=H-3878 

Bamco 255.81 209 0.901 (14) 0.9287 (27) S=0.28dh2+2.84dh+206.46, dh=H-4560.5 

Bangong Co 661.64 232 0.5164 (172) 0.7991 (29) S=1.43dh2+15.67dh+619.28, dh=H-4238 

Chibzhang Co 541.96 49 0.8766 (19) 0.9792 (15) S=0.69dh2+3.36dh+475.79, dh=H-4930 

Co Ngoin1 268.37 174 0.6637 (15) 0.8803 (62) S=3.67dh2+-1.33dh+263.1, dh=H-4564.5 

Cuona Lake 192.15 254 0.7607 (12) 0.8876 (27) S=1.77dh2+3.6dh+184.79, dh=H-4585.5 

Dagze Co 310.8 192 0.8334 (67) 0.8862 (28) S=0.08dh2+6.14dh+230.51, dh=H-4460 

Dogai Coring 492.39 257 0.8624 (152) 0.9048 (33) S=3.2dh2+5.66dh+427.17, dh=H-4816 

Dogaicoring Qangco 403.18 162 0.9202 (37) 0.9218 (47) S=0.53dh2+3.93dh+279.6, dh=H-4786 

Donggei Cuona Lake 247.83 561 0.8776 (38) 0.925 (101) S=0.54dh2+7.22dh+222.19, dh=H-4084 

Dung Co 139.4 145 0.9218 (49) 0.8652 (28) S=0.07dh2+2.3dh+137.06, dh=H-4547 

Goren Co 477.95 191 0.6166 (24) 0.9096 (41) S=2.91dh2+-0.03dh+468.33, dh=H-4648.5 

Gozha Co 246.91 96 0.4297 (12) 0.5564 (19) S=1.57dh2+-0.06dh+254.43, dh=H-5082 

Gyaring Lake 535.84 253 0.6217 (20) 0.3451 (71) S=1.99dh2+2.8dh+517.18, dh=H-4292 

Har Lake 621.52 370 0.8652 (63) 0.9893 (50) S=1.1dh2+1.52dh+582.34, dh=H-4075 

Hoh Xil Lake 351.3 132 0.9038 (12) 0.9355 (27) S=1dh2+5.29dh+300.5, dh=H-4887.1 

Jingyu Lake 339.69 224 0.8978 (51) 0.989 (34) S=0.37dh2+4.77dh+238.43, dh=H-4710 

Kusai Lake 328.8 295 0.9787 (151) 0.8987 (49) S=0.52dh2+5.04dh+254.67, dh=H-4473 

Kyebxang Co 187.32 233 0.75 (12) 0.8753 (135) S=0.16dh2+5.4dh+150.9, dh=H-4619 

Langa Co 256.03 167 0.859 (157) 0.888 (47) S=-0.19dh2+4dh+249.28, dh=H-4564 

Lexiewudan Co 273.63 286 0.9216 (49) 0.9496 (40) S=0.13dh2+4.63dh+219.65, dh=H-4868 

Lumajiangdong Co 386.71 220 0.9135 (28) 0.9708 (17) S=0.62dh2+2.09dh+353.95, dh=H-4812 

Mapam Yumco 412.69 163 0.7096 (30) 0.9973 (30) S=1.18dh2+5.16dh+399.68, dh=H-4584 

Margai Caka 137.7 247 0.9399 (12) 0.9955 (35) S=0.03dh2+5.14dh+112.12, dh=H-4791 

Memar Co 167.3 193 0.911 (39) 0.8626 (20) S=0.27dh2+3.17dh+134.69, dh=H-4923 

Nam Co 2028.5 187 0.9064 (62) 0.8749 (18) S=2.43dh2+5.55dh+1970.1, dh=H-4724.5 

Ngangla Ringco 492.86 88 0.4652 (25) 0.9498 (7) S=3.87dh2+3.86dh+490.69, dh=H-4715 

Ngangze Co 471.21 245 0.9538 (236) 0.9332 (49) S=0.2dh2+7.03dh+391.21, dh=H-4680 

Ngoring Lake 656.83 86 0.844 (71) 0.8613 (14) S=4.69dh2+-5.04dh+613.66, dh=H-4270 

Paiku Co 272.85 231 0.8341 (21) 0.9079 (61) S=0.91dh2+2.64dh+264.89, dh=H-4578.5 

Puma Yumco 290.98 250 0.6871 (18) 0.5629 (53) S=0.48dh2+0.8dh+286.34, dh=H-5011 

Pung Co 176.93 187 0.8017 (12) 0.9841 (31) S=0.03dh2+3.75dh+151.66, dh=H-4526 

Qinghai Lake 4495.33 323 0.9011 (151) 0.8181 (19) S=3.45dh2+155.03dh+4084.73, dh=H-3193 

Rola Co 169.83 347 0.7842 (18) 0.9403 (96) S=-0.88dh2+14.87dh+115.59, dh=H-4816 

Salt Lake 144.3 206 0.9344 (16) 0.9858 (32) S=0.16dh2+-0.69dh+37.42, dh=H-4430 

Salt Water Lake 212.47 347 0.9086 (27) 0.9494 (151) S=-0.82dh2+17.31dh+133.71, dh=H-4901 

Selin Co 2300.49 179 0.9777 (70) 0.945 (22) S=1.05dh2+45.86dh+1754.31, dh=H-4536.4 

Tangra Yumco 862.94 100 0.9155 (18) 0.8072 (11) S=0.94dh2+-0.28dh+862.94, dh=H-4536 

Taro Co 485.15 268 0.8903 (39) 0.9576 (19) S=0.18dh2+4.97dh+477.32, dh=H-4567.3 
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Tu Co 448.64 257 0.9276 (41) 0.9875 (26) S=0.02dh2+4.91dh+396.59, dh=H-4926 

Urru Co 356.35 260 0.71 (49) 0.8994 (27) S=1.35dh2+2.67dh+345.34, dh=H-4553 

Wulanwula Lake 652.08 225 0.9679 (81) 0.9285 (10) S=2.05dh2+16.49dh+513.15, dh=H-4856 

Xijir Ulan Lake 463.36 316 0.9736 (84) 0.9691 (44) S=0.93dh2+13.3dh+366.35, dh=H-4770.8 

