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from GRACE mission data”, to Earth System Science Data. Along with my coauthors, I really 
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have done so by providing 0.5° × 0.5° gridded solutions in NetCDF format.  
b. As requested by Reviewer #3 (R3), we have computed and provided solutions in 
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Introduction, Discussion, and Conclusions of the manuscript.  
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Surendra Adhikari  
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Abstract. The Gravity Recovery and Climate Experiment (GRACE) mission data has an important, if not revolutionary, impact

on how scientists quantify the water transport on the Earth’s surface. The transport phenomena include land hydrology, physical

oceanography, atmospheric moisture flux, and global cryospheric mass balance. The mass transport observed by the satellite

system also includes solid Earth motions caused by, for example, great subduction zone earthquakes and glacial isostatic

adjustment (GIA) processes. When coupled with altimetry, this space gravimetry data provides a powerful framework for5

studying climate related changes on decadal time scales, such as ice mass loss and sea-level rise. As the changes in the latter

are significant over the past two decades, there is a concomitant self-attraction and loading phenomenon generating ancillary

changes in gravity, sea-surface, and solid Earth deformation. These generate a finite signal in GRACE and ocean altimetry and

it may often be desirable to isolate and remove them for the purpose of understanding, for example, ocean circulation changes

and post-seismic viscoelastic mantle flow, or GIA, occurring beneath the sea floor. Here we perform a systematic calculation10

of sea-level fingerprints of on-land water mass changes using monthly Release-06 GRACE Level-2 Stokes coefficients for

the span April 2002 to August 2016, which result in a set of solutions for the time-varying geoid, sea-surface height, and

vertical bedrock motion. We provide both spherical harmonic coefficients and spatial maps of these global field variables and

uncertainties therein (Adhikari et al., 2019, doi: 10.7910/DVN/8UC8IR). Solutions are provided for three official GRACE data

processing centers namely CSR, GFZ and JPL, with and without rotational feedback included and in both the center-of-mass15

and center-of-figure reference frames. These data may be applied for either study of the fields themselves or as fundamental

filter components for the analysis of ocean circulation and earthquake related fields, or for improving ocean tide models.

Copyright statement. © 2019 California Institute of Technology. Government sponsorship acknowledged.

1 Introduction

Geodesists have long understood that the ocean mean sea surface follows the shape of the Earth’s geoid (Rapp, 1983) and20

that changes in on-land water storage are a source of time-varying gravity (Lambert and Beaumont, 1977). The fundamental

relationship of changes in land ice and water, solid Earth, and sea-surface height is essential to the study of past and present

relative sea-level (e.g., Peltier, 1982; Clark et al., 2002; Tamisiea, 2011). Our recent gain in confidence for monitoring the

geographic locations and amplitudes of both seasonal and supraseasonal changes in global glacier and ice sheet mass, dating
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to the beginning of the radar interferometry and altimetry era of the early 1990s (e.g., Rignot et al., 2011; Shepherd et al.,

2018), strengthens our ability to effectively harness this information to construct informative models about global sea-level

variability associated with self-attraction and loading phenomenon (Spada and Galassi, 2016; Larour et al., 2017; Mitrovica et

al., 2018). The mathematical formalism relating changes in gravitational, rotational, and solid Earth deformation responses to

land ice and hydrological mass change has now niched itself into contemporary studies of sea-level change: the prediction of5

"sea-level fingerprints". Sea-level fingerprints are a consequence of the fact that the water elements being transported laterally

between land and oceans carry mass, gravitational attraction, and the ability to change the radial stress at the solid Earth

surface. These are characterized, for example, as changes in relative sea-level encircling areas of intense ice mass loss such as

Patagonia, coastal Alaska, the Amundsen Sea sector of West Antarctica, and the Greenland Ice Sheet (e.g., Mitrovica et al.,

2001; Tamisiea et al., 2014; Riva et al., 2010; Adhikari and Ivins, 2016).10

To date, space gravimetric measurements using GRACE monthly gravity fields and the sub-polar ocean altimetry measure-

ments from TOPEX/Poseidon and Jason each have multiple geophysical signals and respective noise floors that are generally

high enough that clear detection of these contemporary land-mass driven fingerprints in the oceans have remained elusive.

However, it is believed that these signals will eventually emerge in these data systems. Such a belief springs, in part, from the

fact that amplitudes of internal ocean variability in intra- and interannual mass that GRACE observes are relatively mute in15

comparison to on-land hydrology, two-way land-to-ocean transport, and secular trends in land ice changes (Chambers, 2006;

Chambers and Willis, 2008; Watkins et al., 2015; Wiese et al., 2016; Save et al., 2016). In fact, Hsu and Velicogna (2017) have

used ocean-bottom pressure data, in conjunction with space geodetic data, to claim that fingerprints associated with decadal

scale on-land mass changes are detected. Furthermore, Davis and Vinogradova (2017) have shown that the fingerprints of

Greenland ice mass loss have measurable influences on tide gauge records along the eastern coast of the US since the mid-20

1990s. Galassi and Spada (2017) have noted that the influence of a land-mass induced fingerprint may be reflected in tide

gauge records of relative sea-level at the northern Antarctic Peninsula, as there is a distinct change in trend at about the year

AD 2000, possibly reflecting increased regional ice mass loss. Each of these observations might be considered both intriguing

and preliminary in terms of providing the community with unambiguous detection of sea-level fingerprints.

The effects of the fingerprints are nonetheless important to disentangle from many geophysical and ocean circulation models25

and dataset. New insights into the regional and global sea-level budgets are sought through explicitly combining ocean altimetry

with the space gravimetry information, and a key part of this combination is to account for the details of sea-level fingerprints

(e.g., Rietbroek et al., 2012; Frederikse et al., 2018). Consideration of land ice and water driven fingerprints is also necessary

when using geodetic data to search for GIA signals residing at or beneath the sea floor (e.g., Simon et al., 2018) or examining

ice loss on land when ocean water surrounds the region, such as in Graham Land of the Antarctic Peninsula (Ivins et al., 2011;30

Sterenborg et al., 2013). Future applications of sea-level fingerprints in geophysical geodesy should include the study of great

earthquakes (Mw ≥ 8.0) at subduction zones (Han et al., 2016) and at ocean rifts beneath the open ocean (Han et al., 2015),

or adjacent to the Antarctic Ice Sheet (King and Santamaría-Gómez, 2016).

