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Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large 

fraction of them are in the northern latitudes. These emissions are typically estimated using process (bottom-up) or inversion 

(top-down) models, yet the two are not independent of each other since the top-down estimates rely on the a priori estimation 

of these emissions coming from the process models. Hence, independent validation data of the large-scale emissions would be 

needed. 10 

Here we utilize random forest (RF) machine learning technique to upscale CH4 eddy covariance flux measurements from 25 

sites to estimate CH4 wetland emissions from the northern latitudes (north of 45 °N) during years 2013 and 2014. The predictive 

performance of the RF model is evaluated using the leave-one-site-out cross-validation scheme and the performance (Nash-

Sutcliffe model efficiency = 0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide or 

studies where process models are compared against site-level CH4 emission data. Three wetland maps are utilized in the 15 

upscaling and the annual emissions for the northern wetlands yield 31.7 (22.3-41.2, 95 % confidence interval), 30.6 (21.4-

39.9) or 37.6 (25.9-49.5) Tg(CH4) yr-1, depending on the map used. To evaluate the uncertainties of the upscaled product it is 

also compared against two process models (LPX-Bern and WetCHARTs) and methodological issues related to CH4 flux 

upscaling are discussed. The monthly upscaled CH4 flux data product is available for further usage at: https://doi.org/ 

10.5281/zenodo.2560164. 20 

1 Introduction 

Methane (CH4) is the second most important anthropogenic greenhouse gas in terms of radiative forcing after carbon dioxide 

(CO2): 34 times (GWP100, including climate-carbon feedbacks) as strong as CO2 according to IPCC (Ciais et al., 2013) and 

has contributed ~20% of the cumulative GHG related global warming (Etminan et al. 2016). Deriving constraints on its sources 

and sinks is thus of utmost importance. The net atmospheric CH4 budget is well constrained by precise CH4 mole fraction 25 

measurements around the globe, yet the contribution of individual sources and sinks to this aggregated budget remains poorly 

understood primarily due to lack of data to constraint the modelling results (Saunois et al., 2016). In order to make accurate 

predictions of the atmospheric CH4 budget in a changing climate, the response of the various sources and sinks to different 

drivers needs to be better identified and quantified.  

Natural wetlands are the largest and most uncertain source of CH4 to the atmosphere (Saunois et al., 2016). An ensemble of 30 

land surface models estimated CH4 emissions from wetlands for the period 2003-2012 to be 185 Tg(CH4) yr-1 (range 153-227 

Tg(CH4) yr-1) and for the same period inversion models estimated it to be 167 Tg (CH4) yr-1 (range 127-202 Tg(CH4) yr-1) 
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(Saunois et al., 2016). This discrepancy between bottom-up (process models) and top-down (inversion models) estimates, as 

well as the range of variability, exemplifies the large uncertainty of the current estimate for natural wetland CH4 emissions. 

Sources of this uncertainty can be roughly divided into two categories: 1) uncertainty related to the global areal extent of 

wetlands (e.g. Petrescu et al 2010. Bloom et al., 2017a; Zhang et al., 2016) and 2) uncertainties related to the key CH4 emission 

drivers and responses to these drivers (e.g. Bloom et al., 2017a; Saunois et al., 2017). Evaluation of the emission estimates is 5 

thus urgently needed, and the results will feed on improvements in process models. Process model improvements will also 

directly affect the uncertainty of inversion results since they provide important a priori information to the inversion models 

(Bergamaschi et al., 2013). 

Boreal and arctic wetlands comprise up to 50 % of the total global wetland area (e.g. Lehner and Döll, 2004) and these wetlands 

make a substantial contribution to total terrestrial wetland CH4 emissions (27 %, based on sum of regional budgets for Boreal 10 

North America, Europe and Russia in Saunois et al., 2016). In wetlands, CH4 is produced by methanogenic Archaea under 

anaerobic conditions and hence the production takes place predominantly under water saturated conditions (e.g. Whalen, 

2005). The microbial activity and the resulting CH4 production is thus controlled by quality and quantity of the available 

substrates, competing electron acceptors and temperature (Le Mer and Roger, 2001). Once produced, the CH4 can be emitted 

to the atmosphere via three pathways: ebullition, molecular diffusion through soil matrix, or plant transport. If plants capable 15 

of transporting CH4 are present, plant transport is generally the largest of the three (Knoblauch et al., 2015; Kwon et al., 2017; 

Waddington et al., 1996; Whiting and Chanton, 1992). Importantly, a large fraction of CH4 transported via molecular diffusion 

is oxidized by methanotrophic bacteria in the aerobic layers of wetland soils and hence never reaches the atmosphere, whereas 

CH4 transported via ebullition and plant transport can largely bypass oxidation (Le Mer and Roger, 2001; McEwing et al., 

2015). Furthermore, processes related to permafrost dynamics (e.g. thaw, thermokarst processes) and snow cover (snow melt, 20 

insulation) have an impact on CH4 flux seasonality and variability in general (Friborg et al., 1997; Helbig et al., 2017; 

Mastepanov et al., 2008; Zona et al., 2016; Zhao et al 2016). Hence wetland CH4 emissions to the atmosphere are a subtle 

interplay between water table position, temperature, vegetation composition, methane consumption, availability of substrates 

and competing electron acceptors.  

During the past two decades, eddy covariance (EC) measurements of wetland CH4 emissions have become more common, due 25 

to rapid development in sensor technology (e.g. Detto et al., 2011; Peltola et al., 2013, 2014). The latest generation of 

instruments are rugged enough for long-term field deployment and can function without grid power (McDermitt et al., 2010), 

increasing the number of sites where CH4 flux measurements can be collected. Due to this progress, EC CH4 flux synthesis 

studies are now emerging (Petrescu et al., 2015; Knox et al., in review). Similar progress was made with CO2 and energy flux 

measurements in the 1990s and now these measurements form the backbone of the global EC measurement network 30 

FLUXNET, whose data has provided invaluable insights into terrestrial carbon and water cycles. Some of the most important 

results have been obtained by upscaling FLUXNET observations using machine learning algorithms to evaluate terrestrial 

carbon balance components and evapotranspiration (Beer et al., 2010; Bodesheim et al., 2018; Jung et al., 2010, 2011, 2017; 
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Mahecha et al., 2010). These results are now widely used by the modelling community to evaluate process model performance 

(e.g. Wu et al., 2017) and to validate satellite-derived carbon cycle data products (e.g. Sun et al., 2017; Zhang et al., 2017a). 

In this study, we synthesized EC CH4 flux data from 25 EC CH4 flux sites and developed an observation-based monthly gridded 

data product of northern wetland CH4 emissions. We focus on northern wetlands (north of 45 °N) due to their significance in 

the global CH4 budget and relatively good data coverage and process understanding, at least compared to tropical systems 5 

(Knox et al., in review). The Arctic is projected to warm during the next century at a faster rate than any other region, which 

will likely significantly impact the carbon cycling of wetland ecosystems (Tarnocai, 2009; Zhang et al., 2017b) and permafrost 

areas of the Arctic-Boreal Region (Schuur et al., 2015). To date, CH4 emission estimates for northern wetlands are typically 

based on process models (Bohn et al., 2015; Bloom et al., 2017a; Chen et al., 2015; Melton et al., 2013; Stocker et al., 2013; 

Wania et al., 2010; Watts et al., 2014; Zhang et al., 2016) or inversion modelling (Bohn et al., 2015; Bruhwiler et al., 2014; 10 

Spahni et al., 2011; Thompson et al., 2017; Thonat et al., 2017; Warwick et al., 2016), yet scaling of existing chamber 

measurements to northern wetland area has also been published (Zhu et al., 2013). However, the first two are not completely 

independent since the attribution of CH4 emissions derived using inversion models to different emission sources (e.g. wetlands) 

depends largely on the a priori estimates of these emissions (i.e. process models for wetland emissions), highlighting the tight 

coupling between these two approaches (Bergamaschi et al., 2013, Spahni et al., 2011). Hence, the main objective of this study 15 

is to produce an independent data-driven estimate of northern wetland CH4 emissions. This product could be used as an 

additional constraint for the wetland emissions and hence aid in process model development. Additionally, the drivers causing 

CH4 flux variability at the ecosystem scale are also evaluated and methodological issues are discussed which will support 

future CH4 wetland flux upscaling studies. 