Xuru Co 209.87 144 0.5984 (9) 0.5527 (58) S=0.12dh2+0.22dh+206.53, dh=H-4714 

Yamzho Yumco 549.61 398 0.9215 (140) 0.9364 (72) S=0.51dh2+9.63dh+531.79, dh=H-4436 

Yelusu Lake 203.4 486 0.7014 (21) 0.8352 (92) S=14.84dh2+-5.77dh+185.15, dh=H-4686.5 

Yibug Caka 178.22 118 0.9206 (12) 0.9615 (25) S=-1.25dh2+15.79dh+147.03, dh=H-4558.5 

Zhari Namco 1000.18 143 0.9177 (164) 0.8388 (52) S=2.66dh2+10.07dh+962.57, dh=H-4610 

Zhuonai Lake 160.1 260 0.9528 (11) 0.973 (21) S=0dh2+10.06dh+124.29, dh=H-4742 

Zige Tangco 238.67 171 0.9008 (186) 0.976 (24) S=0.06dh2+4.62dh+212.71, dh=H-4565 

4 Validation of data quality 

4.1 Field experiment 

Most Tibetan lakes are located in remote and inaccessible regions, resulting in the scarcity of ground-based in situ 

measurements that are, however, vital for data quality assessment. We made some in situ measurements in two study lakes to 

validate the data quality of optical water levels developed in this study, instead . The data quality of the satellite altimetry 5 

data whose quality on lakes or rivers has been widely knowninvestigated and thus it is beyond the scope of our study. Many 

studies used in situ water levels to calculate certain statistical metrics, e.g., root mean squired error (RMSE). However, 

results provided by different studies vary and, which could be associated with the cross-section width of the study water 

body in the ground track panel (Nielsen et al., 2017). This means that these results may not be comparable due to their 

unique applications. In addition, it is not rigorous to use in situ data of only one lake to represent the overall situation of 10 

study lakes in the uncertainty assessment for altimetry water levels. Instead, we used the standard deviation of valid 

footprints acquired in the same cycle as an estimate of uncertainty in satellite altimetry-derived water levels. In contrast, the 

applicable condition of optical water levels is not so variable as that of satellite altimetry data. Derivation of optical water 

levels requires relatively flat bank as well as some altimetric information, which were available in all study lakes. Since 

these selected bank slopes were similarly small (~1/30), it is was possible to use a few typical lakes to represent all study 15 

lakes. Therefore, we carried out a field experiment in Lake YamYamzhog Yumco and Lake Nam Nam Co to validate the 

derived optical water levels. 

There were two main goals in our experimentexperiments: (1) collecting daily in situ water level data in a certain TP lake to 

validate the corresponding optical water levels statistically; (2) imaging a certain length of the lake shore with UAV to 

testtesting the performance of extracting lake shoreline extraction positions based on from high-resolution optical images 20 

(GF-2) so as to provide a theoretical uncertainty analysis of optical water levels. On Lake YamYamzhog Yumco, we 

installed a pressure type water level sensor (type H5110-DY, manufactured by Shenzhen Hongdian technologies Co., Ltd.), 
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which measures measured water pressure and temperature of at the installation depth and converts themthat were converted 

into water depths with a relative accuracy of ~0.1%. The device was carried onto the lake and put ~20 m below the water 

surface and 0.5 m above the lake bottom, which suggestings an absolute error of ~2 cm. We chose a typical landscape (i.e., 

mild slope, little vegetation, and gravel lake beach) to perform UAV imaging in both Lake Yamzhog Yumco and Lake Nam 

Co in mid-May, 2018. The UAV was operating at a height of 200 m and imaging the ground at a constant rate in visible 5 

bands with a wide-angle lens. With a GPS tracker onboard, these UAV images were well georeferenced. Then image mosaic 

was performed using the Piz4D mapper and converted into a digital orthophoto map (DOM), which is a similar process 

described by Huang et al. (2018). The spatial resolution of UAV data reached ~5 cm as we compared a real ground object 

with its size in imagesAs for GF-2 images, the spatial resolution of the panchromatic band is 0.8 m, which is able to provide 

a very accurate reference of lake boundaries for the assessment ofassessing water classification results based on for Landsat 10 

images. We used three GF-2 images acquired at different seasons (two in July and September, 2015 and , one in February 

2016) and different places on the TP to better represent the local conditions when extracting optical water levels or lake 

water extentareas with Landsat images. Image co-registration was performed to make sure that there was no obvious spatial 

shift between the GF-2 images and corresponding Landsat images. The accuracy of the image co-registration iswas ~2 m. 

 15 
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Figure 77. Field experiments in two study lakes: (a) an Landsat 8 imageoverview map of the experiment spot; (b) pressure-type 

water level sensor; (c) unmanned aerial vehicle; (d) installation of the water level sensor; and (e) UAV image of a portion of the 

bank of Lake Nam Nam Co. 

4.2 Uncertainty analysis of optical water levels 5 

Based on the in situ water level measurements made by the pressure-type water level sensor, we evaluated the accuracy of 

optical water levels statistically. We first calculated anomalies of in situ water levels and optical water levels, and then water 

levels from the two sources acquired on the same day were used for analysis. There were 16 optical water level records 

available for the comparison against the in situ measurements. The , indicating an RMSE of the water level anomaly was of 

0.11 m. The linear fit had shows a slope close to 1 and an R2 of 0.89, suggesting the good consistency between of the in situ 10 

water level measurements and the derived optical water levels (Figure 8Figure 8 (b)). It should be noted that the optical water 

levels used for validation here were translated from lake shoreline changes positions using parameters derived from fitting 

with CryoSat-2 data, i.e., there is no in situ information involved in generating the optical water levels shown in Figure 8. 
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Figure 88. (a) In situ water level anomaly versus optical water level anomaly in Lake YamYamzhog Yumco; and (b) linear 

regression of between the optical water levels and concurrentsame period in situ water levels during the same period. 

To be more convincingFurthermore, we performed aa more theoretical uncertainty analysis of the optical water levels by 5 

looking at the original optical data and the generation processes with the help of UAVhigh-resolution GF-2 images. First, we 

took UAVGF-2 images (after co-registration with the Landsat image forof the same period and , the co-registration errors 

were ~2 m) as the ground truth to determine the accurate position and shape of the lake shore line. Second, we performed 

water classification based on the concurrentsame period from the Landsat OLI image for the same period that contained the 

UAV scanned area jointly using the , with the combined water index method and Otsu algorithm to derive the binarized 10 

image. Landsat image pixels where the lake shorelines from determined using the UAVGF-2 images crosses were delineated 

manually and marked as shoreline pixels as shown in Figure 9Figure 9 (a). Then the water area in each shoreline pixel was 

calculated.  

