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Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere, and a large 

fraction of them are found in the northern latitudes. These emissions are typically estimated using process (‘bottom-up’) or 

inversion (‘top-down’) models. However, estimates from these two types of models are not independent of each other since 

usually the top-down estimates rely on the a priori estimation of these emissions obtained with process models. Hence, 

independent, spatially-explicit validation data is needed. Here we utilize a random forest (RF) machine learning technique to 

upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes 

(north of 45 °N). Eddy Covariance data from 2005 - 2016 are used for model development. The model is then used to predict 

emissions during 2013 and 2014.. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-

validation scheme. The performance (Nash-Sutcliffe model efficiency = 0.47) is comparable to previous studies upscaling net 

ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The 

global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus three wetland distribution maps are 

utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 

(22.3-41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4-39.9) or 38 (25.9-49.5) Tg(CH4) yr-1. 

To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two 

process models (LPX-Bern and WetCHARTs) and methodological issues related to CH4 flux upscaling are discussed. The 

monthly upscaled CH4 flux data products are available at: https://doi.org/10.5281/zenodo.2560163. 

1 Introduction 

Methane (CH4) is the second most important anthropogenic greenhouse gas in terms of radiative forcing after carbon dioxide 

(CO2): 34 times (GWP100, including climate-carbon feedbacks) as strong as CO2 (Ciais et al., 2013). CH4 has contributed ~20% 

to the cumulative GHG related global warming (Etminan et al. 2016). Deriving constraints on CH4  sources and sinks is thus 

of utmost importance. The net atmospheric CH4 budget is well constrained by precise CH4 mole fraction measurements around 

the globe, yet the contribution of individual sources and sinks to this aggregated budget remains poorly understood. This is 

primarily due to lack of data to constrain the modelling results (Saunois et al., 2016). In order to make more accurate predictions 

of the atmospheric CH4 budget in a changing climate, the response of the various sources and sinks to different drivers needs 

to be better identified and quantified.  
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Natural wetlands are the largest and quantitatively most uncertain source of CH4 to the atmosphere (Saunois et al., 2016). An 

ensemble of land surface models estimated global CH4 emissions from wetlands for the period 2003-2012 to be 185 Tg(CH4) 

yr-1 (range 153-227 Tg(CH4) yr-1) and for the same period inversion models estimated it to be 167 Tg(CH4) yr-1 (range 127-

202 Tg(CH4) yr-1) (Saunois et al., 2016). This discrepancy between bottom-up (process models) and top-down (inversion 

models) estimates, as well as the range of variability, exemplifies the large uncertainty of the current estimate for natural 

wetland CH4 emissions. Sources of this uncertainty can be roughly divided into two categories: 1) uncertainty related to the 

global areal extent of wetlands (e.g. Petrescu et al 2010. Bloom et al., 2017a; Zhang et al., 2016) and 2) uncertainties related 

to the key CH4 emission drivers and responses to these drivers (e.g. Bloom et al., 2017a; Saunois et al., 2017). Evaluation of 

the emission estimates is thus urgently needed, andresults from these efforts will lead to refined process models. Process model 

improvements will also directly affect the uncertainty of inversion results since they provide important a priori information to 

the inversion models (Bergamaschi et al., 2013). 

Boreal and arctic wetlands comprise up to 50 % of the total global wetland area (e.g. Lehner and Döll, 2004) and thewetlands 

in these northern latitudes substantially contribute to total terrestrial wetland CH4 emissions (ca. 27 %, based on the sum of 

regional budgets for boreal North America, Europe and Russia in Saunois et al., 2016). In wetlands, CH4 is produced by 

methanogenic Archaea under anaerobic conditions and hence the production takes place predominantly under water saturated 

conditions (e.g. Whalen, 2005). The microbial activity and the resulting CH4 production is thus controlled by quality and 

quantity of the available substrates, competing electron acceptors and temperature (Le Mer and Roger, 2001). Once produced, 

the CH4 can be emitted to the atmosphere via three pathways: ebullition, molecular diffusion through soil matrix and water 

column, or plant transport. If plants capable of transporting CH4 are present, plant transport is generally the dominating 

emission pathway (Knoblauch et al., 2015; Kwon et al., 2017; Waddington et al., 1996; Whiting and Chanton, 1992). A large 

fraction of CH4 transported via molecular diffusion is oxidized into CO2 by methanotrophic bacteria in the aerobic layers of 

wetland soils and hence never reaches the atmosphere (Sundh et al., 1995), whereas CH4 transported via ebullition and plant 

transport can largely bypass oxidation (Le Mer and Roger, 2001; McEwing et al., 2015). Furthermore, processes related to 

permafrost (e.g. active layer, thermokarst) and snow cover dynamics (e.g., snow melt, insulation) have an impact on CH4 flux 

seasonality and variability (Friborg et al., 1997; Helbig et al., 2017; Mastepanov et al., 2008; Zona et al., 2016; Zhao et al 

2016). Hence wetland CH4 emissions to the atmosphere largely depend on interplay between various controls including  water 

table position, temperature, vegetation composition, methane consumption, availability of substrates and competing electron 

acceptors.  

During the past two decades, eddy covariance (EC) measurements of wetland CH4 emissions have become more common, due 

to rapid development in sensor technology (e.g. Detto et al., 2011; Peltola et al., 2013, 2014). The latest generation of low-

power and -maintenance instruments are rugged enough for long-term field deployment (Nemitz et al., 2018; McDermitt et 

al., 2010), thus the number of sites where CH4 flux measurements have been made is increasing. Due to this progress, EC CH4 

flux synthesis studies have been emerging (Petrescu et al., 2015; Knox et al., in review). Similar progress was made with CO2 
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and energy flux measurements in the 1990s and now these measurements form the backbone of the global EC measurement 

network FLUXNET (https://fluxnet.fluxdata.org/), whose data has provided invaluable insights into terrestrial carbon and 

water cycles. Some of the most important results have been obtained by upscaling FLUXNET observations using machine 

learning algorithms to evaluate terrestrial carbon balance components and evapotranspiration (Beer et al., 2010; Bodesheim et 

al., 2018; Jung et al., 2010, 2011, 2017; Mahecha et al., 2010). These results are now widely used by the modelling community 

to evaluate process model performance (e.g. Wu et al., 2017) and to validate satellite-derived carbon cycle data products (e.g. 

Sun et al., 2017; Zhang et al., 2017a). 

In this study, we synthesized EC CH4 flux data from 25 EC CH4 flux sites and developed an observation-based monthly gridded 

data product of northern wetland CH4 emissions. We focus on northern wetlands (north of 45 °N) due to their significance in 

the global CH4 budget and relatively good data coverage and process understanding, at least compared to tropical systems 

(Knox et al., in review). High latitude regions are projected to warm during the next century at a faster rate than any other 

region, which will likely significantly impact the carbon cycling of wetland ecosystems (Tarnocai, 2009; Zhang et al., 2017b) 

and permafrost areas of the Arctic-Boreal Region (Schuur et al., 2015). To date, CH4 emission estimates for northern wetlands 

are typically based on process models (Bohn et al., 2015; Bloom et al., 2017a; Chen et al., 2015; Melton et al., 2013; Stocker 

et al., 2013; Wania et al., 2010; Watts et al., 2014; Zhang et al., 2016) or inversion modelling (Bohn et al., 2015; Bruhwiler et 

al., 2014; Spahni et al., 2011; Thompson et al., 2017; Thonat et al., 2017; Warwick et al., 2016), yet scaling of existing chamber 

measurements to the northern wetland area has also been published (Zhu et al., 2013). However, CH4 emission estimates 

obtained with the former two approaches are not independent since the attribution of CH4 emissions derived using inversion 

models to different emission sources (e.g. wetlands) depends largely on a priori estimates of these emissions (i.e. process 

models for wetland emissions), highlighting the tight coupling between these two approaches (Bergamaschi et al., 2013, Spahni 

et al., 2011). Hence, the main objective of this study is to produce an independent data-driven estimate of northern wetland 

CH4 emissions. This product could be used as an additional constraint for the wetland emissions and hence aid in process 

model refinement and development. Additionally, the drivers causing CH4 flux variability at the ecosystem scale are also 

evaluated and methodological issues are discussed which will support future CH4 wetland flux upscaling studies. 

