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Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere, and a large 

fraction of them are found in the northern latitudes. These emissions are typically estimated using process (‘bottom-up’) or 

inversion (‘top-down’) models. However, estimates from these two types of models , yet the two are not independent of each 

other since usually  the top-down estimates rely on the a priori estimation of these emissions obtained withcoming from the 

process models. Hence, independent, spatially-explicit validation data is needed.  validation data of the large-scale emissions 

arewould be needed. 

Here we utilize a random forest (RF) machine learning technique to upscale CH4 eddy covariance flux measurements from 25 

sites to estimate CH4 wetland emissions from the northern latitudes (north of 45 °N). Eddy Covariance data from 2005 - 2016 

are used for model development. The model is then used to predict emissions during 2013 and 2014. during years 2013 and 

2014. The predictive performance of the RF model is evaluated using athe leave-one-site-out cross-validation scheme. Tand 

the performance (Nash-Sutcliffe model efficiency = 0.47) is comparable to previous studies upscaling net ecosystem exchange 

of carbon dioxide andor studies comparingwhere process model outputs are compared against site-level CH4 emission data. 

The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus tThree wetland distribution 

maps are utilized in the upscaling. and Depending on the wetland distribution map, tthe annual emissions for the northern 

wetlands yield 31.72 (22.3-41.2, 95 % confidence interval calculated from a RF model ensemble), 30.61 (21.4-39.9) or 37.68 

(25.9-49.5) Tg(CH4) yr-1, depending on the map used. To further evaluate the uncertainties of the upscaled CH4 flux data 

products it iswe also compared them against output from two process models (LPX-Bern and WetCHARTs) and 

methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products is are 

available for further usage at: https://doi.org/10.5281/zenodo.2560163https://doi.org/ 10.5281/zenodo.2560164. 

1 Introduction 

Methane (CH4) is the second most important anthropogenic greenhouse gas in terms of radiative forcing after carbon dioxide 

(CO2): 34 times (GWP100, including climate-carbon feedbacks) as strong as CO2 according to IPCC (Ciais et al., 2013). CH4 

and has contributed ~20% toof the cumulative GHG related global warming (Etminan et al. 2016). Deriving constraints on 

CH4 its sources and sinks is thus of utmost importance. The net atmospheric CH4 budget is well constrained by precise CH4 

mole fraction measurements around the globe, yet the contribution of individual sources and sinks to this aggregated budget 
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remains poorly understood. This is primarily due to lack of data to constraint the modelling results (Saunois et al., 2016). In 

order to make more accurate predictions of the atmospheric CH4 budget in a changing climate, the response of the various 

sources and sinks to different drivers needs to be better identified and quantified.  

Natural wetlands are the largest and quantitatively most uncertain source of CH4 to the atmosphere (Saunois et al., 2016). An 

ensemble of land surface models estimated global CH4 emissions from wetlands for the period 2003-2012 to be 185 Tg(CH4) 

yr-1 (range 153-227 Tg(CH4) yr-1) and for the same period inversion models estimated it to be 167 Tg (CH4) yr-1 (range 127-

202 Tg(CH4) yr-1) (Saunois et al., 2016). This discrepancy between bottom-up (process models) and top-down (inversion 

models) estimates, as well as the range of variability, exemplifies the large uncertainty of the current estimate for natural 

wetland CH4 emissions. Sources of this uncertainty can be roughly divided into two categories: 1) uncertainty related to the 

global areal extent of wetlands (e.g. Petrescu et al 2010. Bloom et al., 2017a; Zhang et al., 2016) and 2) uncertainties related 

to the key CH4 emission drivers and responses to these drivers (e.g. Bloom et al., 2017a; Saunois et al., 2017). Evaluation of 

the emission estimates is thus urgently needed, and the results from these efforts will lead to refinedfeed on improvements in 

process models. Process model improvements will also directly affect the uncertainty of inversion results since they provide 

important a priori information to the inversion models (Bergamaschi et al., 2013). 

Boreal and arctic wetlands comprise up to 50 % of the total global wetland area (e.g. Lehner and Döll, 2004) and these wetlands 

in these northern latitudes make a substantially contributeion to total terrestrial wetland CH4 emissions (ca. 27 %, based on the 

sum of regional budgets for bBoreal North America, Europe and Russia in Saunois et al., 2016). In wetlands, CH4 is produced 

by methanogenic Archaea under anaerobic conditions and hence the production takes place predominantly under water 

saturated conditions (e.g. Whalen, 2005). The microbial activity and the resulting CH4 production is thus controlled by quality 

and quantity of the available substrates, competing electron acceptors and temperature (Le Mer and Roger, 2001). Once 

produced, the CH4 can be emitted to the atmosphere via three pathways: ebullition, molecular diffusion through soil matrix 

and water column, or plant transport. If plants capable of transporting CH4 are present, plant transport is generally the 

dominating emission pathwaylargest of the three (Knoblauch et al., 2015; Kwon et al., 2017; Waddington et al., 1996; Whiting 

and Chanton, 1992). AImportantly, a large fraction of CH4 transported via molecular diffusion is oxidized into CO2 by 

methanotrophic bacteria in the aerobic layers of wetland soils and hence never reaches the atmosphere (Sundh et al., 1995), 

whereas CH4 transported via ebullition and plant transport can largely bypass oxidation (Le Mer and Roger, 2001; McEwing 

et al., 2015). Furthermore, processes related to permafrost dynamics (e.g. active layerthaw, thermokarst processes) and snow 

cover dynamics (e.g., snow melt, insulation) have an impact on CH4 flux seasonality and variability in general (Friborg et al., 

1997; Helbig et al., 2017; Mastepanov et al., 2008; Zona et al., 2016; Zhao et al 2016). Hence wetland CH4 emissions to the 

atmosphere largely depend onare largely controlled by the a subtle interplay between various controls including  water table 

position, temperature, vegetation composition, methane consumption, availability of substrates and competing electron 

acceptors.  
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During the past two decades, eddy covariance (EC) measurements of wetland CH4 emissions have become more common, due 

to rapid development in sensor technology (e.g. Detto et al., 2011; Peltola et al., 2013, 2014). The latest generation of low-

power and -maintenance instruments are rugged enough for long-term field deployment and can function without grid power 

(Nemitz et al., 2018; McDermitt et al., 2010), thus the increasing the number of sites where CH4 flux measurements have been 

made is increasing can be collected. Due to this progress, EC CH4 flux synthesis studies have beenare now emerging (Petrescu 

et al., 2015; Knox et al., in review). Similar progress was made with CO2 and energy flux measurements in the 1990s and now 

these measurements form the backbone of the global EC measurement network FLUXNET (https://fluxnet.fluxdata.org/), 

whose data has provided invaluable insights into terrestrial carbon and water cycles. Some of the most important results have 

been obtained by upscaling FLUXNET observations using machine learning algorithms to evaluate terrestrial carbon balance 

components and evapotranspiration (Beer et al., 2010; Bodesheim et al., 2018; Jung et al., 2010, 2011, 2017; Mahecha et al., 

2010). These results are now widely used by the modelling community to evaluate process model performance (e.g. Wu et al., 

2017) and to validate satellite-derived carbon cycle data products (e.g. Sun et al., 2017; Zhang et al., 2017a). 

In this study, we synthesized EC CH4 flux data from 25 EC CH4 flux sites and developed an observation-based monthly gridded 

data product of northern wetland CH4 emissions. We focus on northern wetlands (north of 45 °N) due to their significance in 

the global CH4 budget and relatively good data coverage and process understanding, at least compared to tropical systems 

(Knox et al., in review). The Arctic isHigh latitude regions are projected to warm during the next century at a faster rate than 

any other region, which will likely significantly impact the carbon cycling of wetland ecosystems (Tarnocai, 2009; Zhang et 

al., 2017b) and permafrost areas of the Arctic-Boreal Region (Schuur et al., 2015). To date, CH4 emission estimates for northern 

wetlands are typically based on process models (Bohn et al., 2015; Bloom et al., 2017a; Chen et al., 2015; Melton et al., 2013; 

Stocker et al., 2013; Wania et al., 2010; Watts et al., 2014; Zhang et al., 2016) or inversion modelling (Bohn et al., 2015; 

Bruhwiler et al., 2014; Spahni et al., 2011; Thompson et al., 2017; Thonat et al., 2017; Warwick et al., 2016), yet scaling of 

existing chamber measurements to the northern wetland area has also been published (Zhu et al., 2013). However, CH4 

emission estimates obtained with the formerthe first two approaches are not completely  independent since the attribution of 

CH4 emissions derived using inversion models to different emission sources (e.g. wetlands) depends largely on the a priori 

estimates of these emissions (i.e. process models for wetland emissions), highlighting the tight coupling between these two 

approaches (Bergamaschi et al., 2013, Spahni et al., 2011). Hence, the main objective of this study is to produce an independent 

data-driven estimate of northern wetland CH4 emissions. This product could be used as an additional constraint for the wetland 

emissions and hence aid in process model refinement and development. Additionally, the drivers causing CH4 flux variability 

at the ecosystem scale are also evaluated and methodological issues are discussed which will support future CH4 wetland flux 

upscaling studies. 
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2 Materials and Methods 

Data from flux measurement sites (Fig. 1) were acquired and used together with forcing data to estimate CH4 emissions from 

northern wetlands with monthly time resolution using a random forest (RF) modelling approach. Both in-situ measurements 

and remote sensing are utilized in this study. In this section, the RF approach is briefly introduced (Sect. 2.1) and data selection, 

quality filtering, gap filling and aggregation to monthly values are described (Sect. 2.3). We identifiedAfter this procedure, 

40.7 site-years were available for the analysis, measured between years 2005 and 2016. To perform upscaling to all wetlands 

north of 45 °N, gridded data products of the flux drivers andwereare needed, as well as wetland distribution maps were needed. 