Given that these shoreline pixels were classified as either water or land, a relationship between the water area ratio of the 

shoreline pixel and the probability of the pixel being classified as water can be derived. This relationship generally describes 15 

the function of the water classification method by telling how likely a pixel will be determined as water, given the water area 
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ratio of the pixel. Based on the observations of a total of 64 UAV-scanned4128 Landsat shoreline pixels, a logistic type 

curve with two parameters that determine the position and shape of the curvepower function was chosen to represent the 

water classifier as Eq. (4) Eq.  5 shows: 

𝑓(𝑥) =
1

1 + 𝑒−𝑎(𝑥−𝑏)
= 𝑥𝑛 

 Eq 45 

where x represents the water area ratio in the shoreline pixel; , f(x) represents the probability of the shoreline pixel being 

classified as the water pixel; and , a and b are parametersn is the parameter that determines the shape and position of the 5 

curve, respectively. The parameters werepParameter n was determined using the maximum likelihood method . Results are 

shown in (Figure 9Figure 9 (be)).  
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Figure 9. (a(a)‒~(c) GF-2 images (upper layer) and corresponding  Landsat OLI images (bottom layer) acquired on Sep 7, 2015/9/7, 

Jan 29, 2016/1/29, and Jul 5, 2015/7/5; (d) Landsat OLI shoreline pixels on Lake Nam Co (the background is the UAVGF-2 image), 

blue pixels marked with 1 were classified as water, and yellow pixels marked with 0 were classified as land. The black dot in the 5 
insert figure represents the field experiment spot. (b) The chosen classifier, with two parameters a=21.13 and b=0.15 determined; 

(e) the relationship between the water area ratio in a pixel and the frequency/probability of the pixel being classified as water. Blue 

bars are sampled at a 0.04 bin space from the 4128 pixels. The red line shows the fitting curve based on the maximum likelihood 

method. The y axis represents the probability that a certain pixel is classified as water, and the x axis is the water area ratio in that 

pixel. Red dots represent pixels classified as land that have relatively lower water area ratios. Blue dots represent pixels classified 10 
as water that have relatively higher water area ratios.  
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It should be noted that even the water ratio in a shoreline pixel is zero, there is a small probability that this pixel may be 

mistaken as a water pixel, because the surface reflectance information may be contaminated by adjacent water pixels. 

Therefore, the classifier has a small value (~0.02) when the water ratio is zero. As can be seen from As expected, shown in 

Figure 9 (b), when the water ratio is larger than 0.3,c), the probability of the pixel classified as water is close toincreases with 

the water area ratio in the pixel (Figure 9Figure 9 (c)), which is expected. The enclosed area of the fitting curve (y = x1.43) is 5 

smaller than that of y = x on [0, 1. This], which suggestssuggesting that there may be a higherlower probability of the 

occurrence of water pixels that is associated with a systematic bias of the lake shoreline detection. Note that the systematic 

bias can be removed when linearly fitting the the lake shoreline positionslake shore changes and altimetry-derived water 

levels as long as the bias is stable. Therefore, uncertainty in optical water levels developed in this study arises mainly from 

the variation in this systematic bias. 10 

To describe the variation in the systematic bias, a new random variable X was introduced to represent the bias between the 

classified water area and the real water area in a shoreline pixel. Given the shape and position of the lake shoreline, the real 

water area in each shoreline pixel is a complex function of the relative position between the pixel and the shoreline. To 

simplify the derivation, we assumed that the water area ratio in a shoreline pixel is uniformly distributed on [0,1], meaning 

that the probability of any value between 0 and 1 is equal. If we use X0 to represent the true water area ratio in the shoreline 15 

pixel and X1 to represent the classified results based on the water area ratio, the random variable X can be expressed as: 

𝑋 = 𝑋1 − 𝑋0  Eq 65 

where X1 can take on  0 or 1 or 0 (i.e., the classified results only tell us whether a pixel is water pixel or not), so X can only 

take on either –X0 or 1–X0 or –X0. Because the range of X0 is [0,1], it is obvious that the range of X is [-1,1]. A derivation of 

F(X), i.e., the probability density function (PDF) of X can be found in the supplementary file (part 2).is given as follows: 

𝐹(𝑋) = {

𝑃(𝑋 = −𝑋0|𝑋0) ∙ 𝑃(𝑋0), 𝑋 < 0

𝑃(𝑋0 = 0, 𝑋1 = 0) + 𝑃(𝑋0 = 1, 𝑋1 = 1), 𝑋 = 0

𝑃(𝑋 = 1 − 𝑋0|𝑋0) ∙ 𝑃(𝑋0), 𝑋 > 0

 

 Eq 7 

𝑃(𝑋 = −𝑋0|𝑋0) = 𝑃(𝑋1 = 0|𝑋0) = 1 − 𝑓(𝑋0) = 1 − 𝑓(−𝑋)  Eq 8 

𝑃(𝑋 = 1 − 𝑋0|𝑋0) = 𝑃(𝑋1 = 1|𝑋0) = 𝑓(𝑋0) = 𝑓(1 − 𝑋)  Eq 9 

where f(x) is referred to as the classifier function defined in Eq 5. 20 

Because X0 is uniformly distributed between [0,1], P(X0) = 1. Note that P(X0 = 1, X1 = 1) = 1, this means that if X0 is 1, the 

probability of a pixel classified as water is 1. However, P(X0 = 0, X1 = 0) is not necessarily 1 (i.e., 1-f(0)), because the pixel 
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with X0 = 0 still has a low probability, i.e., f(0) of being classified as water based on the illustration above. Combining 

Eqs.(7)–(9) with the explanations on the specific case X = 0 results in the following: 

𝐹(𝑋) = {

1 − 𝑓(−𝑋), 𝑋 < 0
1 + 1 − 𝑓(0), 𝑋 = 0

𝑓(1 − 𝑋), 𝑋 > 0
  = {

1 − 𝑓(−𝑋), 𝑋 < 0
2 − 𝑓(0), 𝑋 = 0

𝑓(1 − 𝑋), 𝑋 > 0
 

 Eq 10 

It is obvious that F(X) is not a continuous function, but it can be integrated and the integral of F(X) on [-1,1] equals 1, 

meaning that it satisfies the basic property of PDF. 

