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Abstract. A global land/ocean temperature record has been created by combining the Berkeley Earth monthly land temperature 

field with spatially-kriged version of the HadSST3 dataset. This combined product spans the period from 1850 to present and 

covers the majority of the Earth’s surface: approximately 57% in 1850, 75% in 1880, 95% in 1960, and 99.9% by 2015. It 

includes average temperatures in 1°x1° lat/lon grid cells for each month when available. It agrees quite well with records from 

Hadley’s HadCRUT4, NASA’s GISTEMP, NOAA’s GlobalTemp, and Cowtan and Way, but provides a more spatially complete 10 

and homogeneous temperature field. Two versions of the record are provided treating areas with sea ice cover as either air 

temperature over sea ice or sea surface temperature under sea ice. The choice of how to assess the temperature of areas with sea 

ice coverage has a notable impact on global anomalies over past decades due to rapid warming of air temperatures in the Arctic.  

Accounting for rapid warming of Arctic air suggests ~0.1 ºC additional global-average temperature rise since the 19
th

 century 

than temperature series that do not capture the changes in the Arctic.  Updated versions of this dataset will be presented each 15 

month at the Berkeley Earth website (http://berkeleyearth.org/data/), and a convenience copy of the version discussed in this 

paper has been archived and is freely available at https://doi.org/10.5281/zenodo.3634713 (Rohde & Hausfather, 2020). 

1 Introduction 

Global land-ocean temperature indices combining 2-meter surface air temperature over land with sea surface temperatures (SST) 

over oceans are commonly used to assess changes in the Earth’s climate.  While it is a less physically meaningful metric than 20 

earth system total heat content, it is well-measured with reliable data extending back to c.1850 for oceans (Kennedy et al., 2011) 

and as far back as c.1750 for land (Rohde et al., 2013a) and is the part of the Earth system most relevant for impacts on human 

civilization. Sea surface temperatures are used in lieu of marine air temperatures due to scarcity and inhomogeneity of marine air 

temperature data (Kent et al., 2013), though it is only an imperfect proxy and may be subject to slightly different warming rates 

(Cowtan et al., 2015). 25 

 

A number of prior groups have developed global land/ocean surface temperature indexes, including NASA’s GISTEMP (Hansen 

et al., 2010; Lenssen et al 2019), Hadley’s HadCRUT4 (Morice et al., 2012), NOAA’s GlobalTemp (Smith et al., 2008; Vose et 

al., 2012), and the Japan Meteorological Agency (JMA) (Ishihara 2006). Additionally, Cowtan and Way (2014) provide a 

spatially-interpolated variant of HadCRUT4 featuring greater spatial coverage. These series differ in a number of respects. They 30 

all largely utilize the same set SST measurements drawn from the ICOADS database (Woodruff et al., 2011) and most of the 

same land temperature records contained in the Global Historical Climatological Network (GHCN) (Lawrimore et al., 2011), 

though both GISTEMP and HadCRUT4 (and by extension Cowtan and Way) include a modest number of additional land 

stations, most notably in Antarctica in the case of GISTEMP.  

 35 
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Both GISTEMP and GlobalTemp utilize NOAA’s pairwise homogenization algorithm to detect and correct inhomogenities such 

as station moves or instrument changes in land stations (Menne and Williams 2009), though NASA applies an additional satellite 

nightlight-based urbanity correction (Hansen et al., 2010).  GISTEMP and GlobalTemp both use NOAA’s Extended 

Reconstruction Sea Surface Temperature (ERSST) version 4 (Huang et al., 2014) for SSTs, HadCRUT4 and Cowtan and Way 

use HadSST3 (Kennedy et al., 2011), and JMA uses COBE-SST (Ishii et al., 2005). HadCRUT4, GlobalTemp, and JMA include 40 

no spatial interpolation outside of 5-by-5 latitude/longitude gridcells, while GISTEMP and Cowtan and Way spatially interpolate 

temperatures out to regions with no direct station coverage (GISTEMP using a simple linear interpolation technique, while 

Cowtan and Way uses Kriging). 

