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Abstract. The Tibetan Plateau (TP) known as Asia’s water towers is quite sensitive to climate change, reflected by changes 10 

in hydrological state variables such as lake water storage. Given the extremely limited ground observations on the TP due to 

the harsh environment and complex terrain, we exploited multisource remote sensing, i.e., multiple altimetric missions (Jason-

1/2/3, Envisat, ICESat, CryoSat-2) and Landsat archives to create dense time series (monthly and even higher such as 10 days 

on average) of lake water level and storage changes across 52 large lakes (>100 km2) on the TP during 2000‒2017 (the data 

set is available online with a DOI: https://doi.org/10.1594/PANGAEA.898411). Field experiments were carried out in two 15 

typical lakes to validate the remotely sensed results. With Landsat archives and partial altimetry data, we developed optical 

water levels that cover most of TP lakes and serve as an ideal reference for merging multisource lake water levels. The optical 

water levels show an uncertainty of ~0.1 m that is comparable with most altimetry data and largely reduce the lack of dense 

altimetric observations with systematic errors well removed for most of lakes. The densified lake water levels provided critical 

and accurate information on the long-termmultiyear and short-term monitoring of lake water level and storage changes on the 20 

TP. We found that the total storage of the 52 lakes increased by 98.3±2.197.3 km3 at two stages, i.e., 6.68±0.47 km3/yr during 

2000‒2012 and 2.85±0.99 km3/yr during 2012‒2017. The total overflow from Lake Kusai to Lake Haidingnuoer and Lake 

Salt during Nov 9‒Dec 31 in 2011 was estimated to be 0.21~0.22 km3, providing critical information on lake overflow flood 

monitoring and prediction as the expansion of some TP lakes becomes a serious threat to surrounding residents and 

infrastructure. 25 

1 Introduction 

The Tibetan Plateau (TP), providing vital water resources for more than a billion population in Asia, is a sensitive region 

undergoing rapid climate change (Field et al., 2014). There are more than 1,200 alpine lakes larger than 1 km2 (Zhang et al., 

2017a)(Zhang et al., 2014) on the TP where glaciers and permafrost are also widely distributed. With little disturbance by 

human activity in this area, lake storage changes may serve as an important indicator that reflects changes in regional 30 
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hydrological processes and responses to climate change. Wang et al. (2018) showed that global endorheic basins are 

experiencing a decline in water storage whereas the endorheic basin on the TP is an exception. Given the fact that TP lakes 

have been expanding for more than 20 years (Pekel et al., 2016), pasture, farmland, and infrastructure near the lake shore face 

the risk of inundation. Therefore, it is imperative to largely improve the monitoring of TP lakes. 

As an important component of the hydrosphere, terrestrial water cycle, and global water balance, millions of inland water 5 

bodies such as lakes, wetlands, and human reservoirs have been investigated globally and their total storage was estimated to 

be 181.9 × 103 km3  based on statistical models (Lehner and Döll, 2004; Messager et al., 2016; Pekel et al., 2016). Lake storage 

changes, which is more concerned in the regional water balance, can be derived from observed changes in lake water level and 

area (Crétaux et al., 2016; Crétaux et al., 2011b; Song et al., 2013; Yao et al., 2018b; Zhang et al., 2017a). Most of these two 

kinds of observations in related studies were obtained from satellite remote sensing due to the scarcity of in situ data across 10 

the TP where the harsh environment and complex terrain make in situ measurement costly and risky. Changes in lake water 

level can be monitored using satellite altimetry with a radar or laser initially designed for sea surface height or ice berg 

measurements. Altimeters determine the range between the nadir point and satellite by analysing the waveforms of reflected 

electromagnetic pulse. The waveforms of radar or laser pulse may, however, be contaminated by signal from complex terrain 

when applied to inland water bodies, but it is possible to remove these impacts with waveform retracking algorithms (Guo et 15 

al., 2009; Huang et al., 2018; Jiang et al., 2017). Zhang et al. (2011) mapped water level changes in 111 TP lakes for the period 

2003–2009 using ICESat-1 data that have a temporal resolution of 91 days. ICESat-1 data have relatively denser ground tracks 

but a lower temporal resolution than most of other altimetric missions. This means that ICESat-1 covers more lakes but provide 

few water level observations for each lake. After ICESat-1 was decommissioned in 2010, CryoSat-2 data spanning the period 

2010–2015 were adopted in related studies (Jiang et al., 2017), due to its similar dense ground tracks and competitive precision 20 

as ICESat-1. Other altimetric missions, such as TOPEX, Jason-1/2/3, ERS-1/2, and ENVISAT also have some but relatively 

limited applications in monitoring changes in lake water level on the TP due to sparse ground tracks. In this study, multisource 

altimetry data (i.e., Jason-1/2, ENVISAT, ICESat-1, and CryoSat-2) were combined if available for the study lakes, with the 

optical water levels developed in this study as a critical reference to densify the altimetric observations and merging data from 

multiple altimetric missions. 25 

Changes in lake area can be captured by optical/SAR images from medium or high spatial resolution remote sensing data, such 

as Landsat TM/ETM+ETM+/OLI. Extraction of lake water bodies can be manually (Wan et al., 2016) or automatically (Zhang 

et al., 2017b) achieved. Automatic water extraction methods based on the water index and auto-thresholding are more efficient 

in dealing with a large amount of remote sensing images. Even so, acquisition and preprocessing of such a large amount of 

historical images (~10TB) covering TP lakes are still intractable for researchers with limited computation resources. With the 30 

help of cloud-based platforms, such as the Google Earth Engine (GEE) that significantly reduces data downloading and 

preprocessing time, tens of thousands of images may be processed online in days instead of months (Gorelick et al., 2017). In 
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this study, more than twenty thousand Landsat TM/ETMETM+/OLI images were processed online using GEE to extract lake 

water bodies based on the water index and Otsu algorithm. 

There are some studies focusing on changes in lake storage on the TP over recent decades, e.g., Zhang et al. (2017a) examined 

changes in lake storage for ~70 lakes from the 1970s to 2015 with ICESat-1 altimetry data and Landsat archives. An individual 

lake area data set from the 1970s and annual area data after 1989 were used. Due to the short time span of ICESat-1, they used 5 

the hypsometric method to convert lake areas into water levels. Yao et al. (2018b) used DEMs and optical images to develop 

hypsometric curves for lakes on the central TP, and estimated annual changes in lake storage from 2002 to 2015 for 871 lakes. 

These studies have a wide spatial coverage of lakes but relatively lower temporal sampling and little altimetric information, 

which may limit the accuracy of trends in lake water level/storage in some cases and short-term monitoring of lake overflow 

flood. The LEGOS Hydroweb provides a lake data set, including multisource altimetry-based changes in lake water level and 10 

storage as well as hypsometric curves for 22 TP lakes (Crétaux et al., 2016; Crétaux et al., 2011b). The data set incorporated 

more altimetric information and provided data of higher temporal resolution. However, there may be a remaining bias when 

different sources of altimetric data were merged, due to the lack of some important reference that can be derived from optical 

remote sensing images to be shown in this study. We term the reference data as the 'optical water level' to be introduced in 

section 3.2. Here, we list recent studies and data sets (Table 1) to provide a concise summary on the progress of remote sensing-15 

based water level and storage monitoring on TP lakes. 

Table 1. Recent studies and data sets on TP lakes. H, A, V in the table denote lake water level, area, and volume, respectively. 

