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Abstract 

Freshwater resources are of high societal relevance and understanding their past variability is vital to water management in the 

context of current and future climaticon-going climate change. This study introduces a global gridded monthly reconstruction 10 

of runoff covering the period from 1902 to 2014. In-situ streamflow observations are used to train a machine learning algorithm 

that predicts monthly runoff rates based on antecedent precipitation and temperature from an atmospheric reanalysis. The 

accuracy of this reconstruction is assessed with cross-validation and compared with an independent set of discharge 

observations for large river basins. The presented dataset agrees on average better with the streamflow observations than an 

ensemble of 13 state-of-the art global hydrological model runoff simulations. We estimate a global long-term mean runoff of 15 

3741938’452  km3 yr-1 in agreement with previous assessments. The temporal coverage of the reconstruction offers an 

unprecedented view on large-scale features of runoff variability also in regions with limited data coverage, making it an ideal 

candidate for large-scale hydro-climatic process studies, water resources assessments and for evaluating and refining existing 

hydrological models. The paper closes with example applications fostering the understanding of global freshwater dynamics, 

interannual variability, drought propagation and the response of runoff to atmospheric teleconnections. The GRUN dataset is 20 

available from the ETHZ Research Collection at https://doi.org/10.6084/m9.figshare.9228176 https://doi.org/10.3929/ethz-b-

000324386 (Ghiggi et al., 2019)(Ghiggi et al., 2019). (NOW TEMPORARY AT 

https://figshare.com/s/db241b4e0baf4fdb8430 BEFORE FINAL PUBLICATION). 

1 Introduction  

Water is one of the most important natural resources for human development and its availability affects water supplies, 25 

agricultural yields, energy production as well as infrastructures safety and operation. Two-thirds of the global population are 

currently exposed to severe water scarcity (Vörösmarty et al., 2010; Kummu et al., 2016; Mekonnen and Hoekstra, 2016) and 

a recent annual risk report of the World Economic Forum (WEF, 2018) lists the water crises as one of the largest global risks 

in terms of potential impact and likelihood. While river flow is regularly used to assess regional renewable freshwater resources 

(Vörösmarty et al., 2000; Oki and Kanae, 2006; Veldkamp et al., 2017; Munia et al., 2018), there is to date no publicly available 30 
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global dataset providing observation-based estimates of the evolution of runoff and river flow throughout the 20th and the early 

21st century. In the last decades, several international initiatives promoted the launch of modelling inter-comparison projects 

with the aim to improve the representation of the terrestrial water cycle in global hydrological models (Dirmeyer et al., 2006; 

Dirmeyer, 2011; Haddeland et al., 2011; Harding et al., 2011; Van Den Hurk et al., 2011; Warszawski et al., 2014; Van Den 

Hurk et al., 2016; Schellekens et al., 2017) as well as to develop tools to refine regional hydrological predictions in data sparse 5 

regions (Sivapalan, 2003; Blöschl et al., 2013; Hrachowitz et al., 2013). In the meantime, a widespread decline in the number 

of streamflow monitoring stations has also been reported (Shiklomanov et al., 2002; Fekete and Vörösmarty, 2007; Fekete et 

al., 2012, 2015; Laudon et al., 2017) and alternative estimates of streamflow are thus needed for reconstructing past large-

scale runoff variability, not only during the early century but also in the recent decades.  

In this contribution, we use a recently published collection of in-situ streamflow data (Do et al., 2018; Gudmundsson et al., 10 

2018b) in combination with a century-long reanalysis (Compo et al., 2011; Kim et al., 2017) to fill this gap. This study 

introduces a global gridded reconstruction of monthly runoff covering the period 1902 to 2014 at a 0.5° spatial resolution. 

Runoff is here defined as the amount of water drained from a given land unit (i.e. grid-cell) eventually entering the river 

system, including groundwater flow and snowmelt. The methodology builds upon previous work where gridded runoff rate 

estimates were obtained for Europe (Gudmundsson and Seneviratne, 2015, 2016). Hereafter, these two papers are referred as 15 

GS15 and GS16 respectively. Monthly observations of precipitation, temperature and observed runoff rates from small 

catchments are used as input for a machine learning (ML) algorithm to learn the runoff generation process without the explicit 

description of the involved hydrological processes. Gridded precipitation and temperature data are then used to predict runoff 

rates also in ungauged regions. The reconstruction accuracy is evaluated using runoff observations at the grid-cell scale as well 

as river discharge measurements in large river basins, both not used for model training. It is also benchmarked against an 20 

ensemble of global hydrological models simulations forced with the same precipitation and temperature data 

The paper concludes with a section illustrating the potential of the newly established data product (GRUN) for climatological, 

hydrological and environmental studies.  

2 Data 

2.1 Modelling Data 25 

2.1.1 Atmospheric forcing  

Gridded observations of precipitation and temperature data are obtained from the Global Soil Wetness Project Phase 3 

(GSWP3) dataset (version 1.05) (Kim et al., 2017). GSWP3 is a dynamically downscaled and bias corrected version of the 

20th Century Reanalysis (20CR) (Compo et al., 2011). The dataset covers the period 1901 to 2014 and is available on a regular 

0.5° x 0.5° grid at 3-hourly resolution. The sub daily data are aggregated to monthly means and bilinearly interpolated to a 30 
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cylindrical equal area (CEA) grid composed of cells with an area of 2500 km2 and a spatial resolution of approximately 50 

km.  

2.1.2 Runoff observations  

Monthly runoff observations are derived from the Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018; 

Gudmundsson et al., 2018b). This dataset includes a collection of 35’002 streamflow stations obtained by merging existing 5 

international and national databases. GSIM provides a wide range of time series indices at monthly, seasonal and yearly 

resolution. Here timeseriestime series of monthly mean streamflow are considered. The data selection and pre-processing of 

these observations is detailed in Sect. 3.1. 

2.2 Validation Data 

2.2.1 Observed continental-scale river discharge  10 

Observed monthly river discharge from 718 large river basins is taken from the Global Runoff Data Centre (GRDC) Reference 

Dataset (https://www.bafg.de/GRDC/EN/04_spcldtbss/43_GRfN/refDataset_node.html). The dataset contains a selection of 

streamflow stations with a basin area greater than 10’000 km² and corresponding catchment shapefiles. The temporal coverage 

of each These time series is longer than 20 years. These timeseries are removed from GSIM to be sureensure that an 

independent observational set isobservations are used for model evaluation (see Sect. 3.3). 15 

2.2.2 Global hydrological models’ simulations 

The Inter-Sectoral Impact Model Intercomparison Project The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 

offers a framework to compare simulations and to quantify the uncertainty across hydrological and land surface models forced 

with equal inputs (Warszawski et al., 2014).(Warszawski et al., 2014). The accuracy of GRUN is benchmarked against runoff 

simulations for the period 1971-2010 from 13an ensemble of state-of-the-art global hydrological models (GHMs) participating 20 

in the second phase of ISIMIP2a Water (Gosling et al., 2017)(Gosling et al., 2017). The considered GHMs simulations used 

in the main text are driven with the GSWP3 forcing and do not account for human impacts on river flow ((“nosoc” scenario). 