Overall, F(X) describes how the systematic bias between the classified water ratio and real water ratio in shoreline pixels is 5 

distributed as shown in Figure 10Figure 10. If there are N shoreline pixels in an ROI, we can take them as N independent 

observations of X and calculate the mean value �̅�. This value �̅� can represent an average shift of the detected lake shoreline 

from the real lake shoreline in the unit of one-pixel width (30 m). As we mentioned above, the systematic bias can be 

removed in the regression between the lake shore changesline positions from optical remote sensing and altimetry the 

corresponding water levels from satellite altimetry. As such, it is the variation of the bias that determines the accuracy of the 10 

optical water levels. Therefore, wWe can calculate the standard variation of �̅� to represent the uncertainty in  lake shoreline 

changesposition. Note that there is a simple relationship between σ�̅� and σ𝑥:  

σ�̅� =
σ𝑥

√𝑁
  Eq 6116 

One only needs to calculate σx: 

�̅� = ∫ 𝐹(𝑋) ∙ 𝑋𝑑𝑋 = 0.346
1

−1

∫ 𝐹(𝑋) ∙ 𝑋𝑑𝑋 ≈ −0.09
1

−1

 
 Eq 7127 

σ𝑥 = √∫ 𝐹(𝑋) ∙ (𝑋 − �̅�)2𝑑𝑋
1

−1

=≈ 0.2999 ≈ 0.30039 

 Eq 8813 

Eq 1312 in combinaionsCombined  with Eq 54, Eq 109, and Eq 1211 Eq. (4) and Eq. (7), Eq. (8)  was resolved numarically, 

resuling in ~0.339 pixel width. Substituting σx in Eq 1110 Eq. (6) with Eq. (8) Eq 1312 gives: 15 

σ�̅� =
0.3

√𝑁

0.39

√𝑁
 

           Eq.  9914 
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Figure 10. F(X): Probability density function of the systematic bias (X) X between the classified water ratio (X1) and real water 

ratio (X0) in a shoreline pixel. 

If the slope of the shoreline is known, e.g., tanθ, the uncertainty of the optical water level can be expressed as:  5 

σℎ𝑜 = σ�̅� ∙ 𝑑 ∙ 𝑡𝑎𝑛𝜃

=
0.3 × 30 × 𝑡𝑎𝑛𝜃

√𝑁

0.39 × 30 × 𝑡𝑎𝑛𝜃

√𝑁
 

 Eq 101015 

where σho is the uncertainty of optical water levels and d is the spatial resolution of the satellite image (30 m). In this study, a 

typical width of ROI for deriving optical water levels is ~10-pixel width, meaning that N is ~10. In addition, lake shores used 

for generating optical water levels here generally have a relatively mild slope of ~1/30 or even smaller, which can be 

rounghly estimated from the maximun shoreline change and altimetry water level change within a year. Here if we use 1/30 

as the slope tanθ, the uncertainty of the optical water levels can untimately be estimated to be ~0.112 m, which is very close 10 
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to the RMSE (~of (0.0911 m) based on the comparision of between the opitcal water levels and in situ water level 

measurements mentioned earlier. 

However, for most cases we do not know the exact lake bank slope tanθ, which is the reason why we performed the 

regression analysis between the lake shore changes line positions and altimetry-derived  water levels. Information on the real 

lake bank slope is implicitly expressed in the linear fitting slope β (if the fitting line is y = βx + α). Uncertainty in altimetricy  5 

information could will evolve into the fitting parameters and impact the accuracy of the generated optical water levels. Given 

that the observed lake shoreline changeposition is X1 (e.g., X1 = 5.6 meaning that the observed lake shoreline position is 5.6 

Landsat pixels away from the initial postion corresponding to the lowest water level, different from Eq. (5), X1 here can be a 

rational number because it is determined by averaging all shoreline pixels in the ROI, whilewhereas in Eq. (5) we focused on 

only one shoreline pixel), combining Eq. (5), the  Eq. (5)the optical water level (y) can be expressed as: 10 

𝑦 = 𝛽(𝑋1 − 𝑋1
̅̅ ̅) + �̅� = 𝛽(𝑋0 − 𝑋0

̅̅ ̅) + 𝛽(𝑋 − �̅�) + �̅�  Eq 11 

Wwhere (𝑋1 − 𝑋1
̅̅ ̅) denotes the observed lake shoreline changes (in the unit of a Landsat pixel), ; 𝑋1

̅̅ ̅ denotes the mean of 

observed lake shoreline positions used for linear regression; �̅� denotes the mean of altimetry water levels used for linear 

regression, ; (𝑋0 − 𝑋0
̅̅ ̅) denotes the real lake shoreline changes; , (𝑋 − �̅�) denotes the variation of the optical shoreline 

position caused by the water extraction method; , and β is the linear fitting slope. It is obvious that the expected value 

(𝑋 − �̅�) is 0. As we discussed earlier before, a systematic bias does not affect the accuracy of the optical water level, but the 15 

variation of the systematic bias does.  

Based on Eq 15Eq. (11), the overall uncertainty of optical water level σy can be given as:   

𝜎𝑦 = √𝜎𝛽
2 (

𝜕𝑦

𝜕𝛽
)

2

+ 𝜎𝑥
2 (

𝜕𝑦

𝜕(X − X̅)
)

2

+ 𝜎�̅�
2 (

𝜕𝑦

𝜕�̅�
)

2

= √𝜎𝛽
2(𝑋1 − 𝑋1

̅̅̅̅ )
2

+ 𝜎𝑥
2𝛽

2
+ 𝜎�̅�

2 

 Eq 12 

Wwhere β and 𝜎𝛽  can be derived from the the linear regression analysis,; 𝜎�̅�  is given in  Eq. (9)Eq 13,; and 𝜎�̅�  is the 

uncertainty of the mean altimetry water level which can be calculated from the altimetry data. For a typical lake like 