Reference No. of 

study 

lakes 

Data type Time span Temporal resolution Source data 

(Song et al., 

2013) 

30 H, A, V, and 

hypsometric 

curve 

4 records for 1970s, 1990, 

2000 and 2011 

Decadal Altimetry data: 

ICESat-1 

Optical data: 

Landsat TM/ETM+ETM+ 

(Crétaux et 

al., 2016) 

22 H, A, V, and 

hypsometric 

curve 

1995‒2015 

Relative bias partially 

removed (only for altimeters 

with overlapping period) 

Sub-monthly for lakes with 

T/P, and Jason-1/2 data, 

and ~monthly for the rest 

lakes 

Altimetry data:  

T/P, ERS-2, GFO, Envisat, Jason-1/2, 

SARAL, ICESat-1, and CryoSat-2  

Optical data: 

Landsat TM/ETM+ETM+/OLI and MODIS 

(Wan et al., 

2016) 

>1000 A 3 records for 1960s, 2005, 

and 2014 

Decadal Optical data: 

Landsat ETM+ETM+/OLI, CBERS-1 

CCD, and GF-1 WFV 

(Jiang et al., 

2017) 

70 H 2003‒2015 

Relative bias between 

ICESat and CryoSat-2 

unremoved 

~Monthly Altimetry data: 

ICESat-1, and CryoSat-2 
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(Yang et al., 

2017) 

874 A 2009‒2014 Monthly data for 24 largest 

lakes, and yearly data for 

the rest lakes 

Optical data: 

Landsat TM/ETM+ETM+/OLI and HJ-

1A/1B 

(Zhang et 

al., 2017a) 

60~70 H, A, V, and 

hypsometric 

curve 

One record for 1970s, and 

annual data for 1989‒2015 

Annual Altimetry data: 

ICESat-1 

Optical data: 

Landsat TM/ETM+ETM+/OLI 

(Li et al., 

2017b) 

167 H 2002‒2012 ~Monthly Altimetry data: 

ICESat-1 and Envisat 

(Yao et al., 

2018b) 

871 H, A, V, and 

hypsometric 

curve 

2002‒2015 

 

Annual Optical data: 

Landsat TM/ETM+ETM+/OLI and HJ-

1A/1B 

DEM data: 

SRTM and ASTER 

(Hwang et 

al., 2019) 

59 H 2003‒2016 

Relative bias partially 

removed (only for lakes with 

Jason data/in situ data) 

Sub-monthly for lakes with 

Jason-2 data, and 

~monthly for the rest lakes 

Altimetry data: Jason-2/3, SARAL, ICESat-

1, and CryoSat-2  

(Jason-3 data for validation) 

Our study 52 H, A, V, and 

hypsometric 

curve 

2000‒2017 

All relative biases removed 

Sub-monthly for most 

lakes 

Altimetry data: Jason-1/2/3, Envisat, 

ICESat-1, and CryoSat-2  

Optical data: 

Landsat TM/ETM+ETM+/OLI 

The overall objective of this study was to examine long-termmultiyear and short-term changes in water level and storage across 

52 lakes with surface areas larger than 150 km2 on the TP by merging multisource altimetry and optical remote sensing images 

to generate a much denser (monthly or higher such as 10 days on average), more coherent lake water level/storage change data 

set covering the period 2000‒2017 and the hypsometric curve for each study lake. Results of this study provide a 

comprehensive and detailed assessment of changes in lake level and storage on the TP for the recent two decades, and short-5 

term monitoring of lake overflow flood for some lakes. This study could largely benefit more detailed investigations into lakes, 

lake basins, and regional climate change, because the generated data set has the highest temporal resolution during the study 

period. To ensure data quality, field experiments were carried out and in situ data were collected to examine the uncertainty in 

the derived optical water levels. 

2 Study area and data 10 

2.1 Study area 

The TP can be generally divided into 12 major basins (Wan et al., 2016; Zhang et al., 2013), among which the Inner/Central 

TP (CP) is the only endorheic basin and home to most TP lakes including ~300 TP lakes larger than 10 km2. Therefore, it was 
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chosen as the main study area. The endorheic basin covers an area of ~710,000 km2 (~28% of total TP) with a mean elevation 

of ~4,900 m and has a semi-arid plateau climate with precipitation ranging from 100‒300 mm (Yao et al., 2018b). Most lakes 

in the endorheic basin were expanding under the influence of climate change/variability as opposed to many other places in 

the TP, e.g., Lake Selin Co Selin Co exceeded Lake Nam CoNam Co in area and consequently became the largest lake in the 

endorheic basin between 2011–2012 and expanded by 26% over the past 40 years (Zhou et al., 2015), whereas Lake 5 

YamYamzhog Yumco (outside the endorheic basin, 350 km to the southeast of Selin Co) shrunk by ~11% during 2002–2014 

according to Wan et al. (2016). Located in the southeast endorheic basin, the Lake Nam CoNam Co basin covering about 

10,800 km2, with 19% of the basin lake water area and a mean lake elevation of ~4,730 m was chosen as a field experiment 

spot. The mean annual temperature and precipitation of Lake Nam CoNam Co are 1.3 °C, and 486 mm, respectively (Li et al., 

2017a). The other experiment spot was Lake YamYamzhog Yumco, which has a mean lake elevation of ~4,440 m. Subjected 10 

to steep mountainous terrain, the lake has a narrow-strip shape with complex shorelines. The basin of Lake YamYamzhog 

Yumco covers ~6,100 km2, with mean annual temperature and precipitation of 2.8 °C and ~360 mm, respectively (Yu et al., 

2011). 

2.2 Data 

Multisource altimetry data were used in this study as shown in Table 2Table 2. The earliest record dates back to 2002 (i.e., 15 

ENVISAT and Jason-1) and the latest record ends in 2017 (i.e., Jason-3 and CryoSat-2). Most of 52 lakes examined in this 

study were covered by ICESat-1, ENVISAT, and CryoSat-2 data. Jason-1/2/3 data were available only on 12 lakes due to the 

relatively sparse ground tracks or data quality issues. Note that Jason-2 inherited the orbit of Jason-1 after its launch in 2008, 

whereas Jason-1 was shifted into an interleaved orbit and continued functioning until 2013, thereby increasing the spatial 

coverage of Jason altimetry series to some degree, e.g., Jason-1 data in Lake Qinghai, the largest lake on the TP, were only 20 

available after 2008 due to the orbit shift. ICESat-1 and CryoSat-2 data have the best spatial coverage but relatively long repeat 

cycles of 91 days and 369 days (Bouzinac, 2012; Zhang et al., 2011). The ENVISAT mission has a moderate set of orbital 

parameters to balance its spatial coverage and temporal resolution of 35 days (Benveniste et al., 2002). In order to determine 

if the altimetry data fall into the study lakes, a lake shape data set generated by Wan et al. (2016) was used. 

We used Landsat TM/ETM+ETM+/OLI Surface Reflectance data sets provided by GEE to generate information on lake shore 25 

and lake area changes. TM images covered 2000–2011, whereas ETM+ETM+ images covered 2000–2017 and OLI images 

covered 2013–2017. Though Landsat ETM+ETM+ suffered sensor failure and all the ETM+ETM+ images contain gaps after 

2003 (Markham et al., 2004), we managed to make use of some images with gaps in generating lake shore changes. All the 

images were processed online using GEE API. Preprocessing such as radiometric calibration, atmospheric correction, as well 

as geometric correction was already performed in the production of the data sets. There were more than 20,000 images 30 

processed and a half of them were excluded from the final results due to cloud contamination or gaps. 
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We collected daily in situ water level measurements in Lake YamYamzhog Yumco for validation purposes with a pressure-

type water level sensor. The in situ water level measurements spanned a half year from May to October 2018. We also 

performed unmanned aerial vehicle (UAV or drone) imaging over a 1 km‒lake bank in Lake YamYamzhog Yumco and Lake 

Nam CoNam Co. The UAV images were used to evaluate the accuracy of lake shore extraction from Landsat data, which is 

similar to Huang et al. (2018). In addition, we performed a rigorous statistical analysis of the uncertainty in the derived optical 5 

water levels by taking the UAV-derived water area ratios as the ground truth of sub-pixel water area ratios of Landsat image 

pixels (see Section 4). 

Table 2. Multisource altimetry data used in this study 

Mission Sensor 

type 

Duration Repeat cycle 

(day) 

Footprint 

interval (m) 

Footprint 

diameter (km) 

Lake no. with 

data  

Data 

source 

Jason-1 Radar 2002‒2013 10 d ~300 m 2‒4 km 12 Aviso 

Jason-2 Radar 2008‒ 10 d ~300 m 2‒4 km 12 Aviso 

Jason-3 Radar 2016‒ 10 d ~300 m 2‒4 km 12 Aviso 

ENVISAT Radar 2002‒2010 35 d ~390 m 3.4 km 35 ESA 

CryoSat-2 Interferom

eter 

2010‒ 369 d (Sub cycle 30 

d) 

~280 m ~1.65 km (across track)  

~0.300 m (along track) 

51 ESA 

ICESat-1 Laser 2003–2009 91 d ~170 m ~0.0770 m 42 NASA 

3 Methodology 

To investigate changes in lake storage, changes in lake water level and lake area need to be derived from multisource remote 10 

sensing. First, water levels from various satellite altimeters (see Figure 1Figure 1) for each lake as well as changes in lake 

shoreline and area from optical remote sensing images (i.e., Landsat TM/ETM+ETM+/OLI) were derived. Second, the 

systematic biases between different altimetry data were removed by either comparing the mean water level of the overlap 

period or comparing the two water level time series with changes in lake shoreline, depending on the length of the overlap 

period. The lake shoreline changes, termed as the optical water levels against altimetry water levels in this study, can serve as 15 

a unique source of information reflecting water level changes as well as a data merging reference. We will show that after 

deriving two or three regression parameters, lake shoreline changes can well represent lake water levels with comparable 
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accuracy as altimetry-derived water levels. Third, with information on changes in water level and water area derived from 

altimetry data and optical remote sensing images, the hypsometric curve that describes the relationship between the lake water 

level and lake water storage changes can be derived. Fourth, the integral of the hypsometric curve was performed to convert 

water level time series into lake storage change time series. Details will be illustrated in the following sections. 