In the supplementary material, we also provide the results based on simulations that account for direct human impacts (i.e. the 

“pressoc” and “varsoc” scenarios from ISIMIP2a). Further detail on the ISIMIP2a simulation setup can be found at 

https://www.isimip.org/protocol/#isimip2a.  25 

3 Data selection and pre-processing 

3.1 GSIM time series selection and pre-processing  

Step 1. Sub-setting GSIM stations and conversion of flow volumes to runoff rates  
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Runoff is defined here as all the water draining from a small land area.  Runoff cannot be observed directly, but at monthly 

time scales, totalscale, average catchment runoff can be assumed to equal the sum of streamflow ifmeasured at the outlet 

divided by the catchment area, provided storage duringof river water routing (e.g. in dams, reservoirs) and/or river water losses 

(through e.g. channel and lake evaporation, irrigation) are negligible. If these assumptions are metminimal. Thus, runoff rates 

can be (mm/month) are obtained by dividing the GSIM river discharge (m3/month) with the station’s upstream catchment area.  5 

Successively, for (km2). We then select catchments whichwith an area is comparable to the grid-cell size of the grid cells of 

the atmospheric forcing data, it is possible to use catchment runoff in order to derive an observational estimateestimates of the 

runoff rate in the corresponding grid-cellsresponse to changes in atmospheric forcing.  

To retrieve accurate estimates of grid-cell runoff, only GSIM stations fulfilling the following criteria have been selected for 

further analysis: 10 

1. The timeseriestime series has observations within the period 1902-2014 (when GSWP3 forcing is available.). 

2. The original data provider reports an estimate of the drainage area. This choice is made to have the possibility to 

verify the geographic location of the station as well as to assess the reliability of the automated delineation of the 

drainage area using a digital elevation model as provided in GSIM (Do et al., 2018)(Do et al., 2018). 

3. GSIM provides the shape of the drainage area and the quality of the catchment delineation is flagged as “medium” or 15 

“high”. This criterion imposes that the difference between the drainage area reported by the data provider and the one 

estimated by GSIM differ by less than the 10 % (Do et al., 2018)(Do et al., 2018). 

4. The drainage area is between 10 and 2500 km2. Very small catchments (< 10 km2) are discarded because the 

uncertainty in the drainage area can significantly affect the magnitude of the runoff rates. On the other hand, 

catchments larger than 2500 km2 are removed because their drainage area spans too many grid-cells of the atmospheric 20 

forcing.  

Based inon these criteria, 10042 GSIM stations are selected for further analysis.  

Step 2. Correction for mislabeled missing values.  

Manual investigation of monthly runoffriver discharge time series revealed the occurrence of multiple consecutive months 

with runoff ratesstreamflow volumes exactly equal to 0 mm/daym3/month, in disagreement with the observed regional runoff 25 

pattern and the climatological runoff signature.. These artefacts likely stem from a misleading treatment of missing 

measurementsvalues (e.g. due to damaged sensors). To identify such likely missing values, all timeseriestime series are 

screened for the presence of more than 3three consecutive months with values of zero. If this pattern occurs, all zero values in 

the monthly timeseriestime series are set to “missing”.   

Step 3.  Remove timeseriestime series with unrealistic runoff rates and short temporal coverage 30 

The following criteria have been adopted to remove observations whichthat are too sparse or physically very unlikely: 

1. Remove timeseriestime series with only missing values   

2. Remove timeseriestime series with negative monthly runoff rates    

3. Remove timeseriestime series with less than two years of observations   
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4. Remove timeseriestime series with monthly runoff rates higher than 2000 mm/month      

This screening step gives a selection of 85108211 stations.  

Step 4. Homogeneity testing  

River discharge time series can show temporal changes in the hydrological signaturebehaviour because of changing 

instrumentation, recalibration of streamflow rating curves, flow regulation (i.e. dam construction) and other human activities 5 

(i.e. irrigation). Automated identification of such breakpoints is usually done using statistical tests (Gudmundsson et al., 

2018b)(Gudmundsson et al., 2018b). GSIM used a general-purpose procedure that was applied to all indices/time scales. In 

this study, the following two target-oriented change point detection methods are applied after log-transformation of the time 

series: 

1. Univariate normal change point in variance (Chen and Gupta, 2012). 10 

2. Univariate normal change point in normal mean and variance (Chen and Gupta, 2012). 

1. Univariate normal change point in mean (Chen and Gupta, 2012); 

2. Univariate normal change point in variance (Chen and Gupta, 2012); 

3. Univariate normal change point in normal mean and variance (Chen and Gupta, 2012). 

Runoff timeseriestime series are discarded when any of the two change pointthese tests is significant at the p<0.01 leveldetected 15 

a change point. 

Figure 1 shows three river flow timeseriestime series with different types of detected change points. Figure 1a 

illustrateillustrates the ability of the tests to identify gradual changes in low flow regulation or low flows measurement 

precision. Figure 1b displaydisplays the detection of sudden dropschanges in the mean of the time series, e.g. caused by dam 

construction, river diversion or measurement errors, while Fig. 1c shows the potential in spotting subtle changes in river 20 

discharge variability possibly induced by reservoir operations.   

The homogeneity testing procedure resulted in a final selection of 76277264 stations which are likely not impacted by flow 

regulation. 

3.2 Assigning The file “GSIM time series to_training_stations.csv” provided in the supplementary material lists this subset of 

GSIM stations, while Fig. S1 shows the catchment area distribution of these stations. 25 

3.2 Retrieving runoff rates at the grid cells corresponding to the -cell scale of atmospheric forcing data 

To give equal importance to high-latitude and tropical observations, the entire modelling procedure is conducted on cylindrical 

equal area (CEA) grid composed of cells with an area of 2500 km2 and a spatial resolution of approximately 50 km. The final 

gridded runoff product is however projected back onto the WGS84 grid of the atmospheric forcing data. 

Because of the high density of stations in some regions and the typically elongated shape of the drainage area, many runoff 30 

observations span multiple cells of the CEA grid. Thus, an observational runoff time series representative of each cell is 

retrieved as follow: 

1. Project the GSIM catchment shape to CEA   
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2. For each grid -cell:  

a. Select those catchments of which the drainage area intersects the grid-cell. 

b. At each time step, take the median runoff rate of the selected catchments. 

Besides reducing the over-sampling in high station density regions, this step also smooths out some sub-grid variability. 