2 Materials and Methods 

Data from flux measurement sites (Fig. 1) were acquired and used together with forcing data to estimate CH4 emissions from 

northern wetlands with monthly time resolution using a random forest (RF) modelling approach. Both in-situ measurements 

and remote sensing are utilized in this study. In this section, the RF approach is briefly introduced (Sect. 2.1) and data selection, 

quality filtering, gap filling and aggregation to monthly values are described (Sect. 2.3). We identified40.7 site-years available 

for analysis, measured between years 2005 and 2016. To perform upscaling to all wetlands north of 45 °N, gridded data 

products of the flux drivers and wetland distribution maps were needed. These products are presented in Sect. 2.4 and 2.5, 
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respectively. Finally, the upscaled wetland CH4 emissions are compared against process model outputs, with the models briefly 

described in Sect. 2.6. 

Here, wetlands are defined as terrestrial ecosystems with water table positions near the land surface and with plants that have 

adapted to these water-logged conditions. We exclude lakes, reservoirs and rivers from the study, in addition to ecosystems 

with significant human influence (e.g. drainage, rewetting). We consider peat forming wetlands (i.e. mires), which can be 

further classified as fens and bogs based on hydrology, as well as wetlands with hydric mineral soils. Tundra wetlands may 

have only a shallow peat layer, or none at all. Unified classifications for wetlands are still lacking, and typically different 

countries follow their own classification scheme, albeit some joint classification schema have been developed (e.g. Ramsar 

Classification System for Wetland Type). 

2.1 Random forest algorithm 

Random forest (RF) is a machine-learning algorithm that can be used for classification or regression analyses (Breiman, 2001). 

In this study the RF models consist of a large ensemble of regression trees. Each individual regression tree is built by training 

it with a random subset of training data and the trees are trained independently of each other. The RF model output is then the 

average of all the predictions made by individual regression trees in the forest. Hence the RF algorithm applies the bootstrap 

aggregation (bagging) algorithm and takes full advantage of the fact that ensemble averaging decreases the noise of the 

prediction. In addition to random selection of training data, the predictor variables used in split nodes are also selected from a 

random sample of all predictors which minimizes the possible correlation between trees in the forest (Breiman, 2001) and 

decreases the possibility of overfitting. The predictor variables can be either categorical or continuous. The variables are then 

used in the split nodes to divide the data into two (e.g. categorical variable true or false or continuous variable such as e.g. 

temperature above or below 5 °C). 

Performance of RF algorithms to predict CO2 and energy fluxes across FLUXNET sites have been compared against other 

machine-learning algorithms such as artificial neural networks and multivariate regression splines by Tramontana et al. (2016) 

who showed that differences between methods were negligible. We anticipate a similarly negligible effect of machine-learning 

algorithm choice for CH4 fluxes. For a thorough description of the RF algorithm for flux upscaling purposes, the reader is 

referred to Bodesheim et al. (2018) (and references therein). 

In this study, the RF models were developed using the MATLAB 9.4.0 (R2018a) TreeBagger function with default values 

similarly to Bodesheim et al. (2018). These settings included a minimum of five samples in a leaf node and used mean squared 

error (MSE) as a metric for deciding the split criterion in split nodes. Each trained forest consisted of 300 randomized 

regressions trees. 

2.1.1 RF model development for CH4 flux gapfilling 

Our RF algorithm was used for gapfilling the daily CH4 flux time series The performance of the RF model was evaluated 

against ‘out-of-bag’ (OOB) data (approximately 1/3 of data for each tree). Since each individual tree in the RF model was 
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trained using a subset of training data, the rest of the data (i.e. OOB data) can be used as independent validation data to evaluate 

the prediction performance of that particular regression tree and hence the whole forest (Breiman, 2001). Only the five most 

important predictors were retained for the gapfilling models for each site. The relative importance of predictors (e.g. air 

temperature) was evaluated by randomly shuffling the predictor data and then estimating the increase in MSE when model 

output is compared against OOB data (Breiman, 2001). For important predictors, MSE will increase significantly due to 

shuffling, whereas the effect of shuffling on MSE is minor for less important predictors. Note that this procedure was executed 

separately for each site and thus different predictors may have been used for different sites for gapfilling. 

2.1.2 RF model development for CH4 flux upscaling 

For upscaling purposes, one RF model was developed using all the available data in order to maximize the information content 

for the global (>45 °N) CH4 flux map. The model performance or uncertainty, however, was evaluated using two approaches:. 

1) The predictive performance of the model was assessed using the widely used ‘leave-one-site-out’ cross-validation scheme 

(e.g. Jung et al., 2011). In order to avoid correlation between training data and validation data, sites located nearby (closer than 

100 km) were excluded from the training data (Roberts et al., 2016). 2) The uncertainty of the upscaled fluxes was estimated 

by bootstrapping. 200 independent RF models were trained using a bootstrap sample of the available data. This yielded 200 

predictions for each grid cell and time step in the upscaled CH4 flux map. The variability over this prediction ensemble was 

used as an uncertainty measure followinge.g. by Aalto et al. (2018) and Zhu et al. (2013). This uncertainty estimate reflects 

the ability of the RF model to capture the dependence of CH4 flux on the used predictors in the available data. However, it 

does not have any reference to actual in-situ CH4 fluxes unlike the model predictive performance estimated with cross-

validation. 

Predictors for the RF model used in the upscaling were determined following Moffat et al. (2010). First, the RF models were 

trained for each site using one predictor at a time (see all the predictors in Table 1). The single predictor which yielded the 

best match against validation data (leave-one-site-out scheme) was selected as the primary driver. Then, the RF models were 

trained again with the primary driver plus each of the other predictors in turn as secondary drivers. Then the RF model 

performance was again evaluated, and the best predictor pair selected for the next round. This procedure was continued until 

all the predictors were included in the RF model. The smallest set of predictors capable of producing optimal RF model 

performance was used for flux upscaling. 

2.2 Metrics for model performance evaluation 

The RF model performance was evaluated against independent validation data using a set of statistical metrics, which were 

related to different aspects of model performance. During the RF model training MSE was optimized: 

𝑀𝑆𝐸 = (𝑜 − 𝑝)ଶതതതതതതതതതതത,           (1) 

where 𝑜 and 𝑝 are vectors containing the observed and predicted values, respectively, and the overbar denotes averaging. 
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The Nash-Sutcliffe model efficiency (NSE; Nash and Sutcliffe, 1970)  was used to evaluate how well the model was able to 

predict validation data when compared against a reference (typically the mean of the validation data): 

𝑁𝑆𝐸 = 1 −
∑ (ି)మ

సభ

∑ (ିത)మ
సభ

,           (2) 

where 𝑖 is index running over all the  𝑛 values in the 𝑜 and 𝑝 vectors. When NSE is equal to 1, there is a perfect match between 

prediction and observations. Values above 0 imply that the model predicts the observations better than the mean of observations 

and values below 0 indicate that the predictive capacity of the model is worse than the mean of validation data. Note that NSE 

calculated with Eq. (2) above is equivalent to the coefficient of determination calculated using residual sum of squares and 

total sum of squares. However, following the approach used in previous upscaling studies (e.g. Bodesheim et al., 2018; 

Tramontana et al., 2016), we opted to call this metric NSE. Instead, the coefficient of determination (R2) was estimated as the 

squared Pearson correlation coefficient. Note that R2 and NSE are equal when there is no bias between 𝑜 and 𝑝 and the residuals 

follow Gaussian distribution. Pearson correlation coefficients obtained with different model runs are compared using Fisher’s 

r to z transformation. 

The standard deviation (𝜎) of the model residuals was used to evaluate the spread of model residual values (RE): 

𝑅𝐸 = 𝜎(𝑜 − 𝑝),            (3) 

whereas bias between model predictions and validation data were used to estimate the systematic uncertainty in the upscaled 

fluxes (BE): 

𝐵𝐸 = 𝑜 − 𝑝തതതതതതത.            (4) 

Note that RE equals RMSE when there is no systematic difference between the model predictions and observations (i.e. when 

BE equals zero). 

2.3 Data 

2.3.1 Data from eddy covariance flux measurement sites 

Data were acquired from 25 sites that 1) measure CH4 fluxes with the EC technique, 2) are located north of 45 °N and 3) are 

wetlands as defined above and without substantial human influence on ecosystem functioning (see the site locations in Fig. 1 

and the site list in Appendix A). The sites were evenly distributed among wetland types: fens (n=9), bogs (7) and wet tundra 

(9) as well as biomes: tundra (11), boreal (8) and temperate (6), as defined in Olson et al., (2001). At 15 of the 25 sites, sedges 

(e.g., Rhynchospora alba, Eriophorum vaginatum, Carex limosa) were the dominant vascular plant functional type in the flux 

measurement source area. Most of the sites (18 out of 25) were located north of 60 °N and the highest density of sites were in 

Fennoscandia and Alaska (Fig. 1). The magnitude of monthly CH4 flux data varied between sites and the median time series 

length was 14.5 months of CH4 flux data per site. Overall, the dataset spanned between years 2005 and 2016. The sites represent 

northern wetlands sufficiently well to create an upscaled CH4 flux product based on EC data. Sites are referred to with their 

FLUXNET IDs and if not available, new temporary site IDs were generated for this study (see Appendix A). 
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Site PIs provided CH4 fluxes and their potential drivers (air temperature and pressure, precipitation, wind speed and direction, 

friction velocity, net ecosystem exchange of CO2 and its components (canopy photosynthesis and ecosystem respiration), 

photosynthetically active radiation, water table depth, soil temperature) . However, out of the in-situ measurements only air 

temperature and precipitation were used for developing the RF model for flux upscaling since gridded data products of the 

other potentially importantdrivers were not readily available and/or the data for the other drivers were missing from several 

sites. 