 5 

Figure 1. Spatial (the number of lakes covered) and temporal coverage and their overlap periods of multiple satellite altimetry 

missions used in this study, including Jason-1/2/3, ENVISAT, ICESat-1, and CryoSat-2. 

3.1 Altimetry water level 

The first step of deriving altimetry water levels is to select correct ground tracks and valid footprints falling on the lakes. 

Because there is a random ground track shift at ~1 km in different cycles for most altimetry missions, it is uncertain that valid 10 

lake footprints can be obtained for each cycle, even though the nominal ground track seems crossing the lake. This problem 

can be addressed by comparing the geographic coordinates of the footprints with a lake shape data set (Wan et al., 2016). After 

picking out the valid footprints, the lake surface height can be calculated for each footprint. All radar altimetry data share a 

relationship: 

𝐿𝑆𝐻 = 𝐴𝑙𝑡 − (𝑅𝑎𝑛𝑔𝑒 + 𝑐𝑜𝑟)   
Eq 1 

where LSH represents the lake surface height with respect to the geoid. Alt represents the altimeter height with respect to the 15 

reference ellipsoid. Range represents the distance between the altimeter and lake surface. cor represents several range 

corrections including retracking correction, wet/dry troposphere correction, ionosphere correction, pole/solid tide correction, 

and geoid correction. The retracking range correction plays an important role in removing the contamination of land signal 

when the altimetry data are applied to inland water bodies. In this study, Jason-1/2/3 data were retracked using a classical 

waveform retracking algorithm named the improved threshold method (ITR), whereas CryoSat-2 data were retracked using 20 

the narrow primary peak threshold (NTTP) method (Birkett and Beckley, 2010; Cheng et al., 2010; Jain et al., 2015). 

Retracking corrections were not performed for ENVISAT and ICESat data, because the ENVISAT product already provided 

a retracked range using the ICE-1 method and the ICESat GLAH14 product already included several corrections that are 

sufficient for most applications including studies on inland water bodies (Zhang et al., 2011). 
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For each cycle of an altimeter, it is common that more than one footprint fall on a study lake, thereby providing several LSH 

observations on the same day. After removing outliers with the three-sigma rule, frequency distributions of the LSHs from the 

same cycle were calculated. The mean value of the highest bucket of the histogram was selected to represent the LSH for the 

cycle. Meanwhile, the frequency of the chosen bucket was reserved to evaluate the data quality for the cycle, e.g., a cycle was 

marked as high quality if the frequency is higher than 0.8, moderate quality if it is only higher than 0.5, and poor quality if the 5 

frequency is lower than 0.5. The LSH from each cycle constituted the lake water level time series for the study lake. LSHs that 

were marked as poor quality and obviously deviated from the moving average were removed from the altimetry-based lake 

water level time series. 

It is not uncommon that systematic biases exist in different altimetry data sets due to the variation in orbit, discrepancy between 

correction models, errors associated with sensors, and even the choice of the reference datum. After deriving lake water level 10 

time series for each altimeter, we first merged the Envisat and ICESat-1 water levels if both were available for a lake, because 

they have the longest overlap period (Figure 1). We chose Envisat-derived water levels as the baseline and removed the 

difference of the mean value of the overlap period between the two products, because Envisat data are generally denser and 

longer than ICESat-1 data. A similar process was applied to Jason-1/2/3, as there are two overlap periods connecting the three 

altimeters together.  15 

There are tradeoffs between CryoSat-2 and Jason-2/3 data in terms of spatial coverage and time span. CryoSat-2 data are 

available for all study lakes but they only have the overlap period with Jason-2/3 data, whereas Jason-2/3 data are only available 

for 12 lakes. For most lakes without Jason-2/3 data, we merged CryoSat-2 data with either ICESat-1 or Envisat using optical 

water levels spanning from 2000 to 2017, because there is no overlap period between these altimetry water levels. Lake 

shoreline changes were firstly translated into optical water levels by fitting with CryoSat-2 data, functioning as extrapolation 20 

of CryoSat-2 to 1‒2 years. Then, we applied the same method of merging Jason-1/2/3, to merge the extrapolated CryoSat-2 

data with either Envisat or ICESat-1 data. In doing so, we were able to remove all systematic biases between multisource 

altimetry-derived water levels. Merged All the water levels were with respect to EGM 96. Water levels are with respect to a 

set of reference ellipsoid and geoid which are same as the longest altimetry records for that lake. For lakes with Jason-1/2/3 

data, all water levels are converted to T/P ellipsoid, EGM96; For lakes without Jason-1/2/3 but Envisat, water levels were 25 

converted to WGS84, EGM2008; For lakes without Jason-1/2/3 nor Envisat, water levels were converted to WGS84, EGM96. 

A detailed table that marks out ellipsoid and geoid for each lake can be found in supplementary file. Figure 2 provides an 

example of ground tracks of altimetric missions and water level time series on Lake ZhariZhari Namco. 
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Figure 2. (a) Ground tracks of multiple altimetry missions over Lake ZhariZhari Namco and (b) the merged altimetry water levels 

for Lake ZhariZhari Namco. 

3.2 Optical water level 

For most lake basins, it is possible to find a relatively flat part of lake banks with an average slope of 1/30 or smaller, where 5 

obvious interannual or intra-annual changes in lake shorelines can be detected using high-spatial-resolution Landsat images 

(30 m). These locations can be found by comparing lake images from the first year and the last year of the study period if the 

lake shows a clear expanding/shrinking trend. Otherwise, we can compare images acquired in early summer when the LSH is 

at lowest with those acquired in late autumn when the lake expands to its limit. In this study, we assumed that the selected lake 

bank was flat enough such that the relationship between changes in lake water level and shoreline can be depicted in a linear 10 

or quasi-linear (parabolic) way. The validity of this assumption can be evaluated with the coefficient of determination (R2) for 

each lake as shown in Table 3Table 3. For most lakes, the goodness of fit is higher than 0.7, suggesting the generally good 

fitting relationship between changes in lake level and shoreline. 
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Though there were ~500 Landsat images obtained for the selected lake banks during the study period, many of them were 

largely affected by cloud or cloud shadow. In addition, the failure of Landsat 7 sensor SLC left all the Landsat 7 images with 

gaps after 2003 (Markham et al., 2004), making the available images even fewer. By choosing the region of interest (ROI) that 

is parallel to the Landsat 7 gaps, we can use most of the Landsat 7 images. However, the width of ROI must be reduced to 

avoid shifting gaps as shown in Figure 3Figure 3 (b). The ROI did not fill the interval of gaps, because the wider the ROI, 5 

the higher possibility of shifting gaps cross it. 

Changes in lake shorelines were characterized by changes in the water surface ratio detected in the ROI. To automatically 

extract changes in water surface from tremendous amount of Landsat archives on GEE, the water index and Otsu threshold 

method were jointly used. We calculated the Normalized Difference Water Index (NDWI) and the Modified Normalized 

Difference Water Index (MNDWI) of input images and compared their performance in different seasons. It was found that the 10 

MNDWI tends to be more sensitive to shallow water in summer, but is less effective than NDWI when the lake bank is covered 

by snow in the cold season as shown in Figure 4Figure 4. Therefore, the two water indices were jointly used in this study by 

applying the MNDWI to images acquired during May to October and applying the NDWI to the rest months. The NDWI and 

MNDWI can be calculated as follows (McFeeters, 1996; Xu, 2005): 

𝑁𝐷𝑊𝐼 =
𝐵𝑔𝑟𝑒𝑒𝑛−𝐵𝑁𝐼𝑅

𝐵𝑔𝑟𝑒𝑒𝑛+𝐵𝑁𝐼𝑅
    

Eq 2 

𝑀𝑁𝐷𝑊𝐼 =
𝐵𝑔𝑟𝑒𝑒𝑛−𝐵𝑆𝐼𝑅

𝐵𝑔𝑟𝑒𝑒𝑛+𝐵𝑆𝐼𝑅
    

Eq 3 

where 𝐵𝑔𝑟𝑒𝑒𝑛, 𝐵𝑁𝐼𝑅, and 𝐵𝑆𝐼𝑅  refer to reflectance of bands 2, 4, 5 for Landsat TM/ETM+ETM+ images and bands 3, 5, 6 for 15 

Landsat OLI images. 