These products are presented in Sect. 2.4 and 2.5, respectively. Finally, the upscaled wetland CH4 emissions are compared 

against process model outputs, with the models briefly described in Sect. 2.6. 

Here, wetlands are defined as terrestrial ecosystems with water table positions near the land surface and with plants that have 

adapted to these water-logged conditions. We exclude lakes, reservoirs and rivers from the study, in addition to ecosystems 

with significant human influence (e.g. drainage, rewetting). We consider peat forming wetlands (i.e. mires), which can be 

further classified as fens and bogs based on hydrology, as well as wetlands with hydric mineral soils. Tundra wetlands may 

have only a shallow peat layer, or none at all. Unified classifications for wetlands are still lacking, and typically different 

countries follow their own classification scheme, albeit some joint classification schema have been developed (e.g. Ramsar 

Classification System for Wetland Type). 

2.1 Random forest algorithm 

Random forest (RF) is a machine-learning algorithm that can be used for classification or regression analyses (Breiman, 2001). 

and Iin this study the RF models consists of a large ensemble of regression trees. Each individual regression tree is built by 

training it with a random subset of training data and the trees are trained independently of each other. The RF model output is 

then the average of all the predictions made by individual regression trees in the forest. Hence the RF algorithm applies the 

bootstrap aggregation (bagging) algorithm and takes full advantage of the fact that ensemble averaging decreases the noise of 

the prediction. In addition to random selection of training data, the predictor variables used in split nodes are also selected 

from a random sample of all predictors which minimizes the possible correlation between trees in the forest (Breiman, 2001) 

and decreases the possibility of overfitting. The predictor variables can be either categorical or continuous. The variables are 

then used in the split nodes to divide the data into two (e.g. categorical variable true or false or continuous variable such as 

e.g. temperature above or below 5 °C). 

Performance of RF algorithms to predict CO2 and energy fluxes across FLUXNET sites were have been compared against 

other machine-learning algorithms such as artificial neural networks and multivariate regression splines by Tramontana et al. 

(2016) who showed that differences between methods were negligible. We anticipate a similarly negligible effect of machine-

learning algorithm choice for CH4 fluxes.These results are also likely to apply for CH4 fluxes. For a thorough description of 

the RF algorithm for flux upscaling purposes, the reader is referred to Bodesheim et al. (2018) (and references therein). 
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In this study, the RF models were developed using the MATLAB 9.4.0 (R2018a) TreeBagger function with default values 

similarly to Bodesheim et al. (2018). These settings included a minimum of five samples in a leaf node and used mean squared 

error (MSE) as a metric for deciding the split criterion in split nodes. Each trained forest consisted of 300 randomized 

regressions trees. 

2.1.1 RF model development for CH4 flux gapfilling 

Our RF algorithm was used for gapfilling the daily CH4 flux time series at a daily time step., Tand the performance of the RF 

model was evaluated against so-called ‘out-of-bag’ (OOB) data (approximately 1/3 of data for each tree). Since each individual 

tree in the RF model was trained using a subset of training data, the rest of the data (i.e. OOB data) can be used as independent 

validation data to evaluate the prediction performance of that particular regression tree and hence the whole forest (Breiman, 

2001). Only the five most important predictors were retained for the gapfilling models for each site. The relative importance 

of predictors (e.g. air temperature and the others) was evaluated by randomly shuffling the predictor data and then estimating 

the increase in mean squared error (MSE) when model output is compared against OOB data (Breiman, 2001). For important 

predictors, MSE will increase significantly due to shuffling, whereas the effect of shuffling on MSE is minor forthe less 

important predictors on MSE is minor. Note that this procedure was executed separately for each site and thus different 

predictors may have been used for different sites for gapfilling. 

2.1.2 RF model development for CH4 flux upscaling 

For upscaling purposes, one RF model was developed using all the available data in order to maximize the information content 

derived from the available data for the upscaled global (>45 °N) CH4 flux map. The model performance or uncertainty, 

however, was evaluated using two approaches:by using the data in two ways. 1) The predictive performance of the model was 

assessed using the widely used ‘leave-one-site-out’ cross-validation scheme (e.g. Jung et al., 2011). In order to avoid 

correlation between training data and validation data, sites were excluded from the training data when a site located nearby 

(closer than 100 km) was used as a validation site were excluded from the training data (Roberts et al., 2016). 2) TIn turn, the 

uncertainty of the upscaled fluxes was estimated by bootstrapping. 200 independent RF models were trained using a bootstrap 

sample of the available data. This yielded 200 predictions for each pixelgrid cell and time step in the upscaled CH4 flux map. 

T and the variability over this prediction ensemble was used as an uncertainty measure following. This follows the 

methodology used e.g. by Aalto et al. (2018) and Zhu et al. (2013). TOne should note that this uncertainty estimate reflects the 

ability of the RF model to capture the dependence of CH4 flux on the used predictors in the available data. H, however, it does 

not have any reference to actual in-situ CH4 fluxes unlike the model predictive performance estimated with cross-validation. 

Predictors for the RF model used in the upscaling were determined following Moffat et al. (2010). First, the RF models were 

trained for each site using one predictor at a time (see all the predictors in Table 1). The single predictor which yielded the 

best match against validation data (leave-one-site-out scheme) was selected as the primary driver. Then, the RF models were 

trained again with the primary driver plus each of the other predictors in turn as secondary drivers. Then the RF model 
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performance was again evaluated, and the best predictor pair selected for the next round. This procedure was continued until 

all the predictors were included in the RF model. The smallest set of predictors capable of producing adequate optimal RF 

model performance was used for flux upscaling. 

2.2 Metrics for model performance evaluation 

The RF model performance was evaluated against independent validation data using a set of statistical metrics, which were 

related to different aspects of model performance. During the RF model training the mean squared error (MSE) was optimized: 

𝑀𝑆𝐸 = (𝑜 − 𝑝) ,            (1) 

where 𝑜 and 𝑝 are vectors containing the observed and predicted values, respectively, and the overbar denotes averaging. 

The Nash-Sutcliffe model efficiency (NSE; Nash and Sutcliffe, 1970) (NSE) can be was used to evaluate how well the model 

wasis able to predict validation data when compared against a reference (typically the mean of the validation data): 

𝑁𝑆𝐸 = 1 −
∑ ( )

∑ ( )
,           (2) 

where 𝑖 is index running over all the  𝑛 values in the 𝑜 and 𝑝 vectors. When NSE is equal to 1, there is a perfect match between 

prediction and observations. Values above 0 imply that the model predicts the observations better than the mean of observations 

and values below 0 indicate that the predictive capacity of the model is worse than the mean of validation data. Note that NSE 

calculated with Eq. (2) above is equivalent to the coefficient of determination calculated using residual sum of squares and 

total sum of squares. However, following the approach used in previous upscaling studies (e.g. Bodesheim et al., 2018; 

Tramontana et al., 2016), we opted to call this metric NSE. Instead, the coefficient of determination (R2) was estimated as the 

squared Pearson correlation coefficient. Note that R2 and NSE are equal when there is no bias between 𝑜 and 𝑝 and the residuals 

follow Gaussian distribution. In the Results section Pearson correlation coefficients obtained with different model runs are 

compared using Fisher’s r to z transformation. 

The standard deviation (𝜎) of the model residuals was used to evaluate the spread of model residual values (RE): 

𝑅𝐸 = 𝜎(𝑜 − 𝑝),            (3) 

whereas bias between model predictions and validation data were used to estimate the systematic uncertainty in the upscaled 

fluxes (BE): 

𝐵𝐸 = 𝑜 − 𝑝.            (4) 

Note that RE equals RMSE when there is no systematic difference between the model predictions and observations (i.e. when 

BE equals zero). 

2.3 Data 

2.3.1 Data from eddy covariance flux measurement sites 

Data were acquired from 25 sites that 1) measure CH4 fluxes with the EC technique, 2) are located north of 45 °N and 3) are 

wetlands as defined above and without substantial human influence on ecosystem functioning (see the site locations in Fig. 1 
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and the site list in Appendix A). The sites were evenly distributed among wetland types: fens (n=9 sites), bogs (7) and wet 

tundra (9) ecosystems across as well as biomes: tundra (11), boreal (8) and temperate (6) biomes, as defined in Olson et al., 

(2001). At 15 of the 25 sites, sedges (e.g., Rhynchospora alba, Eriophorum vaginatum, Carex limosa) were the dominant 

vascular plant functional type in the flux measurement source area. Most of the sites (18 out of 25) were located north of 60 

°N and the highest density of sites were in Fennoscandia and Alaska (Fig. 1). The magnitude of monthly CH4 flux data varied 

between sites and the median time series length was 14.5 months of CH4 flux data per site. Overall, the dataset spanned between 

years 2005 and 2016. The sites represent northern wetlands sufficiently well to create an first upscaled CH4 flux product based 

on EC data. S In the Results section, sites are referred to with their FLUXNET IDs and if not available, new temporary site 

IDs were generated for the usage in this study (see Appendix A). 

Site PIs provided CH4 fluxes and their potential drivers (air temperature and pressure, precipitation, wind speed and direction, 

friction velocity, net ecosystem exchange of CO2 and its components (canopy photosynthesis and ecosystem respiration), 

photosynthetically active radiation, water table depth, soil temperature)  and a description of each site. However, out of the in-

situ measurements only air temperature and precipitation were used for developing the RF model for flux upscaling since 

gridded data products of the other potentially important drivers were not readily available and/or the data for the other drivers 

were missing from several sites. 