 

Here we describe the global land/ocean surface temperature product from Berkeley Earth that combines the Berkeley Earth land 45 

temperature data (Rohde et al 2013a; Rohde et al 2013b) with SST data from HadSST3 (Kennedy et al., 2011). It uses a Kriging-

based spatial interpolation to provide the greatest possible spatial coverage for the period from 1850 to present. The land data 

utilizes significantly more land station data (over 40,000 stations) compared to the ~10,000 land stations used by some of the 

other groups. The land component also includes the novel homogenization technique of the Berkeley Earth temperature record 

that detects breakpoints through neighbor difference series comparisons, cuts land stations into fragmentary records at 50 

breakpoints, and combines these fragmentary records into a temperature field. The ocean component of the land/ocean product 

uses an interpolated variant of HadSST v3, whose construction is described below. A version of this dataset has been publically 

available for some time, but has not been formally described. 

2 Methods 

The Berkeley Earth Land/Ocean temperature record combines the Berkeley Earth land record (Rohde et al 2013a) with SST data 55 

from HadSST3 (Kennedy et al. 2011a, Kennedy et al. 2011b). The HadSST3 data is adjusted in several ways.  The primary 

manipulation is to replace the gridded data with an interpolated field using a Kriging-based approach.  The HadSST3 data set 

provides grid cell averages on a 5° by 5° grid and only reports monthly averages for cells where data was present during the 

month in question.  HadSST3 often reports no data for ~40% of ocean grid cells.  As described below, the interpolation produces 

a more complete field and reduces the component of uncertainty associated with incomplete coverage.  While providing a more 60 

complete field, the interpolation does not materially change the apparent rate of warming in the oceans. 

 

After interpolation, the ocean temperature anomaly field is merged with Berkeley Earth land anomaly field using the fraction of 

land / water in each grid cell (typically reported with a 1° by 1° latitude/longitude resolution).  As described below, two versions 

are considered with respect to the role of sea ice. 65 

 

2.1 Interpolation Method 

The HadSST3 gridded fields provide several critical components, the temperature anomaly, the number of observations, and 

several estimates of the uncertainty (Kennedy et al. 2011a, Kennedy et al. 2011b).  The grid cell uncertainties and observation 

counts allow one to treat some grid cells as having greater confidence than others.  Unlike land surface station data, where each 70 

monthly average represents many temperature observations, the ocean observation counts are a true measure of the number of 

instantaneous SST measurements. 
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Analogous to Rohde et al 2013a, the core of the interpolation approach is to generate a Kriging-based field using an assumed 

distance-based correlation function.  As with Rohde et al 2013a, a correlation-based approach is used rather than the more 75 

common covariance-based approach to simplify the computational considerations, and should be adequate as long as the 

variance changes relatively slowly with changes in position.  A review of both the HadSST data and climate model outputs 

suggested that the temperature to distance correlation function could be modeled effectively via the same spherical correlation 

function approach used for land surface temperatures: 

 80 

 𝑅(𝑑) = 𝑅0 (1 −
𝑑

𝑑𝑚𝑎𝑥
)
2

(1 +
𝑑

2 𝑑𝑚𝑎𝑥
) , 𝑑 < 𝑑𝑚𝑎𝑥        (1) 

𝑅(𝑑) = 0, 𝑑 ≥ 𝑑𝑚𝑎𝑥   

 

The empirically estimated distance parameter 𝑑𝑚𝑎𝑥  was found to have a value of 2,680 km based on the spatial variance of the 

HadSST monthly averages.  This is similar to, though somewhat smaller than, the 3,310 km scale adopted in the land surface 85 

temperature study (Rohde et al. 2013a).  By contrast, the local correlation parameter 𝑅0 = 0.47 was estimated to be much lower 

in the oceans (compared to 0.86 on land).  This is due to two factors.  Firstly, ocean observations are individual measurements 

whereas land observations reflect monthly averages.  Secondly, the typical monthly fluctuations in the oceanic environment are 

much smaller in than on land, causing a reduced signal-to-noise ratio.  The estimation of 𝑅0 was based on a comparison of the 

variance in HadSST grid cells with a single measurement to those with > 100 observations.  The latter condition provides a proxy 90 

for cells where the random portion of measurement and sampling uncertainty could plausibly be neglected. 