2 Materials and Methods 20 

Data from flux measurement sites (Fig. 1) were acquired and used together with forcing data to estimate CH4 emissions from 

northern wetlands with monthly time resolution using a random forest (RF) approach. Both in-situ measurements and remote 

sensing are utilized in this study. In this section, the RF approach is briefly introduced (Sect. 2.1) and data selection, quality 

filtering, gap filling and aggregation to monthly values are described (Sect. 2.3). After this procedure, 40.7 site-years were 

available for the analysis. To perform upscaling to all wetlands north of 45 °N, gridded data products of the flux drivers are 25 

needed, as well as wetland distribution maps. These products are presented in Sect. 2.4 and 2.5, respectively. Finally, the 

upscaled wetland CH4 emissions are compared against process model outputs, with the models briefly described in Sect. 2.6. 

Here, wetlands are defined as terrestrial ecosystems with water table positions near the land surface and with plants that have 

adapted to these water-logged conditions. We exclude lakes, reservoirs and rivers from the study, in addition to ecosystems 

with significant human influence (e.g. drainage, rewetting). We consider peat forming wetlands (i.e. mires), which can be 30 

further classified as fens and bogs based on hydrology, as well as wetlands with hydric mineral soils. Tundra wetlands may 

have only a shallow peat layer, or none at all. Unified classifications for wetlands are still lacking, and typically different 
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countries follow their own classification scheme, albeit some joint classification schema have been developed (e.g. Ramsar 

Classification System for Wetland Type). 

2.1 Random forest algorithm 

Random forest (RF) is a machine-learning algorithm that can be used for classification or regression analyses (Breiman, 2001) 

and in this study the RF models consists of a large ensemble of regression trees. Each individual regression tree is built by 5 

training it with a random subset of training data and the trees are trained independently of each other. The RF model output is 

then the average of all the predictions made by individual regression trees in the forest. Hence the RF algorithm applies the 

bootstrap aggregation (bagging) algorithm and takes full advantage of the fact that ensemble averaging decreases the noise of 

the prediction. In addition to random selection of training data, the predictor variables used in split nodes are also selected 

from a random sample of all predictors which minimizes the possible correlation between trees in the forest (Breiman, 2001) 10 

and decreases the possibility of overfitting. 

Performance of RF algorithms to predict CO2 and energy fluxes across FLUXNET sites were compared against other machine-

learning algorithms such as artificial neural networks and multivariate regression splines by Tramontana et al. (2016) who 

showed that differences between methods were negligible. These results are also likely to apply for CH4 fluxes. For a thorough 

description of the RF algorithm for flux upscaling purposes, the reader is referred to Bodesheim et al. (2018) (and references 15 

therein). 

In this study, the RF models were developed using the MATLAB 9.4.0 (R2018a) TreeBagger function with default values 

similarly to Bodesheim et al. (2018). These settings included a minimum of five samples in a leaf node and used MSE as a 

metric for deciding the split criterion in split nodes. Each trained forest consisted of 300 randomized regressions trees. 

2.1.1 RF model development for CH4 flux gapfilling 20 

Our RF algorithm was used for gapfilling the CH4 flux time series at a daily time step, and the performance of the RF model 

was evaluated against so-called out-of-bag (OOB) data (approximately 1/3 of data for each tree). Since each individual tree in 

the RF model was trained using a subset of training data, the rest of the data (i.e. OOB data) can be used as independent 

validation data to evaluate the prediction performance of that particular regression tree and hence the whole forest (Breiman, 

2001). Only the five most important predictors were retained for the gapfilling models for each site. The relative importance 25 

of predictors (e.g. air temperature and the others) was evaluated by randomly shuffling the predictor data and then estimating 

the increase in mean squared error (MSE) when model output is compared against OOB data (Breiman, 2001). For important 

predictors MSE will increase significantly due to shuffling, whereas the effect of shuffling the less important predictors on 

MSE is minor. Note that this procedure was executed separately for each site and thus different predictors may have been used 

for different sites for gapfilling. 30 
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2.1.2 RF model development for CH4 flux upscaling 

For upscaling purposes, one RF model was developed using all the available data in order to maximize the information content 

derived from the available data for the upscaled CH4 flux map. The model performance or uncertainty, however, was evaluated 

by using the data in two ways. The predictive performance of the model was assessed using the widely used leave-one-site-

out cross-validation scheme (e.g. Jung et al., 2011). In order to avoid correlation between training data and validation data, 5 

sites were excluded from the training data when a site located nearby (closer than 100 km) was used as a validation site (Roberts 

et al., 2016). In turn, the uncertainty of the upscaled fluxes was estimated by bootstrapping. 200 independent RF models were 

trained using a bootstrap sample of available data. This yielded 200 predictions for each pixel and time step in the upscaled 

CH4 flux map and the variability over this prediction ensemble was used as an uncertainty measure. This follows the 

methodology used e.g. by Aalto et al. (2018) and Zhu et al. (2013). One should note that this uncertainty estimate reflects the 10 

ability of the RF model to capture the dependence of CH4 flux on the used predictors in the available data, however it does not 

have any reference to actual in-situ CH4 fluxes unlike the model predictive performance estimated with cross-validation. 

Predictors for the RF model used in upscaling were determined following Moffat et al. (2010). First, the RF models were 

trained for each site using one predictor at a time (see all the predictors in Table 1). The single predictor which yielded the 

best match against validation data (leave-one-site-out scheme) was selected as the primary driver. Then, the RF models were 15 

trained again with the primary driver plus each of the other predictors in turn as secondary drivers. Then the RF model 

performance was again evaluated, and the best predictor pair selected for the next round. This procedure was continued until 

all the predictors were included in the RF model. The smallest set of predictors capable of producing adequate RF model 

performance was used for flux upscaling. 

2.2 Metrics for model performance evaluation 20 

The RF model performance was evaluated against independent validation data using a set of statistical metrics, which were 

related to different aspects of model performance. During the RF model training the mean squared error (MSE) was optimized: 

𝑀𝑆𝐸 = (𝑜 − 𝑝)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,            (1) 

where 𝑜 and 𝑝 are vectors containing the observed and predicted values, respectively, and the overbar denotes averaging. 

The Nash-Sutcliffe model efficiency (Nash and Sutcliffe, 1970) (NSE) can be used to evaluate how well the model is able to 25 

predict validation data when compared against a reference (typically the mean of the validation data): 

𝑁𝑆𝐸 = 1 −
∑ (𝑜𝑖−𝑝𝑖)2𝑛

𝑖=1

∑ (𝑜𝑖−𝑜̅)2𝑛
𝑖=1

,           (2) 

where 𝑖 is index running over all the  𝑛 values in the 𝑜 and 𝑝 vectors. When NSE is equal to 1, there is a perfect match between 

prediction and observations. Values above 0 imply that the model predicts the observations better than the mean of observations 

and values below 0 indicate that the predictive capacity of the model is worse than the mean of validation data. Note that NSE 30 

calculated with Eq. (2) above is equivalent to the coefficient of determination calculated using residual sum of squares and 

total sum of squares. However, following the approach used in previous upscaling studies (e.g. Bodesheim et al., 2018; 
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Tramontana et al., 2016), we opted to call this metric NSE. Instead, the coefficient of determination (R2) was estimated as the 

squared Pearson correlation coefficient. Note that R2 and NSE are equal when there is no bias between 𝑜 and 𝑝 and the 

residuals follow Gaussian distribution. In the Results section Pearson correlation coefficients obtained with different model 

runs are compared using Fisher’s r to z transformation. 

The standard deviation (𝜎) of the model residuals was used to evaluate the spread of model residual values (RE): 5 

𝑅𝐸 = 𝜎(𝑜 − 𝑝),            (3) 

whereas bias between model predictions and validation data were used to estimate the systematic uncertainty in the upscaled 

fluxes (BE): 

𝐵𝐸 = 𝑜 − 𝑝̅̅ ̅̅ ̅̅ ̅.            (4) 

Note that RE equals RMSE when there is no systematic difference between the model predictions and observations (i.e. when 10 

BE equals zero). 