Yamzhog Yumco, β = 0.35 m, 𝜎𝛽 = 0.02 m, Max(|𝑋1 − 𝑋1|̅̅ ̅̅ ) = 11, 𝜎�̅� = 0.13, 𝜎�̅� = 0.015 m, which gives a maximum 𝜎𝑦 of 20 

0.22 m. It should be noted that (𝑋0 − 𝑋0
̅̅ ̅) is assumed to be the true value and there is no error associated with this term. This 

relationship shows that the uncertainty of in the optical water level will increases with the distance from the center point (𝑋1
̅̅ ̅, 

�̅�) represented by (𝑋1 − 𝑋1
̅̅ ̅)2. The iInterpretation of this phenomenon is that extrapolation of optical water levels (far from 

the center point) may cause some artefacts and should be used with caution. More detailed discussion on the extrapolation 

can be found in the supplementary file.  25 
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Overall, the uncertainty quantification of the optical water levels developed in this study indicates clearly that the accuracy 

of optical water levels depends on the width of an ROI, e.g., the number of pixels/observations, slope of the lake shore, and 

the effectiveness of the water classification method, and the uncertainty in altimetry water level used for regression. One of 

the advantages of the optical water level is that an ROI does not necessarily cover a large area of lake shores, which 

maximizes the potential of optical remote sensing images to increase the spatial coverage and temporal resolution of lake 5 

water level estimates that may not , however, be achievable realized by using satellite altimetry alone.  Optical remote 

sensing images provide important complementary information on altimetry-derived  water levels and would subsequently 

facilitate lake water storage estimation.  

4.3 Cross validation with similar products 

We compared our product with a widely used lake water level/storage data set provided by the LEOGS Hydroweb, 10 

indicating that our product may perform better in terms of the consistency as well as the sampling frequency. Both 

advantages are important in improving our understanding of responses of lakes to climate change. There are 21 same lakes in 

both our study and LEOGS Hydroweb. Annual trends in water level and lake storage during 2003‒2015 were compared 

(Figure 11). Overall, the two products are consistent in terms of R2 of the linear fit.  

15 
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Figure 11. Cross validation of the TP lake level and storage changes derived from our study with those provided by the LEGOS 

Hydroweb database (Crétaux et al., 2011a): (a) trends in lake water levels from 2003 to 2015 and (b) trends in lake water storage 

from 2003 to 2015. 

5 Dataset description and availability 

The derived TP lake water levels, hypsometric curves, and water storage changes are archived and available at 5 

https://doi.org/10.1594/PANGAEA.898411. (Li et al., 2019). The data sets covers large 52 large lakes (50 lakes with a 

surface area larger than 150 km2, and 2 lakes are 100‒~150 km2) on the Tibetan PlateauTP. The data sets consists of two 

parts: (1) a table containing hypsometric curves and corresponding regression statistics (R2 and the number of data pairs) for 

each lake, with parameters of the hypsometric curve listed in separate columns for the convenience of batch processing; (2) 

time series for each lake archived as 52 entities with geologicalgeographic information (i.e., latitude, longitude, and size of 10 

the lake) that can be looked upchecked in an online map provided by PANGAEA, avoiding the confusion of lake names. The 

time series of each lake include lake water levels and lake storage changes. For data points in the water level time series, 

satellite or sensor type was is shown (i.e., from Jason-1/2/3, Envisat, ICESat, CryoSat, or optical images). Uncertainty was 

calculated using the standard deviation of valid footprints in the cycle (only for altimetry data). The lake water storage time 

series were transformed from water level time series using the hypsometric relationship so that they have equal data 15 

volumesize. The lake water storage time series represent changes in lake storage with respect to a reference water level, 

which is listed in the corresponding hypsometric curve table as a parameter. The overall uncertainty of optical water levels 

within the regression range (the range of altimetry water levels) is 0.1‒0.2 m based on the experiment and analysis ofin this 

paper. , Tthe extrapolation of optical water levels may occur during the time gap between altimetry missions and before 2002. 

The average uncertainty of altimetry water levels is 0.11 m. 20 

6 Applications 

56.1 Spatiotemporal analysis of changes in water storage of Tibetan Llakes on the Tibetan Plateau 

Based on the lake water storage changes we derived, spatial patterns of lake storage trends from during 2000‒ to 2017 were 

shown in Figure 12Figure 11. In the endorheic basin of the TP, similar to some reported results (Yao et al., 2018b; Zhang et 

al., 2017a), most lakes have been expanding rapidly, e.g., Lake SelinSelin Co (89.00 E, 31.80 N) gained ~19.7±2.0 km3 of 25 

water during the study period, Lake Kusai (92.90 E, 35.70 N) experienced an abrupt expansion due to flood and gained 

~2.2±0.2 km3 of water in 2011, as reported in related work (Yao et al., 2012). In contrast, some lakes in the southern part of 

the TP experienced shrinkage, e.g., Lake YamYamzhog Yumco (90.70 E, 28.93 N) gained a total of 0.8±0.4~0.8 km3 water 

during 2000–2004 but has been shrinking during the remaining 13 years (2005–2017) at a rate of -0.19±0.03~ -0.2 km3/yr. In 

contrast to Lake YamYamzhog Yumco, Lake Qinghai (100.00 E, 36.90 N) lost 2.2±0.7~1.9 km3 water during 2000–2004 30 

https://doi.org/10.1594/PANGAEA.898411
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but gained 7.7±0.6~8.1 km3 of water during 2005–2017. Similar patterns can be detected in adjacent lakes of Lake Qinghai, 

e.g., Lake Donggei Cuona (98.55 E, 35.28 N) and Lake Ngoring (97.70 E, 34.90 N). 

 

 

Figure 1211. Spatial distribution of trends in lake storage on the TP during 2000–2017. The back polygon shows the boundary of 5 
the endorheic basin of the TP including 39 study lakes. The other 13 study lakes are located outside the endorheic basin. 

However, spatial proximity cannot fully explain the intricate trend distribution in the Selin Co basin, where large lakes such 

as Lake SelinSelin Co were expanding whereas smaller adjacent lakes showed an opposite decreasing trend, e.g., Lake Urru 

Co (88.00 E, 31.70 N), Lake Co Ngoin (88.77 E, 31.60 N), and Lake Goren Co (88.37 E, 31.10 N). In fact, we found that the 
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decreasing trends in some small lakes like Lake Goren Co were not detected in Yao et al. (2018b), which is likely due to the 

lower sampling frequency as shown in Figure 13Figure 12. The three shrinking lakes are located in the upstream region and 

feed Lake SelinSelin Co through two small rivers. One of the rivers links Lakes Goren Co, Urru Co, and Selin Co, whereas 

the other links Lakes Co Ngoin and Selin Co.  