Thirty-minute-averaged flux data were acquired from 21 sites and daily data were provided for four sites. The flux time series 

were quality filtered by removing fluxes with the worst quality flag (based on 0,1,2-flagging scheme, Mauder et al., 2013) and 

with friction velocity below a site-specific threshold (friction velocity and threshold were available for the site). After filtering, 

daily medians were calculated if the daily data coverage was above 29 out of 48 half-hourly data points (daily data coverage 

at minimum 10 data points for sites without diel pattern in CH4 flux) and no gapfilling was done to the time series prior to 

calculation of daily values. While this may cause slight systematic bias in the daily flux values, this bias is unlikely to be 

significant because the magnitude of diel patterns in CH4 fluxes is typically moderate (e.g. Long et al., 2010) or negligible 

(e.g. Rinne et al., 2018), although at sites with Phragmites cover a relatively strong diurnal cycle can be observed (e.g. Kim et 

al., 1999; Kowalska et al., 2013). 

Unlike the CH4 flux data, the other in-situ data from the sites were gapfilled prior to the calculation of daily values. The 

gapfilling was done only if the daily data coverage was above 60 %. or days with lower data coverage, no daily values 

calculated. Shorter gaps (<2 hours) were filled with linear interpolation, whereas longer gaps (between 2 to 14.5 hours) were 

replaced with mean diurnal variation within a 30-day moving window. However, for precipitation, daily sums were calculated 

without any gapfilling. Besides the measurements at the sites, potential solar radiation (Rpot) and its time derivative (der(Rpot)) 

were calculated based on latitude and time of measurement. In order to remove the Rpot latitudinal dependence it was 

normalized to be between 0 and 1 before usage. 

CH4 flux drivers measured in-situ, in addition to the remote sensing data (Sect. 2.3.2), were used for the gapfilling of CH4 time 

series with the RF algorithm (Sect. 2.1.1). For each site the gapfilling models generally agreed well with the independent 

validation data (mean NSE=0.74 and mean RMSE = 9 nmol m-2 s-1). After gapfilling, the CH4 flux time series were aggregated 

to monthly values if the monthly data coverage prior to gapfilling was at least 20 %. 

The daily time series of air temperature and precipitation measured at the sites were gapfilled using the WATCH Forcing Data 

methodology applied to ERA-Interim (WFDEI) data (Weedon et al., 2014). Prior to using the WFDEI data for gapfilling, the 

data were bias corrected for each site as is typically done for climate or weather reanalysis data (e.g. Räisänen & Räty, 2013; 

Räty et al., 2014). For precipitation, the mean of WFDEI data were simply adjusted to match site mean precipitation. For air 

temperature the bias correction was done for each month separately using quantile mapping with smoothing within a moving 

seven-month window. Quantile mapping compares the cumulative distribution functions (CDFs) of WFDEI and site 

measurements against each other and adjusts the WFDEI data so that after adjustment its CDF matches with the CDF of the 
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site measurements ( e.g. Räisänen & Räty, 2013). After gapfilling the daily time series with WFDEI data, monthly and annual 

precipitation were calculated, in addition to monthly mean air temperature. 

2.3.2 Remote sensing data 

Several data products from the Moderate Resolution Imaging Spectrometer (MODIS) were used in this study to derive various 

driving variables. For RF model development the following data products at 500 m or 1000 m spatial resolution were used: 

MOD10A1 snow cover (Hall and Rigs, 2016), MOD11A2 daytime and night-time land surface temperature (LSTd and LSTn, 

Wan et al., 2015), MOD13A3 enhanced vegetation index (EVI, Didan, 2015) and MOD09A1 surface reflectance (Vermote, 

2015). More elaborate data products estimating ecosystem gross primary productivity (GPP) and net primary productivity 

(NPP; MOD17) were not included here for two reasons: 1) many of the sites included here were misclassified in the land cover 

map used in MOD17 (e.g. as woody savanna), hence severely influencing the estimated GPP and NPP (Zhao et al., 2005), and 

2) sites that were correctly classified as permanent wetlands were in fact assigned a fill value and removed from the product 

since the product is not strictly valid for these areas (Lees et al., 2018). All the remote sensing data products were quality 

filtered using the quality flags provided along with the data. 

The MODIS snow cover ranged from 0 (no snow) to 100 (full snow cover) and was converted to a simple snow cover flag 

(SC) consisting of 0 and 1 depending whether the snow cover data were below or above 50, respectively. A vector containing 

days since snow melt (DSSM) was calculated using the snow cover flag and normalized to 0 (beginning) and 1 (end) for each 

growing season (Mastepanov et al., 2013). The MOD09A1 surface reflectance at bands 2 (841-876 nm) and 5 (1230-1250 nm) 

were used to calculate the simple ratio water index (SRWI=band 2/band 5) following Zarco-Tejada & Ustin (2001). SRWI 

showed spurious values when there was snow cover and hence these points were replaced with the mean SRWI observed at 

each site when there was no snow. Meingast et al. (2014) showed that SRWI can be used as a proxy for wetland water table 

depth, although their results were affected by changes in vegetation cover, which might hinder across-site comparability in 

this study. Additionally, following the temperature and greenness modelling approach (Sims et al., 2008), a product of EVI 

and LSTd was included in the analysis as a proxy for GPP, following a previous peatland study (Schubert et al., 2010). The 

remote sensing data were provided with daily (MOD10A1), 8-day (MOD09A1, MOD11A2) or monthly (MOD13A3) time 

resolution and the data were aggregated to monthly means prior to usage. 

2.3.3 Additional categorical variables 

The sites were also classified based on the presence of permafrost in the source area (present or absent) and according to biome 

type. Biome types (temperate, boreal, tundra) were determined from Olson et al. (2001) and the information about the 

permafrost was provided by the site PIs. Furthermore, the data were categorized based on wetland type and sedge cover as in 

Treat et al. (2018) and Turetsky et al. (2014). However, such information is not available in the gridded format needed for 

upscaling, nevertheless inclusion of these variables can be used to assess how much they increase the predictive performance 

of the model.  
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2.4 Gridded data sets used in flux upscaling 

For upscaling CH4 fluxes using the developed RF model, the LST data were acquired from the aggregated product MOD11C3 

(Wan et al., 2015), and snow cover data from MOD10CM (Hall and Riggs, 2018). Distribution of permafrost in the northern 

latitudes were estimated using the circum-Arctic map of permafrost derived by National Snow and Ice Data Center (Brown et 

al., 2002). The resolution of the gridded data was adjusted to match the resolution of the wetland maps using bilinear 

interpolation if needed. Additionally, land and ocean masks (Jet Propulsion Laboratory, 2013) were utilized when processing 

the gridded data sets. 

2.5 Wetland maps 

Upscaled fluxes were initially estimated in flux densities per wetland area, that is (amount of CH4) per (area of wetland) per 

(unit of time). To create a gridded product of CH4 emissions from the northern wetlands, these upscaled flux densities were 

converted into (amount of CH4) per (grid cell area) per (unit of time) using different wetland maps. Wetland mapping is an 

ongoing field of research and the usage of different wetland maps contributes to the uncertainty of global wetland CH4 emission 

estimates (e.g. Bloom et al., 2017a; Zhang et al., 2017b). Hence, three different wetland maps (PEATMAP, DYPTOP and 

GLWD) were used in this study to evaluate how much they affect the overall estimates of northern high latitude wetland CH4 

emissions. 