This paper describes a dataset of monthly changes in relative sea-level, geoid height, and vertical bedrock motion induced

by mass redistribution from land to ocean. These are derived from the Release-06 GRACE Level-2 monthly Stokes coeffi-35
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cients for the period April 2002 to August 2016. The GRACE mission data has been instrumental to the study of the Earth’s

climate system (Tapley et al., 2019), and has helped us resolve numerous long-standing questions in oceanography, hydrology,

cryosphere, and geodesy. The GRACE gravity solutions are now employed for providing new insights into changes in ocean

circulation (Johnson and Chambers, 2013; Landerer et al., 2015; Saynisch et al., 2015; Mazloff and Böning, 2016). The ter-

restrial water storage is now rigorously quantified for continents (Rodell et al., 2015; Hirschi and Seneviratne, 2017) as is the5

global cryospheric mass balance (Velicogna, 2009; Jacob et al., 2012; Ivins et al., 2013; Luthcke et al., 2013; Schrama et al.,

2014). Land mass change and its exchange with the global oceans, in fact, makes it possible to successfully reconstruct subtle

changes in the position of Earth’s spin axis on interannual time scales (Adhikari and Ivins, 2016), thus providing a confidence

on the robustness of GRACE based estimates of global surface mass transport.

2 Key variables and deliverables10

Relative sea-level is defined as the height of the ocean water column bounded by two surfaces: solid Earth surface and sea

surface. Change in relative sea-level, ∆S, at a geographical location described by colatitude and longitude (θ,φ) over the time

interval ∆t may be expressed as follows:

∆S(θ,φ,∆t) = ∆N(θ,φ,∆t)−∆U(θ,φ,∆t), (1)

where ∆N and ∆U are corresponding changes in sea-surface height and bedrock elevation, respectively. Both of these variables15

are usually expressed relative to the reference ellipsoid, which in turn is defined relative to either the center-of-mass (CM) of

the total Earth system or the center-of-figure (CF) of the solid Earth surface. Tide gauges provide direct measurements of ∆S,

whereas satellite altimetry measures ∆N in CM reference frame.

Mass redistributed on Earth’s surface provides a direct perturbation to the Earth’s gravitational and rotational potentials,

causing a corresponding perturbation in the geoid height. Since the geoid height on a realistic Earth does not necessarily have20

to coincide with the sea-surface height, we write

∆S(θ,φ,∆t) =
1

g
∆Φ(θ,φ,∆t)−∆U(θ,φ,∆t) + ∆C(∆t), (2)

where ∆Φ is the net perturbation in Earth’s surface potential, ∆C is a spatial invariant that explains the discrepancy between

the sea-surface height and geoid height (Tamisiea, 2011), measured with respect to the same reference ellipsoid, and g is the

mean gravitational acceleration at Earth’s surface. As will be further discussed in Section 3, ∆C is essential to conserve mass.25

Space-based gravity missions, such as GRACE and GRACE Follow-On (GRACE-FO), provide direct measurements of the

non-rotational part of ∆Φ (to be defined explicitly in Section 3) in CM frame; the satellite system cannot measure rotational

part of ∆Φ because it retrieves data in an inertial reference frame.

In geodetic applications, global field variables are typically expanded in a spherical harmonic (SH) domain. Most of

the GRACE data processing centers – including the University of Texas Austin’s Center for Space Research (CSR), Geo-30

forschungsZentrum Potsdam (GFZ), and Jet Propulsion Laboratory (JPL) – provide monthly solutions for normalized SH
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coefficients of the gravitational potential termed "Stokes coefficients". Stokes coefficient anomalies – the values that deviate

from the mean (static) field – can be used to readily retrieve changes in on-land ice and water storage or ocean bottom pres-

sure. The goal of this paper is to provide Stokes coefficient anomalies (i.e., SH coefficients of ∆Φ minus rotational centrifugal

potential) associated with the sea-level fingerprint of monthly changes in on-land ice and water storage, which are derived

from CSR, GFZ, and JPL GRACE Stokes coefficients themselves. As we shall further clarify below, we provide these new5

fingerprint coefficients and their corresponding spatial maps computed in both CM and CF reference frames, with and without

rotational feedback included. We also provide solutions for change in relative sea-level ∆S and bedrock elevation ∆U . Cor-

responding solutions for sea-surface height, ∆N , may be retrieved using equation (1). For brevity, we hereafter drop the ∆

symbol and assume that variables imply "change" in respective fields – not the absolute fields – implicitly.

3 The sea-level equation10

Here we briefly summarize the fundamental concept and a numerical technique of solving the so-called "sea-level equation".

Much of the background and supporting materials may be found, for example, in Farrell and Clark (1976), Mitrovica and

Peltier (1991), Adhikari et al. (2016), and Spada (2017). Let L(θ,φ,t) be the global, mass-conserving, load function so that:

L(θ,φ,t) =H(θ,φ,t) [1−O(θ,φ)] +S(θ,φ,t)O(θ,φ), (3)

where H(θ,φ,t) is the on-land change in water equivalent height over the time period t, and S(θ,φ,t) is the corresponding15

change in relative sea-level on the oceanic domain O(θ,φ). By definition, O = 1 for the oceans and 0 otherwise. For ease of

discussion, we write F (θ,φ,t) =H(θ,φ,t) [1−O(θ,φ)] so that F (θ,φ,t) defines the model "forcing" function.

The net change in on-land (water) mass directly affects the relative sea-level, hence conserving mass on a global scale.

Such a redistribution of mass on Earth’s surface perturbs its gravitational and rotational potentials and further redistributes the

ocean mass. The net result of these perturbations is the sea-level fingerprint: a unique spatial pattern of relative sea-level that is20

consistent with fundamental physical features of a realistic Earth. For a self-gravitating elastically-compressible rotating Earth,

we compute sea-level fingerprint by satisfying the following sea-level equation:

S(θ,φ,t) = E(t) +
1

g
Φ(θ,φ,t)−U(θ,φ,t)−

〈
1

g
Φ(θ,φ,t)−U(θ,φ,t)

〉
. (4)

The physical interpretation of the right-hand side terms are as follows:

– The barystatic term, E(t), directly follows from the mass conservation principle. This spatial invariant describes S that25

would be resulted in by distributing the net change in land water storage uniformly over the oceans.