 5 

 

Figure 1312. Discrepancy of lake storage trends in Lake Goren Co between Yao et al. (2018a) and our study. 

A possible explanation of the disparity of changes in lake water storage in the Selin Co basin could be the principle of 

minimum potential energy. If we simplify the basin with the tank model and take the upstream small lake as a tank with a 
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leaking hole, the storage of the small lake is mainly controlled by the height of the leaking hole. Given that surface water of 

the small lake increased, most of the increased water would flow into the large lake (a lower tank), and the outflow discharge 

of the small lake at higher elevations would increase accordingly. The height of the leaking hole would decline (erosion) so 

as to increase the overflow capacity, which eventually results in the decrease in small lake storage. Another possible 

situation is that the height of the leaking hole remains the same and the water surface height of the small lake increases, but 5 

this situation is not consistent with the minimum potential energy principle, as more water potential energy is stored in the 

small lake. This phenomenon shows that river-lake interactions may cause complex patterns of the regional surface water 

distribution. Therefore, decreases in small lake water storage and increases in water storage of Lake SelinSelin Co in the 

basin detected by our study seem reasonable. Increases in small lake water storage in this basin reported in some published 

studies may be associated with the sparse sampling of lake water levels.  10 

We averaged the total lake water storage change in each season to generate the time series shown in Figure 14Figure 13 (a). 

The overall storage change in the 52 study lakes is 98.3±2.1 km3. The total lake water storage was increasing rapidly during 

the first 12 years but became relatively stable since 2012. Intra-annual variation in the TP lakes can also be investigated 

using the densified lake water level time series generated by this study. We removed the linear trend (sometimes there were 

multiple linear trends for a lake in different periods, which were removed in a stepwise fashion) and calculated the mean 15 

monthly water level anomaly for each lake over the study period. Then the intra-annual water level change was represented 

by the difference between the maximum and minimum values of the monthly water level anomaly. The histogram of the 

intra-annual water level change in Figure 14Figure 14 (b) shows that most of the TP lakes have water level variations 

ranging from 0.3‒0.75 m in a year on average. Similar work was performed by Lei et al. (2017) but only a small number of 

lakes were investigated in their study. 20 

 

Figure 1413. (a) Total storage changes in the study lakes (52) on the TP, which can be generally divided into two stages: (1) a 

rapidly increasing stage (2000‒2011) with a higher increasing rate of 6.68 km3/yr and (2) a mildly increasing stage (2012‒2017) 

with an increasing rate of 2.85 km3/yr. (b) Histogram of changes in lake water levels of the study lakes on the TP. 

Intra-annual variation in the TP lakes can also be investigated using the densified time series generated by this study. We 25 

removed the linear trend (sometimes there were multiple linear trends for a lake in different periods, which were removed in 
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a stepwise fashion) and calculated the mean monthly water level anomaly for each lake across the study period. Then the 

intra-annual water level change was represented by the difference between the maximum and minimum values of the 

monthly water level anomaly. The histogram of the intra-annual water level change in Figure 1314 (b) shows that most of 

the TP lakes have water level variations ranging from 0.3‒0.75 m in a year on average. Similar work was performed by Lei 

et al. (2017) but only a small number of lakes were investigated in their study. 5 

5.2 Quality assessment of similar data products 

6.2 Quality assessment of similar data products 

We made a comparison with a widely used lake water level/storage data set provided by the LEOGS Hydroweb, indicating 

that our product may perform better in terms of the consistency as well as sampling frequency. Both advantages are 

important in improving our understanding of responses of lakes to climate change. There are 21 same lakes in both our study 10 

and LEOGS Hydroweb. Annual trends in water level and lake storage during 2003‒2015 were compared (Figure 14). 

Overall, the two products are consistent in terms of R2 of the linear fit.  

 

Figure 14. Cross validation of the TP lake level and storage changes derived from our study with those provided by 

the LEGOS Hydroweb database (Crétaux et al., 2011a): (a) trends in lake water levels from 2003 to 2015 and (b) 15 

trends in lake water storage from 2003 to 2015. 

However, someSome obvious discrepancies between the two data sources still existcan be noticed, e.g., water levels of Lake 

TaroTaro Co. Both Hydroweb data and our estimation used ICESat-1 and CryoSat-2 data. The difference lies in the fact that 

our CryoSat-2 product was more updated with a longer time span but Hydroweb used an additional altimetry satellite 

SARAL. Since Because the systematic biases of both products were performed some kind of removal of the systematic 20 

biasremoved, it is possible that we chose different baselines that resulted in the overall shift as shown in Figure 15Figure 15 

(a). For instance, we may use different sets of ellipsoid and geoid models. However, iIn addition to the overall shift, some 

time-dependent discrepancy can be found in Figure 15, e.g., periods highlighted by red or blue shadesshading areas. We will 

explain the possible reasons in the following paragraph. 
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The black curve shows the optical water level we derived, which is a critical reference when connecting two different 

altimetry data time series without an overlap period. The optical water level shows that the last two samples of ICESat-1 data 

should not be lower than the first few samples of the CryoSat-2/SARAL data (see the dashed boxes). However, it is apparent 

that Hydroweb data display a reverse relationship. Though, which showsshowing that the last two ICESat measurements are 

smaller than the first a few CryoSat/Saral measurements. It is possiblylikely due to an unremoved systematic bias between 5 

ICESat and CryoSat/Saral time series from Hydroweb data in Taro Co. It should be noted that, even though the optical water 

levels were derived by linearly fitting the normalized lake shoreshoreline changes positions with altimetry data, the relative 

heightmagnitude of water levels during different periods should not be largely affected by the fitting parameters, e.g., if 

optical water levels show that Ha >= Hb, where Ha (Hb) means water levels acquired in period A (B), the Ha >= Hb 

relationship will would not change with the fitting parameters used to generate the optical water levels. This is the main 10 

reason for us to use optical water levels as reference data. Therefore, Hydroweb data may underestimateoverestimate the 

decreasingincreasing trends in the water levels of Lake TaroTaro Co since 2009as their ICESat data are ~0.3 m lower than 

the expected valueSaral/CryoSat data. A Ssimilar issue can be observed in Zhari Namco and Ngoring Llakes shown in 