After calculating the water index, the grayscale image was binarized using the Otsu method. If the selected ROI comprises 

~50% water and ~50% land, the performance of the method is good, as the distribution of digital numbers of the grayscale 

image is close to the assumption of the bimodal histogram implicit in the Otsu algorithm (Kittler and Illingworth, 1985). The 

binarized images were further processed to provide the water surface ratio in the ROI, which represents changes in lake 20 

shoreline. The time series of changes in lake shoreline were then converted into optical lake water levels using linear regression 

or second-order polynomial fit with altimetry-derived water levels (Figure 3Figure 3 (c)-(d)).  

However, cloud, cloud shadow, and shifting gaps may contaminate the ROI and cause errors in the optical water levels. 

Therefore, the QA band of the Landsat Surface Reflectance product was used to filter the images. The data would be excluded 

if the fraction of the cloud or cloud shadow-covered area in the ROI was higher than 5%. For every Landsat ETM+ETM+ 25 

image acquired after 2003, the pixel number of the ROI was counted and compared with those acquired before 2003. If the 
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loss of pixels exceeded 2%, the ROI was considered to be affected by gap and the data were consequently excluded from the 

subsequent analysis. 

 

Figure 3. (a) Lake YamYamzhog Yumco and its surroundings. The DEM was extracted from the STRM Global 90-m DEM product; 

(b) ROI (yellow region) selected from a Landsat ETM+ETM+ image for detecting changes in lake shoreline and the gaps (black 5 
region); (c) linear regression of the lake shoreline change and altimetry water level for Lake YamYamzhog Yumco; and (d) optical 

water levels and altimetry water levels for Lake YamYamzhog Yumco. 
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Figure 4. (a) Landsat ETM+ETM+ image of the Aqqikkol Lake acquired in summer in 2001; (b) water extraction result using the 

MNDWI and NDWI, showing that the MNDWI performs better in detecting shallow water; (c) Landsat OLI image of Lake Nam 

CoNam Co acquired in winter in 2015; (d) water extraction result of the NDWI, showing good performance in distinguishing water 

from snow; and (e) result of the MNDWI, showing some confusion of water and snow. 5 

3.3 Hypsometry 

We derived the hypsometric curve for each study lake by polynomial fitting of the lake area and level time series. The lake 

area comprises two parts: the inner invariable part and the outer variable part. As the variable water area is of more concern in 

this study, ROIs for extracting changes in lake area only cover the lake shoreline and its neighbouring area as shown in Figure 

5 Figure 5 . The inner part of the water body was calculated only once and considered as invariant, making the calculation 10 

more efficient on GEE. Meanwhile, more images are available as the area of ROI becomes smaller, because the possibility of 

clouds covering the ROI is reduced compared with an ROI covering the entire lake. The Landsat ETM+ETM+ images after 

2003 were not included in this part of calculation as gaps negatively affected the ROI for lake area extraction. Similar to 

Section 3.2, we selected images with less than 5% cloud cover on an ROI to generate time series of changes in lake area, 

obtaining 20~30 data points on average for regression. R2 values for each lake are listed in Table 3Table 3, indicating that most 15 

lake basins agree well with the parabolic hypsometric curve.  
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Figure 5 . Programming interface of GEE. The red polygon was the ROI for lake area change extraction of Lake Selin Co Selin Co. 

It can also be seen that most fitting functions have a positive parameter for the second-order term, which can be explained 

according to the knowledge on the hypsometric curve of catchments. This differs somewhat from the previous studies by Song 

et al. (2013) that shows a negative value for the second-order derivatives. After investigating a number of watersheds, 5 

researchers suggested that the general hypsometric curve for the entire catchment can be expressed as: (Strahler, 1952; 

Willgoose and Hancock, 1998): 

𝑦 = [
𝑑 − 𝑥

𝑥
∙

𝑎

𝑑 − 𝑎
]

𝑧

 
 

Eq 4 

where y corresponds to the normalized elevation and x corresponds to the normalized area above the elevation. a, d, and z are 

fitting parameters. The hypermetric curve generated by this model always has a ′toe′ as shown in Figure 6Figure 6, where the 

second-order differential of the curve is negative. This means that at the low elevation of the catchment, with decreasing 10 

(increasing) elevations, the area above (below) the elevation increases more slowly (faster). Lakes are always formed at the 

lowest portion of a catchment, so the hyperosmotic curve for a lake basin can be the toe part for the entire catchment. This 

suggests that if we use the parabolic curve to fit the lake area and water level time series, there should be a positive second-

order parameter so that with increasing water levels, the lake area increases faster. The last step was to integrate the hypsometric 

curve to generate the volume-elevation relationship and convert the lake water levels into storage changes. 15 
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Figure 6. Strahler’s hypsometric model for catchment with a=0.01 and d=1. 

Table 3. Information on regression analysis of study lakes. 

Lake Name Lake Area km2 No. of optical 

water level 

R2 of optical water 

level 

R2 of hypsometric 

curve 

Hypsometric function 

Ake Sayi Lake 260.74 113 0.8951 0.9556 S=0.45dh2+11.26dh+163.97, dh=H-4846 

Aqqikkol Lake 538.21 354 0.9717 0.9353 S=2.36dh2+0.21dh+370.29, dh=H-4252 

Ayakkum Lake 987.23 183 0.9651 0.9695 S=0.16dh2+65.72dh+658.28, dh=H-3878 

Bamco 255.81 209 0.901 0.9287 S=0.28dh2+2.84dh+206.46, dh=H-4560.5 

Bangong Co 661.64 232 0.5164 0.7991 S=1.43dh2+15.67dh+619.28, dh=H-4238 

Chibzhang Co 541.96 49 0.8766 0.9792 S=0.69dh2+3.36dh+475.79, dh=H-4930 

Co Ngoin1 268.37 174 0.6637 0.8803 S=3.67dh2+-1.33dh+263.1, dh=H-4564.5 

Cuona Lake 192.15 254 0.7607 0.8876 S=1.77dh2+3.6dh+184.79, dh=H-4585.5 

Dagze Co 310.8 192 0.8334 0.8862 S=0.08dh2+6.14dh+230.51, dh=H-4460 

Dogai Coring 492.39 257 0.8624 0.9048 S=3.2dh2+5.66dh+427.17, dh=H-4816 

Dogaicoring Qangco 403.18 162 0.9202 0.9218 S=0.53dh2+3.93dh+279.6, dh=H-4786 

Donggei Cuona Lake 247.83 561 0.8776 0.925 S=0.54dh2+7.22dh+222.19, dh=H-4084 

Dung Co 139.4 145 0.9218 0.8652 S=0.07dh2+2.3dh+137.06, dh=H-4547 

Goren Co 477.95 191 0.6166 0.9096 S=2.91dh2+-0.03dh+468.33, dh=H-4648.5 

Gozha Co 246.91 96 0.4297 0.5564 S=1.57dh2+-0.06dh+254.43, dh=H-5082 

Gyaring Lake 535.84 253 0.6217 0.3451 S=1.99dh2+2.8dh+517.18, dh=H-4292 

Har Lake 621.52 370 0.8652 0.9893 S=1.1dh2+1.52dh+582.34, dh=H-4075 

Hoh Xil Lake 351.3 132 0.9038 0.9355 S=1dh2+5.29dh+300.5, dh=H-4887.1 
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Jingyu Lake 339.69 224 0.8978 0.989 S=0.37dh2+4.77dh+238.43, dh=H-4710 