The recently developed static wetland map PEATMAP (Xu et al., 2018) combines detailed geospatial information from various 

sources to produce a global map of wetland extent. Here, the polygons in PEATMAP were converted to fractions of wetland 

in 0.5° grid cells. While PEATMAP is focused on mapping peatlands, marshes and swamps (typically on mineral soil) are 

included in the product for certain areas in the northern latitudes. However, most of the wetlands in the northern latitudes are 

peatlands and thus PEATMAP is suitable for our upscaling purposes. The dynamic wetland map estimated by the DYPTOP 

model (Stocker et al., 2014) was used by aggregating peat and inundated areas to form one dynamic wetland map with 1° 

resolution. The widely used Global Lakes and Wetlands Database (GLWD, Lehner and Döll, 2004) is a static wetland map 

with 30 arc second resolution and since it has been widely used here it provided a point of reference for the other two maps. 

The map was aggregated to 0.5° resolution and lakes, reservoirs and rivers were excluded from the aggregated map. 

2.6 Process models 

The upscaled CH4 fluxes were compared against the output from two process models: LPX-Bern (Spahni et al., 2013; Stocker 

et al., 2013; Zürcher et al., 2013) and the model ensemble WetCHARTs version 1.0 (Bloom et al., 2017a, 2017b). LPX-Bern 

is a dynamic global vegetation model which models carbon and nitrogen cycling in terrestrial ecosystems. The model has a 

separate peatland module with peatland-specific plant functional types (see more details in Spahni et al., 2013). The wetland 

extent in LPX-Bern was dynamically estimated using the DYPTOP approach with 1° resolution (Stocker et al., 2014). 

WetCHARTs combines several prescribed wetland maps with different gridded products for heterotrophic respiration and 
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temperature sensitivity (Q10)-parameterizations for CH4 production to form a model ensemble of wetland CH4 emissions 

(Bloom et al., 2017b). Here we used the extended ensemble of WetCHARTs. 

3 Results 

3.1 Selecting the predictors for the RF model 

The predictors in Table 1 were selected one-by-one using the procedure described in Sect. 2.1.2. The order in which the 

predictors were selected is shown in Fig. 2. LSTn alone gave NSE=0.29. After including the category permafrost 

presence/absence, Rpot, SC and biome class increased NSE to 0.47. However, the influence of SC and biome class on the model 

performance was marginal based on the small increase in NSE. Additional predictors did not increase the model performance 

further because 1) they were strongly correlated with a predictor already included in the model (e.g. Tair is correlated with 

LSTn), or 2) the predictors did not contain any information about CH4 flux variability. The model response to predictors other 

than biome category was physically reasonable (e.g. permafrost and snow cover decrease fluxes, close to exponential 

dependence on LSTn), whereas the response to biome category was contrary to expectations. The RF model estimated the CH4 

flux magnitude from the different biomes to be in the order tundra<temperate<boreal, whereas in prior studies it has been 

shown to be in the order tundra<boreal<temperate (Knox et al., in review; Treat et al., 2018; Turetsky et al., 2014). This 

discrepancy may be due to the limited number of measurement sites and related sampling bias problems. Hence in order not 

to upscale an incorrect pattern of decreasing CH4 emissions when moving from boreal to temperate regions, the biome class 

was omitted from upscaling. In the subsequent analysis and flux upscaling only the four first predictors (LSTn, permafrost 

category, Rpot and SC) are utilized. 

We further tested whether information about wetland type or sedge cover would improve the model performance even though 

these categorical variables were not available in gridded format and hence were not usable for upscaling. Including the sedge 

flag increased the NSE to 0.53, although the increase in Pearson correlation was not statistically significant (p>0.05, 

comparison of correlation coefficients using Fisher’s r to z transformation). Also, wetland type did not have a statistically 

significant influence on the model performance (p>0.05 and NSE=0.49 if type included). Using too many categorical variables 

in a RF model may be problematic because each site may end up with a unique combination of categorical variables. 

The most important predictor for the model was temperature, similar to numerous studies showing that wetland CH4 emissions 

are strongly correlated to soil temperature (Christensen et al., 2003; Helbig et al., 2017; Jackowicz-Korczyński et al., 2010; 

Rinne et al., 2018; Yvon-Durocher et al., 2014; Knox et al., in review). Selection of LSTn as the primary driver instead of the 

other temperature variables was likely an outcome of the available data and the used algorithm to select the drivers. With 

slightly different data set (more sites) other temperature variables (e.g. Tair) might have been more important drivers for the 

CH4 flux variability. Estimating apparent Q10 from the RF model LSTn dependence yielded a value of 1.90+/-0.03 and for 

validation data it was slightly higher (1.97+/-0.06) (Fig. 3). These values are comparable to the ones reported in Turetsky et 

al. (2014) for CH4 chamber measurements at bog and fen sites. The temperature dependence of CH4 production is modelled in 
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many process models with the parameter Q10 value close to 2 (Xu et al., 2016b), which agrees with the CH4 emission 

temperature dependence shown here. However, one should note that also CH4 oxidation depends on temperature and the 

derived apparent Q10 value describes the temperature dependence of surface CH4 emission, which is always a combination of 

CH4 production and oxidation. 

3.2 Model agreement with validation data 

The overall systematic bias (BE) between the RF predictions and validation data was negligible (Fig. 4), whereas the spread 

of the data (RE) was more pronounced (Fig. 4). Following Moffat et al. (2010), RE was analysed further by binning the data 

based on CH4 flux magnitude and calculating RE for each bin. RE clearly correlated with flux magnitude (RE = 

(0.52±0.06)FCH4+(3.3±2.0) nmol m-2 s-1, where FCH4 denotes CH4 flux) indicating that the relative random error of the RF 

model prediction was nearly constant and approximately 50 % for high fluxes. The systematic error BE did not show a clear 

dependence on flux magnitude. The RF model performance was worse on site mean level than with monthly data. When 

comparing site means, NSE and R2 were both 0.25 and RE and BE were 27.0 nmol m-2 s-1 and 1.5 nmol m-2 s-1, respectively. 

Possible drivers causing the remaining CH4 flux variability not captured by the RF model (i.e. the scatter in Fig. 4) are discussed 

in Sect. 4.2.1. 

When considering the model performance for each site separately, the agreement shows different characteristics (see Fig. 5 

for four examples). For individual sites the magnitude of BE is typically somewhat higher (median of absolute value of BE 

approximately 11 nmol m-2 s-1), whereas RE is lower than for the overall agreement (median RE approximately 10 nmol m-2 

s-1). These results indicate that the upscaled CH4 fluxes have in general relatively low bias and high random error, whereas 

individual pixels in the upscaled CH4 map may have higher bias, but lower random error. 

The mean annual cycle of CH4 emission predicted by the RF model agrees well with the mean annual cycle calculated from 

the validation data (not shown). During the nongrowing season the RF model slightly overestimates the fluxes (15 % 

overestimation) but such differences were negligible during rest of the year the differences are negligible (<1 %). However, 

for individual sites CH4 emission seasonality agrees less. For instance, at US-Los the modelled CH4 emissions start to increase 

one month earlier in the spring (Fig. 5b). The nongrowing season fluxes are overestimated at four example sites (FI-Sii, US-

Los, US-Atq and RU-Ch2; Fig. 5). The mean flux magnitude is modelled well at FI-Sii (Fig. 5a), whereas at US-Los (Fig. 5b) 

and US-Atq (Fig. 5c) the RF model overestimates and at RU-Ch2 (Fig. 5d) underestimates the CH4 emissions. The flux bias 

had a relatively large impact on site-specific NSE. For example, for US-Atq NSE was -1.85, meaning that the observation 

mean would be a better predictor for this site than the RF model (see the NSE definition in Sect. 2.2). The RF model is not 

able to replicate the between-year differences in CH4 emissions at the example sites. Capturing interannual variability has been 

difficult also in previous upscaling studies of CO2 and energy fluxes (e.g. Tramontana et al., 2016). 

In general, the RF model performance was better for permafrost-free sites than for sites with permafrost (r = 0.66 and r = 0.51, 

respectively; p<0.05), which is likely related to the fact that at sites with permafrost the MODIS LSTn is not as directly related 
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to the soil temperature than at sites without permafrost. Hence, LSTn is not as good proxy for the temperature which is 

controlling both CH4 production and consumption and this results in a worse performance than at sites without permafrost. 

3.3 Upscaled CH4 fluxes 

The RF model developed in this study was used together with the gridded input datasets (Sect. 2.4) and wetland distribution 

maps (Sect. 2.5) to estimate CH4 emissions from northern wetlands in 2013 and 2014. The mean CH4 emissions of the two 

years from the RF model are plotted in Fig. 6 together with CH4 wetland emission maps from the process model LPX-Bern 

and model ensemble WetCHARTs. Differences between the process model estimations and upscaled fluxes are shown in Fig. 