Figure 15 (b)‒ (c) as well, and the explanation is also similar to that of Taro Co. This problem may also exist in some similar 

studies when multisource altimetry data without overlap periods were used. 15 
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Figure 1515. Similarities and differences between water level time series from the LEGOS Hydroweb database and this study 

(Crétaux et al., 2011a). (a) Lake TaroTaro Co (84.12 E, 31.14 N); (b) Lake ZhariZhari Namco (85.61 E, 30.93 N); and (c) Ngoring 

Lake (97.70 E, 34.90 N). 5 
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As shown in  

Figure 16Figure 16, optical data can be less noisy than altimetry data in certain lakes and significantly improved the 

continuity of lake level and storage change monitoring. In addition, a more apparent seasonality in lake level change can also 

be seen from the densified improved lake level time series. These advantages would largely benefit a better understanding of 

responses of TP lakes to climate change and facilitate hydrological modelling of lake basins, regional water balance analysis, 5 

and even hydrodynamic analysis of lake water bodies. 
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Figure 16. Lake water level (left y axis) estimates from our approach for six TP lakes. Black lines represent optical data and red 

dots represent Altimetry data. 5 

56.3 Lake overflow flood monitoring 

As mentioned earlier in Section 5.1, Lake Kusai experienced an abrupt expansion in 2011, resulting from dike-break of an 

upstream lake (Hwang et al., 2019; Liu et al., 2016; Yao et al., 2012), named Lake Zhuonai (91.93 E, 35.54 N). The outburst 

of Lake Zhuonai occurred on Sep 14 (Liu et al., 2016) and 2.47 ± 0.06~2.4 km3 of water leaked into the Kusai River (as 

shown in Figure 17Figure 17 (b)), the main inflow of Lake Kusai. The water level of Lake Kusai increased by up to 7.9 ± 10 

0.5~8 m within 20 days (from Sep 11 to Oct 1 in 2011) based on Jason-2 data, and then started to drop as water overflowed 

from the southeast corner into Lake Haidingnuoer (93.16 E, 35.55 N) and Lake Salt (93.40 E, 35.52 N). Lake Salt, the lowest 

part of the basin close to the basin boundary, has gained 3.0 ± 0.1 ~3.2 km3 of water since 2011 and became a critical threat 
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to the surrounding residents and railway ~10 km southeast to the boundary. Note that there are few satellite altimetry data 

available for Lake Salt except several CryoSat-2 observations, where optical water levels can provide a near real-time 

monitoring of changes in lake water level and storage that are crucial to flood early warning and risk management. 

 

Figure 17. (a) Lake storage changes in Lake Zhuonai, Lake Kusai, and Lake Salt corresponding to the outburst event in Sep 2011 5 
and (b) storage changes in relevant lakes during the outburst event (a magnified plot of the blue shade in (a)). 

Aided by the high-temporal-resolution densified lake water level series, it was possible to estimate the height of the outlet of 

Lake Kusai, an important parameter for overflow estimation. The overflow of Lake Kusai can help predict the water level 

rise in Lake Salt and even serve as an indicator of flood forecast, as Jason-3 data with a 10-day revisit cycle are now 

available on Lake Kusai. Several pairs of concurrentsame period Landsat OLI images and lake water levels for the same 10 

period were compared to provide a range of possible outlet heights, which are likely to be 4483.9 m to 4484.1 m, as shown 

in Figure 18Figure 18 (a). Then we measured the mean width of the outlet from high resolution optical images provided by 

Planet Explorer (Team, 2017), which is relatively stable in Dec at 31.5 ± 2.3 m in recent years. Given lake water levels, the 

outlet height and width, estimation of overflow can be made using the broad crest weir formula: 
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Figure 18. (a) Height variations in the outlet of Lake Kusai, the overflow would occur when the water level increases from 4483.9 

m to 4484.1 m; (b) Landsat images before the outburst of Lake Zhuonai; and (c) Landsat images after the outburst event. 

Given lake water levels, the outlet height and width, estimation of overflow can be made using the broad crest weir formula: 

𝑄 = 𝐶 ∙ 𝑏 ∙ 𝐻1.5√2𝑔  Eq 1316  

where C is a parameter mainly reflecting geometric characteristics of the weir that mainly varies from 0.3‒0.4, ; b is the 5 

width of the weir, ; H is the water head with respect to the top of the weir, ; and g is the acceleration of gravity. 

It is difficult to obtain the exact value of C without performing field investigations. Nevertheless, the range of C can be 

narrowed down by investigating the lake storage change process of Lake Kusai. As shown in Figure 19 (a), from Oct 1 to 

Nov 9 in 2011, the water level of Lake Kusai decreased rapidly by ~1.2 m. Given that the rainy season has ended (Liu et al., 

2016), the water level of Lake Zhuonai became stabilized, providing minimum inflow to Lake Kusai. Meanwhile, the 10 

magnitude of total evaporation during the period would not exceed 0.1~0.2 m as the mean annual potential evaporation of 

the region is around 1000 mm (Zhang et al., 2007) and stage 1 (shown in Figure 19) only lasted for 40 days. In addition, the 
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evaporation loss could be partially compensated by inflow. Overflow should be the driving factor of the lake storage balance 

of Lake Kusai during the period. Therefore, we used the following function to reproduce changes in water level and storage 

in Lake Kusai during Oct 1 to Nov 9 in 2011 (stage 1 shown in Figure 19): 

−
𝑑𝑉(𝐻)

𝑑𝑡
= 𝑄 = 𝐶 ∙ 𝑏 ∙ 𝐻1.5√2𝑔 

 Eq 17 

where V is referred to as the lake storage change, which is a function of water head H. 

Equation 17 can be theoretically solved to describe the relationship between H and t if V(H) is simple, e.g., a cubic curve. 5 

Otherwise, it can be solved with a numeric algorithm, such as the finite difference method. In a word, by solving the 

equation with different values of parameter C and optimizing the mean absolute error between the simulated result and the 

remotely sensed observations (shown in Figure 19 (a)), we suggested that C equals to 0.30 in this case, which is a reasonable 

value in hydrodynamic calculations. 