– Changes in the Earth’s surface potential, Φ(θ,φ,t), and the solid Earth surface, U(θ,φ,t), may be partitioned as follows: Φ(θ,φ,t)

U(θ,φ,t)

=

 Φg(θ,φ,t) + Φr(θ,φ,t)

Ug(θ,φ,t) +Ur(θ,φ,t)

 , (5)
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where Φg and Ug are the respective signals associated with the perturbation in gravitational potential. We may compute

Φg and Ug by convolving L (equation 3) with the respective Green’s functions. Similarly, Φr and Ur are associated with

the perturbation in rotational potential. The change in Earth orientation driven by shift in the inertia tensor causes both

solid Earth deformation and sea-level change (Lambeck, 1980). The net effects of the change in orientation of Earth’s

spin axis, thus, provides a "rotational feedback" (e.g., Milne and Mitrovica, 1998). We may compute Φr and Ur based on5

the perturbation in Earth’s inertia tensor due to the global surface mass redistribution described by L (equation 3). We

define all of the terms appearing in equations (4) and (5) explicitly in Appendix A.

– The last term in equation (4) represents the ocean-averaged value of (Φ/g−U). This spatial invariant is essential to

ensure that the global mean relative sea-level change is same as the barystatic term.

To solve for the sea-level fingerprint in a conventional SH domain (e.g., Mitrovica and Peltier, 1991) and isolate useful SH10

coefficients noted in Section 2, we express equation (4), using equation (5), in the following form:

S(θ,φ,t) =X(θ,φ,t) +Y (θ,φ,t) +P (θ,φ,t) +Q(θ,φ,t) +C(t), (6)

where X = Φg/g, Y = Φr/g, P =−Ug, Q=−Ur, and C = E−< Φ/g−U >. By default, we account for the rotational

feedback, which when excluded, equation (6) takes a reduced form with Y = 0, Q= 0, and C = E−< Φg/g−Ug >. We now

multiply both sides of equation (6) by the ocean function, O, to get the following:15

Ŝ(θ,φ,t) = X̂(θ,φ,t) + Ŷ (θ,φ,t) + P̂ (θ,φ,t) + Q̂(θ,φ,t) + Ĉ(t), (7)

where Ŝ =OS, X̂ =OX , and so on. In the employed spectral methods (Appendix B), we find it more straightforward to solve

equation (7) rather than (6). Since all of the right-hand side terms appearing in equation (7) depend on Ŝ itself (see equations

3 and 4, and Appendix A), we solve the equation recursively until the desired solution convergence is achieved (see Appendix

B5). We consider the barystatic sea-level (equation A1) as the starting solution, i.e. Ŝ = Ê where Ê =OE. Once equation (7)20

is solved for Ŝ, all of the terms appearing in equation (6) may be retrieved easily.

We expand all of the terms appearing in equations (6) and (7) in the SH domain (cf. equation B1). Inserting these SH

expansions into equation (7) and equating the corresponding (degree l, order m) SH coefficients, we find the following for any

r-th recursion:

Ŝr
lm = X̂lm(Ŝr−1

lm ) + Ŷlm(Ŝr−1
lm ) + P̂lm(Ŝr−1

lm ) + Q̂lm(Ŝr−1
lm ) + Ĉlm(Ŝr−1

lm ), (8)25

where r = 1,2, ...rmax is the recursion counter, and rmax is the value of r for which the desired convergence is attained. Note that

dependence of right-hand side terms on Ŝlm itself is explicitly stated. For r = 1, we set Ŝ0
lm = Êlm. Since Êlm does not depend

on Ŝlm, it does not evolve during the recursion. We define Êlm (equation B17) and all of other hatted coefficients appearing

above (equation B18 and so on) in Appendix B. The hatted coefficients depend on corresponding non-hatted coefficients, which

are explicitly defined in equations (B20–B23, B25).30
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Once we obtain the final solution for Ŝr
lm (after iteration r = rmax), denoted for simplicity by Ŝlm, final solutions for all

of the non-hatted (degree p, order q) coefficients are obtained as well. These non-hatted coefficients automatically satisfy the

sea-level equation itself (equation 6) in the SH domain, i.e.,

Spq =Xpq(Ŝlm) +Ypq(Ŝlm) +Ppq(Ŝlm) +Qpq(Ŝlm) +Cpq(Ŝlm). (9)

Note that all of SH coefficients appearing above are only a function of time t. With final solutions achieved for all of the terms5

appearing in equation (9), SH coefficients of geoid height change for a self-gravitating Earth are given by Xpq(t) and those

for a self-gravitating rotating Earth by [Xpq(t) +Ypq(t)]. Similarly, SH coefficients of bedrock elevation change are given by

−Ppq(t) for a self-gravitating Earth and by − [Ppq(t) +Qpq(t)] for a self-gravitating rotating Earth.

4 GRACE and sea-level fingerprints

Here we give a brief summary of the steps undertaken to develop sea-level fingerprint and complementary data products. First,10

we note that the GRACE processing centers, including CSR, GFZ, and JPL, have a variety of methods employed to reduce

noise, but the system has an inherent resolution limit of about 300 to 400 km in radius at the Earth’s surface. Hence, the Stokes

coefficients for the potential field provided by the official centers are truncated at a varying degree and order, from 60 to 96.

We employ a truncation at degree and order 60, as many months may be much noisier than others.

We use GRACE Level-2 Release-06 data products provided by all three premier (and official) data processing centers15

(available at ftp://podaac.jpl.nasa.gov/allData/grace/L2/) that are available for the spans April 2002 through August 2016 (CSR

and JPL) and January 2003 through November 2014 (GFZ). The Release-06 GSM files represent the total gravity variability due

to land surface hydrology, cryospheric changes, episodic seismogenic processes, and GIA. We assume that all mass transport

information is contained within the post-processed GSM files in which background models for the mass changes in atmosphere

and oceans having periodicities shorter than one month are removed (Dobslaw et al., 2017). GSM data set are also corrected for20

solid Earth and ocean tides by the processing centers (cf. Stammer et al., 2014; Bettadpur, 2018). We also assume continuous

transfer of net mass to and from the oceans takes place on all time scales. This includes a trend that supplies the mass term of

sea-level rise. To do this correctly, we derive degree 1 coefficients from JPL Release-06 data products following the methods of

Swenson et al. (2008). We replace degree 2 order 0 coefficients by those derived from satellite laser ranging analysis (Cheng et

al., 2011) that are compatible with Release-06 data products (available at ftp://podaac.jpl.nasa.gov/allData/grace/docs/TN-11_25

C20_SLR.txt). The physical origins motivating this replacement are well known: there is far greater sensitivity to changes

in degree 2 order 0 coefficients that can be retrieved from higher orbiting satellites tracked by terrestrial laser stations than

for GRACE (Cheng and Ries, 2017). We apply GIA correction coefficient-by-coefficient using the expected values from a