Kusai Lake 328.8 295 0.9787 0.8987 S=0.52dh2+5.04dh+254.67, dh=H-4473 

Kyebxang Co 187.32 233 0.75 0.8753 S=0.16dh2+5.4dh+150.9, dh=H-4619 

Langa Co 256.03 167 0.859 0.888 S=-0.19dh2+4dh+249.28, dh=H-4564 

Lexiewudan Co 273.63 286 0.9216 0.9496 S=0.13dh2+4.63dh+219.65, dh=H-4868 

Lumajiangdong Co 386.71 220 0.9135 0.9708 S=0.62dh2+2.09dh+353.95, dh=H-4812 

Mapam Yumco 412.69 163 0.7096 0.9973 S=1.18dh2+5.16dh+399.68, dh=H-4584 

Margai Caka 137.7 247 0.9399 0.9955 S=0.03dh2+5.14dh+112.12, dh=H-4791 

Memar Co 167.3 193 0.911 0.8626 S=0.27dh2+3.17dh+134.69, dh=H-4923 

Nam Co 2028.5 187 0.9064 0.8749 S=2.43dh2+5.55dh+1970.1, dh=H-4724.5 

Ngangla Ringco 492.86 88 0.4652 0.9498 S=3.87dh2+3.86dh+490.69, dh=H-4715 

Ngangze Co 471.21 245 0.9538 0.9332 S=0.2dh2+7.03dh+391.21, dh=H-4680 

Ngoring Lake 656.83 86 0.844 0.8613 S=4.69dh2+-5.04dh+613.66, dh=H-4270 

Paiku Co 272.85 231 0.8341 0.9079 S=0.91dh2+2.64dh+264.89, dh=H-4578.5 

Puma Yumco 290.98 250 0.6871 0.5629 S=0.48dh2+0.8dh+286.34, dh=H-5011 

Pung Co 176.93 187 0.8017 0.9841 S=0.03dh2+3.75dh+151.66, dh=H-4526 

Qinghai Lake 4495.33 323 0.9011 0.8181 S=3.45dh2+155.03dh+4084.73, dh=H-3193 

Rola Co 169.83 347 0.7842 0.9403 S=-0.88dh2+14.87dh+115.59, dh=H-4816 

Salt Lake 144.3 206 0.9344 0.9858 S=0.16dh2+-0.69dh+37.42, dh=H-4430 

Salt Water Lake 212.47 347 0.9086 0.9494 S=-0.82dh2+17.31dh+133.71, dh=H-4901 

Selin Co 2300.49 179 0.9777 0.945 S=1.05dh2+45.86dh+1754.31, dh=H-4536.4 

Tangra Yumco 862.94 100 0.9155 0.8072 S=0.94dh2+-0.28dh+862.94, dh=H-4536 

Taro Co 485.15 268 0.8903 0.9576 S=0.18dh2+4.97dh+477.32, dh=H-4567.3 

Tu Co 448.64 257 0.9276 0.9875 S=0.02dh2+4.91dh+396.59, dh=H-4926 

Urru Co 356.35 260 0.71 0.8994 S=1.35dh2+2.67dh+345.34, dh=H-4553 

Wulanwula Lake 652.08 225 0.9679 0.9285 S=2.05dh2+16.49dh+513.15, dh=H-4856 

Xijir Ulan Lake 463.36 316 0.9736 0.9691 S=0.93dh2+13.3dh+366.35, dh=H-4770.8 

Xuru Co 209.87 144 0.5984 0.5527 S=0.12dh2+0.22dh+206.53, dh=H-4714 

Yamzho Yumco 549.61 398 0.9215 0.9364 S=0.51dh2+9.63dh+531.79, dh=H-4436 

Yelusu Lake 203.4 486 0.7014 0.8352 S=14.84dh2+-5.77dh+185.15, dh=H-4686.5 

Yibug Caka 178.22 118 0.9206 0.9615 S=-1.25dh2+15.79dh+147.03, dh=H-4558.5 

Zhari Namco 1000.18 143 0.9177 0.8388 S=2.66dh2+10.07dh+962.57, dh=H-4610 

Zhuonai Lake 160.1 260 0.9528 0.973 S=0dh2+10.06dh+124.29, dh=H-4742 

Zige Tangco 238.67 171 0.9008 0.976 S=0.06dh2+4.62dh+212.71, dh=H-4565 
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4 Validation of data quality 

4.1 Field experiment 

Most Tibetan lakes are located in remote and inaccessible regions, resulting in the scarcity of ground-based in situ 

measurements that are, however, vital for data quality assessment. We made some in situ measurements in two study lakes to 

validate the data quality of optical water levels developed in this study, instead of the satellite altimetry data whose quality on 5 

lakes or rivers has been widely known. Many studies used in situ water levels to calculate certain statistical metrics, e.g., root 

mean squired error (RMSE). However, results provided by different studies vary and could be associated with the cross-section 

width of the study water body in the ground track panel (Nielsen et al., 2017). This means that these results may not be 

comparable due to their unique applications. In addition, it is not rigorous to use in situ data of only one lake to represent the 

overall situation of study lakes in the uncertainty assessment for altimetry water levels. Instead, we used the standard deviation 10 

of valid footprints acquired in the same cycle as an estimate of uncertainty in altimetry-derived water levels. In contrast, the 

applicable condition of optical water levels is not so variable as that of altimetry data. Derivation of optical water levels requires 

relative flat bank as well as some altimetric information, which were available in all study lakes. Since these selected bank 

slopes were similarly small (~1/30), it is possible to use a few typical lakes to represent all study lakes. Therefore, we carried 

out a field experiment in Lake YamYamzhog Yumco and Lake Nam CoNam Co to validate the derived optical water levels. 15 

There were two main goals in our experiment: (1) collecting daily in situ water level data in a certain TP lake to validate the 

corresponding optical water levels statistically; (2) imaging a certain length of the lake shore with UAV to test the performance 

of lake shore extraction so as to provide a theoretical uncertainty analysis of optical water levels. On Lake YamYamzhog 

Yumco, we installed a pressure type water level sensor (type H5110-DY, manufactured by Shenzhen Hongdian technologies 

Co., Ltd.), which measures water pressure and temperature of the installation depth and converts them into water depths with 20 

a relative accuracy of ~0.1%. The device was carried onto the lake and put ~20 m below the water surface and 0.5 m above 

the lake bottom, which suggests an absolute error of ~2 cm. We chose a typical landscape (i.e., mild slope, little vegetation, 

and gravel lake beach) to perform UAV imaging in both Lake YamYamzhog Yumco and Lake Nam CoNam Co in mid-May, 

2018. The UAV was operating at a height of 200 m and imaging the ground at a constant rate in visible bands with a wide-

angle lens. With a GPS tracker onboard, these UAV images were well georeferenced. Then image mosaic was performed using 25 

the Piz4D mapper and converted into a digital orthophoto map (DOM), which is a similar process described by Huang et al. 

(2018). The spatial resolution of UAV data reached ~5 cm as we compared a real ground object with its size in images. 
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Figure 7. Field experiments in two study lakes: (a) Landsat 8 image of the experiment spot; (b) pressure-type water level sensor; (c) 

unmanned aerial vehicle; (d) installation of the water level sensor; and (e) UAV image of a portion of the bank of Lake Nam CoNam 

Co. 

4.2 Uncertainty analysis of optical water levels 5 

Based on the in situ water level measurements made by the pressure-type water level sensor, we evaluated the accuracy of 

optical water levels statistically. There were 16 optical water level records available for the comparison against the in situ 

measurements. The RMSE of the water level anomaly was 0.11 m. The linear fit had a slope close to 1 and an R2 of 0.89, 

suggesting the good consistency of the in situ water level measurements and the derived optical water levels (Figure 8Figure 

8 (b)). It should be noted that the optical water levels used for validation here were translated from lake shore changes using 10 

parameters derived from fitting with CryoSat-2 data, i.e., there is no in situ information involved in generating the optical 

water levels shown in Figure 8. 
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Figure 8. (a) In situ water level anomaly versus optical water level anomaly in Lake YamYamzhog Yumco; and (b) linear regression 

of the optical water levels and concurrent in situ water levels. 