We determined C (~0.3) by using stage 1 shown in the Figure 19 as a calibration period. Details can be found in the 10 

supplementary file. Then we applied this result to stage 2 shown in Figure 19 to estimate the total overflow from Lake Kusai 

and compared the overflow with total water gain in stage 2 in Lake Salt. Since Lake Salt

 

Figure 19. (a) Changes in the water level of Lake Kusai after receiving the outburst flood from Lake Zhuonai. Water level in 

stage 1 was simulated using Eq 17, which provided a referencing range of parameter C. Water level in stage 2 provided 15 

water level input for Eq 17 to calculate total outflow, which was compared with the concurrent water gain of Lake Salt 

downstream; and (b) changes in water storage of Lake Salt derived from remote sensing using our developed method. There 

was 0.19 km3 of water gained in stage 2, which was comparable to the outflow estimate of Lake Kusai (0.22 km3).  

In stage 2 (Nov 9‒Dec 31 in 2011) shown in Figure 19 (a), a temporary increase in water level occurred in Lake Kusai, 

implying that the overflow is not the only driving factor in stage 2. Nevertheless, stage 2 can provide water level input for Eq 20 

17; thus the total outflow can be simulated using parameter C determined in stage 1. Since Lake Salt downstream mainly 

relied on the replenishment of Lake Kusai during that period, with little precipitation input and negligible glacier melt water 

in winter, the outflow of Lake Kusai can be comparable with the water gain in Lake Salt derived from remote sensing, 



47 

 

though there was a small amount of evaporation loss. This relationship can provide a straightforward validation of our 

developed method. However, it was not available in stage 1, because the outflow of Lake Kusai first replenished Lake 

Haidingnuoer until the later began overflowing. The total outflow from Lake Kusai in stage 2 was calculated to be 0.21 ‒ 

0.22 km3, whereas the water gain in Lake Salt was 0.19 ± 0.010.19 km3. This result showed This indicates that our densified 

high-temporal-resolution lake water level time series from multiple optical and altimetric missions and the developed 5 

method are valuable in monitoring and predicting the outflow flood risk that is crucial for the safety of downstream residents 

and infrastructure. 

 

 

Figure 18. (a) Height variations in the outlet of Lake Kusai, the overflow would occur when the water level increases 10 

from 4483.9 m to 4484.1 m; (b) 6 Data availability 

Google Earth image before the outburst of Lake Zhuonai (2010/12); and (c) Google Earth image after the outburst event (2013/12). 
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Figure 19. (a) Changes in the water level of Lake Kusai after receiving the outburst flood from Lake Zhuonai. Water level in stage 

1 was simulated using , which provided a referencing range of parameter C. Water level in stage 2 provided water level input for  

to calculate total outflow, which was compared with the same period water gain of Lake Salt downstream; and (b) changes in 

water storage of Lake Salt derived from remote sensing using our developed method. There was 0.19 km3 of water gained in stage 5 
2, which was comparable to the outflow estimate of Lake Kusai (0.22 km3). 

 

The derived TP lake water levels, hypsometric curves, and water storage changes are archived and available at 

https://doi.org/10.1594/PANGAEA.898411. (Li et al., 2019) 

7 Conclusion 10 

In this study, we generated develop a dense (monthly and ever higher such as 10 days on average) continuous 18-year high-

temporal-resolution (i.e., weekly to monthly) data set with the mean temporal resolution from monthly to weekly of changes 

in lake water level and storage change data sets for 52 large lakes on the TP during 2000‒2017 by combining multisource 

optical remote sensing images and multiple altimetric missionsaltimetric information. The optical dataGenerated from lake 

shoreline changespositions and regression analysis with altimetry data,   the optical water level servesd as a unique reference 15 

covering the entire study period, enabling a more consistent conjunction merging of multisource altimetry time series. 

Multisource altimetry water levels wereare first extracted separately from spaceborne altimetry products and then combined 

into a longer and denser altimetry water level time series with systematic biases well removed using optical water levels as 

reference. The combined altimetry and optical water levels increased the overall sampling frequency to sub-monthly 

regardless of the lake size. 20 

By comparison with a widely used LEGOS Hydroweb data set, we showed that without suchoptical water levels as a 

reference data set, there may be a remaining bias in the combined altimetry water levels in certain lakes. Our study has 

considerably improved the temporal resolution of the monitoring of TP lake water level and storage changes. For most lakes 

examined in the published studies, to our best knowledge, the estimates from our study provided the densest observations of 

the highest temporal resolution that can better reveal the interannual and intra-annual variability and trends in lake water 25 

https://doi.org/10.1594/PANGAEA.898411
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level and storage, even in some relatively small TP lakes whose annual trends may, however, be incorrectly estimated by 

sparse sampling of lake water levels. The densifieddensedeveloped data sets can also facilitate the monitoring of some 

rapidly expanding lakes with overflow risks and provide important information on flood prediction and early warning. 

We evaluated the uncertainty in the optical water levels by field experiments and rigorous uncertainty analysis. Both 

methods are consistent that the magnitude of the uncertainty is around ~0.1 m, which suggests that optical water levels are 5 

often more efficient and less noisy than altimetry data when the altimeter footprints on the lake surface are insufficient, 

especially for small lakes. Based on our estimates, 52 large TP lakes accounting for ~60% of the total TP lake area have 

gained 98.3±2.1 km3 of water during the past 18 years. Lakes in the endorheic basin on the TP were have mostly 

expandedmostly expanding. Water loss was is more likely to be found among in the southern TP lakes over the southern TP. 

In the Selin Co basin, a more complicated spatial pattern of lake storage changes was has been detected, as small lakes were 10 

were slowly losing water whereas the large lake was gaining water, which we speculated to bemay be  caused by complex 

lake-river interactions that need further investigation. The complex spatial pattern of lake storage changes in the Selin Co 

basin was quantified and a possible explanation was proposed in this study. Note that the quality of the optical water levels 

before 2002 may not be as good as those obtained after 2002, because no altimetry data before 2002 were are used in this 

study. Extrapolation of the lake shore change-water level relationship may not be stable if the water level during 2000‒2001 15 

was much lower or higher than those from 2002‒2017. Some dDiscussions abouton how the extrapolation wouldmay affect 

the data quality can be found in the supplementary file. 
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