Bayesian analysis (Caron et al., 2018), available at https://vesl.jpl.nasa.gov/solidEarth/gia/. Finally, for all coefficients, we

remove corresponding 11-year (January 2003 – December 2013) mean values to retrieve Strokes coefficient anomalies.30
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By combining GSM Stokes coefficient anomalies with GIA and low-degree coefficients as noted above, we may derive

corresponding coefficients for land water storage anomalies, Hlm(t), as follows (Wahr et al., 1998):

Hlm(t) =
aρe
3ρw

2l+ 1

1 + k′l

{
exp

[
− 1

4 ln(2)

(
l r

a

)2
]}[

Cgsm∗
lm (t)−Cgia

lm(t)
]
, (10)

where ρw is the water density, ρe is the Earth’s mean density, k′l are the load Love numbers of degree l, a is the Earth’s mean

surface radius, r is the Gaussian smoothing window, and Cgsm
lm and Cgia

lm are the GSM and GIA Stokes coefficient anomalies,5

respectively. The term enclosed by braces is the Gassian smoothing filter. We consider r = 300 km to comply with the so-called

gain factors that are used to restore the attenuated signals (detailed below). An asterisk associated with GSM coefficients is

meant to imply that these solutions are corrected for more accurate low-degree Stokes coefficients as noted above.

Monthly land water storage fields, H(θ,φ,t), may be generated by assembling the coefficients (equation 10) in an SH

domain, as in equation (B1). Gaussian smoothing aimed at removing the data noise also attenuates the signals. An appropriate10

scaling of the fields is therefore essential. For the ice sheet and peripheral glaciers in Greenland, three non-overlapping sub-

domains of Antarctica, and 15 regions of global glaciers and ice caps, we compare our estimates of average rate of regional

mass change during February 2003 through June 2013 with those computed by Schrama et al. (2014) and derive the scaling

factors – unique for CSR, GFZ, and JPL data products – for each of these 19 cryospheric domains. As for the non-cryospheric

continental domains, Landerer and Swenson (2012) analyzed monthly land water storage signals obtained from the GRACE15

observations and the Noah land surface model, simulated within the Global Land Data Assimilation System (GLDAS-Noah),

and derived global gridded gain factors. We combine these factors to scale H(θ,φ,t) for the entire continents. Our estimates

of barystatic time series are comparable to JPL mascon solutions for both trends and seasonal amplitudes (Figure 1).

A detailed description of scaling may be found in Adhikari and Ivins (2016), who used the same recipe to post-process

the CSR Release-05 GRACE Level-2 data products for robust reconstruction of interannual variability in position of Earth’s20

spin axis. This gives us extraordinary confidence that the procedure for generating land water storage fields and corresponding

fingerprints are not only sound, but highly robust at long wavelengths. The effects of scaling on SH coefficients of select fields

are shown in Figure 2. Our model solutions are also robust. For example, our estimates of relative sea-level change (Figure

3), vertical bedrock motion (not shown), and geoid height change (not shown) are consistent with the respective solutions

computed using a well-validated sea-level solver (Adhikari et al., 2016) that operates on an unstructured global mesh of the25

Ice and Sea-level System Model (ISSM; https://issm.jpl.nasa.gov/). We find that GFZ solutions are slightly different from CSR

and JPL solutions (Figure 4), although the difference in sea-level fingerprints is generally within 1-σ uncertainties (compare

middle right panels in Figure 3 and Figure 4). We show the origin of discrepancies by plotting the degree variance spectrum.

Based on CSR, GFZ and JPL Stokes coefficients, we provide with this article monthly SH coefficients of

– model forcing function: Flm(t),30

– geoid height change: [Xlm(t) +Ylm(t)],

– vertical bedrock motion: − [Plm(t) +Qlm(t)], and
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Figure 1. Barystatic sea-level time series computed by summing continental water height changes. Our estimates of trends and seasonal

amplitudes for all three data centers are compared to JPL mascon solutions (Watkins et al., 2015). Results are plotted relative to the time

means over the period January 2003 through December 2013. Trend values are provided for the period January 2005 through December 2015,

except for GFZ solutions (January 2005 to December 2013), for a comparison to the sum of individual mass components (during January

2005 to December 2016) listed in Table 13 of the WCRP (2018) report: 1.65± 0.23 mm/yr. As an additional point of comparison, Dieng et

al. (2015) find GRACE-determined mass changes for the barystatic sea-level trend at 2.04±0.08 mm/yr for January 2005 – December 2013

from the mean of CSR, GFZ and JPL Level-2 Release-05 spherical harmonic solutions.

– relative sea-level: Slm(t)

computed in both CM and CF reference frames with and without the rotational feedback included. Effects of Earth’s rotation

and the reference frame origin on select fields are shown in Figure 5. The SH coefficients for sea-surface height may be

obtained by summing coefficients for bedrock motion and those for relative sea-level (cf. equation 1). While one may readily

assemble these coefficients in an SH domain to retrieve the corresponding monthly fields, we also supply 0.5◦× 0.5◦ gridded5

solutions for user convenience. We provide uncertainty associated with monthly fields as well, both in terms of spatial maps

and SH coefficients. Quantification of the uncertainty is determined by the following recipe. Based on the JPL Release-06 (GIA

uncorrected) mascon solutions and associated standard errors (Watkins et al., 2015; Wiese et al., 2016), we use a Monte-Carlo

approach to generate 5000 ensemble members of monthly land water storage solutions. We apply a unique GIA correction,

computed by Caron et al. (2018), to each of these ensemble members. Next we solve the sea-level equation to derive an10

equivalent number of solutions for S(θ,φ,t), U(θ,φ,t) and other fields. Finally, we quantify the standard errors associated

with each field, weighted by the likelihood of each GIA model (Caron et al., 2018). Figure 3 shows our estimates of standard

errors associated with the trends in land water storage and relative sea-level.

5 Discussion

The utility of the fields we provide is that they may be used to rigorously remove from ocean altimetry, bottom-pressure and15

tide gauge studies those patterns that are attributable to geoid and bedrock motions caused by on-land mass changes. Such
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Figure 2. Effects of scaling on the select spherical harmonic coefficients. (a) Scaling effects on the average rate of change in land water

storage, relative sea-level and geoid height, during April 2002 through March 2016. These solutions are based on JPL Stokes coefficients,

and are computed in CM reference frame with the rotational feedback included. (b) Distribution of energy, computed for a given degree l as a

sum of square of corresponding orders m, for unscaled and scaled solutions. Note the log-scale in x-axis of the right panel. Unlike the geoid

height change, relative sea-level change has non-zero energy at l = 0 with magnitudes of 1.16 and 2.37 mm2/yr2 for unscaled and scaled

solutions, respectively. Also note that solutions for geoid height change employ a different scale (factor of 4) for appropriate visualization.

removal is essential for future studies of the patterns of sea-level change owing to internal variability of the climate system

which drive changes in ocean density, fresh water fluxes and circulation (e.g., Bilbao et al., 2015; Fasullo and Nerem, 2018).