Thirty-minute-averaged flux data were acquired from 21 sites and daily data were provided for four sites. The flux time series 

were quality filtered by removing fluxes with the worst quality flag (based on 0,1,2- flagging scheme, Mauder et al., 2013) 

and with when friction velocity below afiltered using site-specific threshold (if it was typically done at the flux site and friction 

velocity and threshold data were available for the site). After filtering, daily medians were calculated if the daily data coverage 

was above 29 out of 48 half-hourly data points (daily data coverage at minimum 10 data points for sites without diel pattern 

in CH4 flux) and no gap-filling was done to the time series prior to calculation of daily values. While this may cause slight 

systematic bias in the daily flux values, this bias is unlikely to be significant because the magnitude of diel patterns in CH4 

fluxes is typically moderate (e.g. Long et al., 2010) or negligible (e.g. Rinne et al., 2018), although at sites with Phragmites 

cover a relatively strong diurnal cycle can be observed (e.g. Kim et al., 1999; Kowalska et al., 2013). 

Unlike the CH4 flux data, the other in-situ data from the sites were gap-filled prior to the calculation of daily values. The 

gapfilling was done only if the daily data coverage was above 60 %.  and Ffor the days with lower data coverage, no daily 

values were not calculated. Shorter gaps (<2 hours) were filled with linear interpolation, whereas longer gaps (between 2 to 

14.5 hours) were replaced with mean diurnal variation within a 30-day moving window. However, for precipitation, daily sums 

were calculated without any gapfilling. Besides the measurements at the sites, potential solar radiation (Rpot) and its time 

derivative (der(Rpot)) were calculated based on latitude and time of measurement. In order to remove the Rpot latitudinal 

dependence it was normalized to be between 0 and 1 before usage. 

CH4 flux drivers measured in-situ, in addition to the remote sensing data (Sect. 2.3.2), were used for the gapfilling of CH4 time 

series with the RF algorithm (Sect. 2.1.1). For each site the gapfilling models generally agreed well with the independent 
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validation data (mean NSE=0.74 and mean RMSE = 9 nmol m-2 s-1). After gapfilling, the CH4 flux time series were aggregated 

to monthly values if the monthly data coverage prior to gapfilling was at least 20 %. 

The daily time series of air temperature and precipitation measured at the sites were gapfilled using the WFDEI (WATCH 

Forcing Data methodology applied to ERA-Interim (WFDEI (data) data (Weedon et al., 2014). Prior to using the WFDEI data 

for gapfilling, the data were bias corrected for each site as is typically done for climate or weather reanalysis data (e.g. Räisänen 

& Räty, 2013; Räty et al., 2014). For precipitation, the mean of WFDEI data were simply adjusted to match site mean 

precipitation. For air temperature the bias correction was done for each month separately using quantile mapping with 

smoothing within a moving seven-month window. Quantile mapping compares the cumulative distribution functions (CDFs) 

of WFDEI and site measurements against each other and adjusts the WFDEI data so that after adjustment its CDF matches 

with the CDF of the site measurements (. See more details about the bias correction procedures e.g. in Räisänen & Räty,  

(2013). After gapfilling the daily time series with WFDEI data, monthly and annual precipitation were calculated, in addition 

to monthly mean air temperature. 

2.3.2 Remote sensing data 

Severalk dData products from the Moderate Resolution Imaging Spectrometer (MODIS) were used in this study to derive 

various driving variables. For RF model development the following data products at 500 m or 1000 m spatial resolution were 

used: MOD10A1 snow cover (Hall and Rigs, 2016), MOD11A2 daytime and night-time land surface temperature (LSTd and 

LSTn, Wan et al., 2015), MOD13A3 enhanced vegetation index (EVI, Didan, 2015) and MOD09A1 surface reflectance 

(Vermote, 2015). More elaborate datasatellite products estimating ecosystem gross primary productivity (GPP) and net primary 

productivity (NPP; MOD17) were not included here for two reasons: 1) many of the sites included here were misclassified in 

the land cover map used in MOD17 (e.g. as woody savanna), hence severely influencing the estimated GPP and NPP (Zhao et 

al., 2005), and 2) sites that were correctly classified as permanent wetlands were in fact assigned a fill value and removed from 

the product since the product is not strictly valid for these areas (Lees et al., 2018). All the remote sensing data products were 

quality filtered using the quality flags provided along with the data. 

The MODIS snow cover ranged from 0 (no snow) to 100 (full snow cover) and was converted to a simple snow cover flag 

(SC) consisting of 0 and 1 depending whether the snow cover data were below or above 50, respectively. A vector containing 

days since snow melt (DSSM) was calculated using the snow cover flag and normalized to 0 (beginning) and 1 (end) for each 

growing season (Mastepanov et al., 2013). The MOD09A1 surface reflectance at bands 2 (841-876 nm) and 5 (1230-1250 nm) 

were used to calculate the simple ratio water index (SRWI=band 2/band 5) following Zarco-Tejada & Ustin (2001). SRWI 

showed spurious values when there was snow cover and hence these points were replaced with the mean SRWI observed at 

each site when there was no snow. Meingast et al. (2014) showed that SRWI can be used as a proxy for wetland water table 

depth, although their results were affected by changes in vegetation cover, which might hinder across-site comparability in 

this study. Additionally, following the temperature and greenness modelling approach (Sims et al., 2008), a product of EVI 

and LSTd was included in the analysis as a proxy for gross primary productivity (GPP), following a previous peatland study 
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(Schubert et al., 2010). The remote sensing data were provided with daily (MOD10A1), 8-day (MOD09A1, MOD11A2) or 

monthly (MOD13A3) time resolution and the data were aggregated to monthly means prior to usage. 

2.3.3 Additional categorical variables 

The sites were also classified based on the presence of permafrost in the source area (present or absent) and according to biome 

type. Biome types (temperate, boreal, tundra) were determined from Olson et al. (2001) and the information about the 

permafrost was provided by the site PIs. Furthermore, the data were categorized based on wetland type and sedge cover as in 

Treat et al. (2018) and Turetsky et al. (2014). However, such information is not available in the gridded format needed for 

upscaling, nevertheless inclusion of these variables can be used to assess how much they increase the predictive performance 

of the model. Biome types (temperate, boreal, tundra) were determined from Olson et al. (2001). 

2.4 Gridded data sets used in flux upscaling 

For upscaling CH4 fluxes using the developed RF model, the LST data were acquired from the aggregated product MOD11C3 

(Wan et al., 2015), and snow cover data from MOD10CM (Hall and Riggs, 2018). Distribution of permafrost in the northern 

latitudes were estimated using the circum-Arctic map of permafrost derived by National Snow and Ice Data Center (Brown et 

al., 2002). The resolution of the gridded data was adjusted to match the resolution of the wetland maps using bilinear 

interpolation if needed. Additionally, land and ocean masks (Jet Propulsion Laboratory, 2013) were utilized when processing 

the gridded data sets. 

2.5 Wetland maps 

Upscaled fluxes were initially estimated in flux densities per wetland area, that is (amount of CH4) per (area of wetland) per 

(unit of time). To create a gridded product of CH4 emissions from the northern wetlands, these upscaled flux densities were 

converted into (amount of CH4) per (grid cell area) per (unit of time) using different wetland maps. Wetland mapping is an 

ongoing field of research and the usage of different wetland maps contributes to the uncertainty of global wetland CH4 emission 

estimates (e.g. Bloom et al., 2017a; Zhang et al., 2017b). Hence, three different wetland maps (PEATMAP, DYPTOP and 

GLWD) were used in this study to evaluate how much they affect the overall estimates of northern high latitude wetland CH4 

emissions. 

The recently developed static wetland map PEATMAP (Xu et al., 2018) combines detailed geospatial information from various 

sources to produce a global map of wetland extent. Here Within the presented study, the polygons in PEATMAP were 

converted to fractions of wetland in 0.5° grid cells. While PEATMAP is focused on mapping peatlands, marshes and swamps 

(typically on mineral soil) are included in the product for certain areas in the northern latitudes. However, most of the wetlands 

in the northern latitudes are peatlands and thus PEATMAP is suitable for our upscaling purposes. The dynamic wetland map 

estimated by the DYPTOP model (Stocker et al., 2014) was used by aggregating peat and inundated areas to form one dynamic 

wetland map with 1° resolution. The widely used Global Lakes and Wetlands Database (GLWD, Lehner and Döll, 2004) is a 
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static wetland map with 30 arc second resolution and since it has been widely used was used in this study here it provided as 

a point of reference for the other two maps. The map was aggregated to 0.5° resolution and lakes, reservoirs and rivers were 

excluded from the aggregated map. 

2.6 Process models 

The upscaled CH4 fluxes were compared against the output from two process models: LPX-Bern (Spahni et al., 2013; Stocker 

et al., 2013; Zürcher et al., 2013) and the model ensemble WetCHARTs version 1.0 (Bloom et al., 2017a, 2017b). LPX-Bern 

is a dynamic global vegetation model which models carbon and nitrogen cycling in terrestrial ecosystems. The model has a 

separate peatland module with peatland-specific plant functional types (see more details in Spahni et al., 2013). The wetland 

extent in LPX-Bern was dynamically estimated using the DYPTOP approach with 1° resolution (Stocker et al., 2014). 

WetCHARTs combines several prescribed wetland maps with different gridded products for heterotrophic respiration and 

temperature sensitivity (Q10)-parameterizations for CH4 production to form a model ensemble of wetland CH4 emissions 

(Bloom et al., 2017b). Here we used the extended ensemble of WetCHARTs. 