 

Figure 1 shows an empirically estimated average correlation versus distance between HadSST grid cells.  This shows the 

empirical length scale, though a larger intercept is used (~0.75) reflecting the fact that the average HadSST grid cell incorporates 

many observations.  The lower value for 𝑅0 represents the typical relationship between a single measurement and the monthly 95 

average. 
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Figure 1: Empirically estimated correlation versus distance for monthly average sea surface temperatures.  Correlation was estimated 

by comparing root-mean-square differences for all possible pairs of HadSST grid cells and all months, and binning the population by 100 
distance.  The black curve reflects a best fit for the spherical correlation function model.  The red dashed curve shows the 

corresponding correlation model derived for land-based measurements (Rohde et al. 2013a). 

The distance correlation function gives rise to a Kriging formulation that: 

 

 𝑇(𝑥, 𝑡) = 𝜃𝑡 + ∑ (𝐾(𝑥𝑗 , 𝑥, 𝑡)(𝑆𝑆𝑇(𝑥𝑗 , 𝑡) − 𝜃𝑡))𝑗       (2) 105 

 (
𝐾(𝑥1, 𝑥, 𝑡)

⋮
𝐾(𝑥𝑁 , 𝑥, 𝑡)

) =

(

 
 

𝐷(𝑥1, 𝑡) 𝑅(‖𝑥1 − 𝑥2‖) ⋯  𝑅(‖𝑥1 − 𝑥𝑁‖)

𝑅(‖𝑥2 − 𝑥1‖) 𝐷(𝑥2, 𝑡)   ⋮
⋮  ⋱   
    𝐷(𝑥𝑁−1, 𝑡) 𝑅(‖𝑥𝑁−1 − 𝑥𝑁‖)

𝑅(‖𝑥𝑁 − 𝑥1‖)  ⋯  𝑅(‖𝑥𝑁 − 𝑥𝑁−1‖) 𝐷(𝑥𝑁 , 𝑡) )

 
 

−1

(
𝑅(‖𝑥1 − 𝑥‖)

⋮
𝑅(‖𝑥𝑁 − 𝑥‖)

) 

 (3) 

 𝐷(𝑥𝑗 , 𝑡) =
1+(𝑁𝑒𝑓𝑓(𝑥𝑗,𝑡)−1)𝑅0

𝑁𝑒𝑓𝑓(𝑥𝑗,𝑡)
        (4) 

 𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡) =
𝑠𝑚
2

(𝜎𝑚(𝑥𝑗,𝑡))
2, minimum value of 1      (5) 

 110 

Where t is the current month, 𝑇(𝑥, 𝑡) is the interpolated temperature at a general location 𝑥, 𝑆𝑆𝑇(𝑥𝑗 , 𝑡) is the HadSST anomaly 

value in the grid cell centered at location 𝑥𝑗, and 𝜎𝑚(𝑥𝑗 , 𝑡) is the measurement uncertainty associated with location 𝑥𝑗, and 𝑠𝑚 is 

the average measurement uncertainty of a single measurement.  𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡) is then an effective number of independent 

measurements associated with the grid cell.  Though HadSST provides the true number of observations per cell, 𝑁(𝑥𝑗 , 𝑡), we 

found that 𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡), which incorporates the measurement uncertainty appeared to give superior results than simply relying on 115 

the reported number of observations.  The incorporation of 𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡) into the determination of the Kriging coefficients K has 
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the effect of giving greater weight to grid cells with less uncertainty.  For integer values of 𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡), the formulation of 

𝐷(𝑥𝑗 , 𝑡) is mathematically equivalent to having 𝑥𝑗 appear 𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡) independent times in the correlation matrix.  Note also that 

any empty HadSST grid cells at time t are omitted from the matrix formulation for K. 

 120 

𝜃𝑡 is a free parameter at each time t and effectively represents the global ocean average temperature anomaly.  Its value is found 

iteratively by insisting that the spatial average of 𝑇(𝑥, 𝑡) − 𝜃𝑡 = 0. 

 

It is instructive to note that this Kriging formulation has the property that 𝑇(𝑥𝑗 , 𝑡) → 𝑆𝑆𝑇(𝑥𝑗 , 𝑡) in the limit that 𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡) → ∞, 

but will ordinarily produce a temperature estimate based on a weighted average of multiple HasSST grid points in the case that 125 

𝑁𝑒𝑓𝑓(𝑥𝑗 , 𝑡) is small or moderate.  The latter property can be useful in suppressing noise at grid locations with high uncertainty 

and/or very few measurements. 