2.3 Data 

2.3.1 Data from eddy covariance flux measurement sites 

Data were acquired from 25 sites that 1) measure CH4 fluxes with the EC technique, 2) are located north of 45 °N and 3) are 

wetlands without substantial human influence on ecosystem functioning (see the site locations in Fig. 1 and the site list in 15 

Appendix A). The sites were evenly distributed among fens (9 sites), bogs (7) and wet tundra (9) ecosystems across tundra 

(11), boreal (8) and temperate (6) biomes, as defined in Olson et al., (2001). At 15 of the 25 sites, sedges (e.g., Rhynchospora 

alba, Eriophorum vaginatum, Carex limosa) were the dominant vascular plant functional type in the flux measurement source 

area. Most of the sites (18 out of 25) were located north of 60 °N and the highest density of sites were in Fennoscandia and 

Alaska (Fig. 1). The magnitude of monthly CH4 flux data varied between sites and the median time series length was 14.5 20 

months of CH4 flux data per site. The sites represent northern wetlands sufficiently well to create a first upscaled CH4 flux 

product based on EC data. In the Results section, sites are referred to with their FLUXNET IDs and if not available, new 

temporary site IDs were generated for the usage in this study (see Appendix A). 

Site PIs provided CH4 fluxes and their potential drivers (air temperature and pressure, precipitation, wind speed and direction, 

friction velocity, net ecosystem exchange of CO2 and its components, photosynthetically active radiation, water table depth, 25 

soil temperature) and a description of each site. However, out of the in-situ measurements only air temperature and 

precipitation were used for developing the RF model for flux upscaling since gridded data products of the other drivers were 

not readily available and/or the data for the other drivers were missing from several sites. 

Thirty-minute-averaged flux data were acquired from 21 sites and daily data were provided for four sites. The flux time series 

were quality filtered by removing fluxes with the worst quality flag (based on 0,1,2 flagging scheme, Mauder et al., 2013) and 30 

friction velocity filtered using site-specific threshold if it was typically done at the flux site and friction velocity data were 

available. After filtering, daily medians were calculated if the daily data coverage was above 29 out of 48 half-hourly data 
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points (daily data coverage at minimum 10 data points for sites without diel pattern in CH4 flux) and no gap-filling was done 

to the time series prior to calculation of daily values. While this may cause slight systematic bias in the daily flux values, this 

bias is unlikely to be significant because the magnitude of diel patterns in CH4 fluxes is typically moderate (e.g. Long et al., 

2010) or negligible (e.g. Rinne et al., 2018), although at sites with Phragmites cover a relatively strong diurnal cycle can be 

observed (e.g. Kim et al., 1999; Kowalska et al., 2013). 5 

Unlike the CH4 flux data, the other in-situ data from the sites were gap-filled prior to the calculation of daily values. The 

gapfilling was done only if the daily data coverage was above 60 % and for the days with lower data coverage daily values 

were not calculated. Shorter gaps (<2 hours) were filled with linear interpolation, whereas longer gaps (between 2 to 14.5 

hours) were replaced with mean diurnal variation within a 30-day moving window. However, for precipitation daily sums were 

calculated without any gapfilling. Besides the measurements at the sites, potential solar radiation (Rpot) and its time derivative 10 

(der(Rpot)) were calculated based on latitude and time of measurement. In order to remove the Rpot latitudinal dependence it 

was normalized to be between 0 and 1 before usage. 

CH4 flux drivers measured in-situ, in addition to the remote sensing data (Sect. 2.3.2), were used for the gapfilling of CH4 time 

series with the RF algorithm (Sect. 2.1.1). For each site the gapfilling models generally agreed well with the independent 

validation data (mean NSE=0.74 and mean RMSE = 9 nmol m-2 s-1). After gapfilling, the CH4 flux time series were aggregated 15 

to monthly values if the monthly data coverage prior to gapfilling was at least 20 %. 

The daily time series of air temperature and precipitation measured at the sites were gapfilled using the WFDEI (WATCH 

Forcing Data methodology applied to ERA-Interim data) data (Weedon et al., 2014). Prior to using the WFDEI data for 

gapfilling, the data were bias corrected for each site as is typically done for climate or weather reanalysis data (e.g. Räisänen 

& Räty, 2013; Räty et al., 2014). For precipitation, the mean of WFDEI data were simply adjusted to match site mean 20 

precipitation. For air temperature the bias correction was done for each month separately using quantile mapping with 

smoothing within a moving seven-month window. Quantile mapping compares the cumulative distribution functions (CDFs) 

of WFDEI and site measurements against each other and adjusts the WFDEI data so that after adjustment its CDF matches 

with the CDF of the site measurements. See more details about the bias correction procedures e.g. in Räisänen & Räty (2013). 

After gapfilling the daily time series with WFDEI data, monthly and annual precipitation were calculated, in addition to 25 

monthly mean air temperature. 

2.3.2 Remote sensing data 

Data from the Moderate Resolution Imaging Spectrometer (MODIS) were used in this study. For RF model development the 

following data products at 500 m or 1000 m spatial resolution were used: MOD10A1 snow cover (Hall and Rigs, 2016), 

MOD11A2 daytime and night-time land surface temperature (LSTd and LSTn, Wan et al., 2015), MOD13A3 enhanced 30 

vegetation index (EVI, Didan, 2015) and MOD09A1 surface reflectance (Vermote, 2015). More elaborate satellite products 

estimating ecosystem GPP and net primary productivity (NPP; MOD17) were not included here for two reasons: 1) many of 

the sites included here were misclassified in the land cover map used in MOD17 e.g. as woody savanna, hence severely 
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influencing the estimated GPP and NPP (Zhao et al., 2005), and 2) sites that were correctly classified as permanent wetlands 

were in fact assigned a fill value and removed from the product since the product is not strictly valid for these areas (Lees et 

al., 2018). All the remote sensing data products were quality filtered using the quality flags provided along with the data. 

The MODIS snow cover ranged from 0 (no snow) to 100 (full snow cover) and was converted to a simple snow cover flag 

consisting of 0 and 1 depending whether the snow cover data were below or above 50, respectively. A vector containing days 5 

since snow melt (DSSM) was calculated using the snow cover flag and normalized to 0 (beginning) and 1 (end) for each 

growing season (Mastepanov et al., 2013). The MOD09A1 surface reflectance at bands 2 (841-876 nm) and 5 (1230-1250 nm) 

were used to calculate the simple ratio water index (SRWI=band 2/band 5) following Zarco-Tejada & Ustin (2001). SRWI 

showed spurious values when there was snow cover and hence these points were replaced with the mean SRWI observed at 

each site when there was no snow. Meingast et al. (2014) showed that SRWI can be used as a proxy for wetland water table 10 

depth, although their results were affected by changes in vegetation cover, which might hinder across-site comparability in 

this study. Additionally, following the temperature and greenness modelling approach (Sims et al., 2008), a product of EVI 

and LSTd was included in the analysis as a proxy for gross primary productivity (GPP), following a previous peatland study 

(Schubert et al., 2010). The remote sensing data were provided with daily (MOD10A1), 8-day (MOD09A1, MOD11A2) or 

monthly (MOD13A3) time resolution and the data were aggregated to monthly means prior to usage. 15 

2.3.3 Additional categorical variables 

The sites were also classified based on the presence of permafrost in the source area (present or absent) and according to biome 

type. Furthermore, the data were categorized based on wetland type and sedge cover as in Treat et al. (2018) and Turetsky et 

al. (2014). However, such information is not available in the gridded format needed for upscaling, nevertheless inclusion of 

these variables can be used to assess how much they increase the predictive performance of the model. Biome types (temperate, 20 

boreal, tundra) were determined from Olson et al. (2001). 

2.4 Gridded data sets used in flux upscaling 

For upscaling CH4 fluxes using the developed RF model, the LST data were acquired from the aggregated product MOD11C3 

(Wan et al., 2015), and snow cover data from MOD10CM (Hall and Riggs, 2018). Distribution of permafrost in the northern 

latitudes were estimated using the circum-Arctic map of permafrost derived by National Snow and Ice Data Center (Brown et 25 

al., 2002). The resolution of the gridded data was adjusted to match the resolution of the wetland maps using bilinear 

interpolation if needed. Additionally, land and ocean masks (Jet Propulsion Laboratory, 2013) were utilized when processing 

the gridded data sets. 