As we supply sea-level fingerprints and complementary data products with and without rotational feedback, we owe the

readers some additional words of caution and recommendations. First, from the Eurlerian equations of rotational motion,

we solve for the feedback consistently designed for periods longer than 434 days (the period of the Chandler wobble). The5

rationale is that both the solid and ocean pole tide (Haubrich and Munk, 1958) are removed from the satellite solutions for

9



Figure 3. Land load function, sea-level fingerprint, and uncertainties therein. Average rate of water equivalent height change in land water

storage (upper panel) and associated change in relative sea-level (middle panel) for the period April 2002 to March 2016 are shown with

their corresponding 1-σ uncertainties. Maps for sea-level fingerprint and uncertainty are produced by assembling the corresponding spherical

harmonic coefficients provided with this article. These solutions are based on JPL Stokes coefficients, and are computed in CM reference

frame with the rotational feedback included. A zoom-in map of the Mediterranean Sea (bottom left) is meant to highlight the local variability

in sea-level fingerprint. The fingerprint-predicted trends for tide gauges at TRIESTE (1.26± 0.18 mm/yr) and CASCAIS (1.50± 0.17

mm/yr) reflect differences that are comparable to those associated with interdecadal atmospheric pressure trends (0.2± 0.2 mm/yr) and the

GIA related fingerprint (≈ 0.2 mm/yr) (see Piecuch et al. (2016) and Stocchi and Spada (2009), respectively). This illustrates one example

of the importance of contemporary sea-level fingerprints for tide gauge data analysis and interpretation. The bottom right panel is meant to

show that our solutions are comparable to those obtained from a well-validated and higher resolution ISSM sea-level solver (Adhikari et al.,

2016); note that the solution discrepancy is within the 1-σ uncertainties (cf. middle right panel).

GRACE gravimetry and TOPEX/Poseidon and Jason altimetry on a routine basis (e.g., Wahr, 1985; Desai, 2002; Desai and

Yuan, 2006). The improvements in the ocean pole tide, in fact, has been accomplished by many years of assimilation of the

altimetric mission data. Hence, at periods near, or less than 434 days, the paths to unambiguously generating solutions to the

sea-level equation with centrifugal potential and loading changes from the pole tide are unclear. We might assume that the
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Figure 4. Comparison of data centers for select fields. JPL solutions are subtracted from CSR and GFZ solutions for trend in land water

storage change (left panel) and relative sea-level change (right panel) during January 2003 – December 2013. Difference in the spectrum of

energy distribution is also shown (lower panel). Results are computed in CM reference frame with the rotational feedback accounted for.

relevant feedbacks are largely removed as a processing step in rendering Level 1-b and Level 2 GRACE data products. We

keep, however, rotational feedback effects of an interannual nature in one set of monthly solutions, and another set of solutions

lack these effects. The user of this data should understand the differences, as approaches to using the data to evaluate altimetric

time series of order 10 years in length will certainly be interested in using the rotational feedback version for analysis of

interannual trend and variability adjacent to Greenland, for example (Müller et al., 2019). Whereas, users focusing on seasonal5

time scale fingerprints are recommended to employ those coefficients that lack the rotational feedback, as the altimetry and

space gravimetry products employed, likely have the sea-surface height and gravity effects of the annual polar motion, Chandler

wobble, and associated pole tides removed.

It is also worthwhile to note that on time scales of decades the mantle primarily behaves elastically, perhaps with the

exception at places where the tectonic history has brought heat, volatiles and changes in mineral structure, such as water or10

reduced grain size, into the region, thus reducing the effective viscosity to values below about 5× 1018 Pa s (e.g., Lange et

11



Figure 5. Effects of Earth’s rotation and reference frame on model solutions. Rotational feedback on the relative sea-level change exhibits

a degree 2 spherical harmonic pattern (upper panel), and generally accounts for ≈ 10% of the total signal (cf. middle left panel in Figure

3). Degree 1 load Love numbers depend on the choice of reference frame origin. Effect of reference frame – quantified here as the model

solution computed in CM frame minus the solution computed in CF frame – is more pronounced in the vertical bedrock motion (lower panel)

and the geoid height change (not shown). These results are based on JPL Stokes coefficients for the period April 2002 to March 2016.

al., 2014; Mitrovica et al., 2018; Nield et al., 2018). At such low values of viscosity in the upper mantle, stress relaxation can

reduce both the effective influence of gravitational loading and the amplitude of fingerprints. While we acknowledge that this

effect is quite difficult to quantify, it should be a second order effect.

6 Conclusions

In this paper we describe a data product that emerges from the Release-06 GRACE Level-2 Stokes coefficients, provided by5

CSR, GFZ and JPL, which contain the basic information necessary to create monthly sea-level fingerprints, and these are

general enough that they may be employed in reconstructions of vertical bedrock motion, perturbed relative sea-surface, and

geoid height change. We provide SH coefficients of each field and uncertainty therein, computed in both CM and CF reference

frames with and without rotational feedback included. For user convenience, we also provide spatial maps at 0.5◦× 0.5◦

resolution.10

A future space altimetry mission (Surface Water and Ocean Topography, or SWOT) is aimed at providing real-time two-

dimensional imaging of the sea-surface height without the necessity of having to patch together one-dimensional profiles (e.g.,

Gaultier et al., 2016). In addition to providing higher resolution, this will allow improved accuracy. When coupled to GRACE-

FO mapping of gravity changes, we should begin to see the emergence of sea-level fingerprints. Perhaps more importantly, we

12



may begin to more confidently remove a part of the ocean altimetry signal that should not be assimilated into dynamic ocean

models: that which is associated with self-gravitation and loading. Here we present the effects of land-based mass transport

and rotational effects, both together and separately. Recent appreciation of the effects of solid Earth elastic and viscoelastic

response is now receiving increased scrutiny for the potential bias that may be introduced into the altimetry trend record when

not accounting for these effects properly (e.g., Desai et al., 2015; Lickley et al., 2018). We have not treated the influences of GIA5

on rotational deformation and/or the associated axial displacement of the centrifugal potential, although we have employed the

GIA model of Caron et al. (2018) to analyze GRACE Level-2 for proper representation of the monthly water height equivalent

masses. As a consequence, users of the data that we supply here should understand that folding the fingerprints into analyses

of any geodetic data, including tide gauges and ocean altimetry, might want to carefully consider that the secular polar motion

effects in the Release-06 GRACE Level-2 products (Wahr et al., 2015; Bettadpur, 2018) have been removed, and that the10

sea-surface height variability associated with polar drift, annual, and Chandler wobble effect are currently removed from ocean

altimetry data in the manner described by Desai et al. (2015). This fact allows users to rather straightforwardly remove land

mass change related fingerprints from either GRACE, ocean altimetry, tide gauge or GPS-determined vertical land motion data

from April 2002 to August 2016 using the monthly solutions we supply here as a data product.