3 Results 

3.1 Selecting the predictors for the RF model 

The predictors in Table 1 were selected one-by-one using the procedure described in Sect. 2.1.2. The order in which the 

predictors were selected is shown in Fig. 2. LSTn alone gave NSE=0.29. After including the category permafrost 

presence/absence or absence of permafrost, Rpot, SC and biome class increased NSE to 0.47. However,, albeit the influence of 

SC and biome class on the model performance was marginal based on the small increase in NSE. Additional predictors did not 

increase the model performance further because 1) they were strongly correlated with a predictor already included in the model 

(e.g. Tair is correlated with LSTn) and hence they did not add any new information to the system, or 2) the predictors did not 

contain any information about CH4 flux variability. The model response to other predictors other than biome category was 

physically reasonable (e.g. permafrost and snow cover decrease fluxes, close to exponential dependence on LSTn), whereas 

the response to biome category was contrary to expectations. The RF model estimated the CH4 flux magnitude from the 

different biomes to be in the order tundra<temperate<boreal, whereas in prior studies it has been shown to be in the order 

tundra<boreal<temperate (Knox et al., in review; Treat et al., 2018; Turetsky et al., 2014). This discrepancy may be due to the 

limited number of measurement sites and related sampling bias problems. Hence in order not to upscale an incorrect pattern 

of decreasing CH4 emissions when moving from boreal to temperate regions, the biome class was omitted from upscaling. In 

the subsequent analysis and flux upscaling only the four first predictors (LSTn, permafrost category, Rpot and SC) are utilized. 

We further tested whether information about wetland type or sedge cover would improve the model performance even though, 

although these categorical variables were not available in gridded format and hence were not usable for upscaling. Including 

the sedge flag increased the NSE to 0.53, although the increase in Pearson correlation was not statistically significant (p>0.05, 
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comparison of correlation coefficients using Fisher’s r to z transformation). Also, wetland type did not have a statistically 

significant influence on the model performance (p>0.05 and NSE=0.49 if type included). Using too many categorical variables 

in a RF model may be problematic because each site may end up with a unique combination of categorical variables. 

The most important predictor for the model was temperature, similar to numerous studies showing that wetland CH4 emissions 

are strongly correlated to soil temperature (Christensen et al., 2003; Helbig et al., 2017; Jackowicz-Korczyński et al., 2010; 

Rinne et al., 2018; Yvon-Durocher et al., 2014; Knox et al., in review). Selection of LSTn as the primary driver instead of the 

other temperature variables was likely an outcome of the available data and the used algorithm to select the drivers. With 

slightly different data set (more sites) other temperature variables (e.g. Tair) might have been more important drivers for the 

CH4 flux variability. Estimating apparent Q10 from the RF model LSTn dependence yielded a value of 1.90+/-0.03 and for 

validation data it was slightly higher (1.97+/-0.06) (Fig. 3). These values are comparable to the ones reported in Turetsky et 

al. (2014) for CH4 chamber measurements at bog and fen sites. The temperature dependence of CH4 production is modelled in 

many process models with the parameter Q10 value close to 2 (Xu et al., 2016b), which agrees with the CH4 emission 

temperature dependence shown here. However, one should note that also CH4 oxidation depends on temperature and the 

derived apparent Q10 value describes the temperature dependence of surface CH4 emission, which is always a combination of 

CH4 production and oxidation. 

3.2 Model agreement with validation data 

The overall systematic bias (BE) between the RF predictions and validation data was negligible (Fig. 4), whereas the spread 

of the data (RE) was more pronounced (Fig. 4). RE is evident in Fig. 4 also as significant scatter around the 1:1 line. Following 

Moffat et al. (2010), RE was analysed further by binning the data based on CH4 flux magnitude and calculating RE for each 

bin. RE clearly correlated with flux magnitude (RE = (0.52±0.06)FCH4+(3.3±2.0) nmol m-2 s-1, where FCH4 denotes CH4 flux) 

indicating that the relative random error of the RF model prediction was nearly constant and approximately 50 % for high 

fluxes. The systematic error BE did not show a clear dependence on flux magnitude. The RF model performance was worse 

on site mean level than with monthly data. When comparing site means, NSE and R2 were both 0.25 and RE and BE were 27.0 

nmol m-2 s-1 and 1.5 nmol m-2 s-1, respectively. Possible drivers causing the remaining CH4 flux variability not captured by the 

RF model (i.e. the scatter in Fig. 4) are discussed in Sect. 4.2.1. 

When considering the model performance for each site separately, the agreement shows different characteristics (see Fig. 5 

for four examples). For individual sites the magnitude of BE is typically somewhat higher (median of absolute value of BE 

approximately 11 nmol m-2 s-1), whereas RE is lower than for the overall agreement (median RE approximately 10 nmol m-2 

s-1). These results indicate that the upscaled CH4 fluxes have in general relatively low bias and high random error, whereas 

individual pixels in the upscaled CH4 map may have higher bias, but lower random error. 

The mean annual cycle of CH4 emission predicted by the RF model agrees well with the mean annual cycle calculated from 

the validation data (not shown). During the nongrowing season the RF model slightly overestimates the fluxes (15 % 

overestimation) but such differences were negligible. Difference between , but during rest of the year the differences are 
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negligible (<1 %). However, for individual sites CH4 emission seasonality the agrees lessment is not as good. For instance, at 

US-Los (located in Wisconsin, US) the modelled CH4 emissions start to increase one month earlier too early in the spring (Fig. 

5b). Tand the nongrowing season fluxes are overestimated at all four example sites (FI-Sii, US-Los, US-Atq and RU-Ch2; Fig. 

5). TOut of the example sites, the mean flux magnitude is modelled well at FI-Sii (Fig. 5a), whereas at US-Los (Fig. 5b) and 

US-Atq (Fig. 5c) the RF model overestimates and at RU-Ch2 (Fig. 5d) underestimates the CH4 emissions. The flux bias had a 

relatively large impact on site-specific NSE. For example, for US-Atq NSE was -1.85, meaning that the mean of observation 

means would be a better predictor for this site than the RF model (see the NSE definition in Sect. 2.2). The RF model is not 

able to replicate the between-year differencesinterannual variability in CH4 emissions at the example sites. Capturingand 

explaining the interannual variability has been difficult also in previous upscaling studies of CO2 and energy fluxes (e.g. 

Tramontana et al., 2016). 

In general, the RF model performance was better for permafrost-free sites without than for sites with permafrost (r = 0.66 and 

r = 0.51, respectively; p<0.05), which is likely related to the fact that at sites with permafrost the MODIS LSTn is not as 

directly related to the soil temperature than at sites without permafrost. Hence, LSTn is not as good proxy for the temperature 

which is controlling both CH4 production and consumption and this results in a worse performance than at sites without 

permafrost. 

3.3 Upscaled CH4 fluxes 

The RF model developed in this study was used together with the gridded input datasets (Sect. 2.4) and wetland distribution 

maps (Sect. 2.5) to estimate CH4 emissions from northern wetlands induring years 2013 and 2014. The mean CH4 emissions 

of the two years from the RF model are plotted in Fig. 6 together with CH4 wetland emission maps from the process model 

LPX-Bern and model ensemble WetCHARTs. Differences between the process model estimations and upscaled fluxes are 

shown in Fig. 7. In general, the spatial patterns are similar amonglook similar in all emission maps, which is not surprising 

given that understandable since the spatial variability is largely controlled by the underlying wetland distributions. One 

noteworthy difference is that WetCHARTs, RF-PEATMAP (i.e. RF modelling with PEATMAP) and RF-GLWD show higher 

emissions from western Canada than LPX-Bern or the upscaled fluxes using the wetland map from that process model (RF-

DYPTOP). The other difference is that RF-GLWD show negligible emissions from Fennoscandia (Fig. 6c). These differences 

are related to differences in the underlying wetland maps. While the wetland maps differ, there is no consensus on which is 

more accurate, so comparisons indicate the uncertainty in upscaling emanating from uncertainties in wetland distribution. 

Three statistical metrics (NSE, R2 and RE) were calculated between RF-DYPTOP and LPX-Bern for each grid cell (Fig. 8). 

The figure illustrates how well the temporal variability of CH4 emissions estimated by RF-DYPTOP and LPX-Bern agree in 

each grid cell. NSE values are low in areas where the systematic difference between RF-DYPTOP and LPX-Bern was high 

(compare Figs. 8a and 7a) since the bias strongly penalises NSE. The R2 values are high throughout the study domain, likely 

due to the fact that the seasonal cycle of CH4 emissions dominated the temporal variability in most of the grid cells and the 

seasonal cycles were in phase between RF-DYPTOP and LPX-Bern. RE values calculated between RF-DYPTOP and LPX-
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Bern were high in areas where also the emissions estimated by RF-DYPTOP were high (compare Figs. 8c and 6a). This is 

likely due to the fact that, even though the seasonal cycles were in phase, their amplitudes were different which increased the 

variability between LPX-Bern and RF-DYPTOP (i.e. increase in RE). 

The uncertainties of the upscaled fluxes were estimated from the spread of predictions made with the ensemble of 200 RF 

models ((Sect. 2.1.2) and are shown in Fig. 89). The uncertainty mostly scales with the flux magnitude (compare Fig. 6 a)-c) 

with Fig. 8 9 a)-c)), meaning that grid cells with high fluxes tend to have also high uncertainties. However, the relative flux 

uncertainty does have some geographical variation (Fig. 8 9 d)-f)). The highest relative uncertainties are typically at the highest 

and lowest latitudes of the study domain. In these locations the dependencies between the predictors and the CH4 flux are not 

as well-defined as in the locations with lower uncertainties leading to larger spread in the ensemble of RF model prediction. 

For instance, at low latitudes LSTn may go beyond the range of LSTn values in the training data (see the range in Fig. 3) and 

hence the RF model predictions are not well-constrained in these situations. On the other hand, lower relative uncertainties are 

typically obtained for locations close to the measurement sites incorporated in this study (compare Fig. 1 and 89), since the 

dependencies between the predictors and the CH4 flux are better defined better. 

The seasonalitiesy of the upscaled fluxes and CH4 fluxes from process models are similar with highest CH4 emissions in July-

August and lowest in February. , and Tthis seasonal pattern is consistentcomparable throughout the whole study domain (Fig. 