 

It is also important to recognize that that though the correlation function 𝑅(𝑑) has a very long tail, this does not mean that 

average necessarily extends over a large area.  In general, the Kriging coefficients 𝐾(𝑥𝑗 , 𝑥, 𝑡) constructed in this way will heavily 130 

favor the nearest several data points.  As long as nearby data is available, little weight will be given to distant grid cells.  

However, the long-tail of the correlation function means that the Kriging will attempt to fill large holes using distant data if no 

nearby data is available. 

 

An absolute value field was also created by applying a similar interpolation to the HadSST climatology. 135 

 

𝐶(𝑥,𝑚) = 𝑃(𝑥,𝑚) + ∑ (𝐾𝐵(𝑥𝑗 , 𝑥,𝑚)(𝑆𝑆𝑇𝐶𝐿𝐼𝑀(𝑥𝑗 , 𝑚) − 𝑃(𝑥,𝑚)))𝑗     (6) 

 

𝐶(𝑥,𝑚) is the interpolated climatology for month m, 𝑆𝑆𝑇𝐶𝐿𝐼𝑀(𝑥𝑗 , 𝑚) is the reported climatology, 𝐾𝐵(𝑥𝑗 , 𝑥,𝑚) is a set of 

Kriging parameters, which are the same as 𝐾(𝑥𝑗 , 𝑥,𝑚) except that 𝑅0 and 𝐷(𝑥𝑗 , 𝑡) are both replaced with 1, effectively treating 140 

the 𝑆𝑆𝑇𝐶𝐿𝐼𝑀(𝑥𝑗 , 𝑚) as if it has no uncertainty.  𝑃(𝑥,𝑚) a background prediction function dependent only on the month and the 

latitude of x.  It is described as a piece-wise cubic spline with 11 knots as free parameters equally spaced in the cosine of latitude.  

These free parameters are chosen to minimize the spatial average of 𝐶(𝑥,𝑚) − 𝑃(𝑥,𝑚).  By construction, 𝐶(𝑥𝑗 , 𝑚) =

 𝑆𝑆𝑇𝐶𝐿𝐼𝑀(𝑥𝑗 , 𝑚) for all 𝑥𝑗, and this construction merely provides a way of interpolating between grid cell centers. 

 145 

In addition to the above description, a physical cutoff was applied to the absolute temperature 𝐶(𝑥,𝑚) +  𝑇(𝑥, 𝑡) at a fixed 

minimum temperature of -1.8 C, which is freezing temperature of seawater.  If the interpolation would suggest a value lower 

than this, 𝑇(𝑥, 𝑡) was adjusted accordingly to maintain the minimum value of -1.8 C.  Such adjustments are rare. 

 

Finally, one last interpolation is performed using an assumption of temporal persistence.  Unlike land temperature anomalies,  150 

where the temporal correlation is often only a couple weeks, ocean temperature anomalies typically have a temporal correlation 

measured in months.  This can be exploited to estimate ocean temperatures based on adjacent months when no other information 

is available. 
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Analogous to Rohde et al. 2013a, a diagnostic criterion can be constructed 𝑉(𝑥, 𝑡) = ∑ 𝐾(𝑥𝑗 , 𝑥, 𝑡)𝑗 .  Because of the nature of the 155 

Kriging coefficients, 𝑉(𝑥, 𝑡) → 1 in the presence of dense data and 𝑉(𝑥, 𝑡) → 0 if there is no HadSST data in the neighborhood 

of x. 

 

The final estimate of the SST, including a temporal persistence adjustment for regions of low 𝑉(𝑥, 𝑡) is then 

 160 

𝑇𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) + (1 − 𝑉(𝑥, 𝑡)) (
𝑉(𝑥,𝑡+1)𝑇(𝑥,𝑡+1)+𝑉(𝑥,𝑡−1)𝑇(𝑥,𝑡−1)

𝑉(𝑥,𝑡+1)+𝑉(𝑥,𝑡−1)
− 𝜃𝑡)   (7) 

 

Here, t-1 and t+1 refer to the temperature field one month earlier and one month later, respectively.  This adjustment allows for a 

modest reduction in uncertainty at early times when data is temporally sparse. 