To be more convincing, we performed a more theoretical uncertainty analysis of the optical water levels by looking at the 

original optical data and generation processes with the help of UAV images. First, we took UAV images as the ground truth 5 

to determine the accurate position and shape of the lake shore line. Second, we performed water classification based on the 

concurrent Landsat OLI image that contained the UAV scanned area, with the combined water index method and Otsu 

algorithm to derive the binarized image. Landsat image pixels where the lake shoreline determined using the UAV images 

crosses were delineated manually and marked as shoreline pixels as shown in Figure 9Figure 9 (a). Then the water area in each 

shoreline pixel was calculated.  10 

Given that these shoreline pixels were classified as either water or land, a relationship between the water area ratio of the 

shoreline pixel and the probability of the pixel being classified as water can be derived. This relationship generally describes 

the function of the water classification method by telling how likely a pixel will be determined as water, given the water area 

ratio of the pixel. Based on the observations of a total of 64 UAV-scanned shoreline pixels, a logistic type curve with two 

parameters that determine the position and shape of the curve was chosen to represent the water classifier as Eq 5 shows: 15 

𝑓(𝑥) =
1

1 + 𝑒−𝑎(𝑥−𝑏)
 

 Eq 5 

where x represents the water area ratio in the shoreline pixel, f(x) represents the probability of the shoreline pixel being 

classified as water pixel, a and b are parameters that determine the shape and position of the curve, respectively. The parameters 

were determined using the maximum likelihood method. Results are shown in Figure 9Figure 9 (b).  
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Figure 9. (a) Landsat OLI shoreline pixels on Lake Nam CoNam Co (the background is the UAV image), pixels marked with 1 were 

classified as water, and pixels marked with 0 were classified as land. The black dot in the insert figure represents the field experiment 

spot. (b) The chosen classifier, with two parameters a=21.13 and b=0.15 determined from the maximum likelihood method. The y 

axis represents the probability that a certain pixel is classified as water, and the x axis is the water area ratio in that pixel. Red dots 5 
represent pixels classified as land that have relatively lower water area ratios. Blue dots represent pixels classified as water that have 

relatively higher water area ratios.  

It should be noted that even the water ratio in a shoreline pixel is zero, there is a small probability that this pixel may be 

mistaken as a water pixel, because the surface reflectance information may be contaminated by adjacent water pixels. Therefore, 

the classifier has a small value (~0.02) when the water ratio is zero. As can be seen from Figure 9Figure 9 (b), when the water 10 

ratio is larger than 0.3, the probability of the pixel classified as water is close to 1. This suggests that there may be a higher 

probability of the occurrence of water pixels that is associated with a systematic bias of the lake shoreline detection. Note that 

the systematic bias can be removed when linearly fitting the lake shore changes and altimetry-derived water levels as long as 

the bias is stable. Therefore, uncertainty in optical water levels developed in this study arises from the variation in this 

systematic bias. 15 

To describe the variation in the systematic bias, a new random variable X was introduced to represent the bias between the 

classified water area and the real water area in a shoreline pixel. Given the shape and position of the shoreline, the real water 

area in each shoreline pixel is a complex function of the relative position between the pixel and the shoreline. To simplify the 

derivation, we assumed that the water area ratio in a shoreline pixel is uniformly distributed on [0,1], meaning that the 

probability of any value between 0 and 1 is equal. If we use X0 to represent the true water area ratio in the shoreline pixel and 20 

X1 to represent the classified results based on the water ratio, the random variable X can be expressed as: 

𝑋 = 𝑋1 − 𝑋0  Eq 6 

where X1 can take on 0 or 1 (i.e., the classified results only tell us whether a pixel is water pixel or not), so X can only take on 

either –X0 or 1–X0. Because the range of X0 is [0,1], it is obvious that the range of X is [-1,1]. A derivation of F(X), i.e., the 

probability density function (PDF) of X can be found in the supplementary file.s given as follows: 
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 𝑠𝐹(𝑋) = {

𝑃(𝑋 = −𝑋0|𝑋0) ∙ 𝑃(𝑋0), 𝑋 < 0

𝑃(𝑋0 = 0, 𝑋1 = 0) + 𝑃(𝑋0 = 1, 𝑋1 = 1), 𝑋 = 0

𝑃(𝑋 = 1 − 𝑋0|𝑋0) ∙ 𝑃(𝑋0), 𝑋 > 0

 

 Eq 7 

𝑃(𝑋 = −𝑋0|𝑋0) = 𝑃(𝑋1 = 0|𝑋0) = 1 − 𝑓(𝑋0) = 1 − 𝑓(−𝑋)  Eq 8 

𝑃(𝑋 = 1 − 𝑋0|𝑋0) = 𝑃(𝑋1 = 1|𝑋0) = 𝑓(𝑋0) = 𝑓(1 − 𝑋)  Eq 9 

where f(x) is referred to as the classifier function defined in Eq 5. 

Because X0 is uniformly distributed between [0,1], P(X0) = 1. Note that P(X0 = 1, X1 = 1) = 1, this means that if X0 is 1, the 

probability of a pixel classified as water is 1. However, P(X0 = 0, X1 = 0) is not necessarily 1 (i.e., 1-f(0)), because the pixel 

with X0 = 0 still has a low probability, i.e., f(0) of being classified as water based on the illustration above. Combining Eqs.(7)–

(9) with the explanations on the specific case X = 0 results in the following: 5 

𝐹(𝑋) = {

1 − 𝑓(−𝑋), 𝑋 < 0
1 + 1 − 𝑓(0), 𝑋 = 0

𝑓(1 − 𝑋), 𝑋 > 0
  = {

1 − 𝑓(−𝑋), 𝑋 < 0
2 − 𝑓(0), 𝑋 = 0

𝑓(1 − 𝑋), 𝑋 > 0
 

 Eq 10 

It is obvious that F(X) is not a continuous function, but it can be integrated and the integral of F(X) on [-1,1] equals 1, meaning 

that it satisfies the basic property of PDF. 

Overall, F(X) describes how the systematic bias between the classified water ratio and real water ratio in shoreline pixels is 

distributed as shown in Figure 10Figure 10. If there are N shoreline pixels in an ROI, we can take them as N independent 

observations of X and calculate the mean value �̅�. This value �̅� can represent an average shift of the detected lake shoreline 10 

from the real lake shoreline in the unit of one-pixel width (30 m). As we mentioned above, the systematic bias can be removed 

in the regression between lake shore changes from optical remote sensing and the corresponding water levels from satellite 

altimetry. As such, it is the variation of the bias that determines the accuracy of the optical water levels. Therefore, we can 

calculate the standard variation of �̅�  to represent the uncertainty in lake shoreline changes. Note that there is a simple 

relationship between σ�̅� and σ𝑥:  15 

σ�̅� =
σ𝑥

√𝑁
  Eq 711 

One only needs to calculate σx: 

�̅� = ∫ 𝐹(𝑋) ∙ 𝑋𝑑𝑋 = 0.346
1

−1

 
 Eq 812 
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σ𝑥 = √∫ 𝐹(𝑋) ∙ (𝑋 − �̅�)2𝑑𝑋
1

−1

= 0.2999 ≈ 0.300 

 Eq 913 

Eq 9Eq 13 in combinaions with Eq 5, Eq 10, and Eq 8Eq 12 was resolved numarically, resuling in ~0.3 pixel width. Substituting 

σx in Eq 7Eq 11 with Eq 9Eq 13 gives: 

σ�̅� =
0.3

√𝑁
 

 Eq 1014 

 

Figure 10. Probability density function of the systematic bias X between the classified water ratio (X1) and real water ratio (X0) in a 

shoreline pixel. 5 

If the slope of the shoreline is known, e.g., tanθ, the uncertainty of the optical water level can be expressed as:  

σℎ𝑜 = σ�̅� ∙ 𝑑 ∙ 𝑡𝑎𝑛𝜃 =
0.3 × 30 × 𝑡𝑎𝑛𝜃

√𝑁
 

 Eq 1115 

where σho is the uncertainty of optical water levels and d is the spatial resolution of the satellite image (30 m). In this study, a 

typical width of ROI for deriving optical water levels is ~10-pixel width, meaning that N is ~10. In addition, lake shores used 

for generating optical water levels here generally have a relatively mild slope of ~1/30 or even smaller, which can be rounghly 

estimated from the maximun shoreline change and altimetry water level change within a year. Here if we use 1/30 as the slope 10 

tanθ, the uncertainty of the optical water levels can untimately be estimated to be ~0.1 m, which is very close to the RMSE 

(~0.09 m) based on the comparision of the opitcal water levels and in situ water level measurements mentioned earlier. 