910). Warwick et al. (2016) and Thonat et al. (2017) showed that the northern wetland CH4 emissions should peak in August-

September in order to explain correctly the seasonality of atmospheric CH4 mixing ratios and isotopes measured across the 

Arctic. Hence the wetland CH4 emissions presented here are peaking approximately one month too early to perfectly match 

with their findings. CH4 flux magnitude agrees well between WetCHARTs and the upscaled flux during spring and midsummer 

(April-July), whereas LPX-Bern is estimating lower fluxes (0 % and 26 % difference, respectively). During late summer and 

autumn (August-October) both process models are estimating slightly lower fluxes than the upscaled estimate (17 % and 19 

% difference, respectively). The upscaled fluxes show somewhat higher emissions also during the nongrowing season 

(November-March) than the two process models (27 % and 35 % difference, see Table 2) and the upscaled estimates of 

nongrowing season emissions are relatively close to athe recent model estimate (by Treat et al. (2018). This result promotes 

the recent notion that process models might be underestimating nongrowing season fluxes at high latitudes (e.g. Treat et al., 

2018; Xu et al., 2016a; Zona et al., 2016). 

Treat et al. (2018) adjusted WetCHARTs model output so that it matches with their estimates of nongrowing season CH4 

emissions and then estimated annual wetland CH4 emissions north offrom 40 °N to be 37 ± 7 Tg(CH4) yr-1 using this adjusted 

model output. The estimates derived here for the annual emissions using the three wetland maps are similar (see Table 2), 

especially when considering ourthat here we have slightly smaller study domain (above 45 °N). The two process models 

included in this study estimated slightly lower mean annual emissions than the upscaled fluxes (11 % and 26 % difference 

between the mean upscaled estimate and WetCHARTs and LPX-Bern, respectively; see also Table 2). However, given the 

uncertainties in upscaling as well as in process models this can be regarded as relatively good agreement. Different process 

models may be driven with different climate forcing data and they may have discrepancies in the underlying wetland 
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distributions, in addition to the different parameterisations and descriptions of the processes behind the CH4 emissions. These 

sources of uncertainty should be recognised when models are compared against each other or against upscaling products.  

In order to further evaluate the agreement between the upscaled fluxes and process models we focusedconcentrated on two 

specific regions: Hudson Bay Llowlands (HBL) and Wwestern Siberian Llowlands (WSL) (see locations in Fig. 1). The 

upscaled fluxes indicateshow clearly higher annual emissions for both subdomains compared tothan the two process models, 

or what has been previously published estimated in the literature (Table 2)., Falthough for WSL the upscaled estimates are 

within the range of variability observed between process models and inversion modelling in WETCHIMP-WSL (Bohn et al., 

2015) and close to Thompson et al. (2017). TBohn et al. (2015) also notes that the upscaled estimates by Glagolev et al. (2011) 

might is most likely an underestimate of the CH4 emissions from the WSL area (Bohn et al. ,2015). Furthermore, the process 

models in Bohn et al. (2015) are likely underestimating the nongrowing season CH4 emissions which might partly explain the 

discrepancy to the upscaled estimates in this study. Hence, the upscaled CH4 emission estimates for the WSL area, while large, 

are still in a reasonable range. 

For HBL, the discrepancy between upscaled emission estimates and the estimates based on process models or previous studies 

is larger (Table 2). The upscaling results agree with Zhang et al. (2016) and Melton et al. (2013) but show over twice larger 

emissions from HBL than the other estimates (Table 2). This cannot be explained by wetland mapping since the difference 

holds also when DYPTOP wetland map is used in upscaling. There are only fewnot many long-term EC flux studies conducted 

in the HBL area and the only one found (Hanis et al., 2013) showed on average 6.9 g(CH4) m-2 annual emissions at a subarctic 

fen located in the HBL. If the upscaled CH4 emissions are downscaled back to ecosystem level at the HBL area with wetland 

maps, we get on average 11.0 g(CH4) m-2 annual CH4 emission for the HBL area based on the RF model output, which is 1.6 

times larger than the estimate by Hanis et al. (2013). While Hanis et al. (2013) studied only one wetland during different years 

than here (years 2008…-2011 in Hanis et al. (2013), here 2013…-2014) it is still noteworthy that the relative difference 

between Hanis et al. (2013) and this study is similar to the discrepancy between this study and the inversion estimates (Pickett-

Heaps et al. (2011); Thompson et al. (2017)) at the whole HBL scale. All three studies (Hanis et al. (2013); Pickett-Heaps et 

al. (2011); ) and Thompson et al. (2017)) show near zero CH4 emissions during October…-April and onset of CH4 emissions 

in mid-May or even June, largely dependent on when the ground was free of snow and unfrozen. This is somewhat surprising 

given the fact that only 32 % of wetlands in the area are underlain by permafrost (based on amalgam of PEATMAP and 

permafrost map) and hence the soils are likely not completely frozen and some non-growing season CH4 emissions are likely 

to occur in such conditions (e.g. Treat et al., 2018). The upscaled nongrowing season CH4 emissions show on average 1.1 

Tg(CH4) yr-1 emissions during these nongrowing season months for the HBL area. This partly, but not completely, explains 

the discrepancy between the CH4 emission estimates for the HBL area. All these results suggest that the upscaled product 

likely overestimates CH4 emissions from the HBL area. 
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Discussion 

4.1 Comparing the RF model predictive performance to previous studies 

The RF model performance was worse when compared against independent validation data than what has been achieved in 

previous upscaling studies for GPP and energy fluxes (R2>0.7), and ecosystem respiration (Recoeco; R2>0.6) (e.g. Jung et al., 

2010; Tramontana et al., 2016). ,However, whereas the RF model performance for monthly CH4 emissions was comparable 

tofor net ecosystem exchange of CO2 (NEE) washas been similar (R2<0.5) as here for monthly CH4 emissions (e.g. Jung et al., 

2010; Tramontana et al., 2016). Likely reasons for this finding include for instance that for other fluxes there is simply more 

data available from several sites spanning the globe. For example, the La Thuile synthesis dataset used by Jung et al. (2010) 

and Tramontana et al. (2016) consists of 965 site-years of data from over 252 EC stations., Hwhereas here we have data from 

25 sites with CH4 fluxes. Furthermore, the drivers (or proxies for the drivers) of e.g. GPP and energy fluxes are more easily 

available from remote sensing (e.g. MODIS) and weather forecasting re-analysis data sets (e.g. WFDEI). In contrast,, whereas 

CH4 emissions are more related to belowground processes, thus  taking place belowground thusand hence the drivers for these 

processes are more difficult to measure remotely, which is in practice needed for the upscaling. Also, there are temporal lags 

between changes in drivers (e.g. LSTn) and CH4 fluxes in responses to these changes. Consequently, and hence training a 

machine learning model such as RF model on such data is difficult since the RF model assumes a instantaneous direct 

relationship between the change and response. However, one should also note that GPP or Recoeco are never directly measured 

with the EC technique, they are always at least partly derived products (Lasslop et al., 2009; Reichstein et al., 2005). Hence 

direct functional relationships between GPP and Recoeco and their environmental drivers are inherently included in these flux 

estimates, whereas NEE and CH4 emissions arecan be directly measured without additional modelling. Also, both NEE and 

CH4 emissions are differences between component fluxescombinations of two counteracting processes (NEE: GPP and 

Recoeco; CH4 flux: production and oxidation). Therefore, GPP and Recoeco upscaling algorithms show better correspondence 

with validation data than for NEE or CH4 emissions and the results for NEE would be the correct point of reference for the RF 

model performance presented here. 

While the RF model performance in this study was inferior to previous upscaling studies for other fluxes when evaluated using 

different statistical metrics, it was still comparable to what has been shown before for several process models for CH4 emission 

(McNorton et al., 2016; Wania et al., 2010; Zürcher et al., 2013; Zhu et al., 2014; Xu et al., 2016a). For instance, McNorton 

et al. (2016) validated the land-surface model JULES against CH4 flux data from 13 sites and found R2=0.10 between the 

validation data and the model. Wania et al. (2010) found on average RMSE=29 nmol m-2 s-1 and RMSE=42 nmol m-2 s-1 with 

and without tuning their model LPJ-WhyMe against CH4 flux data from seven sites. Zürcher et al. (2013) found the time-

integrated CH4 flux to be well represented by LPX-Bern model across different sites. A and a tight correlation (R2 = 0.92) is 

found between simulated and measured cumulative site emissions after calibrating the model against the measurements. While 

Xu et al. (2016a) did not explicitly show any statistical metrics, their model (CLM4.5) comparison against site level CH4 flux 

data seemed to be somewhat better than in Wania et al. (2010) or McNorton et al. (2016). Xu et al. (2016a) emphasize the 
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importance of nongrowing season emissions and the fact that their model was clearly underestimating these emissions. Zhu et 

al. (2014a) calibrated their model (TRIPLEX-GHG) for each measurement site by changing e.g. the Q10 for CH4 production 

and CH4 to CO2 release ratio to be site-specific and found on average R2=0.64 when comparing the calibrated model against 

measurements at 17 CH4 flux measurement sites. However, their findings are not directly comparable to the RF model 

agreement with validation data shown here due to their model calibration against data before comparison. Nevertheless, their 

results show that even after calibration, the process models are not fully able to capture the CH4 flux variability in 

measurements. Miller et al. (2014) argued that the structure of some of the process models is so might be too complex so that 

the their required forcing variablesinput information may not cannot be reliabley provided at larger spatial scales. All of these 

five models (JULES, LPJ-WhyMe, LPX-Bern, CLM4.5 and TRIPLEX-GHG) are contributing to the global CH4 budget 

estimation within the Global Methane Project (Saunois et al., 2016), highlighting that these results summarize the agreement 

between state-of-the-art process models and field measurements. 