Additionally, it also can reduce the effect of potential outliers (i.e. stations that have exceptionally high or low runoff rates 5 

compared to their neighbors). To avoid inhomogeneities arising byfrom the concatenation of different runoff timeseriestime 

series, the observational runoff time series at each grid -cell is submitted to another homogeneity testing run (as described in 

Sect. 3.1, Step 4). 

The procedure resulted in 55445094 grid -cells usable for model training, covering 9.38.5% of the total land area and 

corresponding to 2799463yielding 2’703’902 monthly runoff rate observations. Hereinafter, the grid-cell runoff timeseriestime 10 

series are referred to as the runoff observations and Fig. 2 shows their spatio-temporal coverage. 

 

3.3 Selection and pre-processing of GRDC time series  

To obtain an independent dataset for assessing the accuracy of GRUN in large river basins, streamflow stations with catchment 

area larger than 50’00010’000 km2 are selected from the GRDC reference dataset. Although most of these stations are included 15 

in the GSIM collection, they are not used for model training because only catchments with area smaller than 2500 km2 are used 

to derive grid-cell runoff observations (Sect. 3.1, Step 1).    

The GRDC time series are subject to the pre-processing steps 21 to 4 detailed in Sect. 3.1 to reduce the impact of inaccuracies 

anddiscard streamflow records heavily impacted by humans. Finally, only the most downstream stations of each river are 

selected.of low quality. This procedure results in a selection of 214379 large river basins.  20 

4 Methods  

4.1 Model Setup 

For the first time, GS15 and GS16 have used a ML algorithm to estimate monthly runoff at continental-scale and Ghiggi 

(2018)(2018) explored the utility of a wide range of algorithms to improve the task. Based on these findings, the present study 

employs the Random Forest (RF) algorithm (Breiman, 2001)(Breiman, 2001). RF is a ML algorithm which averages a set of 25 

randomized regression trees (Breiman et al., 1984)(Breiman et al., 1984) trained on different subsets of the original data. A 

regression tree divides progressively the predictor space into high-dimensional rectangles by means of recursive binary splits. 

The predicted value of a new observation is the average of the observations used in the training process located in the region 

of the predictor space to which the new predictor values belongs. By averaging the predictions of several randomized regression 

trees buildbuilt on different training data, RF improves the final accuracy of the runoff estimates.   30 
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The monthly runoff rate (R) is modelled as a function of monthly precipitation (P) and monthly near surface temperature (T) 

as 

𝑅𝑠,𝑡  =  𝑓 (𝜏(𝑃𝑠,𝑡), 𝜏(𝑇𝑠,𝑡))  (1) 

where: 

- f corresponds to the RF model (RFM); 5 

- s represents the identifier of the CEA grid -cell;  

- t is the timestep; 

- 𝜏 is a time lag operator that provides information about meteorological conditions of the past six months to allow the RFM 

to approximate water storage effects that influencesinfluence the runoff generation process. This differs from GS15 and GS16 

which used a time lag operator of 12 months. The reasons behind this change are a reduction in training time of RFM and to 10 

decrease collinearity between predictors (caused by the seasonal cycle). 

 

Both precipitation and runoff observations are log-transformed before model training to adjust the skewed distribution of the 

data and avoid that only a small number of high flow events dominate the optimization of the squared error loss. Once the 

RFM is trained, gridded precipitation and temperature data are fed to the model to obtain the final runoff reconstruction. 15 

Finally, the log-transformation of the predicted runoff values is inverted to derive runoff rates in conventional units. 

 

The decision to only consider precipitation and temperature as explanatory variables, is motivated by GS15 who found that 

the inclusion of other atmospheric variables as well as selected land parameters (topography and soil texture) did not 

significantly improve the overall accuracy of the estimate. Furthermore, reducing the number of predictor variables also helped 20 

to reduce computational costs significantly. While a more extensive screening of other land parameters is beyond the scope of 

this study, this could be the subject of potential future research.  

4.2 The GRUN reconstruction  

Accurate predictions of a machine learning algorithm are conditioned to training of the model with observations. The use of 

different training observations has the potential to generate different outcomes if the model is not able to generalize the 25 

relationship between the response (i.e. runoff) and the predictors (i.e. precipitation and temperature) adequately. This situation 

occurs when the statistical model adapts too much to the training data (overfitting). To test the sensitivity of the RFM to the 

training data, 50 runoff reconstructions are generated using a Monte Carlo approach in which the RFM is trained using a 

random 60%-subset of the grid-cells with observations.  

The ensemble mean of the realizations is referred to, hereinafter, as the GRUN reconstruction (Ghiggi et al., 2019). The 30 

ensemble of realizations is in turn used to investigate the model sensitivity to the training data at multiple spatio-temporal 

scales in Sect. 5.4. 
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4.3 Model Validation  

4.3.1 Cross-validation at the grid-cell scale   

Within a cross-validation framework (Hastie et al., 2009), the available data are split in a training and test set. Training data 

are used to build the statistical model, while the test data are employed to assess the ability of the algorithm to predict 

information unavailable during the training process. To evaluate the agreement of runoff predictions with observations, two 5 

target-oriented (Meyer et al., 2018) cross-validation (CV) experiments named CV-SREX and CV-SPACE are set up, which 

help to avoid an over-optimistic view of model performance. 

 

CV-SREX aims to evaluate the ability of the model to extrapolate in the situation where no nearby runoff observations are 

available at all. For this purpose, the globe is divided in 26 subcontinental regions (Fig. 4) as defined in the Special Report for 10 

EXtremes (SREX) of the Intergovernmental Panel for Climate Change (Seneviratne et al., 2012). Successively, at each cross-

validation step, all observations within a SREX region are removed from the training dataset and subsequently used to test the 

performance of the RFM. This implies that the rainfall-runoff relationship is learned and transferred from regions far away as 

local information is not available to calibrate the model.    

 15 

CV-SPACE follows the approach of GS15,16 and aims to assess the effective prediction accuracy in data-rich regions, where 

nearby runoff observations can provide information to refine the runoff estimates. In this case, the grid-cells are randomly 

divided into ten folds. Then, at each cross-validation step, one fold is used as test set, while the observations of the remaining 

folds are used as training data.  

4.3.2 Validation at the basin-scale   20 

The selection of 214379 GRDC river discharge observations detailed in Sect. 3.3 is used to assess the accuracy of the GRUN 

reconstruction in large river basin (area larger than 50’00010’000 km2). GRUN-based first-order river discharge estimates are 

obtained by spatially averaging the grid-cell runoff times series within the basin and multiplying by the drainage area. At 

monthly time scale, the effect of water routing is considered negligible except for most ofa few very large basins. 

4.3.3 Performance Metrics    25 

SevenSix performance metrics are employedused to assess the accuracy of the RFM in reproducing different aspects of the 

runoff time series. Model skill is determined for each cross-validated grid-cell and for each selected large GRDC river basin. 