7. In general, the spatial patterns are similar among emission maps, which is not surprising given that the spatial variability is 

largely controlled by the underlying wetland distributions. One noteworthy difference is that WetCHARTs, RF-PEATMAP 

(i.e. RF modelling with PEATMAP) and RF-GLWD show higher emissions from western Canada than LPX-Bern or the 

upscaled fluxes using the wetland map from that process model (RF-DYPTOP). The other difference is that RF-GLWD show 

negligible emissions from Fennoscandia (Fig. 6c). These differences are related to differences in the underlying wetland maps. 

While the wetland maps differ, there is no consensus on which is more accurate, so comparisons indicate the uncertainty in 

upscaling emanating from uncertainties in wetland distribution. 

Three statistical metrics (NSE, R2 and RE) were calculated between RF-DYPTOP and LPX-Bern for each grid cell (Fig. 8). 

The figure illustrates how well the temporal variability of CH4 emissions estimated by RF-DYPTOP and LPX-Bern agree in 

each grid cell. NSE values are low in areas where the systematic difference between RF-DYPTOP and LPX-Bern was high 

(compare Figs. 8a and 7a) since the bias strongly penalises NSE. The R2 values are high throughout the study domain, likely 

due to the fact that the seasonal cycle of CH4 emissions dominated the temporal variability in most of the grid cells and the 

seasonal cycles were in phase between RF-DYPTOP and LPX-Bern. RE values calculated between RF-DYPTOP and LPX-

Bern were high in areas where also the emissions estimated by RF-DYPTOP were high (compare Figs. 8c and 6a). This is 

likely due to the fact that, even though the seasonal cycles were in phase, their amplitudes were different which increased the 

variability between LPX-Bern and RF-DYPTOP (i.e. increase in RE). 

The uncertainties of the upscaled fluxes were estimated from the spread of predictions made with the ensemble of 200 RF 

models (Fig. 9). The uncertainty mostly scales with the flux magnitude (compare Fig. 6 a)-c) with Fig. 9 a)-c)), meaning that 

grid cells with high fluxes tend to have also high uncertainties. However, the relative flux uncertainty does have some 

geographical variation (Fig. 9 d)-f)). The highest relative uncertainties are typically at the highest and lowest latitudes of the 

study domain. In these locations the dependencies between the predictors and the CH4 flux are not as well-defined as in the 

locations with lower uncertainties leading to larger spread in the ensemble of RF model prediction. For instance, at low latitudes 

LSTn may go beyond the range of LSTn values in the training data (see the range in Fig. 3) and hence the RF model predictions 

are not well-constrained in these situations. On the other hand, lower relative uncertainties are typically obtained for locations 

close to the measurement sites incorporated in this study (compare Fig. 1 and 9), since the dependencies between the predictors 

and the CH4 flux are better defined. 
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The seasonalities of the upscaled fluxes and CH4 fluxes from process models are similar with highest CH4 emissions in July-

August and lowest in February. his seasonal pattern is consistent throughout the study domain (Fig. 10). Warwick et al. (2016) 

and Thonat et al. (2017) showed that the northern wetland CH4 emissions should peak in August-September in order to explain 

correctly the seasonality of atmospheric CH4 mixing ratios and isotopes measured across the Arctic. Hence the wetland CH4 

emissions presented here are peaking approximately one month too early to perfectly match with their findings. CH4 flux 

magnitude agrees well between WetCHARTs and the upscaled flux during spring and midsummer (April-July), whereas LPX-

Bern is estimating lower fluxes (0 % and 26 % difference, respectively). During late summer and autumn (August-October) 

both process models are estimating slightly lower fluxes than the upscaled estimate (17 % and 19 % difference, respectively). 

The upscaled fluxes show somewhat higher emissions also during the nongrowing season (November-March) than the two 

process models (27 % and 35 % difference, see Table 2) and the upscaled estimates of nongrowing season emissions are 

relatively close to a recent model estimate (Treat et al. 2018). This result promotes the recent notion that process models might 

be underestimating nongrowing season fluxes at high latitudes (e.g. Treat et al., 2018; Xu et al., 2016a; Zona et al., 2016). 

Treat et al. (2018) adjusted WetCHARTs model output so that it matches with their estimates of nongrowing season CH4 

emissions and then estimated annual wetland CH4 emissions north of 40 °N to be 37 ± 7 Tg(CH4) yr-1 using this adjusted model 

output. The estimates derived here for the annual emissions using the three wetland maps are similar (see Table 2), especially 

when considering our slightly smaller study domain (above 45 °N). The two process models included in this study estimated 

slightly lower mean annual emissions than the upscaled fluxes (11 % and 26 % difference between the mean upscaled estimate 

and WetCHARTs and LPX-Bern, respectively; see also Table 2). However, given the uncertainties in upscaling as well as in 

process models this can be regarded as relatively good agreement. Different process models may be driven with different 

climate forcing data and they may have discrepancies in the underlying wetland distributions, in addition to the different 

parameterisations and descriptions of the processes behind the CH4 emissions. These sources of uncertainty should be 

recognised when models are compared against each other or against upscaling products.  

In order to further evaluate the agreement between the upscaled fluxes and process models we focused on two specific regions: 

Hudson Bay Lowlands (HBL) and Western Siberian Lowlands (WSL) (see locations in Fig. 1). The upscaled fluxes indicate 

higher annual emissions for both subdomains compared to the two process models or previously published estimate (Table 2). 

For WSL the upscaled estimates are within the range of variability observed between process models and inversion modelling 

in WETCHIMP-WSL (Bohn et al., 2015) and close to Thompson et al. (2017). The upscaled estimates by Glagolev et al. 

(2011) might underestimate CH4 emissions from the WSL area (Bohn et al. ,2015). Furthermore, the process models in Bohn 

et al. (2015) are likely underestimating the nongrowing season CH4 emissions which might partly explain the discrepancy to 

the upscaled estimates in this study. Hence, the upscaled CH4 emission estimates for the WSL area, while large, are still in a 

reasonable range. 

For HBL, the discrepancy between upscaled emission estimates and the estimates based on process models or previous studies 

is larger (Table 2). The upscaling results agree with Zhang et al. (2016) and Melton et al. (2013) but show over twice larger 

emissions from HBL than the other estimates (Table 2). This cannot be explained by wetland mapping since the difference 
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holds also when DYPTOP wetland map is used in upscaling. There are only few long-term EC flux studies conducted in the 

HBL area and the only one found (Hanis et al., 2013) showed on average 6.9 g(CH4) m-2 annual emissions at a subarctic fen 

located in the HBL. If the upscaled CH4 emissions are downscaled back to ecosystem level at the HBL area with wetland maps, 

we get on average 11.0 g(CH4) m-2 annual CH4 emission for the HBL area based on the RF model output, which is 1.6 times 

larger than the estimate by Hanis et al. (2013). While Hanis et al. (2013) studied only one wetland during different years than 

here (years 2008-2011 in Hanis et al. (2013), here 2013-2014) it is still noteworthy that the relative difference between Hanis 

et al. (2013) and this study is similar to the discrepancy between this study and the inversion estimates (Pickett-Heaps et al. 

(2011); Thompson et al. (2017)) at the whole HBL scale. Pickett-Heaps et al. (2011) and Thompson et al. (2017) show near 

zero CH4 emissions during October-April and onset of CH4 emissions in mid-May or even June, largely dependent on when 

the ground was free of snow and unfrozen. This is somewhat surprising given the fact that only 32 % of wetlands in the area 

are underlain by permafrost (based on amalgam of PEATMAP and permafrost map) and hence the soils are likely not 

completely frozen and some non-growing season CH4 emissions are likely to occur in such conditions (e.g. Treat et al., 2018). 

The upscaled nongrowing season CH4 emissions show on average 1.1 Tg(CH4) yr-1 emissions for the HBL area. This partly, 

but not completely, explains the discrepancy between the CH4 emission estimates for the HBL area. All these results suggest 

that the upscaled product likely overestimates CH4 emissions from the HBL area. 

Discussion 

4.1 Comparing the RF model predictive performance to previous studies 

The RF model performance was worse when compared against independent validation data than what has been achieved in 

previous upscaling studies for GPP and energy fluxes (R2>0.7), and ecosystem respiration (Reco; R2>0.6) (e.g. Jung et al., 2010; 

Tramontana et al., 2016). However, the RF model performance for monthly CH4 emissions was comparable to net ecosystem 

exchange of CO2 (NEE) (R2<0.5) (e.g. Jung et al., 2010; Tramontana et al., 2016). Likely reasons for this finding include for 

instance that for other fluxes there is simply more data available from several sites spanning the globe. For example, the La 

Thuile synthesis dataset used by Jung et al. (2010) and Tramontana et al. (2016) consists of 965 site-years of data from over 

252 EC stations. Here we have data from 25 sites with CH4 fluxes. Furthermore, the drivers (or proxies for the drivers) of e.g. 