4.2 Methods to improve RF model predictive performance 

4.2.1 Missing predictors 

In this study a statistical model was developed using the RF algorithm, and the model was able to yield R2=0.47 against 

monthly CH4 flux validation data. Our upscaling using RF model focused on 2013-2014, as these were the years with the 

largest overlap of collected data. However, all data from all the years (2005-2016) were used to develop and validate the model. 

The incomplete match between the RF model and validation data is likely caused by the fact that not all the possible drivers 

causing inter- and intra-sitewithin and across site variability into the CH4 emissions were included in the analysis and hence 

all the variability could not be explained by the model. 

Christensen et al. (2003) were able to explain practically all the variability (R2=0.92) in annual CH4 emissions in their multisite  

chamber study with only two predictors: temperature and the availability of substrates for CH4 production. Also, Yvon- 

Durocher et al. (2014) speculate that the amount of substrates for microbial CH4 production explains across site variability of 

CH4 fluxes in their data. However, gridded data on spatially explicit substrate information nsuch are currently nonexistent. 

data about substrates is impossible to achieve in a gridded format, which is a strict requirement for upscaling. Hence proxies 

for the substrates available for methanogenesis are needed. The current paradigm on wetland CH4 emissions is that most of 

the emitted CH4 is produced from recently fixed carbon being used as precursors for the, since CH4 producing Archaea favour 

fresh labile carbon (e.g. Chanton et al., 1995; Whiting and Chanton, 1993). Most of the process models are based on the 

premise that a certain fraction of ecosystem net primary productivity (NPP) is available and used for CH4 production or 

alternatively a fraction of heterotrophic respiration is allocated to CH4 emissions (e.g. Xu et al., 2016b). ThusHence, 

hypothetically ecosystem NPP (or GPP) could potentially also be included as a predictor here for the RF model and used as a 

proxy for the amount of substrates available for CH4 production. However, the RF model performance in this study was not 
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enhanced if variables closely related to NPP (EVI and the product of EVI and LSTd) were included as predictors. Also, Knox 

et al. (in review) did not find GPP as an important predictor of CH4 emission variability in their multi-site synthesis study. 

Using the ecosystem level NPP (or proxies for it) for the RF model development might be an oversimplificationoverly 

simplified approach, since it has been shown that it is especially the deep-rooting sedges and their NPP that are important for 

CH4 production (Joabsson and Christensen, 2002; Ström et al., 2003, 2012; Waddington et al., 1996). Hence, information 

about plant functional types (PFTs) would be needed to better explain the CH4 flux variability (Davidson et al., 2017; Gray et 

al., 2013). Furthermore, the fraction of the fixed carbon allocated to the roots and released as root exudates (hence available 

for CH4 production) varies between species and root age (Proctor and He, 2017; Ström et al., 2003), further complicating the 

connection between NPP and CH4 emissions this issue. The sedges also act as conduits for CH4 allowing the CH4 produced 

below water level to rapidly escape to the atmosphere and bypass the oxic zone in which the CH4 might have otherwise been 

oxidized (Waddington et al., 1996; Whiting and Chanton, 1992). Besides sedges, Spaghnum mosses are also important because 

methanotrophic bacteria that live in symbiosis with these mosses significantly decrease the CH4 emissions to the atmosphere 

when they are present (Larmola et al., 2010; Liebner et al., 2011; Parmentier et al., 2011; Raghoebarsing et al., 2005; Sundh 

et al., 1995). In a modelling study, Li et al. (2016) showed that it was essential to consider the vegetation differences between 

sites when modelling CH4 emissions from two northern peatlands. Hence, ideally one should have gridded information on 

wetland species composition and associated NPPin a gridded format together with their NPP across the high latitudes to 

significantly improve the upscaling results from the results shown here. UnfortunatelyNaturally such information is not 

yetreadily available and therefore alternatively modelled estimates could be used (e.g. LPX-Bern which includes several 

peatland-specific PFTs which are allowed to freely to evolve during the model run) (Spahni et al., 2013). However, in such 

case the upscaled CH4 emission estimates would not be any more model independent and therefore less suitable for model 

validation. We also note that many process models have only one PFT per wetland. 

Different variables related to water input to the ecosystem (i.e. P, Pann) or surface moisture (SRWI) did not enhance the RF 

model predictive performance, recognizing reflecting that water table depth (WTD) is not solely controlled by input of water 

via precipitation, but also evapotranspiration and lateral flows affect wetland WTD, data that were missing from our study. 

These findings are consistent with previous studies (e.g. Christensen et al. 2003, Rinne et al. 2018, Pugh et al. 2018 and Knox 

et al. (in review)) who showed only a modest CH4 flux dependence on WTD in wetlands/peatlands, if any. In contrast, several 

chamber-based studies have shown a positive relationship between WTD and CH4 fluxes (Granberg et al., 1997; Olefeldt et 

al., 2012; Treat et al., 2018; Turetsky et al., 2014). In general, chamber-based studies often show spatial dependency of CH4 

flux dependency on WTD whereas studies done at ecosystem scale with EC generally do not show temporal WTD dependency, 

albeit there are exceptions (e.g. Zona et al., 2009). This might indicate that WTD controls meter scale spatial heterogeneity of 

CH4 flux between microtopographical features (e.g. Granberg et al., 1997) but not temporal variability on the ecosystem scale, 

provided that WTD stays relative close to the surface. Also, the chamber studies tend to observe spatial variation, which can 

be indirectly influenced by WTD via its influence to plant communities, whereas EC studies observe typically temporal 

variation in sub-annual timescales. However, the effect of WTD might be masked by a contradictingconfounding effect caused 
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by plant phenology, since vegetation biomass often peaks at the same time as the WTD is at its lowest. While the variables 

related to WTD did not increase the RF model performance, WTD might still play a role in controlling ecosystem scale CH4 

variability when it is exceptionally high or low. For instance, the year 2006 was exceptionally dry at the Siikaneva fen and 

hence CH4 emissions during that year were lower than on average (cf. Fig. 5a). However, in order to accurately capture such 

dependencies with the machine learning techniques (such as RF), they should be frequent enough so that the model can learn 

these dependencies. 

RF model performance was better at non-permafrost-free than at permafrost sites which might indicate and this likely related 

to the fact that the LSTn might not beis not an appropriate good proxy for the temperature controlling the CH4 production and 

oxidation rates at sites with permafrost. Also, no information on the development of the seasonally unfrozen, and 

hydrologically and biogeochemically about active layer depth was not included in the RfF modelhere. Furthermore, Zona et 

al. (2016) showed strong hysteresis between soil temperatures and CH4 emissions at their permafrost sites in Alaska, whereas 

for instance Rinne et al. (2018) show a synchronous exponential dependence between soil temperature and CH4 emissions at 

a boreal fen without permafrost. The hysteresis observed in Zona et al. (2016) could be explained by the fact that part of the 

produced CH4 at these permafrost sites is stored below ground for several months before it is being emitted to the atmosphere 

causing a long temporal lag between soil temperature and observed surface flux which would emerge as a hysteresis between 

soil temperature and CH4 emission. In any case, more knowledge on soil processes (soil thawing and freezing, CH4 production 

and storage) are needed before the CH4 emissions from these permafrost ecosystems can be extrapolated to other areas with 

greater confidence. 

It should be emphasized that the drivers causing across site variability in ecosystem scale CH4 emissions are in general 

unknown since studies comparing EC CH4 fluxes from multiple wetland sites have only recently been published (Baldocchi, 

2014; Knox et al., in review; Petrescu et al., 2015). Most previous CH4of the past synthesis studies were based have 

concentrated on plot-scale measurements (Bartlett and Harriss, 1993; Olefeldt et al., 2012; Treat et al., 2018; Turetsky et al., 

2014).), HhHowever, the CH4 flux responses to environmental drivers and their relative importance might be somewhat 

different at ecosystem scale since CH4 fluxes typically show significant spatial variability aton sub-m scale (e.g. Sachs et al., 

2010). Furthermore, the temporal coverage of plot-scale measurements with chambers is usually relatively poor, whereas EC 

measurements provide continuous data on ecosystem scale. This study and Knox et al. (in review) show that temperature is 

important when predicting CH4 flux variability in a multisite CH4 flux dataset, but significant fraction of CH4 flux variability 

is still left unexplained. It remains a challenge for future EC CH4 flux synthesis studies to discover the drivers explaining the 

rest of the variability. 

4.2.2 Quality and representativeness of CH4 flux data 

The RF model performance may improve if instrumentation, measurement setup and the data processing are harmonized across 

sites, since these discrepancies between flux sites might have caused spurious differences in CH4 fluxes. These differences 

would have created additional variability in the synthesiswhole dataset which would in turn 1) influence the training of RF 
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model and 2) decrease e.g. NSE values obtained against validation data since there would be artificial variability in the 

validation data which is not related to the predictors. In this study, the site PIs processed the data themselves using different 

processing codes, albeit the gapfilling was done centrally in a standardized way. 

While these issues mentioned above could impact the upscaling results shown here, prior studies have shown that the usage of 

different instruments or processing codes do not significantly impact CH4 flux estimates. For instance, Mammarella et al. 

(2016) showed that the usage of different processing codes (EddyPro and EddyUH) resulted in general in 1 % difference in 

long-term CH4 emissions. On the other hand, CH4 instrument cross comparisons have shown small differences (typically less 

than 7 %) between the long term CH4 emission estimates derived using different instruments (Goodrich et al., 2016; Peltola et 

al., 2013, 2014). While these studies show consistent CH4 emissions they also stress that the data should be carefully processed 

to achieve such good agreement across processing codes and instruments. In addition, many issues related to e.g. friction 

velocity filtering and gapfilling of CH4 fluxes are still unresolved, and the role of short-term emission bursts, which are 

common in methane flux time series, needs to be further investigated (e.g. Schaller et al., 2017). However, recently Nemitz et 

al. (2018) advanced these issues by proposing a methodological protocol for EC measurements of CH4 fluxes used to 

standardize CH4 flux measurements within the ICOS measurement network (Franz et al, 2018). 