The terms pt and ot refer to the predicted and observed time series respectively.  

 

1. The relative bias (relBIAS) has an optimal value of 0 and allows to investigate the presence of systematic errors. A positive 30 

(negative) value indicates a general overestimation (underestimation). It is defined as: 
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𝑟𝑒𝑙𝐵𝐼𝐴𝑆 =
𝑚𝑒𝑎𝑛(𝑝𝑡−𝑜𝑡)

𝑚𝑒𝑎𝑛(𝑜𝑡)
   (1) 

2. The ratio of standard deviations (rSD) has an optimal value of 1. Values lower than 1 indicate underestimation, while 

values higher than 1 indicate overestimation of the observed variability. It is defined as: 

𝑟𝑆𝐷 =
𝑠𝑑(𝑝𝑡)

𝑠𝑑(𝑜𝑡)
  (2) 

3. The squared correlation coefficient, R2, ranges between 0 and 1. It measures the degree of the linear association between 5 

the predicted time series and the observed ones. It is insensitive to the bias. The optimal value is 1. 

4. The Nash Sutcliffe Efficiency (NSE), also called model efficiency, (Nash and Sutcliffe, 1970)(Nash and Sutcliffe, 1970) 

is a measure of the overall skill of the model. NSE = 1 corresponds to a perfect match between predicted and observed 

data, while a value lower than 0 indicates that model predictions are on average less accurate than using the mean of the 

observed data. It is defined as: 10 

𝑁𝑆𝐸 = 1 −
∑ (𝑝𝑡−𝑜𝑡)2

𝑡

∑ (𝑜𝑡−𝑚𝑒𝑎𝑛(𝑜𝑡) )2
𝑡

 (3) 

        where 𝑚𝑒𝑎𝑛(𝑜𝑡) refers to the long-term mean of the observations. 

5. The squared correlation coefficient between the observed and predicted monthly standardized anomalies (i.e. monthly 

time series with the monthly climatology removed, divided by the long-term standard deviation of each month), R2anom. 

It ranges from 0 to 1 (best value). 15 

6. The squared correlation coefficient between the observed and predicted monthly climatology, R2clim. It ranges between 

0 and 1 (best values).    

5 Evaluation of the runoff reconstruction  

5.1 Grid-cell scale validation  

To evaluate the validity of the runoff reconstruction at different time scales, Fig. 3 reportsshows scatterplots between 20 

observations and the CV-SPACE predictions for monthly, annual and long-term mean values. Overall, the agreement is 

satisfactory, although there is a tendency to underestimate runoff rates when the magnitude increases. 

Figure 4 shows the spatial distribution of the considered skill scores based on the two cross-validation experiments CV-SREX 

and CV-SPACE, while Table 1 reports the median values of the grid-cell skill scores distribution. The spatial patterns emerging 

from the two cross-validation experiments are very similar, with CV-SPACE displaying better scores because of the RFM 25 

ability to exploit local information to improve runoff estimates. 

On average, the relBIAS of the RFM is slightly negative, indicating a tendency to underestimate monthly runoff rates (Fig. 4a-

b). However, in arid regions such Southwest USA, Northeast Brazil and Southern Africa, the RFM tends to overestimate the 

runoff (relBIAS is positive). Figure 4c-d show that when runoff is overestimated also the variability tends to be exaggerated 

(rSD is higher than 1). Oppositely, in the others areaother areas, the variability is generally underestimated.  30 
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Overall, the runoff dynamics are well reproduced as indicated by high values of R2 (Fig. 4e-f). The NSE skill scores (Fig. 

5g4g-h) shows that in most regions of the world, RFM predictions are more skillful than the observed runoff long-term mean 

(NSE > 0). The accuracy in reproducing runoff anomalies show a more complex spatial pattern (Fig. 4i-j): humid regions and 

lowlands have quite high R2anom values, while decreasing skill is observed in mountainous regions and arid regions.  

Finally, Fig. 4k-l illustrate that the seasonal cycle of runoff is excellently reproduced across all the globe. Figures S5 and S6 5 

show the distribution of CV-SPACE skills of relBIAS, NSE and R2clim for each Koppen Geiger (KG) climate zone (Peel et al., 

2007) as well as the various SREX regions. The 25th, 50th, and 75th quantiles of these skills distribution are reported in the 

“KG_CV_SPACE_Skills.csv” and “SREX_CV_SPACE_Skills.csv” files provided in the supplementary material. Figures S7 

and S8 show the cumulative distribution function of the monthly runoff rates and the monthly standardized anomalies for 

different climate zones respectively. In dry climates (group B of KG) we note an overestimation of GRUN in the lower part of 10 

the runoff rates distribution compared to the observation, although in terms of standardized anomalies, the cumulative 

distribution of the of the estimate agrees very well with the observations. 

5.2 Basin-scale validation  

Figure 5a illustratesevaluates the accuracy of GRUN using the selection ofselected GRDC reference streamflow stations, (Sect. 

3.3), while Fig. 5b shows the observational agreement of river flow timeseriestime series for some selected basins displayed 15 

in Fig. 5a.  The temporal evolution of river flow is in general well captured and an underestimation of the peak flow volume 

is only evident for the Mekong river. For the Ebro the agreement between observations and GRUN startstarts to decrease from 

1965 ahead. The dynamics are no more well captured, and GRUN estimates are constantly higher than the GRDC observations. 

These discrepancies might be caused by the intensive irrigation and reservoir activities which have altered the natural 

hydrological regime of the basin.  In that respect, it is interesting to notice that the NSE spatial pattern in Fig. 5a showshows 20 

many similitudes with the estimated amount of runoff stored by engineered impoundments reported in Vörösmarty et al. 

(2004)(2004): low NSE scores tends to correspond to higher fractions of water impoundment. Both the Nile and Colorado 

river basins are an exceptional example of the human-induced river flow alterations. 

However, human activities are not the only cause of discrepancies between GRUN-based river discharge estimates and the 

observations. In the Amazon river, the negative NSE value and the visible phase lag between the estimated and the observed 25 

time series ismight not be caused by an inaccurate runoff reconstruction, but rather related to the fact that river discharge is 

simply estimated using the average runoff within the basin. without taking water travel times into account. Indeed, for such a 

very large river basin, a routing model accounting for water travel times would be necessary to correctly reproduce the river 

flow dynamics also at monthly timescales. Figure S8 shows the spatial distribution of the remaining skill scores (e.g. other 

than NSE) for the GRDC basins.   30 
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5.3 Benchmarking against global hydrological models  

To benchmarkIn this section, we benchmarked the performance of GRUN against well-established GHMs, the skill of the 

RFM is compared to the skill of 13 GHMs runoff simulations.  at two different scales.   