Overall, the uncertainty quantification of the optical water levels developed in this study indicates clearly that the accuracy of 

optical water levels depends on the width of an ROI, e.g., the number of pixels/observations, slope of the lake shore, and the 
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effectiveness of the water classification method. One of the advantages of the optical water level is that an ROI does not 

necessarily cover a large area of lake shores, which maximizes the potential of optical remote sensing images to increase the 

spatial coverage and temporal resolution of lake water level estimates that may not, however, be achievable by using satellite 

altimetry alone. Optical remote sensing images provide important complementary information on altimetry-derived water 

levels and would subsequently facilitate lake water storage estimation.  5 

5 Applications 

5.1 Spatiotemporal analysis of changes in Tibetan Lakes 

Based on the lake water storage changes we derived, spatial patterns of lake storage trends from 2000 to 2017 were shown in 

Figure 11Figure 11. In the endorheic basin of the TP, similar to some reported results (Yao et al., 2018b; Zhang et al., 2017a), 

most lakes have been expanding rapidly, e.g., Lake Selin Co Selin Co (89.00 E, 31.80 N) gained ~19.7 ±2.0 km3 of water 10 

during the study period, Lake Kusai (92.90 E, 35.70 N) experienced an abrupt expansion due to flood and gained ~2.2±0.2 

km3 of water in 2011, as reported in related work (Xiaojun et al., 2012). In contrast, some lakes in the southern part of the TP 

experienced shrinkage, e.g., Lake YamYamzhog Yumco (90.70 E, 28.93 N) gained a total of ~0.8±0.4 8 km3 water during 

2000–2004 but has been shrinking during the remaining 13 years (2005–2017) at a rate of ~ -0.19±0.032 km3/yr. In contrast 

to Lake YamYamzhog Yumco, Lake Qinghai (100.00 E, 36.90 N) lost ~1.92.2±0.7 km3 water during 2000–2004 but gained 15 

~7.7±0.68.1 km3 of water during 2005–2017. Similar patterns can be detected in adjacent lakes of Lake Qinghai, e.g., Lake 

Donggei Cuona (98.55 E, 35.28 N) and Lake Ngoring (97.70 E, 34.90 N). 
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Figure 11. Spatial distribution of trends in lake storage on the TP during 2000–2017. The back polygon shows the boundary of the 

endorheic basin of the TP including 39 study lakes. The other 13 study lakes are located outside the endorheic basin. 

However, spatial proximity cannot fully explain the intricate trend distribution in the Selin Co basin, where large lakes such 5 

as Lake Selin Co Selin Co were expanding whereas smaller adjacent lakes showed an opposite decreasing trend, e.g., Lake 

Urru (88.00 E, 31.70 N), Lake Co Ngoin (88.77 E, 31.60 N), and Lake Goren Co (88.37 E, 31.10 N). In fact, we found that 

the decreasing trends in some small lakes like Lake Goren Co were not detected in Yao et al. (2018b), which is likely due to 

the lower sampling frequency as shown in Figure 12Figure 12. The three shrinking lakes are located in the upstream region 
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and feed Lake Selin Co Selin Co through two small rivers. One of the rivers links Lakes Goren Co, Urru, and Selin Co, whereas 

the other links Lakes Co Ngoin and Selin Co.  

 

Figure 12. Discrepancy of lake storage trends in Lake Goren Co between Yao et al. (2018a) and our study. 5 

A possible explanation of the disparity of changes in lake water storage in the Selin Co basin could be the principle of minimum 

potential energy. If we simplify the basin with the tank model and take the upstream small lake as a tank with a leaking hole, 

the storage of the small lake is mainly controlled by the height of the leaking hole. Given that surface water of the small lake 

increased, most of the increased water would flow into the large lake (a lower tank), and the outflow discharge of the small 

lake at higher elevations would increase accordingly. The height of the leaking hole would decline (erosion) so as to increase 10 

the overflow capacity, which eventually results in the decrease in small lake storage. Another possible situation is that the 
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height of the leaking hole remains the same and the water surface height of the small lake increases, but this situation is not 

consistent with the minimum potential energy principle, as more water potential energy is stored in the small lake. This 

phenomenon shows that river-lake interactions may cause complex patterns of the regional surface water distribution. 

Therefore, decreases in small lake water storage and increases in water storage of Lake Selin Co Selin Co in the basin detected 

by our study seem reasonable. Increases in small lake water storage in this basin reported in some published studies may be 5 

associated with the sparse sampling of lake water levels.  

We averaged the total lake water storage change in each season to generate the time series shown in Figure 13Figure 13 (a). 

The overall storage change in the 52 study lakes is 98.3±2.1 km3. The total lake water storage was increasing rapidly during 

the first 12 years but became relatively stable since 2012. 

 10 

Figure 13. (a) Total storage changes in the study lakes (52) on the TP, which can be generally divided into two stages: (1) a rapidly 

increasing stage (2000‒2011) with a higher increasing rate of 6.68 km3/yr and (2) a mildly increasing stage (2012‒2017) with an 

increasing rate of 2.85 km3/yr. (b) Histogram of changes in lake water levels of the study lakes on the TP. 

Intra-annual variation in the TP lakes can also be investigated using the densified time series generated by this study. We 

removed the linear trend (sometimes there were multiple linear trends for a lake in different periods, which were removed in 15 

a stepwise fashion) and calculated the mean monthly water level anomaly for each lake across the study period. Then the intra-

annual water level change was represented by the difference between the maximum and minimum values of the monthly water 

level anomaly. The histogram of the intra-annual water level change in Figure 13Figure 13 (b) shows that most of the TP lakes 

have water level variations ranging from 0.3‒0.75 m in a year on average. Similar work was performed by Lei et al. (2017) 

but only a small number of lakes were investigated in their study. 20 

5.2 Quality assessment of similar data products 

We made a comparison with a widely used lake water level/storage data set provided by the LEOGS Hydroweb, indicating 

that our product may perform better in terms of the consistency as well as sampling frequency. Both advantages are important 

in improving our understanding of responses of lakes to climate change. There are 21 same lakes in both our study and LEOGS 
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Hydroweb. Annual trends in water level and lake storage during 2003‒2015 were compared (Figure 14Figure 14). Overall, the 

two products are consistent in terms of R2 of the linear fit.  

 

Figure 14. Cross validation of the TP lake level and storage changes derived from our study with those provided by the LEGOS 

Hydroweb database (Crétaux et al., 2011a): (a) trends in lake water levels from 2003 to 2015 and (b) trends in lake water storage 5 
from 2003 to 2015. 

However, some obvious discrepancies between the two data sources still exist, e.g., water levels of Lake Taro Co. Both 

Hydroweb data and our estimation used ICESat-1 and CryoSat-2 data. The difference lies in the fact that our CryoSat-2 product 

was more updated with a longer time span but Hydroweb used an additional altimetry satellite SARAL. Since both products 

were performed some kind of removal of the systematic bias, it is possible that we chose different baselines that resulted in 10 

the overall shift as shown in Figure 15Figure 15 (a).  

The black curve shows the optical water level we derived, which is a critical reference when connecting two different altimetry 

data time series without an overlap period. The optical water level shows that the last two samples of ICESat-1 data should 

not be lower than the first few samples of the CryoSat-2/SARAL data (see the dashed boxes). However, it is apparent that 

Hydroweb data display a reverse relationship. Though the optical water levels were derived by linearly fitting lake shore 15 

changes with altimetry data, the relative water levels during different periods should not be affected by the fitting parameters. 

This is the main reason for us to use optical water levels as reference data. Therefore, Hydroweb data may underestimate the 

decreasing trends in the water levels of Lake Taro Co since 2009. This problem may also exist in some similar studies when 

multisource altimetry data without overlap periods were used. 
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Figure 15. Similarities and differences between water level time series from the LEGOS Hydroweb database and this study (Crétaux 

et al., 2011a). (a) Lake Taro Co (84.12 E, 31.14 N); (b) Lake ZhariZhari Namco (85.61 E, 30.93 N); and (c) Ngoring Lake (97.70 E, 

34.90 N). 5 
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As shown in Figure 16Figure 16, optical data can be less noisy than altimetry data in certain lakes and significantly improved 

the continuity of lake monitoring. In addition, a more apparent seasonality in lake change can also be seen from the densified 

lake level time series. These advantages would largely benefit a better understanding of responses of TP lakes to climate 

change and facilitate hydrological modelling of lake basins, regional water balance analysis, and even hydrodynamic analysis 

of lake water bodies. 5 

 

 

 

Figure 16. Lake water level (left y axis) estimates from our approach for six TP lakes. Black lines represent optical data and red dots 

represent Altimetry data. 10 

5.3 Lake overflow flood monitoring 

As mentioned earlier in Section 5.1, Lake Kusai experienced an abrupt expansion in 2011, resulting from dike-break of an 

upstream lake (Hwang et al., 2019; Liu et al., 2016; Xiaojun et al., 2012), named Lake Zhuonai (91.93 E, 35.54 N). The 
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outburst of Lake Zhuonai occurred on Sep 14 (Liu et al., 2016) and ~2.47±0.06 km3 of water leaked into the Kusai River (as 

shown in Figure 17Figure 17 (b)), the main inflow of Lake Kusai. The water level of Lake Kusai increased by up to 7.9±0.5~8 

m within 20 days (from Sep 11 to Oct 1 in 2011) based on Jason-2 data, and then started to drop as water overflowed from the 

southeast corner into Lake Haidingnuoer (93.16 E, 35.55 N) and Lake Salt (93.40 E, 35.52 N). Lake Salt, the lowest part of 

the basin close to the basin boundary, has gained ~3.0±0.13.2 km3 of water since 2011 and became a critical threat to the 5 

surrounding residents and railway ~10 km southeast to the boundary. Note that there are few satellite altimetry data available 

for Lake Salt except several CryoSat-2 observations, where optical water levels can provide a near real-time monitoring of 

changes in lake water level and storage that are crucial to flood early warning and risk management. 