Twenty-five flux measurement sites were included in this study and they were distributed across the Arctic-Boreal region (see 

Fig. 1). The measurements were largely concentrated in the Fennoscandia and Alaska, whereas data from e.g. the HBL and 

WSL areas were missing. Long-term EC CH4 flux measurements are largely missing from these vast wetland areas casting 

uncertainty on wetland CH4 emissions from these areas. The location of a flux site is typically restricted by practical limitations 

related to e.g. ease of access and availability of grid power. Hence open-path instruments with low power requirements 

potentially open up new areas for flux measurements (McDermitt et al., 2010), yet they need continuous maintenance which 

is not necessarily easy in remote locations. However, one could argue that the geographical location of flux sites is not vital 

for upscaling, more important is that the available data represents well the full range of CH4 fluxes across the northern latitudes 

and more importantly the CH4 flux responses to the environmental drivers. Also, sites should ideally cover all different 

wetlands with varying plant species composition, whereas geographical representation is not necessarily as important. CH4 

flux site representativeness could be potentially assessed in the same vein as in previous studies for other measurement 

networks (Hargrove et al., 2003; Hoffman et al., 2013; Papale et al., 2015; Sulkava et al., 2011). However, before such analysis 

can be done, the main drivers causing across sites variability in ecosystem scale CH4 fluxes should be better identified. 

Most of the CH4 flux data here and in the literature have been recorded during the growing season when the CH4 fluxes are at 

maximum, whereas year-round continuous CH4 flux measurements are not as common. This is likely due to the harsh 

conditions in the Arctic during winter which make continuous high-quality flux measurements very demanding (e.g. Goodrich 

et al., 2016; Kittler et al., 2017a), but also in part since the large-scale importance of nongrowing season emissions has just 

recently been recognized (Kittler et al., 2017b; Treat et al., 2018; Xu et al., 2016a; Zona et al., 2016). For upscaling year-round 

CH4 emissions, continuous measurements are vital to accurately constrain also the non-growing season emissions and their 

drivers. 
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5 Data availability 

The presented upscaled CH4 flux maps (RF-DYPTOP, RF-PEATMAP and RF-GLWD), and their uncertainties and the 

underlying CH4 flux densities are accessible via an open-data repository Zenodo (Peltola et al., 2019). The datasets are saved 

in netCDF-files and they are accompanied by a read me file. The dataset can be downloaded from 

https://doi.org/10.5281/zenodo.2560163 10.5281/zenodo.2560164. 

6 Conclusions 

Methane (CH4) emission data consisting ofcomprising over 40 site-years from 25 eddy covariance flux measurement sites 

across the Arctic-Boreal region were assembled and upscaled to estimate CH4 emissions from northern (>45 °N) wetlands. 

The upscaling was done using the random forest (RF) algorithm. The performance of the RF model was evaluated against 

independent validation data utilizing the leave-one-site-out scheme which yielded value of 0.47 for both the Nash-Sutcliffe 

model efficiency and R2. These results are similar to previous upscaling studies for the net ecosystem exchange of carbon 

dioxide (NEE) but are less good than for the individual components of NEE or energy fluxes (e.g. Jung et al., 2010; Tramontana 

et al., 2016). The performance is also comparable to studies where process models are compared against site CH4 flux 

measurements (McNorton et al., 2016; Wania et al., 2010; Zürcher et al., 2013; Zhu et al., 2014; Xu et al., 2016a). Hence, 

despite the relatively high fraction of unexplained variability in the CH4 flux data, the upscaling results are useful for comparing 

against models and could be used to evaluate model results. The three gridded CH4 wetland flux estimates and their 

uncertainties are openly available for further usage (Peltola et al., 2019). 

The upscaling to the regions > 45 °N resulted in mean annual CH4 emissions comparable to prior studies on wetland CH4 

emissions from these areas (Bruhwiler et al., 2014; Chen et al., 2015; Spahni et al., 2011; Treat et al., 2018; Watts et al., 2014; 

Zhang et al., 2016; Zhu et al., 2013) and hence in general support the prior modelling results for the northern wetland CH4 

emissions. When compared to two validation areas, the upscaling likely overestimated CH4 emissions from the Hudson Bay 

Llowlands, whereas emission estimates for the western Siberian lowlands were in a reasonable range. Future CH4 flux 

upscaling studies would benefit from long-term continuous CH4 flux measurements, centralized data processing and better 

incorporation of CH4 flux drivers (e.g. wetland vegetation composition and carbon cycle) from remote sensing data needed for 

scaling the fluxes from the site level to the whole Arctic-boreal region. 

Appendix A 

Table A1. Description of eddy covariance sites included in this study. 
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Time 
resol
ution 
of 
data 

Wetl
and 
type 

Biom
e 
base
d on 
Olso
n et 
al. 
(201
1) 

perma
frost 
presen
t 
(true/f
alse) 

sedges 
as 
domin
ant 
vegetat
ion 
type 
(true/fa
lse) 

Refere
nce 

Amou
nt of 
monthl
y CH4 
flux 
data 
availab
le 

Latit
ude, 
Long
itude 

Site PI 
Site 
ID 

Nam
e 

30 
min 

bog 
temp
erate 

false false 

Homm
eltenbe
rg et 
al. 
(2014) 

2 

47.8
064, 
11.3
275 

Janina 
Klatt, 
Hans 
Peter 
Schmid 

DE-
SfN 

Sche
chen
filz 
Nord 

30 
min 

wet 
tundr
a 

tundr
a 

true true 

Parme
ntier et 
al. 
(2011) 

5 

70.8
291, 
147.
4943 

Albertus 
J. 
Dolman 

RU-
Cok 

Chok
urda
kh 

30 
min 

wet 
tundr
a 

tundr
a 

true false 

Marus
hchak 
et al. 
(2016) 

5 

67.0
547, 
62.9
405 

Thomas 
Friborg 

RU-
Vor 

Vork
uta 

30 
min 

fen 
tundr
a 

false true 
Jamme
t et al. 
(2017) 

6 

68.3
542, 
19.0
503 

Thomas 
Friborg 

SE-
St1 

Stord
alen 

30 
min 

bog 
tundr
a 

true 
and 
falsea 

false  55 

68.3
560, 
19.0
452 

Janne 
Rinne 

SE-
Sto 

Stord
alen 
(ICO
S)* 

30 
min 

fen 
borea
l 

false true 
Rinne 
et al. 
(2018) 

104 

61.8
327, 
24.1
928 

Timo 
Vesala, 
Ivan 
Mammar
ella 

FI-
Sii 

Siika
neva 
1 
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30 
min 

bog 
borea
l 

false false 

Korren
salo et 
al. 
(2018) 

26 

61.8
375, 
24.1
699 

Timo 
Vesala, 
Ivan 
Mammar
ella 

FI-
Si2 

Siika
neva 
2 

30 
min 

fen 
borea
l 

false true 
Aurela 
et al. 
(2009) 

59 

67.9
972, 
24.2
092 

Annalea 
Lohila 

FI-
Lom 

Lom
poloj
änkk
ä 

daily bog 
borea
l 

false false 
Nadea
u et al. 
(2013) 

3 

53.6
744, 
-
78.1
706 

Daniel F. 
Nadeau 

CA-
JBL 

Jame
s 
Bay 
lowl
ands 

30 
min 

fen 
temp
erate 

false false 
Pugh 
et al. 
(2018) 

30 

46.0
827, 
-
89.9
792 

Ankur R. 
Desai 

US-
Los 

Lost 
Cree
k 

30 
min 

wet 
tundr
a 

tundr
a 

true true 
Zona 
et al. 
(2016) 

11 

70.4
696, 
-
157.
4089 

Donatell
a Zona 

US-
Atq 

Atqa
suk 

30 
min 

wet 
tundr
a 

tundr
a 

true true 
Zona 
et al. 
(2016) 

16 

71.2
810, 
-
156.
6123 

Donatell
a Zona 

US-
Beo 

Barr
ow 
Envi
ronm
ental 
Obse
rvato
ry 

30 
min 

wet 
tundr
a 

tundr
a 

true true 
Zona 
et al. 
(2016) 

16 

71.2
809, 
-
156.
5965 

Donatell
a Zona 

US-
Bes 

Bioc
ompl
exity 
Expe
rime
nt 
Sout
h 
towe
r 
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30 
min 

wet 
tundr
a 

tundr
a 

true true 
Zona 
et al. 
(2016) 

15 

68.4
865, 
-
155.
7502 

Donatell
a Zona 

US-
Ivo 

Ivotu
k 

30 
min 

fen 
temp
erate 

false false 
Long 
et al. 
(2010) 

5 

54.9
538, 
-
112.
4670 

Lawrenc
e B. 
Flanagan 

CA-
WP1 

West
ern 
peatl
and 
1 

daily bog 
temp
erate 

false false 
Brown 
et al. 
(2014) 

16 

45.4
094, 
-
75.5
186 

Elyn 
Humphr
eys 

CA-
Mer 

Mer 
Bleu
e 

daily 
wet 
tundr
a 

borea
l 

true true 
Kittler 
et al. 
(2017) 

21 

68.6
169, 
161.
3509 

Mathias 
Göckede 

RU-
Ch2 

Cher
sky 
refer
ence 

30 
min 

fen 
temp
erate 

false true 

Kowal
ska et 
al. 
(2013) 

4 

52.7
622, 
16.3
094 

Bogdan 
Chojnick
i 

PL-
wet 

Rzec
in 

30 
min 

fen 
borea
l 

false true 
Nilsso
n et al. 
(2008) 