7 Data availability15

We presently store data in a public repository hosted by Harvard Dataverse (https://doi.org/10.7910/DVN/8UC8IR). The first

set of data we supply are SH coefficients of global field variables. The zip file "SLFsh_coefficients.zip" contains a total of

1780 data files: 133× 4 for GFZ and 156× 4 each for CSR and JPL. For the given data center, four files are provided for a

particular GRACE month: with and without Earth’s rotational feedback included while solving for sea-level fingerprints in both

CM and CF reference frames. File names follow the GRACE naming convention. Solutions that correspond to the CSR GSM20

file "GSM-2_2002095-2002120_GRAC_UTCSR_BA01_0600", for example, are stored in four files named "SLF-2_2002095-

2002120_GRAC_UTCSR_BA01_0600" under appropriate directories; we simply replace "GSM" by "SLF" to denote "sea-

level fingerprints". Time stamp (in YYYYDoY-YYYYDoY format) and the corresponding data center (5 character string

containing CSR, GFZ or JPL) also appear in the file name. The example file considered above contains sea-level fingerprint

solutions for the period 95-120 days of year 2002 based on the Stokes coefficients provided by CSR. Header lines 5-7 in each25

file further clarify which data center the solutions correspond to, which reference frame is considered, and whether or not

Earth’s rotational feedback is accounted for. Each data file consists of a total of 18 columns: SH degree l, SH order m, and SH

coefficients for model forcing function Flm (4 columns), relative sea-level Slm(4 columns), geoid height change [Xlm +Ylm]

(4 columns), and vertical bedrock motion −[Plm +Qlm] (4 columns). For each field, first (last) two columns store cosine

(sine) coefficients for our predicted mean and 1-σ uncertainty, respectively. Users should note that the finite degree 0 order 030

harmonic in the monthly SLF files represents the finite mass changes for the global oceans.
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The second set of data we supply are maps of global field variables. We provide a total of 12 NetCDF files: four each for

CSR, GFZ and JPL. The file "SLFgrids_GFZOP_CF_WITHrotation.nc", for example, stores solutions based on GFZ Stokes

coefficients that are computed in CF reference frame with the rotational feedback accounted for.

Appendix A: Theory of sea-level fingerprint

The fundamental theoretical concept of the so-called sea-level fingerprint is summarized in Section 2. Here we provide explicit5

mathematical expressions for all of the terms appearing in equation (4).

– The barystatic term is given by

E(t) =− 1

AO

[
a2

∫
H(θ,φ,t){1−O(θ,φ)} dS

]
, (A1)

where

AO = a2

∫
O(θ,φ)dS (A2)10

is the ocean surface area, a is the Earth’s mean radius, and S is the surface domain of a unit sphere. The term enclosed

by brackets in equation (A1) yields the net change in continental water volume.

– Changes in gravitational potential, Φg, and associated changes in Earth’s surface displacement, Ug, are obtained by

convolving the surface loading function (equation 3) with respective Green’s functions, GΦ and GU , as follows: Φg(θ,φ,t)

Ug(θ,φ,t)

= a2ρw

∫  GΦ(α)

GU (α)

L(θ′,φ′, t)dS′, (A3)15

where (θ′,φ′) are the variable coordinates. These variable coordinates at which the loading function is defined are

related to (θ,φ) at which Φg and Ug are evaluated via the great-circle distance, α, as follows: cosα= cosθ cosθ′+

sinθ sinθ′ cos(φ′−φ). Green’s functions are represented in the Legendre transform domain as follows: GΦ(α)

GU (α)

=
3

4πa2ρe

∞∑
l=0

 g (1 + k′l)

h′l

Pl(cosα), (A4)

where Pl are Legendre polynomials (equation B3), and k′l and h′l are the load Love numbers.20

– Changes in rotational potential, Φr, and associated changes in Earth’s surface displacement, Ur, follow from the Eulerian

theory of rotation (Lambeck, 1980): Φr(θ,φ,t)

Ur(θ,φ,t)

=

 1

0

Λ00(t)Y00(θ,φ) +

2∑
m=−2

 (1 + k2)

h2/g

Λ2m(t)Y2m(θ,φ), (A5)

where Ylm are degree l order m spherical harmonics (equation B2), Λlm are SH coefficients of perturbation in rotational

potential, and k2 and h2 are degree 2 tidal Love numbers. We may express changes in rotational potential in terms of25
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changes in Earth’s rotation parameters, moment of inertia, and hence surface loading function. Considering leading-order

terms only, we get the following non-zero coefficients (Milne and Mitrovica, 1998): Λ21(t)

Λ2−1(t)

=− 1√
15
a2Ω2

Ω(1 + k′2)

Aσ0

−4π√
15
ρwa

4

 L21(t)

L2−1(t)


 , (A6)

and Λ00(t)

Λ20(t)

=

 2/3

−2/(3
√

5)

a2Ω2

(
−1 + k′2

C

[
8π

3
ρwa

4

{
L00(t)− 1√

5
L20(t)

}])
, (A7)5

where Ω is the Earth’s mean rotational velocity, A and C are the mean equatorial and polar moment of inertia, re-

spectively, σ0 is the so-called Chandler wobble frequency, and Llm are SH coefficients of the surface loading function

(equation B11). Note that the terms inside brackets represent for changes in Earth’s moment of inertia: ∆I11 and ∆I22

(equation A6) and ∆I33 (equation A7). Similarly, the terms enclosed by outer parentheses represent for Earth’s rotation

parameters: polar motion (m1,m2) (equation A6) and change in length of day m3 (equation A7).10

– The ocean-averaged term in equation (4), denoted by 〈∗〉, may be written as follows:〈
1

g
Φ(θ,φ,t)−U(θ,φ,t)

〉
=

1

AO

[
a2

∫ {
1

g
Φ(θ,φ,t)−U(θ,φ,t)

}
O(θ,φ)dS

]
. (A8)

When rotational feedback is excluded, Φ and U should be replaced by Φg and Ug, respectively.