 

Figure 17. (a) Lake storage changes in Lake Zhuonai, Lake Kusai, and Lake Salt corresponding to the outburst event in Sep 2011 10 
and (b) storage changes in relevant lakes during the outburst event. 

Aided by the densified water level series, it was possible to estimate the height of the outlet of Lake Kusai, an important 

parameter for overflow estimation. The overflow of Lake Kusai can help predict the water level rise in Lake Salt and even 

serve as an indicator of flood forecast, as Jason-3 data with a 10-day revisit cycle are now available on Lake Kusai. Several 

pairs of concurrent Landsat OLI images and lake water levels were compared to provide a range of possible outlet heights, 15 

which are likely to be 4483.9 m to 4484.1 m, as shown in Figure 18Figure 18 (a). Then we measured the mean width of the 

outlet from high resolution optical images provided by Planet Explorer (Team, 2017), which is relatively stable in Dec at 

31.5±2.3 m in recent years. 
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Figure 18. (a) Height variations in the outlet of Lake Kusai, the overflow would occur when the water level increases from 4483.9 m 

to 4484.1 m; (b) Landsat images before the outburst of Lake Zhuonai; and (c) Landsat images after the outburst event. 

Given lake water levels, the outlet height and width, estimation of overflow can be made using the broad crest weir formula: 

𝑄 = 𝐶 ∙ 𝑏 ∙ 𝐻1.5√2𝑔  Eq 1216  

where C is a parameter mainly reflecting geometric characteristics of the weir that mainly varies from 0.3‒0.4, b is the width 5 

of the weir, H is the water head with respect to the top of the weir, and g is the acceleration of gravity. 

It is difficult to obtain the exact value of C without performing field investigations. Nevertheless, the range of C can be 

narrowed down by investigating the lake storage change process of Lake Kusai. As shown in Figure 19 (a), from Oct 1 to Nov 

9 in 2011, the water level of Lake Kusai decreased rapidly by ~1.2±0.2 m. Given that the rainy season has ended (Liu et al., 

2016), the water level of Lake Zhuonai became stabilized, providing minimum inflow to Lake Kusai. Meanwhile, the 10 

magnitude of total evaporation during the period would not exceed 0.1~0.2 m as the mean annual potential evaporation of the 

region is around 1000 mm (Zhang et al., 2007) and stage 1 (shown in Figure 19Figure 19) only lasted for 40 days. In addition, 
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the evaporation loss could be partially compensated by inflow. Overflow should be the driving factor of the lake storage 

balance of Lake Kusai during the period. Therefore, we used the following function to reproduce changes in water level and 

storage in Lake Kusai during Oct 1 to Nov 9 in 2011 (stage 1 shown in Figure 19Figure 19): 

−
𝑑𝑉(𝐻)

𝑑𝑡
= 𝑄 = 𝐶 ∙ 𝑏 ∙ 𝐻1.5√2𝑔 

 Eq 1317 

where V is referred to as the lake storage change, which is a function of water head H. 

Equation 17 can be theoretically solved to describe the relationship between H and t if V(H) is simple, e.g., a cubic curve. 5 

Otherwise, it can be solved with a numeric algorithm, such as the finite difference method. In a word, by solving the equation 

with different values of parameter C and optimizing the mean absolute error between the simulated result and the remotely 

sensed observations (shown in Figure 19Figure 19 (a)), we suggested that C equals to 0.30 in this case, which is a reasonable 

value in hydrodynamic calculations. 

 10 

Figure 19. (a) Changes in the water level of Lake Kusai after receiving the outburst flood from Lake Zhuonai. Water level in stage 

1 was simulated using Eq 13Eq 17, which provided a referencing range of parameter C. Water level in stage 2 provided water level 

input for Eq 13Eq 17 to calculate total outflow, which was compared with the concurrent water gain of Lake Salt downstream; and 

(b) changes in water storage of Lake Salt derived from remote sensing using our developed method. There was 0.19 km3 of water 

gained in stage 2, which was comparable to the outflow estimate of Lake Kusai (0.22 km3). 15 

In stage 2 (Nov 9‒Dec 31 in 2011) shown in Figure 19Figure 19 (a), a temporary increase in water level occurred in Lake 

Kusai, implying that the overflow is not the only driving factor in stage 2. Nevertheless, stage 2 can provide water level input 

for Eq 13Eq 17; thus the total outflow can be simulated using parameter C determined in stage 1. Since Lake Salt downstream 

mainly relied on the replenishment of Lake Kusai during that period, with little precipitation input and negligible glacier melt 

water in winter, the outflow of Lake Kusai can be comparable with the water gain in Lake Salt derived from remote sensing, 20 

though there was a small amount of evaporation loss. This relationship can provide a straightforward validation of our 

developed method. However, it was not available in stage 1, because the outflow of Lake Kusai first replenished Lake 

Haidingnuoer until the later began overflowing. The total outflow from Lake Kusai in stage 2 was calculated to be 0.21‒0.22 

km3, whereas the water gain in Lake Salt was 0.19±0.01 km3. This result showed that our densified lake water level time series 
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from multiple optical and altimetric missions and the developed method are valuable in monitoring and predicting the outflow 

flood risk that is crucial for the safety of downstream residents and infrastructure. 

6 Data availability 

The derived TP lake water levels, hypsometric curves, and water storage changes are archived and available at 

https://doi.org/10.1594/PANGAEA.898411. (Li et al., 2019) 5 

7 Conclusion 

In this study, we generated a dense (monthly and ever higher such as 10 days on average) continuous 18-year data set of 

changes in lake water level and storage for 52 large lakes on the TP by combining multisource optical and altimetric 

information. The optical data served as a unique reference covering the entire study period, enabling a more consistent 

conjunction of multisource altimetry time series. By comparison with a widely used LEGOS Hydroweb data set, we showed 10 

that without such a reference data set, there may be a remaining bias in the combined altimetry water levels. Our study has 

considerably improved the temporal resolution of the monitoring of TP lake water level and storage changes. For most lakes 

examined in the published studies, to our best knowledge, the estimates from our study provided the densest observations that 

can better reveal the interannual and intra-annual variability and trends in lake water level and storage, even in some relatively 

small TP lakes whose annual trends may, however, be incorrectly estimated by sparse sampling of lake water levels. The 15 

densified data set can also facilitate the monitoring of some rapidly expanding lakes with overflow risks and provide important 

information on flood prediction and early warning. 

We evaluated the uncertainty in the optical water levels by field experiments and rigorous uncertainty analysis. Both methods 

are consistent that the magnitude of the uncertainty is around 0.1 m, which suggests that optical water levels are often more 

efficient and less noisy than altimetry data when the altimeter footprints on the lake surface are insufficient, especially for 20 

small lakes. Based on our estimates, 52 large TP lakes accounting for ~60% of the total TP lake area have gained 98.3±2.1 

km3 of water during the past 18 years. Lakes in the endorheic basin on the TP were mostly expanding. Water loss was more 

likely to be found among the southern TP lakes. In the Selin Co basin, a more complicated spatial pattern of lake storage 

changes was detected, as small lakes were slowly losing water whereas the large lake was gaining water, which we speculated 

to be caused by lake-river interactions that need further investigation The complex spatial pattern of lake storage change in 25 

Selin Co basin was quantified and a possible explanation was proposed in this study. Note that the quality of the optical water 

levels before 2002 may not be as good as those obtained after 2002, because no altimetry data before 2002 were used in this 

study. Extrapolation of the lake shore change-water level relationship may not be stable if the water level during 2000‒2001 

was much lower or higher than those from 2002‒2017. 

https://doi.org/10.1594/PANGAEA.898411
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