2.5 Wetland maps 

Upscaled fluxes were initially estimated in flux densities per wetland area, that is (amount of CH4) per (area of wetland) per 30 

(unit of time). To create a gridded product of CH4 emissions from the northern wetlands, these upscaled flux densities were 
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converted into (amount of CH4) per (grid cell area) per (unit of time) using wetland maps. Wetland mapping is an ongoing 

field of research and the usage of different wetland maps contributes to the uncertainty of global wetland CH4 emission 

estimates (e.g. Bloom et al., 2017a; Zhang et al., 2017b). Hence, three different wetland maps (PEATMAP, DYPTOP and 

GLWD) were used in this study to evaluate how much they affect the overall estimates of northern wetland CH4 emissions. 

The recently developed static wetland map PEATMAP (Xu et al., 2018) combines detailed geospatial information from various 5 

sources to produce a global map of wetland extent. Within the presented study, the polygons in PEATMAP were converted to 

fractions of wetland in 0.5° grid cells. While PEATMAP is focused on mapping peatlands, marshes and swamps (typically on 

mineral soil) are included in the product for certain areas in the northern latitudes. However, most of the wetlands in the 

northern latitudes are peatlands and thus PEATMAP is suitable for our upscaling purposes. The dynamic wetland map 

estimated by the DYPTOP model (Stocker et al., 2014) was used by aggregating peat and inundated areas to form one dynamic 10 

wetland map with 1° resolution. The widely used Global Lakes and Wetlands Database (GLWD, Lehner and Döll, 2004) is a 

static wetland map with 30 arc second resolution and was used in this study as a point of reference for the other two maps. The 

map was aggregated to 0.5° resolution and lakes, reservoirs and rivers were excluded from the aggregated map. 

2.6 Process models 

The upscaled CH4 fluxes were compared against two process models: LPX-Bern (Spahni et al., 2013; Stocker et al., 2013; 15 

Zürcher et al., 2013) and the model ensemble WetCHARTs version 1.0 (Bloom et al., 2017a, 2017b). LPX-Bern is a dynamic 

global vegetation model which models carbon and nitrogen cycling in terrestrial ecosystems. The model has a separate peatland 

module with peatland-specific plant functional types (see more details in Spahni et al., 2013). The wetland extent in LPX-Bern 

was dynamically estimated using the DYPTOP approach with 1° resolution (Stocker et al., 2014). WetCHARTs combines 

several prescribed wetland maps with different gridded products for heterotrophic respiration and temperature sensitivity (Q10)-20 

parameterizations for CH4 production to form a model ensemble of wetland CH4 emissions (Bloom et al., 2017b). Here we 

used the extended ensemble of WetCHARTs. 

3 Results 

3.1 Selecting the predictors for the RF model 

The predictors in Table 1 were selected one-by-one using the procedure described in Sect. 2.1.2. The order in which the 25 

predictors were selected is shown in Fig. 2. LSTn alone gave NSE=0.29. After including the category presence or absence of 

permafrost, Rpot, SC and biome class increased NSE to 0.47, albeit the influence of SC and biome class on the model 

performance was marginal. Additional predictors did not increase the model performance further because 1) they were strongly 

correlated with a predictor already included in the model (e.g. Tair is correlated with LSTn) and hence they did not add any 

new information to the system, or 2) the predictors did not contain any information about CH4 flux variability. The model 30 

response to other predictors than biome category was physically reasonable (e.g. permafrost and snow cover decrease fluxes, 
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close to exponential dependence on LSTn), whereas the response to biome category was contrary to expectations. The RF 

model estimated the CH4 flux magnitude from the different biomes to be in the order tundra<temperate<boreal, whereas in 

prior studies it has been shown to be in the order tundra<boreal<temperate (Knox et al., in review Treat et al., 2018; Turetsky 

et al., 2014). This discrepancy may be due to the limited number of measurement sites and related sampling bias problems. 

Hence in order not to upscale an incorrect pattern of decreasing CH4 emissions when moving from boreal to temperate regions, 5 

the biome class was omitted from upscaling. In the subsequent analysis and flux upscaling only the four first predictors (LSTn, 

permafrost category, Rpot and SC) are utilized. 

We further tested whether information about wetland type or sedge cover would improve the model performance, although 

these variables were not available in gridded format and hence were not usable for upscaling. Including the sedge flag increased 

the NSE to 0.53, although the increase in Pearson correlation was not statistically significant (p>0.05, comparison of 10 

correlation coefficients using Fisher’s r to z transformation). Also, wetland type did not have a statistically significant influence 

on the model performance (p>0.05 and NSE=0.49 if type included). Using many categorical variables in a RF model may be 

problematic because each site may end up with a unique combination of categorical variables. 

The most important predictor for the model was temperature, similar to numerous studies showing that wetland CH4 emissions 

are strongly correlated to soil temperature (Christensen et al., 2003; Helbig et al., 2017; Jackowicz-Korczyński et al., 2010; 15 

Rinne et al., 2018; Yvon-Durocher et al., 2014). Estimating apparent Q10 from the RF model LSTn dependence yielded a value 

of 1.90+/-0.03 and for validation data it was slightly higher (1.97+/-0.06) (Fig. 3). These values are comparable to the ones 

reported in Turetsky et al. (2014) for CH4 chamber measurements at bog and fen sites. The temperature dependence of CH4 

production is modelled in many process models with the parameter Q10 value close to 2 (Xu et al., 2016b), which agrees with 

the CH4 emission temperature dependence shown here. However, one should note that also CH4 oxidation depends on 20 

temperature and the derived apparent Q10 value describes the temperature dependence of surface CH4 emission, which is 

always a combination of CH4 production and oxidation. 

3.2 Model agreement with validation data 

The overall systematic bias (BE) between the RF predictions and validation data was negligible (Fig. 4), whereas the spread 

of the data (RE) was more pronounced. RE is evident in Fig. 4 also as significant scatter around the 1:1 line. Following Moffat 25 

et al. (2010), RE was analysed further by binning the data based on CH4 flux magnitude and calculating RE for each bin. RE 

clearly correlated with flux magnitude (RE = (0.52±0.06)FCH4+(3.3±2.0) nmol m-2 s-1, where FCH4 denotes CH4 flux) 

indicating that the relative random error of the RF model prediction was nearly constant and approximately 50 % for high 

fluxes. The systematic error BE did not show a clear dependence on flux magnitude. The RF model performance was worse 

on site mean level than with monthly data. When comparing site means, NSE and R2 were both 0.25 and RE and BE were 27.0 30 

nmol m-2 s-1 and 1.5 nmol m-2 s-1, respectively. Possible drivers causing the remaining CH4 flux variability not captured by the 

RF model (i.e. the scatter in Fig. 4) are discussed in Sect. 4.2.1. 
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When considering the model performance for each site separately, the agreement shows different characteristics (see Fig. 5 

for four examples). For individual sites the magnitude of BE is typically somewhat higher (median of absolute value of BE 

approximately 11 nmol m-2 s-1), whereas RE is lower than for the overall agreement (median RE approximately 10 nmol m-2 

s-1). These results indicate that the upscaled CH4 fluxes have in general relatively low bias and high random error, whereas 

individual pixels in the upscaled CH4 map may have higher bias, but lower random error. 5 

The mean annual cycle of CH4 emission predicted by the RF model agrees well with the mean annual cycle calculated from 

the validation data (not shown). During the nongrowing season the RF model slightly overestimates the fluxes (15 % 

overestimation), but during rest of the year the differences are negligible (<1 %). However, for individual sites the agreement 

is not as good. For instance, at US-Los (located in Wisconsin, US) the modelled CH4 emissions start to increase one month 

too early in the spring (Fig. 5b) and the nongrowing season fluxes are overestimated at all four example sites (FI-Sii, US-Los, 10 

US-Atq and RU-Ch2; Fig. 5). Out of the example sites, the mean flux magnitude is modelled well at FI-Sii (Fig. 5a), whereas 

at US-Los (Fig. 5b) and US-Atq (Fig. 5c) the RF model overestimates and at RU-Ch2 (Fig. 5d) underestimates the CH4 

emissions. The flux bias had a relatively large impact on site-specific NSE. For example, for US-Atq NSE was -1.85, meaning 

that the mean of observations would be a better predictor for this site than the RF model (see the NSE definition in Sect. 2.2). 

The RF model is not able to replicate the interannual variability in CH4 emissions at the example sites and explaining the 15 

interannual variability has been difficult also in previous upscaling studies of CO2 and energy fluxes (e.g. Tramontana et al., 

2016). 