Appendix B: Spectral methods for sea-level equation

B1 Primer15

– Spherical harmonics. For brevity, we define ω = (θ,φ) and drop explicit dependence of a function on time so that

f(θ,φ,t)≡ f(ω). Any square-integrable function f(ω) can be expanded as the infinite sum of SHs as follows:

f(ω) =

∞∑
l=0

l∑
m=−l

flmYlm(ω)≡
∑
lm

flmYlm(ω), (B1)

where flm are SH coefficients and Ylm(ω) are (real) normalized SHs of degree l and order m. These SHs may be

expressed in terms of associated Legendre polynomials, Pl|m|, as follows:20

Ylm(ω) =

√
(2− δ0m)(2l+ 1)

(l− |m|)!
(l+ |m|)!

Pl|m|(cosθ)

 cos(mφ) if m≥ 0

sin(|m|φ) if m< 0
. (B2)

where δ0m is the Kronecker delta. For x ∈ [−1,1] and m≥ 0, polynomials Plm(x) are given by

Plm(x) = (1−x2)m/2 dmPl(x)

dxm
,
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where

Pl(x) =
1

2l l!

dl(x2− 1)l

dxl
(B3)

are the Legendre polynomials. This definition of SHs and their normalization are consistent with those employed for

GRACE data generation and processing (Bettadpur, 2018), and can be evaluated straightforwardly using Matlab’s asso-

ciated Legendre functions (https://www.mathworks.com/help/matlab/ref/legendre.html).5

– SH addition theorem. It is useful to note here that the following relationship holds:

Pl(cosα) =
1

2l+ 1

l∑
m=−l

Ylm(ω)Ylm(ω′), (B4)

where α once again is the great-circle distance between coordinates ω and ω′.

– Evaluation of SH coefficients. For the chosen normalization, SHs obey the following orthogonality relationship∫
Ylm(ω)Yl′m′(ω)dS = 4πδll′δmm′ , (B5)10

where δll′ and δmm′ are Kronecker deltas. Using this property, SH coefficients of f(ω) are obtained as follows:

flm =
1

4π

∫
f(ω)Ylm(ω)dS. (B6)

– Evaluation of surface integrals on a unit sphere. We discretize the surface of a unit sphere using the so-called icosahe-

dral pixelization method (Tegmark, 1996). It yields uniformly distributed quadrature points with equal pixel area. This

makes numerical integration fairly straightforward as follows:15 ∫
f(ω)dS =

4π

NT

NT∑
j=1

f(ωj), (B7)

where ωj is the centroid of the j-th pixel and NT is the total number of pixels. Note that the factor 4π/NT represents the

area of each pixel on the surface of a unit sphere.

B2 SH coefficients of some basic functions

– Ocean function. By definition, the ocean function is given by20

O(ω) =

 1 if ω ∈ SO

0 otherwise
,

where SO is the ocean surface domain on a unit sphere. As in equation (B1), we may write

O(ω) =
∑
lm

OlmYlm(ω).
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Following equations (B6) and using the definition of ocean function, we get

Olm =
1

4π

∫
SO

Ylm(ω)dS, (B8)

where integration is performed only within the ocean surface domain. Following equation (B7), we obtain

Olm =
1

NT

∑
j∈SO

Ylm(ωj). (B9)

– Model forcing function. By definition, F (ω) =H(ω) [1−O(ω)]. We may write5

Flm =
1

4π

∫
SC

H(ω)Ylm(ω)dS,

where SC is the continental domain on a unit sphere. We derive H(ω) from the GRACE Stokes coefficients as detailed

in Section 3. Following equation (B7), we get

Flm =
1

NT

∑
j∈SC

H(ωj)Ylm(ωj). (B10)

– Global surface loading function. Since L= F + Ŝ, we may write SH coefficients of L (equation 3) as follows:10

Llm = Flm + Ŝlm. (B11)

B3 Some useful integrals and barystatic sea-level

– Ocean surface area on a unit sphere. Since Y00(w) = 1 (see Appendix B1), SH coefficient of the ocean function

(equation B9) for l = 0 and m= 0 is given by

O00 =
NO

NT
≡ 1

4π

[(
4π

NT

)
NO

]
, (B12)15

where NO is the number of pixels in the ocean surface domain SO. Since the term enclosed by parentheses represents the

area of each pixel, the total area of ocean surface (i.e., NO times the pixel area) on a unit sphere is given by∫
O(ω)dS = 4π O00. (B13)

– Continental water volume on a unit sphere. SH coefficient of the forcing function (B10) for l =m= 0 is given by

F00 =
1

NT

∑
j∈SC

H(ωj)≡
1

4π

∑
j∈SC

[(
4π

NT

)
H(ωj)

]
. (B14)20

Since the term enclosed by parentheses represents the area of each pixel, the sum of the bracketed term over SC essentially

yields the total continental water volume. Consequently, we may write∫
H(ω) [1−O(ω)] dS = 4π F00. (B15)

– Barystatic sea-level. Using equations (A1), (A2), (B13), and (B15), we get

E =− F00

O00
. (B16)25
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B4 SH coefficients appearing in the sea-level equation

– The coefficient Êlm. This coefficient is used as the first guess solution of Ŝlm (equation 8) and remains unchanged

during the recursive process. Recalling that Ê =OE and that E is a spatial invariant, we may write

Êlm =
1

4π
E

∫
O(ω)Ylm(ω)dS.

Noting that the integral is equivalent to 4πOlm (cf. equation B6) and using equation (B16), we get5

Êlm =− F00

O00
Olm. (B17)

– Other hatted coefficients. All of the coefficients appearing in equation (8) may be evaluated in a similar manner. Consider

X̂lm, for example. Recalling the definition that X̂ =OX and following equation (B6), we may write

X̂lm =
1

4π

∫
O(ω)X(ω)Ylm(ω)dS.

Using the definition of ocean function and expanding X(ω) as in equation (B1), we get10

X̂lm =
1

4π

∫
SO

[∑
pq

XpqYpq(ω)

]
Ylm(ω) dω.