Figure 6 compares the distribution of the skill scores for the CV-SREX and CV-SPACE experiments against the skill of the 

ISIMIP2a GHMs runoff simulations.  5 

 from the “nosoc” experiment at the grid-cell scale.  CV-SPACE always has higher skills than CV-SREX and outperforms all 

ISIMIP2a GHMs runoff simulations and their multi-model ensemble mean (MMM). CV-SREX outperform the MMM) except 

for relBIAS and R2anom. 

rSD. Overall, the GRUN cross-validation experiments show a tendency to underestimate runoff although the skill spread of 

relBIAS is reduced compared to the ISIMIP2a models. Among the GHMs there is not a clear tendency to under/overestimate 10 

runoff. The same applies for the variability (rSD). The dynamics of runoff (R2) are much better reproduced by GRUN than 

the considered GHMs, and the overall NSE skill score distribution is much better for GRUN than for the ISIMIP2a GHMs 

simulations.  The anomalies (R2anom) are also much better reproduced by GRUN, and CV-SREX outperforms all the single 

GHMs.  

Finally, R2clim demonstrates that GRUN reproduces much better the seasonal cycle than the GHMs. Previous studies already 15 

showed that GHMs struggle in reproducing the seasonality of runoff (Gudmundsson et al., 2012; Gudmundsson and 

Seneviratne, 2015)(Gudmundsson et al., 2012; Gudmundsson and Seneviratne, 2015). Similar conclusions can be drawn when 

benchmarking GRUN against the “pressoc” and “varsoc” experiments from the ISIMIP2a runoff simulations (Fig. S2 and S3 

respectively). 

Because GHMs are typically not calibrated at the grid-cell scale (unlike GRUN), we also benchmark GRUN against ISIMIP2a 20 

GHMs simulations in large river basins using the selection of GRDC reference stations with catchment area larger than 10’000 

km2 detailed in Sect. 3.3. The results for the ISIMIP2a “nosoc”,”pressoc” and “varsoc” scenarios are reported in Fig. S9, S10 

and S11 respectively. The dynamics of runoff (R2), the anomalies and the climatology (R2clim) are still better reproduced by 

GRUN than the ISIMIP2a GHMs across all scenarios. The average relBIAS of GRUN is close to 0 while the variability is 

slightly overestimated: this contrasts the results obtained at the grid-cell scale where GRUN tends to underestimate the 25 

variability (rSD) compared to the observations. Figure S12 also provides a comparison of simulated river discharge from 

ISIMIP2a against 50 GRUN realizations (see Sect. 4.2) for the same time series displayed in Fig. 5, highlighting the larger 

scatter of conventional GHMs, likely due to structural and parameter uncertainties. 

5.4 Sensitivity of the runoff estimates to the observations used for training 

An ensemble of 50 runoff reconstructions trained on different subsetsubsets of observations (Sect. 4.2) is used to assess the 30 

sensitivity of GRUN to the observations used for training. Figure 7 shows the long-term mean of the monthly ensemble 

standard deviation and coefficient of variation (defined as the standard deviation divided by the mean). Regions characterized 
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by higher runoff rates showsshow higher standard deviation (Fig. 7a), but this variability across the realizations is small (< 20 

%) compared to the runoff magnitude (Fig. 7b). ExceptWith the exception of arid regions, the coefficient of variation is 

generally below 0.2 (Fig. 7b). 

To put into perspective the sensitivity of GRUN in relation to the observations used for training, FigureFig. 8 compares the 

annual runoff volumes of the GRUN realizations against the state-of-the-art GHMs participating in ISIMIP2a.  5 

The global long-term mean runoff volume estimated by GRUN (3741938’452 km3/yryear) lies within the lower range of 

ISIMIP2a GHMs (Fig. 8a) and closelygenerally agrees with othersother global terrestrial discharge estimates (Table 3). The 

uncertainty attributed to the selection of training observations (shaded area in Fig. 8a) of the global GRUN runoff volume is 

far smaller than the spread introduced by different physical representations of the hydrological processes in the GHMs. The 

uncertainty introduced by the selection of training observations increases proportionally with the magnitude of the runoff rates 10 

and is highest in the tropics (Fig. 8b). Reversely, the spread of the GHMs tends to be constant across all latitudes. GRUN has 

almost always latitudinal mean runoff rates lower than the MMM butand goes beyond the GHMs range only between 20° and 

30° latitudes North. This pattern is mainly related to the relatively low runoff estimates in GRUN in Northeast India and 

Bangladesh compared to the GHMs (Fig. 8c). 

5.5 Limitations of GRUN 15 

The streamflow observations used for model training underwent careful preprocessing and screening steps to remove 

timeseries presenting sudden changes in the hydrological signature. Therefore, and because solely forced with precipitation 

and temperature, GRUN do not account for the effects of human river flow regulation on the reconstructed hydrological 

regimes. However, we note that some streamflow observations impacted by irrigation and other land- and water management 

practices have likely not been removed, especially if the magnitude of water abstraction/returns did not alter the monthly 20 

hydrograph sufficiently to be detected by change point detection tests. This may be one of the reasons for the overestimation 

of runoff rates in several arid regions (Fig 4a-b) known for intensive-irrigation activities (Wriedt et al., 2009; Siebert et al., 

2015). time series presenting sudden changes in the hydrological signature. Therefore, and because the product is solely forced 

with precipitation and temperature, GRUN is not able to explicitly account for the effects of local human river flow regulation 

(dam operations in particular) on the reconstructed hydrological regimes. However, we note that some streamflow observations 25 

impacted by irrigation or other land- and water management practices have likely not been removed, especially if the magnitude 

of water abstraction/returns did not alter the monthly hydrograph sufficiently to identify a change point or if the time series is 

not long enough to cover past periods of near-natural streamflow. This may be one of the reasons for the overestimation of 

runoff rates in several arid regions (Fig. 4a-b) known for intensive-irrigation activities (Wriedt et al., 2009; Siebert et al., 2015).  

To some extent, the impact of past land-use changes on water availability might be implicitly accounted for in GRUN. For 30 

example if the GSWP3 bias-corrected reanalysis captured regional changes in precipitation and temperature which were 

induced by human activities (e.g. Davin et al., 2007; De Angelis et al., 2010; Luyssaert et al., 2014; Alter et al., 2015; Thiery 

et al., 2017) or if water management practices are altered gradually together with a climate change signal (e.g. irrigation may 
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increase with decreasing precipitation). Any changing pattern in water availability emerging from GRUN is however solely 

conditioned by trends of the GSWP3 forcing and the runoff observations used for model training. Thus, our evaluation is that 

GRUN estimates likely lie closer to near-natural runoff conditions than to human-regulated conditions (e.g. see the Nile river 

estimate in Fig. 5b), even though we cannot exclude that GRUN implicitly includes some human effects due to the various 

reasons mentioned above. Finally, we note that the accuracy of the runoff rates in mountainous regions is likely not optimal. 5 

The coarse resolution of the considered meteorological forcing does not allow capturing the sub-grid variability of precipitation 

and temperature that governs e.g. snow-melt volume and timing in such regions. Although the statistical model could implicitly 

account for homogenous biases in the forcing dataset and streamflow observations, the reader must be aware of possible 

inconsistent water balance in such regions. Glacier melting is also not explicitly accounted for in GRUN. 