GPP and energy fluxes are more easily available from remote sensing (e.g. MODIS) and weather forecasting re-analysis data 

sets (e.g. WFDEI). In contrast, CH4 emissions are more related to belowground processes, thus   drivers for these processes 

are more difficult to measure remotely. Also, there are temporal lags between changes in drivers (e.g. LSTn) and CH4 fluxes 

in response to these changes. Consequently,  training a machine learning model such as RF on such data is difficult since the 

RF model assumes a instantaneous relationship between the change and response. However, one should also note that GPP or 

Reco are never directly measured with the EC technique, they are always at least partly derived products (Lasslop et al., 2009; 

Reichstein et al., 2005). Hence direct functional relationships between GPP and Reco and their environmental drivers are 

inherently included in these flux estimates, whereas NEE and CH4 emissions are directly measured without additional 
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modelling. Also, both NEE and CH4 emissions are differences between component fluxes(NEE: GPP and Reco; CH4 flux: 

production and oxidation). Therefore, GPP and Reco upscaling algorithms show better correspondence with validation data than 

for NEE or CH4 emissions and the results for NEE would be the correct point of reference for the RF model performance 

presented here. 

While the RF model performance in this study was inferior to previous upscaling studies for other fluxes when evaluated using 

different statistical metrics, it was still comparable to what has been shown before for several process models for CH4 emission 

(McNorton et al., 2016; Wania et al., 2010; Zürcher et al., 2013; Zhu et al., 2014; Xu et al., 2016a). For instance, McNorton 

et al. (2016) validated the land-surface model JULES against CH4 flux data from 13 sites and found R2=0.10 between the 

validation data and the model. Wania et al. (2010) found on average RMSE=29 nmol m-2 s-1 and RMSE=42 nmol m-2 s-1 with 

and without tuning their model LPJ-WhyMe against CH4 flux data from seven sites. Zürcher et al. (2013) found the time-

integrated CH4 flux to be well represented by LPX-Bern model across different sites. A tight correlation (R2 = 0.92) is found 

between simulated and measured cumulative site emissions after calibrating the model against the measurements. While Xu et 

al. (2016a) did not explicitly show any statistical metrics, their model (CLM4.5) comparison against site level CH4 flux data 

seemed to be somewhat better than in Wania et al. (2010) or McNorton et al. (2016). Xu et al. (2016a) emphasize the 

importance of nongrowing season emissions and the fact that their model was clearly underestimating these emissions. Zhu et 

al. (2014a) calibrated their model (TRIPLEX-GHG) for each measurement site by changing e.g. the Q10 for CH4 production 

and CH4 to CO2 release ratio to be site-specific and found on average R2=0.64 when comparing the calibrated model against 

measurements at 17 CH4 flux measurement sites. However, their findings are not directly comparable to the RF model 

agreement with validation data shown here due to their model calibration against data before comparison. Nevertheless, their 

results show that even after calibration, the process models are not fully able to capture the CH4 flux variability in 

measurements. Miller et al. (2014) argued that the structure of some of the process models is so complex that the required 

forcing variables may not be reliable at larger spatial scales. All of these five models (JULES, LPJ-WhyMe, LPX-Bern, 

CLM4.5 and TRIPLEX-GHG) are contributing to the global CH4 budget estimation within the Global Methane Project 

(Saunois et al., 2016), highlighting that these results summarize the agreement between state-of-the-art process models and 

field measurements. 

4.2 Methods to improve RF model predictive performance 

4.2.1 Missing predictors 

In this study a statistical model was developed using the RF algorithm, and the model was able to yield R2=0.47 against 

monthly CH4 flux validation data. Our upscaling using RF model focused on 2013-2014, as these were the years with the 

largest overlap of collected data. However, all data from all the years (2005-2016) were used to develop and validate the model. 

The incomplete match between the RF model and validation data is likely caused by the fact that not all the possible drivers 
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causing inter- and intra-site variability in CH4 emissions were included in the analysis and hence all the variability could not 

be explained by the model. 

Christensen et al. (2003) were able to explain practically all the variability (R2=0.92) in annual CH4 emissions in their multisite 

chamber study with only two predictors: temperature and the availability of substrates for CH4 production. Also, Yvon- 

Durocher et al. (2014) speculate that the amount of substrates for microbial CH4 production explains across site variability of 

CH4 fluxes in their data. However, gridded data on spatially explicit substrate information n are currently nonexistent. Hence 

proxies for the substrates available for methanogenesis are needed. The current paradigm on wetland CH4 emissions is that 

most of the emitted CH4 is produced from recently fixed carbon being used as precursors for the CH4 producing Archaea (e.g. 

Chanton et al., 1995; Whiting and Chanton, 1993). Most process models are based on the premise that a certain fraction of 

ecosystem net primary productivity (NPP) is available and used for CH4 production or alternatively a fraction of heterotrophic 

respiration is allocated to CH4 emissions (e.g. Xu et al., 2016b). Thus NPP (or GPP) could potentially be included as a predictor 

for the RF model and used as a proxy for the amount of substrates available for CH4 production. However, the RF model 

performance in this study was not enhanced if variables closely related to NPP (EVI and the product of EVI and LSTd) were 

included as predictors. Also, Knox et al. (in review) did not find GPP as an important predictor of CH4 emission variability in 

their multi-site synthesis study. 

Using NPP (or proxies for it) for the RF model development might be an oversimplification, since it has been shown that 

especially the deep-rooting sedges and their NPP are important for CH4 production (Joabsson and Christensen, 2002; Ström et 

al., 2003, 2012; Waddington et al., 1996). Hence, information about plant functional types (PFTs) would be needed to better 

explain the CH4 flux variability (Davidson et al., 2017; Gray et al., 2013). Furthermore, the fraction of the fixed carbon 

allocated to the roots and released as root exudates (hence available for CH4 production) varies between species and root age 

(Proctor and He, 2017; Ström et al., 2003), further complicating the connection between NPP and CH4 emissions. The sedges 

also act as conduits for CH4 allowing the CH4 produced below water level to rapidly escape to the atmosphere and bypass the 

oxic zone in which the CH4 might have otherwise been oxidized (Waddington et al., 1996; Whiting and Chanton, 1992). 

Besides sedges, Spaghnum mosses are also important because methanotrophic bacteria that live in symbiosis with these mosses 

significantly decrease the CH4 emissions to the atmosphere when they are present (Larmola et al., 2010; Liebner et al., 2011; 

Parmentier et al., 2011; Raghoebarsing et al., 2005; Sundh et al., 1995). In a modelling study, Li et al. (2016) showed that it 

was essential to consider the vegetation differences between sites when modelling CH4 emissions from two northern peatlands. 

Hence, ideally one should have gridded information on wetland species composition and associated NPP across the high 

latitudes to significantly improve the upscaling results. Unfortunately such information is not yet available and therefore 

modelled estimates could be used (e.g. LPX-Bern which includes several peatland-specific PFTs allowed to freely evolve 

during the model run) (Spahni et al., 2013). However, in such case the upscaled CH4 emission estimates would not be any 

more model independent and therefore less suitable for model validation. We also note that many process models have only 

one PFT per wetland. 
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Different variables related to water input to the ecosystem (i.e. P, Pann) or surface moisture (SRWI) did not enhance the RF 

model predictive performance, reflecting that water table depth (WTD) is not solely controlled by input of water via 

precipitation, but also evapotranspiration and lateral flows affect wetland WTD, data that were missing from our study. These 

findings are consistent with previous studies (e.g. Christensen et al. 2003, Rinne et al. 2018, Pugh et al. 2018 and Knox et al. 