Following equation (B7), we evaluate the integral as follows

X̂lm =
1

NT

∑
j∈SO

[∑
pq

XpqYpq(ωj)

]
Ylm(ωj). (B18)

– The coefficient Xpq . By definition, X = Φg/g. Using equations (A3) and (A4), we may write

X(ω) =
3ρw
4πρe

∫ ∞∑
p=0

(
1 + k′p

)
Pp(cosα)L(ω′)dS′,15

Using the SH addition theorem (equation B4) and expanding L(ω′) as in equation (B1), we get

X(ω) =
3ρw
4πρe

∫ ∑
pq

{
1 + k′p
2p+ 1

Ypq(ω)Ypq(ω′)

}∑
p′q′

Lp′q′Yp′q′(ω
′)dS′,

or,

X(ω) =
3ρw
4πρe

∑
pq

∑
p′q′

1 + k′p
2p+ 1

Lp′q′Ypq(ω)

∫
Ypq(ω′)Yp′q′(ω

′)dS′

Using the SH orthogonality relationship (equation B5), we get20

X(ω) =
3ρw
ρe

∑
pq

1 + k′p
2p+ 1

LpqYpq(ω). (B19)
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Using equations (B6) and (B19), SH coefficients Xpq are given by

Xpq =
3ρw
4πρe

∫ ∑
p′q′

{
1 + k′p′

2p′+ 1
Lp′q′Yp′q′(ω)

}
Ypq(ω)dS.

Rearranging terms and applying the orthogonality relationship (equation B5), we obtain

Xpq =
3ρw
ρe

1 + k′p
2p+ 1

Lpq. (B20)

– The coefficient Ypq . By definition, Y = Φr/g. Using equations (A5) and (B6), SH coefficients Ypq are given by5

Ypq =
1

4πg

∫ Λ00Y00(ω) +
∑
2q′

(1 + k2)Λ2q′Y2q′(ω)

Ypq(ω)dS.

Rearranging terms and applying the orthogonality relationship (equation B5), we get

Ypq =
Λ00

g
δp0δq0 +

(1 + k2)Λ2q

g
δp2. (B21)

– The coefficient Ppq . By definition, P =−Ug. Using equations (A3) and (A4) and following the procedure to derive Xpq

(equation B20), we obtain10

Ppq =−3ρw
ρe

h′p
2p+ 1

Lpq. (B22)

– The coefficient Qpq . By definition, Q=−Ur. Using equation (A5) and following the procedure to derive Ypq (equation

B21), we get

Qpq =−h2Λ2q

g
δp2. (B23)

– The coefficient Cpq . By definition, C = E−〈Φ/g−U〉 ≡ E−〈X +P +Y +Q〉. Using equations (A5), (B19) and15

similar equations for P , we may write

C = E− 1

4πO00

∫
SO

[
3ρw
ρe

∑
pq

1 + k′p−h′p
2p+ 1

LpqYpq(ω) +
1

g

{
Λ00Y00(ω) +

∑
2q

(1 + k2−h2)Λ2qY2q(ω)

}]
dS.

Using equations (B8) and (B16), we get

C =− F00

O00
− 3ρw
ρeO00

∑
pq

1 + k′p−h′p
2p+ 1

LpqOpq −
Λ00

g
− 1

gO00

∑
2q

(1 + k2−h2)Λ2qO2q. (B24)

Note that C and all of the right-hand side terms are spatially invariant. Using equations (B6) and (B24), we get20

Cpq =− 1

4π

 F00

O00
+

3ρw
ρeO00

∑
p′q′

1 + k′p′ −h′p′

2p′+ 1
Lp′q′Op′q′ +

Λ00

g
+

1

gO00

∑
2q′

(1 + k2−h2)Λ2q′O2q′

∫ Ypq(ω)dS.
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Since Y00(ω) = 1, we introduce a virtual expression Y00(ω) inside the integral and use equation (B5) to find

Cpq =−δp0δq0

 F00

O00
+

3ρw
ρeO00

∑
p′q′

1 + k′p′ −h′p′

2p′+ 1
Lp′q′Op′q′ +

Λ00

g
+

1

gO00

∑
2q′

(1 + k2−h2)Λ2q′O2q′


 . (B25)

The terms inside the braces vanish when rotational feedback is not included. Note that the first term in right-hand side of

equation (B21) and the first term inside the braces above cancel out while solving equation (9). It is, however, important

to consider these terms explicitly for a clean isolation of SH coefficients of the desired fields.5

B5 Summary

Here we briefly outline the workflow of our computation.

– Given the on-land change in water equivalent height H(θ,φ,t) over the time period t, we compute SH coefficients of the

model "forcing function" Flm using equation (B10).

– We compute SH coefficients of the "global loading function" Llm (equation B11) by initializing Ŝlm, such that Ŝlm ≡10

Ŝ0
lm = Êlm where Êlm is given by equation (B17).

– Once Ŝlm, and hence Llm, are initialized, we solve the recursion equation for Ŝr
lm (equation 8) until the solution is

converged. The hatted SH coefficients appearing in equation (8) are expressed in terms of their non-hatted counterparts

as in, for example, equation (B18). For the chosen solid Earth model and the reference frame origin, we compute these

non-hatted coefficients using equations (B20–B23) and (B25).15

– The choice of the solid Earth model determines the load Love numbers k′p and h′p, and the tidal Love numbers k2

and h2. In this study, we consider the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981).

– The choice of the reference frame origin determines the degree 1 load Love numbers. In this study, we take the

values from Blewitt (2003) for the CM and CF reference frames.

– Rotational feedback is accounted for via equations (B21), (B23) and (B25); SH coefficients of perturbation in20

rotational potential Λpq appearing in these equations are given by equations (A6) and (A7). To deactivate this

feedback, we set Ypq = 0 (equation B21) and Qpq = 0 (equation B23) and remove the terms enclosed by braces in

equation (B25).

– As for the convergence criterion, we track the relative change in L-2 norm after each recursion and call the solution

converged when it is less than 0.001% of the L-2 norm of the solution itself. This level of solution convergence is25

typically achieved after 4-6 iterations.

– Unless stated otherwise, constants and parameters used in this study are taken directly from Table 1 of Adhikari et

al. (2016).

20



– Once the solution is converged for Ŝlm, we appropriately combine corresponding non-hatted coefficients (i.e., equations

B20–B23 and B25) in order to retrieve SH coefficients of relative sea-level Spq (equation 8), geoid height change [Xpq +

Ypq], and vertical bedrock motion [−Ppq −Qpq]. We supply these coefficients along with corresponding spatial maps.
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