In general, the RF model performance was better for sites without than with permafrost (r = 0.66 and r = 0.51, respectively; 

p<0.05), which is likely related to the fact that at sites with permafrost the MODIS LSTn is not as directly related to the soil 

temperature than at sites without permafrost. Hence LSTn is not as good proxy for the temperature which is controlling both 20 

CH4 production and consumption and this results in a worse performance than at sites without permafrost. 

3.3 Upscaled CH4 fluxes 

The RF model was used together with the gridded input datasets (Sect. 2.4) and wetland maps (Sect. 2.5) to estimate CH4 

emissions from northern wetlands during years 2013 and 2014. The mean CH4 emissions of the two years from the RF model 

are plotted in Fig. 6 together with CH4 wetland emission maps from process model LPX-Bern and model ensemble 25 

WetCHARTs. Differences between the process model estimations and upscaled fluxes are shown in Fig. 7. In general, the 

spatial patterns look similar in all emission maps, which is understandable since the spatial variability is largely controlled by 

the underlying wetland distributions. One noteworthy difference is that WetCHARTs, RF-PEATMAP (i.e. RF modelling with 

PEATMAP) and RF-GLWD show higher emissions from western Canada than LPX-Bern or the upscaled fluxes using the 

wetland map from that process model (RF-DYPTOP). The other difference is RF-GLWD show negligible emissions from 30 

Fennoscandia (Fig. 6c). These differences are related to differences in the underlying wetland maps. 

The uncertainties of the upscaled fluxes were estimated from the spread of predictions made with the ensemble of 200 RF 

models (Sect. 2.1.2) and are shown in Fig. 8. The uncertainty mostly scales with the flux magnitude (compare Fig. 6 a)-c) with 
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Fig. 8 a)-c)), meaning that grid cells with high fluxes tend to have also high uncertainties. However, the relative flux uncertainty 

does have some geographical variation (Fig. 8 d)-f)). The highest relative uncertainties are typically at the highest and lowest 

latitudes of the study domain. In these locations the dependencies between the predictors and the CH4 flux are not as well-

defined as in the locations with lower uncertainties leading to larger spread in the ensemble of RF model prediction. For 

instance, at low latitudes LSTn may go beyond the range of LSTn values in the training data (see the range in Fig. 3) and hence 5 

the RF model predictions are not well-constrained in these situations. On the other hand, lower relative uncertainties are 

typically obtained for locations close to the measurement sites incorporated in this study (compare Fig. 1 and 8), since the 

dependencies between the predictors and the CH4 flux are defined better. 

The seasonality of the upscaled fluxes and CH4 fluxes from process models are similar with highest CH4 emissions in July-

August and lowest in February, and this seasonal pattern is comparable throughout the whole study domain (Fig. 9). Warwick 10 

et al. (2016) and Thonat et al. (2017) showed that the northern wetland CH4 emissions should peak in August-September in 

order to explain correctly the seasonality of atmospheric CH4 mixing ratios and isotopes measured across the Arctic. Hence 

the wetland CH4 emissions presented here are peaking approximately one month too early to perfectly match with their 

findings. CH4 flux magnitude agrees well between WetCHARTs and the upscaled flux during spring and midsummer (April-

July), whereas LPX-Bern is estimating lower fluxes (0 % and 26 % difference, respectively). During late summer and autumn 15 

(August-October) both process models are estimating slightly lower fluxes than the upscaled estimate (17 % and 19 % 

difference, respectively). The upscaled fluxes show somewhat higher emissions also during the nongrowing season 

(November-March) than the two process models (27 % and 35 % difference, see Table 2) and the upscaled estimates of 

nongrowing season emissions are relatively close to the recent model estimate by Treat et al. (2018). This result promotes the 

recent notion that process models might be underestimating nongrowing season fluxes at high latitudes (e.g. Treat et al., 2018; 20 

Xu et al., 2016a; Zona et al., 2016). 

Treat et al. (2018) adjusted WetCHARTs model output so that it matches with their estimates of nongrowing season CH4 

emissions and then estimated annual wetland CH4 emissions north from 40 °N to be 37 ± 7 Tg(CH4) yr-1 using this adjusted 

model output. The estimates derived here for the annual emissions using the three wetland maps are similar (see Table 2), 

especially when considering that here we have slightly smaller study domain (above 45 °N). The two process models included 25 

in this study estimated slightly lower mean annual emissions than the upscaled fluxes (11 % and 26 % difference between the 

mean upscaled estimate and WetCHARTs and LPX-Bern, respectively; see also Table 2). However, given the uncertainties in 

upscaling as well as in process models this can be regarded as relatively good agreement. 

In order to further evaluate the agreement between the upscaled fluxes and process models we concentrated on two specific 

regions: Hudson Bay lowlands (HBL) and western Siberian lowlands (WSL) (see locations in Fig. 1). The upscaled fluxes 30 

show clearly higher annual emissions for both subdomains than the two process models, or what has been previously estimated 

in the literature (Table 2), although for WSL the upscaled estimates are within the range of variability observed between 

process models and inversion modelling in WETCHIMP-WSL (Bohn et al., 2015) and close to Thompson et al. (2017). Bohn 

et al. (2015) also notes that the upscaled estimate by Glagolev et al. (2011) is most likely an underestimate of the CH4 emissions 
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from the WSL area. Furthermore, the process models in Bohn et al. (2015) are likely underestimating the nongrowing season 

CH4 emissions which might partly explain the discrepancy to the upscaled estimates in this study. Hence, the upscaled CH4 

emission estimates for the WSL area, while large, are still in a reasonable range. 

For HBL, the discrepancy between upscaled emission estimates and the estimates based on process models or previous studies 

is larger (Table 2). The upscaling results agree with Zhang et al. (2016) and Melton et al. (2013) but show over twice larger 5 

emissions from HBL than the other estimates (Table 2). This cannot be explained by wetland mapping since the difference 

holds also when DYPTOP wetland map is used in upscaling. There are not many long-term EC flux studies conducted in the 

HBL area and the only one found (Hanis et al., 2013) showed on average 6.9 g(CH4) m-2 annual emissions at a subarctic fen 

located in the HBL. If the upscaled CH4 emissions are downscaled back to ecosystem level at the HBL area with wetland maps, 

we get on average 11.0 g(CH4) m-2 annual CH4 emission for the HBL area based on the RF model output, which is 1.6 times 10 

larger than the estimate by Hanis et al. (2013). While Hanis et al. (2013) studied only one wetland during different years than 

here (years 2008…2011 in Hanis et al. (2013), here 2013…2014) it is still noteworthy that the relative difference between 

Hanis et al. (2013) and this study is similar to the discrepancy between this study and the inversion estimates (Pickett-Heaps 

et al. (2011); Thompson et al. (2017)) at the whole HBL scale. All three studies (Hanis et al. (2013); Pickett-Heaps et al. 

(2011); Thompson et al. (2017)) show near zero CH4 emissions during October…April and onset of CH4 emissions in mid-15 

May or even June, largely dependent on when the ground was free of snow and unfrozen. This is somewhat surprising given 

the fact that only 32 % of wetlands in the area are underlain by permafrost (based on amalgam of PEATMAP and permafrost 

map) and hence the soils are likely not completely frozen and some nongrowing season CH4 emissions are likely to occur in 

such conditions (e.g. Treat et al., 2018). The upscaled CH4 emissions show on average 1.1 Tg(CH4) yr-1 emissions during these 

nongrowing season months for the HBL area. This partly, but not completely, explains the discrepancy between the CH4 20 

emission estimates for the HBL area. All these results suggest that the upscaled product likely overestimates CH4 emissions 

from the HBL area. 

Discussion 

4.1 Comparing the RF model predictive performance to previous studies 

The RF model performance was worse when compared against independent validation data than what has been achieved in 25 

previous upscaling studies for GPP and energy fluxes (R2>0.7), and ecosystem respiration (Reco; R2>0.6), whereas the 

performance for net ecosystem exchange of CO2 (NEE) has been similar (R2<0.5) as here for monthly CH4 emissions (e.g. 

Jung et al., 2010; Tramontana et al., 2016). Likely reasons for this finding include for instance that for other fluxes there is 

simply more data available from several sites spanning the globe, whereas here we have data from 25 sites with CH4 fluxes. 