(in review)) who showed only a modest CH4 flux dependence on WTD in wetlands/peatlands. In contrast, several chamber-

based studies have shown a positive relationship between WTD and CH4 fluxes (Granberg et al., 1997; Olefeldt et al., 2012; 

Treat et al., 2018; Turetsky et al., 2014). In general, chamber-based studies often show spatial dependency of CH4 flux on 

WTD whereas studies done at ecosystem scale with EC generally do not show temporal WTD dependency, albeit there are 

exceptions (e.g. Zona et al., 2009). This might indicate that WTD controls meter scale spatial heterogeneity of CH4 flux 

between microtopographical features (e.g. Granberg et al., 1997) but not temporal variability on the ecosystem scale, provided 

that WTD stays relative close to the surface. Also, the chamber studies tend to observe spatial variation, which can be indirectly 

influenced by WTD via its influence to plant communities, whereas EC studies observe typically temporal variation in sub-

annual timescales. However, the effect of WTD might be masked by a confounding effect caused by plant phenology, since 

vegetation biomass often peaks at the same time as the WTD is at its lowest. While the variables related to WTD did not 

increase the RF model performance, WTD might still play a role in controlling ecosystem scale CH4 variability when it is 

exceptionally high or low. For instance, the year 2006 was exceptionally dry at the Siikaneva fen and hence CH4 emissions 

during that year were lower than on average (cf. Fig. 5a). However, in order to accurately capture such dependencies with the 

machine learning techniques (such as RF), they should be frequent enough so that the model can learn these dependencies. 

RF model performance was better at permafrost-free than at permafrost sites which might indicate that the LSTn might not be 

an appropriate proxy for the temperature controlling the CH4 production and oxidation rates at sites with permafrost. Also, no 

information on the development of the seasonally unfrozen, and hydrologically and biogeochemically  active layer was 

included in the RF model. Furthermore, Zona et al. (2016) showed strong hysteresis between soil temperatures and CH4 

emissions at their permafrost sites in Alaska, whereas Rinne et al. (2018) show a synchronous exponential dependence between 

soil temperature and CH4 emissions at a boreal fen without permafrost. The hysteresis observed in Zona et al. (2016) could be 

explained by the fact that part of the produced CH4 at these permafrost sites is stored belowground for several months before 

it is being emitted to the atmosphere causing a temporal lag between soil temperature and observed surface flux. In any case, 

more knowledge on soil processes (soil thawing and freezing, CH4 production and storage) are needed before the CH4 

emissions from these permafrost ecosystems can be extrapolated to other areas with greater confidence. 

It should be emphasized that the drivers causing across site variability in ecosystem scale CH4 emissions are in general 

unknown since studies comparing EC CH4 fluxes from multiple wetland sites have only recently been published (Baldocchi, 

2014; Knox et al., in review; Petrescu et al., 2015). Most previous CH4 synthesis studies were based  on plot-scale 

measurements (Bartlett and Harriss, 1993; Olefeldt et al., 2012; Treat et al., 2018; Turetsky et al., 2014).However, the CH4 

flux responses to environmental drivers and their relative importance might be different at ecosystem scale since CH4 fluxes 

typically show significant spatial variability at sub-m scale (e.g. Sachs et al., 2010). Furthermore, the temporal coverage of 
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plot-scale measurements with chambers is usually relatively poor, whereas EC measurements provide continuous data on 

ecosystem scale. This study and Knox et al. (in review) show that temperature is important when predicting CH4 flux variability 

in a multisite CH4 flux dataset, but significant fraction of CH4 flux variability is still left unexplained. It remains a challenge 

for future EC CH4 flux synthesis studies to discover the drivers explaining the rest of the variability. 

4.2.2 Quality and representativeness of CH4 flux data 

The RF model performance may improve if instrumentation, measurement setup and the data processing are harmonized across 

sites, since these discrepancies between flux sites might have caused spurious differences in CH4 fluxes. These differences 

would have created additional variability in the synthesis dataset which would in turn 1) influence the training of RF model 

and 2) decrease e.g. NSE values obtained against validation data since there would be artificial variability in the validation 

data which is not related to the predictors. In this study, the site PIs processed the data themselves using different processing 

codes, albeit the gapfilling was done centrally in a standardized way. 

While these issues mentioned above could impact the upscaling results shown here, prior studies have shown that the usage of 

different instruments or processing codes do not significantly impact CH4 flux estimates. For instance, Mammarella et al. 

(2016) showed that the usage of different processing codes (EddyPro and EddyUH) resulted in general in 1 % difference in 

long-term CH4 emissions. On the other hand, CH4 instrument cross comparisons have shown small differences (typically less 

than 7 %) between the long term CH4 emission estimates derived using different instruments (Goodrich et al., 2016; Peltola et 

al., 2013, 2014). While these studies show consistent CH4 emissions they also stress that the data should be carefully processed 

to achieve such good agreement across processing codes and instruments. In addition, many issues related to e.g. friction 

velocity filtering and gapfilling of CH4 fluxes are still unresolved, and the role of short-term emission bursts, which are 

common in methane flux time series, needs to be further investigated (e.g. Schaller et al., 2017). However, recently Nemitz et 

al. (2018) advanced these issues by proposing a methodological protocol for EC measurements of CH4 fluxes used to 

standardize CH4 flux measurements within the ICOS measurement network (Franz et al, 2018). 

Twenty-five flux measurement sites were included in this study and they were distributed across the Arctic-Boreal region (see 

Fig. 1). The measurements were largely concentrated in Fennoscandia and Alaska, whereas data from e.g. the HBL and WSL 

areas were missing. Long-term EC CH4 flux measurements are largely missing from these vast wetland areas casting 

uncertainty on wetland CH4 emissions from these areas. The location of a flux site is typically restricted by practical limitations 

related to e.g. ease of access and availability of grid power. Hence open-path instruments with low power requirements 

potentially open up new areas for flux measurements (McDermitt et al., 2010), yet they need continuous maintenance which 

is not necessarily easy in remote locations. However, one could argue that the geographical location of flux sites is not vital 

for upscaling, more important is that the available data represents well the full range of CH4 fluxes across the northern latitudes 

and more importantly the CH4 flux responses to the environmental drivers. Also, sites should ideally cover all different 

wetlands with varying plant species composition, whereas geographical representation is not necessarily as important. CH4 

flux site representativeness could be potentially assessed in the same vein as in previous studies for other measurement 
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networks (Hargrove et al., 2003; Hoffman et al., 2013; Papale et al., 2015; Sulkava et al., 2011). However, before such analysis 

can be done, the main drivers causing across sites variability in ecosystem scale CH4 fluxes should be better identified. 

Most of the CH4 flux data here and in the literature have been recorded during the growing season when the CH4 fluxes are at 

maximum, whereas year-round continuous CH4 flux measurements are not as common. This is likely due to the harsh 

conditions in the Arctic during winter which make continuous high-quality flux measurements very demanding (e.g. Goodrich 

et al., 2016; Kittler et al., 2017a), but also in part since the large-scale importance of nongrowing season emissions has just 

recently been recognized (Kittler et al., 2017b; Treat et al., 2018; Xu et al., 2016a; Zona et al., 2016). For upscaling year-round 

CH4 emissions, continuous measurements are vital to accurately constrain also the non-growing season emissions and their 

drivers. 

5 Data availability 

The presented upscaled CH4 flux maps (RF-DYPTOP, RF-PEATMAP and RF-GLWD), their uncertainties and the underlying 

CH4 flux densities are accessible via an open-data repository Zenodo (Peltola et al., 2019). The datasets are saved in netCDF-

files and they are accompanied by a readme file. The dataset can be downloaded from https://doi.org/10.5281/zenodo.2560163. 

6 Conclusions 

Methane (CH4) emission data comprising over 40 site-years from 25 eddy covariance flux measurement sites across the Arctic-

Boreal region were assembled and upscaled to estimate CH4 emissions from northern (>45 °N) wetlands. The upscaling was 

done using the random forest (RF) algorithm. The performance of the RF model was evaluated against independent validation 

data utilizing the leave-one-site-out scheme which yielded value of 0.47 for both the Nash-Sutcliffe model efficiency and R2. 

These results are similar to previous upscaling studies for the net ecosystem exchange of carbon dioxide (NEE) but are less 

good than for the individual components of NEE or energy fluxes (e.g. Jung et al., 2010; Tramontana et al., 2016). The 

performance is also comparable to studies where process models are compared against site CH4 flux measurements (McNorton 

et al., 2016; Wania et al., 2010; Zürcher et al., 2013; Zhu et al., 2014; Xu et al., 2016a). Hence, despite the relatively high 

fraction of unexplained variability in the CH4 flux data, the upscaling results are useful for comparing against models and 

could be used to evaluate model results. The three gridded CH4 wetland flux estimates and their uncertainties are openly 

available for further usage (Peltola et al., 2019). 

The upscaling to the regions > 45 °N resulted in mean annual CH4 emissions comparable to prior studies on wetland CH4 

emissions from these areas (Bruhwiler et al., 2014; Chen et al., 2015; Spahni et al., 2011; Treat et al., 2018; Watts et al., 2014; 

Zhang et al., 2016; Zhu et al., 2013) and hence in general support the prior modelling results for the northern wetland CH4 

emissions. When compared to two validation areas, the upscaling likely overestimated CH4 emissions from the Hudson Bay 

Lowlands, whereas emission estimates for the western Siberian lowlands were in a reasonable range. Future CH4 flux upscaling 
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studies would benefit from long-term continuous CH4 flux measurements, centralized data processing and better incorporation 

of CH4 flux drivers (e.g. wetland vegetation composition and carbon cycle) from remote sensing data needed for scaling the 

fluxes from the site level to the whole Arctic-boreal region. 