To some extent, the impact of past land-use changes on water availability might be implicitly accounted for in GRUN if the 10 

GSWP3 reanalysis captured the changes in precipitation and temperature which were induce by such human activities through 

land-atmosphere interactions. Any changing pattern in water availability emerging from GRUN is however solely conditioned 

by trends of the GSWP3 forcing and the runoff observations used for model training. 

Finally, the accuracy of the runoff rates in mountainous regions is likely not optimal. The spatial resolution of the considered 

meteorological forcing does not allow to capture the sub-grid variability of precipitation and temperature that governs e.g. 15 

snow-melt volume and timing in such regions. Glacier melting is also not accounted for in GRUN. 

6. Example Applications 

6.1 Runoff climatology  

Figure 9a displays the annual runoff climatology derived as the long-term mean of the GRUN reconstruction covering the 

1902-2014 period. Figure 9a shows that longLong-term mean runoff rates can differ by three orders of magnitude across the 20 

globe. The, with highest runoff rates are observed mostly in the tropics and in large mountain ranges. The , and lowest rates in 

the extratropics show low runoff rates, in correspondence with theand major world deserts such as the Sahara. Monthly 

climatologies are provided in the supporting information (Fig. S1). 

S13). Figure 9b and 9c show the months with the maximum and minimum of the long term mean seasonal cycle. In the 

Northern Hemisphere, regions exposed to winter snow accumulation have the lowest runoff during the coldest months in 25 

winter and a runoff peak toward the end of spring which is related to the melting of the as a result of snowpack. melting and 

decreasing terrestrial water storage (Humphrey et al., 2016). In the humid mid-latitudes, evapotranspiration closely follows 

the seasonal cycle of surface temperature, causing the lowest (highest) runoff to occur prevalently during the summer (winter) 

months. In the tropics, the month with maximum runoff tends to occur during the rainy season. In the Northern tropics this 

occurs between August and September, while in the Southern tropics between February and April, following which follows 30 

the migration of the Intertropical Convergence Zone (Schneider et al., 2014)(Schneider et al., 2014). 
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6.2 Trends in reconstructed runoff 

GRUN can be used to investigate changing freshwater availability. Figure 10 displays the annual runoff trends for the period 

1971-2010 computed using Sen’s slope (Sen, 1968) and expressed in absolute and relative terms. Overall the reconstructed 

trends are in line with other reported findings (Gudmundsson et al., 2018a) and closely resemble the observed trends (Fig. 

10a).Trends in observed (Fig. 10a) and estimated (Fig. 10b) annual runoff for the period 1971-2010 are computed using Sen’s 5 

slope (Sen, 1968) and expressed in absolute and relative terms. Overall the reconstructed trends are in line with other reported 

findings (Gudmundsson et al., 2018a) and closely resemble the observed trends. 

 In Europe, the Mediterranean regions exhibits a decrease in annual runoff, while in Central and Northern Europe there is a 

tendency to increasing runoff rates. This pattern is in agreement with previous studies (Stahl et al., 2010, 2012) and was 

recently attributed to anthropogenic climate change (Gudmundsson et al., 2017). In the Eastern and Western USA negative 10 

trends occur, while large portions of the Mississippi river basin show increasing runoff.  

In the tropics, the Amazon basin shows a substantial decrease in annual runoff rates and a reduction of freshwater discharge 

to the Atlantic Ocean has the potential to impact the Atlantic and the Northern Hemisphere climate (Vizy and Cook, 2010; 

Jahfer et al., 2017). In light of the human pressure to which this basin is currently exposed (Castello and Macedo, 2016; 

Latrubesse et al., 2017) and the uncertain impact of deforestation on river flow (D’Almeida et al., 2007; Spracklen et al., 2012; 15 

Lawrence and Vandecar, 2015; Spracklen and Garcia-Carreras, 2015), the causes and consequences of such trends should be 

investigated in more detail. Similarly, the drying tendency observed in many regions of the Congo Basin could affect the 

Eastern Equatorial Atlantic climate variability (Materia et al., 2012). Reversely, tropical area situated in Southeast Asia 

experiences an increase in runoff.  

The monthly resolution of GRUN also allows to investigate these changes at subseasonal time scales (Fig. S2), which might 20 

e.g. be relevant for water resource assessments because neglecting the seasonal fluctuations can cause underestimation of water 

scarcity (Mekonnen and Hoekstra, 2016). In addition to changes in magnitude, the GSIM dataset offers also the possibility to 

analyze shifts in the seasonality of the hydrological regimes. Figure S3 provide an overview of the months in which the 

minimum and maximum runoff volumes occurred at the beginning and at the end of the 20th century.  Over Europe, the pattern 

of change is consistent to ones emerging in recent studies (Blöschl et al., 2017; Hall and Blöschl, 2018).  25 

The monthly resolution of GRUN also allows investigating these changes at sub-seasonal time scales (Fig. S14), which might 

e.g. be relevant for water resource assessments because neglecting the seasonal fluctuations can cause underestimation of water 

scarcity (Mekonnen and Hoekstra, 2016). In addition to changes in magnitude, the GSIM dataset offers also the possibility to 

analyze shifts in the seasonality of the hydrological regimes. Figure S15 provide an overview of the months in which the 

minimum and maximum runoff volumes occurred at the beginning and at the end of the 20th century. Over Europe for example, 30 

Fig. S15 shows evidence for earlier occurrence of maximum runoff, which is consistent with changes in snowmelt timing 

already reported in recent studies (Blöschl et al., 2017; Hall and Blöschl, 2018).  
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6.3 Interannual variability and teleconnections 

The long temporal coverage of GRUN combined with its high skill in reproducing runoff dynamics provides an unprecedented 

opportunity to study the response of runoff to the modes of climate variability throughout the 20th and the early 21st century. 

The Hovmöller diagram in Fig. 11a illustrates the interannual runoff variability by showing the time evolution of the latitudinal 

mean of monthly runoff standard anomalies. The occurrence of El Niño events, defined here as the periods in which the 5 

Multivariate ENSO Index (MEI) (Wolter and Timlin, 2011) is larger than 1, coincides with negative anomalies in the tropical 

regions. A correlation analysis between monthly standard anomalies of GRUN and the MEI time series reveals that during El 

Niño events, the Amazon basin, the Southeast Asia, Australia and South Africa tend to experience lower runoff rates (Fig. 