Furthermore, the drivers (or proxies for the drivers) of e.g. GPP and energy fluxes are more easily available from remote 30 

sensing (e.g. MODIS) and weather forecasting re-analysis data sets (e.g. WFDEI), whereas CH4 emissions are more related to 

processes taking place belowground and hence the drivers for these processes are more difficult to measure remotely, which 
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is in practice needed for the upscaling. Also, there are temporal lags between changes in drivers (e.g. LSTn) and CH4 flux 

responses to these changes and hence training a machine learning model such as RF model on such data is difficult since RF 

model assumes direct relationship between the change and response. However, one should also note that GPP or Reco are 

never directly measured with the EC technique, they are always at least partly derived products (Lasslop et al., 2009; Reichstein 

et al., 2005). Hence direct functional relationships between GPP and Reco and environmental drivers are inherently included 5 

in these flux estimates, whereas NEE and CH4 emissions can be directly measured without additional modelling. Also, both 

NEE and CH4 emissions are combinations of two counteracting processes (NEE: GPP and Reco; CH4 flux: production and 

oxidation). Therefore, GPP and Reco upscaling algorithms show better correspondence with validation data than for NEE or 

CH4 emissions and the results for NEE would be the correct point of reference for the RF model performance presented here. 

While the RF model performance in this study was inferior to previous upscaling studies for other fluxes, it was still comparable 10 

to what has been shown before for several process models for CH4 emission (McNorton et al., 2016; Wania et al., 2010; 

Zürcher et al., 2013; Zhu et al., 2014; Xu et al., 2016a). For instance, McNorton et al. (2016) validated the land-surface model 

JULES against CH4 flux data from 13 sites and found R2=0.10 between the validation data and the model. Wania et al. (2010) 

found on average RMSE=29 nmol m-2 s-1 and RMSE=42 nmol m-2 s-1 with and without tuning their model LPJ-WhyMe against 

CH4 flux data from seven sites. Zürcher et al. (2013) found the time-integrated CH4 flux to be well represented by LPX-Bern 15 

model across different sites and a tight correlation (R2 = 0.92) is found between simulated and measured cumulative site 

emissions after calibrating the model against the measurements. While Xu et al. (2016a) did not explicitly show any statistical 

metrics, their model (CLM4.5) comparison against site level CH4 flux data seemed to be somewhat better than in Wania et al. 

(2010) or McNorton et al. (2016). Xu et al. (2016a) emphasize the importance of nongrowing season emissions and the fact 

that their model was clearly underestimating these emissions. Zhu et al. (2014a) calibrated their model TRIPLEX-GHG for 20 

each measurement site by changing e.g. the Q10 for CH4 production and CH4 to CO2 release ratio to be site-specific and found 

on average R2=0.64 when comparing the calibrated model against measurements at 17 CH4 flux measurement sites. However, 

their findings are not directly comparable to the RF model agreement with validation data shown here due to their model 

calibration against data before comparison. Nevertheless, their results show that even after calibration, the process models are 

not fully able to capture the CH4 flux variability in measurements. Miller et al. (2014) argued that some of the process models 25 

might be too complex so that their required input information cannot be reliably provided at larger scales. All of these five 

models (JULES, LPJ-WhyMe, LPX-Bern, CLM4.5 and TRIPLEX-GHG) are contributing to the global CH4 budget estimation 

within the Global Methane Project (Saunois et al., 2016), highlighting that these results summarize the agreement between 

state-of-the-art process models and field measurements. 
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4.2 Methods to improve RF model predictive performance 

4.2.1 Missing predictors 

In this study a statistical model was developed using the RF algorithm, and the model was able to yield R2=0.47 against 

monthly CH4 flux validation data. The incomplete match between the RF model and validation data is likely caused by the 

fact that not all the possible drivers causing within and across site variability to the CH4 emissions were included in the analysis 5 

and hence all the variability could not be explained by the model. 

Christensen et al. (2003) were able to explain practically all the variability in annual CH4 emissions in their multisite study 

with only two predictors: temperature and the availability of substrates for CH4 production. Also, Yvon- Durocher et al. (2014) 

speculate that the amount of substrates for microbial CH4 production explains across site variability of CH4 fluxes in their data. 

However, such data about substrates is impossible to achieve in a gridded format, which is a strict requirement for upscaling. 10 

Hence proxies for the substrates available for methanogenesis are needed. The current paradigm on wetland CH4 emissions is 

that most of the emitted CH4 is produced from recently fixed carbon, since CH4 producing Archaea favour fresh labile carbon 

(e.g. Chanton et al., 1995; Whiting and Chanton, 1993). Most of the process models are based on the premise that a certain 

fraction of ecosystem net primary productivity (NPP) is available and used for CH4 production or alternatively a fraction of 

heterotrophic respiration is allocated to CH4 emissions (e.g. Xu et al., 2016b). Hence, hypothetically ecosystem NPP (or GPP) 15 

could also be included as a predictor here for the RF model and used as a proxy for the amount of substrates available for CH4 

production. However, the RF model performance in this study was not enhanced if variables closely related to NPP (EVI and 

the product of EVI and LSTd) were included as predictors. Also, Knox et al. (in review) did not find GPP as an important 

predictor of CH4 emission variability in their multi-site synthesis study. 

Using the ecosystem level NPP (or proxies for it) for the RF model development might be an overly simplified approach, since 20 

it has been shown that it is especially the deep-rooting sedges and their NPP that are important for CH4 production (Joabsson 

and Christensen, 2002; Ström et al., 2003, 2012; Waddington et al., 1996). Hence, information about plant functional types 

(PFTs) would be needed to better explain the CH4 flux variability (Davidson et al., 2017; Gray et al., 2013). Furthermore, the 

fraction of the fixed carbon allocated to the roots and released as root exudates (hence available for CH4 production) varies 

between species and root age (Proctor and He, 2017; Ström et al., 2003), further complicating this issue. The sedges also act 25 

as conduits for CH4 allowing the CH4 produced below water level to rapidly escape to the atmosphere and bypass the oxic 

zone in which the CH4 might have otherwise been oxidized (Waddington et al., 1996; Whiting and Chanton, 1992). Besides 

sedges, Spaghnum mosses are also important because methanotrophic bacteria that live in symbiosis with these mosses 

significantly decrease the CH4 emissions to the atmosphere when they are present (Larmola et al., 2010; Liebner et al., 2011; 

Parmentier et al., 2011; Raghoebarsing et al., 2005). In a modelling study, Li et al. (2016) showed that it was essential to 30 

consider the vegetation differences between sites when modelling CH4 emissions from two northern peatlands. Hence, ideally 

one should have wetland species composition in a gridded format together with their NPP across the high latitudes to 

significantly improve the upscaling results from the results shown here. Naturally such information is not readily available and 
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therefore alternatively modelled estimates could be used (e.g. LPX-Bern which includes several peatland-specific PFTs which 

are allowed freely to evolve during the model run) (Spahni et al., 2013). However, in such case the upscaled CH4 emission 

estimates would not be any more model independent and therefore less suitable for model validation. We also note that many 

process models have only one PFT per wetland. 

Different variables related to water input to the ecosystem (i.e. P, Pann) or surface moisture (SRWI) did not enhance the RF 5 

model predictive performance, recognizing that water table depth (WTD) is not solely controlled by input of water via 

precipitation, but also evapotranspiration and lateral flows affect wetland WTD, data that were missing from our study. These 

findings are consistent with previous studies (e.g. Christensen et al. 2003, Rinne et al. 2018, Pugh et al. 2018 and Knox et al. 

(in review)) who showed only a modest CH4 flux dependence on WTD, if any. In contrast, several chamber-based studies have 

shown a positive relationship between WTD and CH4 fluxes (Olefeldt et al., 2012; Treat et al., 2018; Turetsky et al., 2014). In 10 

general, chamber-based studies often show CH4 flux dependency on WTD whereas studies done at ecosystem scale with EC 

generally do not, albeit there are exceptions (e.g. Zona et al., 2009). This might indicate that WTD controls meter scale spatial 

heterogeneity of CH4 flux between microtopographical features (e.g. Granberg et al., 1997) but not temporal variability on the 

ecosystem scale, provided that WTD stays relative close to the surface. Also, the chamber studies tend to observe spatial 

variation, which can be indirectly influenced by WTD via its influence to plant communities, whereas EC studies observe 15 

typically temporal variation in sub-annual timescales. However, the effect of WTD might be masked by a contradicting effect 

caused by plant phenology, since vegetation biomass often peaks at the same time as the WTD is at its lowest. While the 

variables related to WTD did not increase the RF model performance, WTD might still play a role in controlling ecosystem 

scale CH4 variability when it is exceptionally high or low. For instance, the year 2006 was exceptionally dry at the Siikaneva 

fen and hence CH4 emissions during that year were lower than on average (cf. Fig. 5a). However, in order to accurately capture 20 

such dependencies with the machine learning techniques (such as RF), they should be frequent enough so that the model can 

learn these dependencies. 