Appendix A 

Table A1. Description of eddy covariance sites included in this study. 
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a Data from this site is divided into two since data from two wind directions differ from each other (with and without 

permafrost). 
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Figure 1: Map showing the locations of the EC measurements. The distribution of wetlands shown in the figure is based on Xu et al. 
(2018). Hudson Bay Lowlands (50°N-60°N, 75°W-96°W) and Western Siberian Lowlands (52°N-74°N, 60°E-94.5°E) are highlighted 
with red dashed lines. 
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Figure 2. Evolution of statistical metrics during RF model development. Predictors were added to the RF model starting from the 
left of the figure and accumulate along the x-axis. For instance, the x-tick label “SC” shows the RF model performance when LSTn, 
Permafrost, Rpot, and SC were used as predictors in the model. See the x-tick label explanations in Table 1. The error bars denote 
1-sigma uncertainty of the values estimated with bootstrapping. 
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Figure 3. Dependence of monthly mean CH4 emissions on monthly mean land surface temperature at night (LSTn) derived from 
MODIS data. Eddy covariance measurements are shown with filled markers (unique colour for each site) and random forets model 
predictions for each site are given with black dots. 
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Figure 4. Relation between monthly mean CH4 fluxes predicted by the RF model and independent validation data. Monthly average 
values from the same site are identified by unique colours and least squares linear fit to data from each site is also plotted using the 
same colour. Site means are shown with markers with black edges. The dashed line shows the 1:1 line. The shaded area shows the 
uncertainty range estimated from the RE CH4 flux dependence (see text for further details). The statistics in the figure are calculated 
using the monthly data. 
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Figure 5. Time series of modelled CH4 emissions (red lines) together with validation data (circles) at four example sites: a) Siikaneva 
oligotrophic fen in Finland, b) Lost Creek shrub fen in Wisconsin, US, c) Atqasuk wet tundra in Alaska, US and d) Chersky wet 
tundra in northeast Siberia, Russia. Vertical dashed lines denote a new year. Note the changes in y-axis scales. Site specific model 
performance metrics are also included. 
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Figure 6. Mean annual CH4 wetland emissions during years 2013-2014 estimated by upscaling EC data using the RF model and 
three wetland maps (top row) and process models (bottom row). Grid cells with low CH4 wetland emissions (below 0.1 g(CH4) m-2 
year-1) are shown with grey. The flux rates refer to total unit area in a grid cell. 
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Figure 7. Difference in mean annual CH4 wetland emissions during years 2013-2014 estimated by upscaling EC data using the RF 
model with different wetland maps and process models. All the CH4 emission maps were aggregated to 1° resolution before 
comparison. The flux rates refer to total unit area in a grid cell.  
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Figure 8. NSE, R2 and RE calculated between RF-DYPTOP and LPX-Bern. Grid cells with low CH4 wetland emissions (below 0.1 
g(CH4) m-2 year-1) are shown with grey. RE values refer to total unit area in a grid cell. 
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Figure 9. Absolute (subplots a)-c)) and relative (subplots d)-f)) uncertainties of the upscaled CH4 fluxes using different wetland maps. 
Uncertainty is estimated as 1-σ variability of the predictions by 200 RF models developed by bootstrapping the training data (Sect. 
2.1.2). Grid cells with low CH4 wetland emissions (below 0.1 g(CH4) m-2 year-1) are shown with grey. The absolute uncertainties refer 
to total unit area in a grid cell. 
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Figure 10. Monthly time series of zonal mean CH4 fluxes. The upscaled fluxes with different wetland maps are shown in subplots a), 
b) and c) and wetland CH4 emissions estimated with the two process models are given in subplots d) and e). 
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Table 1. Description of input variables for RF model development for upscaling. Data were aggregated to monthly values (see text) 
unless otherwise noted below. 

 Name Description Data source Available in 

gridded 

format 

Site measurements Tair Mean air temperature site PI & 

WFDEI 

Yes 

 P Precipitation site PI & 

WFDEI 

Yes 

 Pann Annual precipitation site PI & 

WFDEI 

Yes 

Remote sensing LSTn Land surface temperature at night MOD11A2 Yes 

 LSTd Land surface temperature at day MOD11A2 Yes 

 EVI Enhanced vegetation index MOD13A3 Yes 

 SRWI Simple ratio water index (SRWI = 

R858/R1240) 

MOD09A1 Yes 

 SC Snow cover flag MOD10A1 Yes 

 EVI* LSTd Product of EVI and LSTd, a proxy 

for GPP (Schubert et al., 2010) 

MOD13A3 & 

MOD11A2 

Yes 

Additional 

categorical variables 

Permafrost Flag for permafrost at site 

(true/false) 

site PI Yes 

 Biome Site classification based on biome 

(temperate, boreal and tundra) 

Olson et al. 

(2001) 

Yes 

 type Wetland type (fen, bog, tundra) site PI No 

 sedge flag for sedges as dominant 

vegetation type (true/false) 

site PI No 

Other Rpot & 

der(Rpot) 

Potential solar radiation at the top 

of atmosphere and its first time 

derivative 

- Yes 

 DSSM Days since snowmelt, derived 

from the snow cover flag 

- Yes 
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Table 2. Annual CH4 wetland emissions in different subdomains (Hudson Bay lowlands and Western Siberian lowlands, see Fig. 1) 
and time periods. The values are given in Tg(CH4) year-1. Note that estimates from some reference studies are not for the same 
period as the one studied here (2013-2014). For WetCHARTs the mean of the model ensemble together with the range (in 
parentheses) are given, whereas for the upscaling results the 95 % confidence intervals for the estimated emissions are given. 

 Reference Hudson Bay 

lowlands 

Western 

Siberian 

lowlands 

Nongrowing season 

fluxes from northern 

wetlands 

(November…March) 

Annual 

emissions 

north from 45 

°N 

Inversion 

models 

Bohn et al. (2015), 

WETCHIMP-WSL 

 6.06 ± 1.22   

Bruhwiler et al. 

(2014)a 

   23 

Kim et al. (2011)  2.9 ± 1.7 and 

3.0 ± 1.4 

  

Miller et al. (2014) 2.4 ± 0.3    

Spahni et al. (2011)    28.2 ± 2.2 

Thompson et al. (2017) 2.7-3.4 6.9 ± 3.6   

Process 

models 

Bohn et al. (2015), 

WETCHIMP-WSL 

 5.34 ± 0.54   

Chen et al. (2015)b 3.11 ± 0.45   35.0 ± 6.7 

Melton et al. (2013), 

WETCHIMPc 

5.4 ± 3.2    

Pickett-Heaps et al. 

(2011)d 

2.3 ± 0.3    

Treat et al. (2018)e   6.1 ± 1.5 37 ± 7 

Watts et al. (2014)    53 

Zhang et al. (2016)f 5.5 ± 1.1 4.6 ± 0.6  30.3± 5.4 

This study, LPX-Bern 2.5 4.4 4.5 24.7 

This study, 

WetCHARTs 

2.8 (0.5-8.7) 4.2 (1.6-9.4) 5.1 (0.6-17.0) 29.7 (8.7-

74.0) 

Flux 

measuremen

t upscaling 

Glagolev et al. (2011)  3.9 ± 1.3   

Zhu et al. (2013)    44.0-53.7 

This study, RF-

PEATMAP 

4.8 (3.3-6.3) 6.6 (4.9-8.4) 6.7 (4.9-8.5) 31.7 (22.3-

41.2) 



53 
 

This study, RF-

DYPTOP 

4.6 (3.1-6.0) 7.0 (5.2-8.8) 6.2 (4.6-7.8) 30.6 (21.4-

39.9) 

This study, RF-GLWD 4.9 (3.4-6.5) 6.8 (5.0-8.5) 8.0 (5.8-10.2) 37.6 (25.9-

49.5) 

a Approximately north from 47 °N 

b Approximately north from 45 °N 

c Mean annual CH4 emissions from eight models ± 1-sigma of interannual variation in the model estimates for the period 1993-

2004. 

d Process model tuned to match atmospheric observations 

e North from 40 °N 

f Mean ± 1-sigma over LPJ-wsl model results using different wetland extends for the period 1980-2000. 