11c), which is consistent with previous assessments (Ward et al., 2010; Wanders and Wada, 2015). The opposite occurs during 

la Niña conditions, and drier conditions are observed in the western United States, which is also consistent with previous work 10 

(Tang et al., 2016). 

As an additional example, Fig. 11d shows the influence of the North Atlantic Oscillation (NAO) on the European continent. 

The analysis confirms the previous finding that when NAO is positive, England and Scandinavian exhibit higher runoff rates, 

while Southern Europe experiences drier conditions (Bouwer et al., 2006; Bierkens and van Beek, 2009; Lorenzo-Lacruz et 

al., 2011; Steirou et al., 2017). 15 

6.4 Drought and agricultural productivity 

GRUN can be used to study the spatio-temporal development of slowly evolving phenomena such as droughts. Since runoff 

can be defined as the excess of water available to ecosystems, negative runoff standard anomalies can be used as an indicator 

for droughts and potentially lower agricultural and vegetation productivity (GS15, GS16, Humphrey et al., 2018). Figure 12 

shows three drought events that are known for their exceptionally severity and devastating impact on agricultural production. 20 

Figure 12a displays the monthly runoff standard anomalies in August in 1976 over Europe, which, according to our results, 

ranks in the top five driest months (in terms of runoff anomaly) in large parts of England, Northern France, Central Europe 

and Southern Sweden. Studies have shown that the drought mainly developed because of severe precipitation deficits (Zaidman 

et al., 2002; Spinoni et al., 2015) rather than extremely hot temperature such as during the 2015 drought (Ionita et al., 2017). 

Figure 12b reports the annual runoff standard anomalies in North America for the year 1934. This drought is known as the 25 

“Dust Bowl” and is unique for its spatial extent and duration. The negative runoff anomalies span the entire United States. 

Several studies have suggested that initial drying caused by La Nina conditions was amplified by human-induced land 

degradation of the US Plains (Schubert et al., 2004; Cook et al., 2009, 2014). During this event, dust storms severely damaged 

the American prairies by destroying million hectares of cultivated land. Finally, Fig. 12c illustrates the Horn of Africa drought 

conditions in 1984. The event also ranks in the regional most extreme events and resulted in a widespread famine which killed 30 

as much as 700’000 people in Ethiopia (Kidane, 1990). The drought was linked to El Nino conditions and a strong reduction 

in annual precipitation (Viste et al., 2013; Lanckriet et al., 2015). 
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7. Conclusion and outlook  

This study presents an observationally-driven global gridded reconstruction of monthly runoff rates derived using a machine 

learning algorithm. The dataset covers the period from 1902 to 2014 and is provided on a 0.5 x 0.5° WGS84 grid. The machine 

learning algorithm is trained with runoff observations from a global collection of in-situ streamflow observations of relatively 

small catchments (< 2500 km2) and uses gridded precipitation and temperature from a century-long reanalysis product as 5 

predictors. Model validation based on cross-validation experiments shows that the accuracy of the reconstruction is reasonable. 

The reconstruction has on average a higher skill than a collection of state-of-the-art global hydrological models, especially 

with respect to the reproduction of the seasonality, dynamics and anomalies of runoff. At the monthly time scale, we find that 

a restricted number of predictors (i.e. precipitation and temperature) is sufficient to reproduce important aspects of terrestrial 

water dynamics. GRUN is thus an interesting candidate to evaluate and refine current parametrizations of the global 10 

hydrological models, as well as to potentially constrain fluxes of fine-resolution models (in space and time) throughout the 

adoption of multiscale optimization techniques (Samaniego et al., 2010, 2017)(Samaniego et al., 2010, 2017). 

Since GRUN does not account for the impact of human river flow regulation and land-use change, differences between this 

reconstruction and in-situ observations could potentially be used to quantify the impact of flow regulation at a regional to 

global scale (Jaramillo and Destouni, 2015; Arheimer et al., 2017), as well as to systematically identify streamflow stations 15 

which have a hydrological regime very different from the naturalized flow as predicted by GRUN.  

Finally, GRUN offers a unique view on large-scale features of runoff variability also in regions with limited or no observational 

coverage. The new dataset can be exploited (i) to study the onset and development of large-scale extreme events such droughts, 

(ii) to investigate links between runoff and modes of climate variability, (iii) to conduct large-scale water resources 

assessments, (iv) to detect changes in water availability and dynamics and (v) to address other new scientific challenges in 20 

water cycle research (Wagener et al., 2010; Montanari et al., 2013; Greve et al., 2014; Trenberth and Asrar, 2014; Hegerl et 

al., 2015).   

We conclude by remarking that this dataset would not have been possible without the mobilization of national and international 

hydrological archives. This study shows the benefit of a wider access to hydrological data collected by various institutions 

worldwide. We call for a continuation of the international efforts to reduce political and technical barriers for the exchange of 25 

hydrometeorological data across the scientific community.  

8. Data availability 

The GRUN reconstructionSince the GRUN reconstruction does not explicitly account for human flow regulation, differences 

between this reconstruction and in-situ observations may help to identify heavily regulated locations at the global scale 

(Jaramillo and Destouni, 2015; Arheimer et al., 2017). GRUN offers a unique view on large-scale features of runoff variability 30 

also in regions with limited or no observational coverage. The new dataset can e.g. be exploited (i) to study the onset and 

development of large-scale extreme events such droughts; (ii) to investigate links between runoff and modes of climate 
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variability; (iii) to conduct large-scale water resources assessments; (iv) to detect changes in water availability and dynamics; 

(v) to reconstruct droughts in the last-millennium in combination with tree rings (Nicault et al., 2008; Cook et al., 2010a, 

2010b; Meko et al., 2012; Cook et al., 2015); (vi) to benchmark regional streamflow archives and hydrological reconstructions 

(Wang et al., 2009; Wu et al., 2011; Caillouet et al., 2017; Mishra et al., 2018; Moravec et al., 2019; Smith et al., 2019); and 

(vii) to address other scientific challenges in water cycle research (Wagener et al., 2010; Montanari et al., 2013; Greve et al., 5 

2014; Trenberth and Asrar, 2014; Hegerl et al., 2015).   