RF model performance was better at non-permafrost than at permafrost sites and this likely related to the fact that the LSTn is 

not a good proxy for the temperature controlling the CH4 production and oxidation rates at sites with permafrost. Also, 

information about active layer depth was not included here. Furthermore, Zona et al. (2016) showed strong hysteresis between 25 

soil temperatures and CH4 emissions at their permafrost sites in Alaska, whereas for instance Rinne et al. (2018) show a 

synchronous exponential dependence between soil temperature and CH4 emissions at a boreal fen without permafrost. The 

hysteresis observed in Zona et al. (2016) could be explained by the fact that part of the produced CH4 at these permafrost sites 

is stored below ground for several months before it is emitted to the atmosphere causing a long temporal lag between soil 

temperature and surface flux which would emerge as a hysteresis between soil temperature and CH4 emission. In any case 30 

more knowledge on soil processes (soil thawing and freezing, CH4 production and storage) are needed before the CH4 

emissions from these permafrost ecosystems can be extrapolated to other areas with greater confidence. 

It should be emphasized that the drivers causing across site variability in ecosystem scale CH4 emissions are in general 

unknown since studies comparing EC CH4 fluxes from multiple wetland sites have only recently been published (Baldocchi, 
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2014; Knox et al., in review; Petrescu et al., 2015). Most of the past synthesis studies have concentrated on plot-scale 

measurements (Bartlett and Harriss, 1993; Olefeldt et al., 2012; Treat et al., 2018; Turetsky et al., 2014), however the CH4 flux 

responses to environmental drivers might be somewhat different at ecosystem scale since CH4 fluxes typically show significant 

spatial variability on sub-m scale (e.g. Sachs et al., 2010). Furthermore, the temporal coverage of plot-scale measurements 

with chambers is usually relatively poor, whereas EC measurements provide continuous data on ecosystem scale. This study 5 

and Knox et al. (in review) show that temperature is important when predicting CH4 flux variability in a multisite CH4 flux 

dataset, but significant fraction of CH4 flux variability is still left unexplained. It remains a challenge for future EC CH4 flux 

synthesis studies to discover the drivers explaining the rest of the variability. 

4.2.2 Quality and representativeness of CH4 flux data 

The RF model performance may improve if instrumentation, measurement setup and the data processing are harmonized across 10 

sites, since these discrepancies between flux sites might have caused spurious differences in CH4 fluxes. These differences 

would have created additional variability in the whole dataset which would in turn 1) influence the training of RF model and 

2) decrease e.g. NSE values obtained against validation data since there would be artificial variability in the validation data 

which is not related to the predictors. In this study, the site PIs processed the data themselves using different processing codes, 

albeit the gapfilling was done centrally in a standardized way. 15 

While these issues mentioned above could impact the upscaling results shown here, prior studies have shown that the usage of 

different instruments or processing codes do not significantly impact CH4 flux estimates. For instance, Mammarella et al. 

(2016) showed that the usage of different processing codes (EddyPro and EddyUH) resulted in general in 1 % difference in 

long-term CH4 emissions. On the other hand, CH4 instrument cross comparisons have shown small differences (typically less 

than 7 %) between the long term CH4 emission estimates derived using different instruments (Goodrich et al., 2016; Peltola et 20 

al., 2013, 2014). While these studies show consistent CH4 emissions they also stress that the data should be carefully processed 

to achieve such good agreement across processing codes and instruments. In addition, many issues related to e.g. friction 

velocity filtering and gapfilling of CH4 fluxes are still unresolved, and the role of short-term emission bursts, which are 

common in methane flux time series, needs to be further investigated (e.g. Schaller et al., 2017). However, recently Nemitz et 

al. (2018) advanced these issues by proposing a methodological protocol for EC measurements of CH4 fluxes used to 25 

standardize CH4 flux measurements within the ICOS measurement network (Franz et al, 2018). 

Twenty-five flux measurement sites were included in this study and they were distributed across the Arctic-Boreal region (see 

Fig. 1). The measurements were largely concentrated in the Fennoscandia and Alaska, whereas data from e.g. the HBL and 

WSL areas were missing. Long-term CH4 flux measurements are largely missing from these vast wetland areas casting 

uncertainty on wetland CH4 emissions from these areas. The location of a flux site is typically restricted by practical limitations 30 

related to e.g. ease of access and availability of grid power. Hence open-path instruments with low power requirements 

potentially open up new areas for flux measurements (McDermitt et al., 2010), yet they need continuous maintenance which 

is not necessarily easy in remote locations. However, one could argue that the geographical location of flux sites is not vital 
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for upscaling, more important is that the available data represents well the full range of CH4 fluxes across the northern latitudes 

and more importantly the CH4 flux responses to the environmental drivers. Also, sites should ideally cover all different 

wetlands with varying species composition, whereas geographical representation is not necessarily as important. CH4 flux site 

representativeness could be potentially assessed in the same vein as in previous studies for other measurement networks 

(Hargrove et al., 2003; Hoffman et al., 2013; Papale et al., 2015; Sulkava et al., 2011). However, before such analysis can be 5 

done, the main drivers causing across sites variability in ecosystem scale CH4 fluxes should be better identified. 

Most of the CH4 flux data here and in the literature have been recorded during the growing season when the CH4 fluxes are at 

maximum, whereas year-round continuous CH4 flux measurements are not as common. This is likely due to the harsh 

conditions in the Arctic during winter which make continuous high-quality flux measurements very demanding (e.g. Goodrich 

et al., 2016; Kittler et al., 2017a), but also in part since the large-scale importance of nongrowing season emissions has just 10 

recently been recognized (Kittler et al., 2017b; Treat et al., 2018; Xu et al., 2016a; Zona et al., 2016). For upscaling year-round 

CH4 emissions, continuous measurements are vital to accurately constrain also the nongrowing season emissions and their 

drivers. 

5 Data availability 

The presented upscaled CH4 flux maps (RF-DYPTOP, RF-PEATMAP and RF-GLWD) and their uncertainties are accessible 15 

via an open-data repository Zenodo (Peltola et al., 2019). The datasets are saved in netCDF-files and they are accompanied by 

a read me file. The dataset can be downloaded from https://doi.org/ 10.5281/zenodo.2560164. 

6 Conclusions 

Methane (CH4) emission data consisting of over 40 site-years from 25 eddy covariance flux measurement sites across the 

Arctic-Boreal region were assembled and upscaled to estimate CH4 emissions from northern (>45 °N) wetlands. The upscaling 20 

was done using the random forest (RF) algorithm. The performance of the RF model was evaluated against independent 

validation data utilizing the leave-one-site-out scheme which yielded value of 0.47 for both the Nash-Sutcliffe model efficiency 

and R2. These results are similar to previous upscaling studies for the net ecosystem exchange of carbon dioxide (NEE) but 

are less good than for the individual components of NEE or energy fluxes (e.g. Jung et al., 2010; Tramontana et al., 2016). The 

performance is also comparable to studies where process models are compared against site CH4 flux measurements (McNorton 25 

et al., 2016; Wania et al., 2010; Zürcher et al., 2013; Zhu et al., 2014; Xu et al., 2016a). Hence, despite the relatively high 

fraction of unexplained variability in the CH4 flux data, the upscaling results are useful for comparing against models and 

could be used to evaluate model results. The three gridded CH4 wetland flux estimates and their uncertainties are openly 

available for further usage (Peltola et al., 2019). 
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The upscaling to the regions > 45 °N resulted in mean annual CH4 emissions comparable to prior studies on wetland CH4 

emissions from these areas (Bruhwiler et al., 2014; Chen et al., 2015; Spahni et al., 2011; Treat et al., 2018; Watts et al., 2014; 

Zhang et al., 2016; Zhu et al., 2013) and hence in general support the prior modelling results for the northern wetland CH4 

emissions. When compared to two validation areas, the upscaling likely overestimated CH4 emissions from the Hudson Bay 

lowlands, whereas emission estimates for the western Siberian lowlands were in a reasonable range. Future CH4 flux upscaling 5 

studies would benefit from long-term continuous CH4 flux measurements, centralized data processing and better incorporation 

of CH4 flux drivers (e.g. wetland vegetation composition and carbon cycle) from remote sensing data needed for scaling the 

fluxes from the site level to the whole Arctic-boreal region. 