22 

64.1
820, 
19.5
567 

Mats B. 
Nilsson, 
Matthias 
Peichl 

SE-
Deg 

Dege
rö 
Stor
myr 

daily fen 
temp
erate 

false true 
Pypker 
et al. 
(2013) 

5 

46.3
167, 
-
86.0
500 

Thomas 
Pypker 

US-
Sen 

Sene
y 

30 
min 

bog 
borea
l 

false false 
Helbig 
et al. 
(2016) 

14 

61.3
000, 
-
121.
3000 

Oliver 
Sonnenta
g 

CA-
SCC 

Scott
y 
Cree
k 



25 
 

30 
min 

wet 
tundr
a 

tundr
a 

true true 
Sachs 
et al. 
(2008) 

11 

72.3
667, 
126.
5000 

Torsten 
Sachs 

RU-
Sam 

Sam
oylo
v 

30 
min 

wet 
tundr
a 

tundr
a 

true true  7 

68.6
060, 
-
149.
3110 

Eugenie 
S. 
Euskirch
en 

US-
ICh 

Imna
vait 
Cree
k 

30 
min 

fen 
borea
l 

false true 

Euskir
chen et 
al. 
(2014) 

16 

64.7
040, 
-
1483
130 

Eugenie 
S. 
Euskirch
en 

US-
BCF 

Bona
nza 
Cree
k, 
fen 

30 
min 

bog 
borea
l 

false false 

Euskir
chen et 
al. 
(2014) 

14 

64.7
000, 
-
148.
3200 

Eugenie 
S. 
Euskirch
en 

US-
BCB 

Bona
nza 
Cree
k, 
bog 

a Data from this site is divided into two since data from two wind directions differ from each other (with and without 

permafrost). 
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Figure 1: Map showing the locations of the EC measurements. The distribution of wetlands shown in the figure is based on Xu et al. 
(2018). Hudson Bay Llowlands (50°N-60°N, 75°W-96°W) and Wwestern Siberian Llowlands (52°N-74°N, 60°E-94.5°E) are 
highlighted with red dashed lines. 



42 
 

 

Figure 2. Evolution of statistical metrics during RF model development. Predictors were added to the RF model starting from the 
left of the figure and accumulate along the x-axis. For instance, the x-tick label “SC” shows the RF model performance when LSTn, 
Permafrost, Rpot, and SC were used as predictors in the model. See the x-tick label explanations in Table 1. The error bars denote 
1-sigma uncertainty of the values estimated with bootstrapping. 
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Figure 3. Dependence of monthly mean CH4 emissions on monthly mean land surface temperature at night (LSTn) derived from 
MODIS data. Eddy covarianceEC measurements are shown with filled markers (unique colour for each site) and random foretsRF 
model predictions for each site are given with black dots. 
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Figure 4. Relation between monthly mean CH4 fluxes predicted by the RF model and independent validation data. Monthly average 
values from the same site are identified by unique colours and least squares linear fit to data from each site is also plotted using the 
same colour. Site means are shown with markers with black edges. The dashed line shows the 1:1 line. The shaded area shows the 
uncertainty range estimated from the RE CH4 flux dependence (see text for further details). The statistics in the figure are calculated 
using the monthly data. 
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Figure 5. Time series of modelled CH4 emissions (red lines) together with validation data (circles) at four example sites: a) Siikaneva 
oligotrophic fen in Finland, b) Lost Creek shrub fen in Wisconsin, US, c) Atqasuk wet tundra in Alaska, US and d) Chersky wet 
tundra in northeast Siberia, Russia. Vertical dashed lines denote a new year. Note the changes in y-axis scales. Site specific model 
performance metrics are also included. 
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Figure 6. Mean annual CH4 wetland emissions during years 2013-2014 estimated by upscaling EC data using the RF model and 
three wetland maps (top row) and process models (bottom row). Grid cells with low CH4 wetland emissions (below 0.1 g(CH4) m-2 
year-1) are shown with grey. The flux rates refer to total unit area in a grid cell. 
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Figure 7. Difference in mean annual CH4 wetland emissions during years 2013-2014 estimated by upscaling EC data using the RF 
model with different wetland maps and process models. All the CH4 emission maps were aggregated to 1° resolution before 
comparison. The flux rates refer to total unit area in a grid cell.  
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Figure 8. NSE, R2 and RE calculated between RF-DYPTOP and LPX-Bern. Grid cells with low CH4 wetland emissions (below 0.1 
g(CH4) m-2 year-1) are shown with grey. RE values refer to total unit area in a grid cell. 
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Figure 89. Absolute (subplots a)-c)) and relative (subplots d)-f)) uncertainties of the upscaled CH4 fluxes using different wetland 
maps. Uncertainty is estimated as 1-σ variability of the predictions by 200 RF models developed by bootstrapping the training data 
(Sect. 2.1.2). Grid cells with low CH4 wetland emissions (below 0.1 g(CH4) m-2 year-1) are shown with grey. The absolute uncertainties 
refer to total unit area in a grid cell. 
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Figure 910. Monthly time series of zonal mean CH4 fluxes. The upscaled fluxes with different wetland maps are shown in subplots 
a), b) and c) and wetland CH4 emissions estimated with the two process models are given in subplots d) and e). 
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Table 1. Description of input variables for RF model development for upscaling. Data were aggregated to monthly values (see text) 
unless otherwise noted below. 

 Name Description Data source Available in 

gridded 

format 

Site measurements Tair Mean air temperature site PI & 

WFDEI 

Yes 

 P Precipitation site PI & 

WFDEI 

Yes 

 Pann Annual precipitation site PI & 

WFDEI 

Yes 

Remote sensing LSTn Land surface temperature at night MOD11A2 Yes 

 LSTd Land surface temperature at day MOD11A2 Yes 

 EVI Enhanced vegetation index MOD13A3 Yes 

 SRWI Simple ratio water index (SRWI = 

R858/R1240) 

MOD09A1 Yes 

 SC Snow cover flag MOD10A1 Yes 

 EVI* LSTd Product of EVI and LSTd, a proxy 

for GPP (Schubert et al., 2010) 

MOD13A3 & 

MOD11A2 

Yes 

Additional 

categorical variables 

Permafrost Flag for permafrost at site 

(true/false) 

site PI Yes 

 Biome Site classification based on biome 

(temperate, boreal and tundra) 

Olson et al. 

(2001) 

Yes 

 type Wetland type (fen, bog, tundra) site PI No 

 sedge flag for sedges as dominant 

vegetation type (true/false) 

site PI No 

Other Rpot & 

der(Rpot) 

Potential solar radiation at the top 

of atmosphere and its first time 

derivative 

- Yes 

 DSSM Days since snowmelt, derived 

from the snow cover flag 

- Yes 
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Table 2. Annual CH4 wetland emissions in different subdomains (Hudson Bay lowlands and Western Siberian lowlands, see Fig. 1) 
and time periods. The values are given in Tg(CH4) year-1. Note that estimates from some reference studies are not for the same 
period as the one studied here (2013-2014). For WetCHARTs the mean of the model ensemble together with the range (in 
parentheses) are given, whereas for the upscaling results the 95 % confidence intervals for the estimated emissions are given. 

 Reference Hudson Bay 

lowlands 

Western 

Siberian 

lowlands 

Nongrowing season 

fluxes from northern 

wetlands 

(November…March) 

Annual 

emissions 

north from 45 

°N 

Inversion 

models 

Bohn et al. (2015), 

WETCHIMP-WSL 

 6.06 ± 1.22   

Bruhwiler et al. 

(2014)a 

   23 

Kim et al. (2011)  2.9 ± 1.7 and 

3.0 ± 1.4 

  

Miller et al. (2014) 2.4 ± 0.3    

Spahni et al. (2011)    28.2 ± 2.2 

Thompson et al. (2017) 2.7-3.4 6.9 ± 3.6   

Process 

models 

Bohn et al. (2015), 

WETCHIMP-WSL 

 5.34 ± 0.54   

Chen et al. (2015)b 3.11 ± 0.45   35.0 ± 6.7 

Melton et al. (2013), 

WETCHIMPc 

5.4 ± 3.2    

Pickett-Heaps et al. 

(2011)d 

2.3 ± 0.3    

Treat et al. (2018)e   6.1 ± 1.5 37 ± 7 

Watts et al. (2014)    53 

Zhang et al. (2016)f 5.5 ± 1.1 4.6 ± 0.6  30.3± 5.4 

This study, LPX-Bern 2.5 4.4 4.5 24.7 

This study, 

WetCHARTs 

2.8 (0.5-8.7) 4.2 (1.6-9.4) 5.1 (0.6-17.0) 29.7 (8.7-

74.0) 

Flux 

measuremen

t upscaling 

Glagolev et al. (2011)  3.9 ± 1.3   

Zhu et al. (2013)    44.0-53.7 

This study, RF-

PEATMAP 

4.8 (3.3-6.3) 6.6 (4.9-8.4) 6.7 (4.9-8.5) 31.7 (22.3-

41.2) 
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This study, RF-

DYPTOP 

4.6 (3.1-6.0) 7.0 (5.2-8.8) 6.2 (4.6-7.8) 30.6 (21.4-

39.9) 

This study, RF-GLWD 4.9 (3.4-6.5) 6.8 (5.0-8.5) 8.0 (5.8-10.2) 37.6 (25.9-

49.5) 

a Approximately north from 47 °N 

b Approximately north from 45 °N 

c Mean annual CH4 emissions from eight models ± 1-sigma of interannual variation in the model estimates for the period 1993-

2004. 

d Process model tuned to match atmospheric observations 

e North from 40 °N 

f Mean ± 1-sigma over LPJ-wsl model results using different wetland extends for the period 1980-2000. 