We conclude by remarking that this dataset would not have been possible without the mobilization of national and international 

hydrological archives. This study shows the benefit of a wider access to hydrological data collected by various institutions 

worldwide. We call for a continuation of the international efforts to reduce political and technical barriers for the exchange of 

hydrometeorological data across the scientific community.  10 

8. Data availability 

The GRUN dataset based on GSWP3 forcing is publicly available in NetCDF-4 format (Ghiggi et al., 2019) and can be freely 

downloaded from the ETHZ Research Collection (https://doi.org/10.3929/ethz-b-000324386).at 

https://doi.org/10.6084/m9.figshare.9228176.              
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Figure 1. Detection of change points in runoff time series. The vertical red line indicates the change point in variance detected by the 

univariate normal change point in variance test, while the horizontal blue dashed lines illustrate the change in mean identified by the test in 

univariate normal change point in normal mean and variance. The title of the individual panels corresponds to the station identifier as used 5 
in GSIM. 
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Figure 2. Spatio-temporal coverage of grid-cell runoff observations. a) and b) display the start and end year of the timeseriestime series 

respectively. c) Total number of runoff observations at each month between 1902 and 2014. d) Numbers of years with at least 10 runoff 

observations in each year. e) Month with most missing values. 
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Figure 3: Scatterplot. Scatterplots of observed versus predicted runoff values. The color intensity is related to the points density. 
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Figure 4:. Spatial distribution of the skills scores obtained from CV-SREX (left) and CV-SPACE (right) experiments. SREX region 

boundaries are superimposed over the skill maps of CV-SREX. 
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Figure 5:. Validation results based on selected GRDC river discharge observations. a) Spatial distribution of the NSE skill for selected 

GRDC large basins. b) Observed (dashed black line) and predicted (colored) river discharge time series. Line colours correspond to the NSE 

skill shown in panel a. 

 5 
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Figure 6:. Benchmarking the performance of GRUN against ISIMIP2a GHMs runoff simulations. (“nosoc” experiment). Boxplot whiskers 

cover the 0.1 to 0.9 quantiles of the skill score distribution. The dark green vertical lines indicate the optimal score. GRUN cross-validation 5 
results are displayed in orange, while the multi model mean (MMM) of ISIMIP2a GHMs runoff simulations is displayed in dark blue. In 

most of the cases, the order of the boxes follows the rank of the median skill score. However, to avoid compensatory effect with relBIAS 
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and rSD scores, the individual boxes are ranked based on the median absolute median value of the skill score minus the optimal score. The 

x-axis of relBIAS is left and right truncated, of rSD it is right truncated and for NSE it is left truncated.  

 

 

 5 

Figure 7. Long-term mean of the monthly standard deviation of the runoff reconstruction ensemble (a) and the corresponding coefficient of 

variation (b). 
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Figure 8. The uncertainty of GRUN, attributed to the finite sample of training data, compared to the spread introduced by different physical 

representations of the hydrological processes in the ISIMIP2a GHMs. The shaded area around GRUN lines shows the 10 and 90 percentiles 

of the GRUN ensembleentire distribution of the 50 GRUN simulations. a) Global annual runoff b) Latitudinal average of long-term mean 

runoff c) Difference between GRUN and the MMM long-term mean runoff. Grey cells represent missing values caused by missing data in 5 
some of the ISIMIP2a GHMs simulations.    
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Figure 9:. Runoff climatology (1902-2014). a) Long-term mean annual runoff rates. b) Month with the minimum and c) the maximum long-

term mean monthly runoff. 
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Figure 10:. Changes in annual runoff rates (1971-2010) expressed in absolute terms (left) and percentage change relative to long-term mean. 

(right). a) Trends based on observations.Observed trends. b) Trends based on GRUN.  

 5 
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Figure 11:. Interannual variability of runoff and its relation to modes of climate variability. a) Hovmöller diagram of standard runoff 

anomalies (reference period 1902-2014). Vertical dashed lines indicate onset of El Nino events. b) TimeseriesTime series of the Multivariate 

ENSO Index (MEI). Red and blue shades characterize the intensity of El Nino and La Nina conditions respectively. c) Correlation of the 5 
MEI with monthly runoff anomalies. d) Relationship of European runoff anomalies with the North Atlantic Oscillation (NAO). 
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Figure 12:. Three extreme drought events. as reconstructed by GRUN. a) Dust Bowl b) European summer drought in 1976. b) U.S. Dust 

Bowl in 1934. c) Ethiopian famine in 1984. 
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Table 1. Median values of skill scores for CV-SREX and CV-SPACE   

  CV-SREX CV-SPACE 

relBIAS -0.138123            -0.116109 

rSD  0.781794 0.807814 

R2 0.577594 0.725734 

NSE 0.366394 0.585610 

R2anom 0.358350 0.556522 

R2clim 0.858874 0.941946 

 

Table 2. Median values of skill scores computed for the large GRDC river basins 5 

relBIAS rSD  R2 NSE R2anom R2clim 

0.009047 1.017004 0.732738   0.503525 0.437394 0.908916 

 

 

Table 3. Comparing global long-term mean runoff from GRUN against values reported in the literature. GRUN estimates are 

obtained by considering the same time span and spatial coverage of the reported studies. Values in parenthesis denote the 

uncertainty range reported in some studies. 10 

Reference   Runoff (km3 yr-1) Time period 
Greenlan

d 

Antarctic

a 

      Reference  GRUNb        

Dai and Trenberth, 2002a 37288 - - No  No 

Fekete et al., 2002 
 

39319 - 
“Climatolog

y” 
No No 

Döll et al., 2003  36687 3809539173 1961-1990 Yes No 

Syed et al., 2009a 
 

30354 3553636565 2003-2005 No  No 

Wisser et al., 2010   
 

37984 
37724c3883

3c 
1901-2002 Yes No 

WaterMIP (Haddeland et al., 2011)   42000-66000d  3696237994 1985-1999 No No 

Clark et al., 2015a 
 

44200 3786538942 1950-2008 Yes Yes 

Rodell et al., 2015a 45900 3731638360 2000-2010 Yes Yes 

Müller Schmied et al., 2016 
41298 (39200-

42200) 
3759038628 1971-2001 No  No 

eartH2Observe (Schellekens et al., 2017) 
46268 (38652-

55877) 
3713738163 1979-2012 No No 

ISIMIP2a nosoc scenario (GSWP3, 
nosoc) ) 

 45180 (35997-

57323) 
3741938452 1971-2010 No No 

aThe long-term mean is obtained by extrapolation from continental-scale river-discharge observations or water balance.  

bAntarctica is never included in the GRUN estimate of the global long-term mean runoff. Greenland is considered only if 

included in the reference dataset. 
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cGRUN long-term mean runoff is computed for the period 1902-2002. 
dHaddeland et al. (2011) report that the CRU land mask used to rescale global mean runoff (excluding Antarctica and 

Greenland) has an area of 1.44∙108 km2, while the correct area value should range around 1.33∙108 km2.   

References: (Clark et al., 2015; Dai and Trenberth, 2002; Döll et al., 2003; Fekete et al., 2002; Haddeland et al., 2011; 

Müller Schmied et al., 2016; Rodell et al., 2015; Schellekens et al., 2017; Syed et al., 2009) 5 
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Supplementary Figure 1:  Runoff monthly climatology for the period 1971-2010. 
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Supplementary Figure 2:  Runoff monthly trends for the period 1971-2010. 
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Supplementary Figure 3:  Changes in runoff timing. a) Minimum runoff b) Maximum runoff. 
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