Appendix A 

Table A1. Description of eddy covariance sites included in this study. 10 
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a Data from this site is divided into two since data from two wind directions differ from each other (with and without 

permafrost). 
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Figure 1: Map showing the locations of the EC measurements. The distribution of wetlands shown in the figure is based on Xu et al. 

(2018). Hudson Bay lowlands (50°N-60°N, 75°W-96°W) and western Siberian lowlands (52°N-74°N, 60°E-94.5°E) are highlighted 

with red dashed lines. 
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Figure 2. Evolution of statistical metrics during RF model development. Predictors were added to the RF model starting from the 

left of the figure and accumulate along the x-axis. For instance, the x-tick label “SC” shows the RF model performance when LSTn, 

Permafrost, Rpot, and SC were used as predictors in the model. See the x-tick label explanations in Table 1. The error bars denote 

1-sigma uncertainty of the values estimated with bootstrapping. 5 
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Figure 3. Dependence of monthly mean CH4 emissions on monthly mean land surface temperature at night (LSTn) derived from 

MODIS data. EC measurements are shown with filled markers (unique colour for each site) and RF model predictions for each site 

are given with black dots. 
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Figure 4. Relation between monthly mean CH4 fluxes predicted by the RF model and independent validation data. Monthly average 

values from the same site are identified by unique colours and least squares linear fit to data from each site is also plotted using the 

same colour. Site means are shown with markers with black edges. The dashed line shows the 1:1 line. The shaded area shows the 

uncertainty range estimated from the RE CH4 flux dependence (see text for further details). The statistics in the figure are calculated 5 
using the monthly data. 
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Figure 5. Time series of modelled CH4 emissions (red lines) together with validation data (circles) at four example sites: a) Siikaneva 

oligotrophic fen in Finland, b) Lost Creek shrub fen in Wisconsin, US, c) Atqasuk wet tundra in Alaska, US and d) Chersky wet 

tundra in northeast Siberia, Russia. Vertical dashed lines denote a new year. Note the changes in y-axis scales. Site specific model 

performance metrics are also included. 5 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-28

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 20 February 2019
c© Author(s) 2019. CC BY 4.0 License.



44 

 

 

Figure 6. Mean annual CH4 wetland emissions during years 2013-2014 estimated by upscaling EC data using the RF model and 

three wetland maps (top row) and process models (bottom row). Grid cells with low CH4 wetland emissions (below 0.1 g(CH4) m-2 

year-1) are shown with grey. The flux rates refer to total unit area in a grid cell. 
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Figure 7. Difference in mean annual CH4 wetland emissions during years 2013-2014 estimated by upscaling EC data using the RF 

model with different wetland maps and process models. All the CH4 emission maps were aggregated to 1° resolution before 

comparison. The flux rates refer to total unit area in a grid cell. 
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Figure 8. Absolute (subplots a)-c)) and relative (subplots d)-f)) uncertainties of the upscaled CH4 fluxes using different wetland maps. 

Uncertainty is estimated as 1-σ variability of the predictions by 200 RF models developed by bootstrapping the training data (Sect. 

2.1.2). Grid cells with low CH4 wetland emissions (below 0.1 g(CH4) m-2 year-1) are shown with grey. The absolute uncertainties refer 

to total unit area in a grid cell. 5 
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Figure 9. Monthly time series of zonal mean CH4 fluxes. The upscaled fluxes with different wetland maps are shown in subplots a), 

b) and c) and wetland CH4 emissions estimated with the two process models are given in subplots d) and e). 
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Table 1. Description of input variables for RF model development for upscaling. Data were aggregated to monthly values (see text) 

unless otherwise noted below. 

 Name Description Data source Available in 

gridded 

format 

Site measurements Tair Mean air temperature site PI & 

WFDEI 

Yes 

 P Precipitation site PI & 

WFDEI 

Yes 

 Pann Annual precipitation site PI & 

WFDEI 

Yes 

Remote sensing LSTn Land surface temperature at night MOD11A2 Yes 

 LSTd Land surface temperature at day MOD11A2 Yes 

 EVI Enhanced vegetation index MOD13A3 Yes 

 SRWI Simple ratio water index (SRWI = 

R858/R1240) 

MOD09A1 Yes 

 SC Snow cover flag MOD10A1 Yes 

 EVI* LSTd Product of EVI and LSTd, a proxy 

for GPP (Schubert et al., 2010) 

MOD13A3 & 

MOD11A2 

Yes 

Additional 

categorical variables 

Permafrost Flag for permafrost at site 

(true/false) 

site PI Yes 

 Biome Site classification based on biome 

(temperate, boreal and tundra) 

Olson et al. 

(2001) 

Yes 

 type Wetland type (fen, bog, tundra) site PI No 

 sedge flag for sedges as dominant 

vegetation type (true/false) 

site PI No 

Other Rpot & 

der(Rpot) 

Potential solar radiation at the top 

of atmosphere and its first time 

derivative 

- Yes 

 DSSM Days since snowmelt, derived 

from the snow cover flag 

- Yes 
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Table 2. Annual CH4 wetland emissions in different subdomains (Hudson Bay lowlands and Western Siberian lowlands, see Fig. 1) 

and time periods. The values are given in Tg(CH4) year-1. Note that estimates from some reference studies are not for the same 

period as the one studied here (2013-2014). For WetCHARTs the mean of the model ensemble together with the range (in 

parentheses) are given, whereas for the upscaling results the 95 % confidence intervals for the estimated emissions are given. 

 Reference Hudson Bay 

lowlands 

Western 

Siberian 

lowlands 

Nongrowing season 

fluxes from northern 

wetlands 

(November…March) 

Annual 

emissions 

north from 45 

°N 

Inversion 

models 

Bohn et al. (2015), 

WETCHIMP-WSL 

 6.06 ± 1.22   

Bruhwiler et al. (2014)a    23 

Kim et al. (2011)  2.9 ± 1.7 and 

3.0 ± 1.4 

  

Miller et al. (2014) 2.4 ± 0.3    

Spahni et al. (2011)    28.2 ± 2.2 

Thompson et al. (2017) 2.7-3.4 6.9 ± 3.6   

Process 

models 

Bohn et al. (2015), 

WETCHIMP-WSL 

 5.34 ± 0.54   

Chen et al. (2015)b 3.11 ± 0.45   35.0 ± 6.7 

Melton et al. (2013), 

WETCHIMPc 

5.4 ± 3.2    

Pickett-Heaps et al. 

(2011)d 

2.3 ± 0.3    

Treat et al. (2018)e   6.1 ± 1.5 37 ± 7 

Watts et al. (2014)    53 

Zhang et al. (2016)f 5.5 ± 1.1 4.6 ± 0.6  30.3± 5.4 

This study, LPX-Bern 2.5 4.4 4.5 24.7 

This study, 

WetCHARTs 

2.8 (0.5-8.7) 4.2 (1.6-9.4) 5.1 (0.6-17.0) 29.7 (8.7-74.0) 

Flux 

measurement 

upscaling 

Glagolev et al. (2011)  3.9 ± 1.3   

Zhu et al. (2013)    44.0-53.7 

This study, RF-

PEATMAP 

4.8 (3.3-6.3) 6.6 (4.9-8.4) 6.7 (4.9-8.5) 31.7 (22.3-

41.2) 
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This study, RF-

DYPTOP 

4.6 (3.1-6.0) 7.0 (5.2-8.8) 6.2 (4.6-7.8) 30.6 (21.4-

39.9) 

This study, RF-GLWD 4.9 (3.4-6.5) 6.8 (5.0-8.5) 8.0 (5.8-10.2) 37.6 (25.9-

49.5) 

a Approximately north from 47 °N 

b Approximately north from 45 °N 

c Mean annual CH4 emissions from eight models ± 1-sigma of interannual variation in the model estimates for the period 1993-

2004. 

d Process model tuned to match atmospheric observations 5 

e North from 40 °N 

f Mean ± 1-sigma over LPJ-wsl model results using different wetland extends for the period 1980-2000. 
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