  165 

As described, this analysis is agnostic about the resolution used to sample the final temperature field.  In practice, we generally 

use the same 15984-element equal-area grid as Rohde et al. 2013a to calculate 𝑇𝑓𝑖𝑛𝑎𝑙(𝑥, 𝑡), though with non-ocean elements 

masked out. 

2.2 Ocean Uncertainty 

The ocean-average uncertainty in our ocean reconstruction is estimated following essentially the same model as adopted by 170 

HadSST3.  HadSST3 estimates the total reconstruction uncertainty as the combination of measurement uncertainty, coverage 

uncertainty, and bias uncertainty (Kennedy et al. 2011a, Kennedy et al. 2011b).  Bias uncertainty, 𝜎𝑏𝑖𝑎𝑠, which reflects biases 

created due to variations over time in the ways that SST has been measured, is brought forward essentially unchanged by our 

analysis process (Figure 2).  Due to its slowly varying nature, this uncertainty remains the most important limitation of the 

detection of long-term averages. 175 

 

The coverage uncertainty, 𝜎𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, is the uncertainty in the large-scale average arising due to incomplete sampling of the 

spatial field.  As with HadSST3, our estimate of the coverage uncertainty is constructed by sampling a known field, applying our 

interpolation procedure, and seeing how well we reproduce the underlying average of the known field.  Following HadSST3, we 

used the SST fields provided by HadISST v2 as our target.  The HadISST fields are spatially complete, observation-based 180 

historical reconstructions of SST and sea ice concentration (Titchner and Rayner 2014).  To estimate the coverage uncertainty 

associated with a specified HadSST sampling field, we mask every month of the HadISST dataset using that sampling field, 

interpolate the remaining data, and measure the error in the interpolated average relative to the true ocean-average of the whole 

HadISST field.  The deviations in the ocean-average are then collected across all HadISST months and the uncertainty for that 

coverage mask is reported as the root-mean-square average of the deviations.  Using this technique, which is directly analogous 185 

to the HadSST3 coverage assessment technique, we estimate that the application of our interpolation approach typically reduces 

the coverage uncertainty by 20-40% (Figure 2). 

   

Lastly, we consider the impact of our interpolation on the measurement and sampling uncertainty.  Measurement uncertainty 

essentially captures the errors in individual observations, while sampling uncertainty reflect the fact that water temperatures can 190 
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vary on timescales shorter than a month and spatial scales smaller than a grid box.  Though interpolation does not change the 

underlying uncertainty associated with individual measurements, by adjusting the weight of individual observations in the overall 

average, we affect the way that individual measurement errors propagate into the global average.  In particular, in the presence of 

sparse data, limited measurements may be extrapolated over a large area.  In some circumstances, this can cause the effective 

uncertainty in the global average due to these uncertainties to increase.  In essence, the interpolation may trade improvements in 195 

coverage uncertainty against a greater impact for measurement uncertainty.  This largely limits our ability to reduce the overall 

uncertainty by interpolation. 

 

The impact of measurement uncertainty on a large-scale average depends on the error correlation.  If the measurement 

uncertainties were uncorrelated, then the error would generally be expected to decline with the square root of the number of 200 

measurements.  In actuality, the measurement uncertainties are frequently correlated.  In most cases, single ships report many 

measurements per month.  Each of those measurements can have both random errors and a potential for systematic bias.  For a 

single ship, we cannot expect this bias component of a measurement error to be reduced by increasing the number of 

observations.  In their analysis HadSST3 models the entire error correlation matrix to understand the effect of measurement 

errors on the global average uncertainty. 205 

 

For HadSST3, the error correlation matrices were not published.  As a result, it is not possible to exactly determine the effect of 

our interpolation procedure on the measurement uncertainty.  However, we can make a reasonable estimate.  Since HadSST3 

releases both the per grid cell measurement uncertainties and the global average measurement uncertainty, we can compare the 

expected measurement uncertainty treating all grid cell as independent to what is actually observed by HadSST3 using the whole 210 

error correlation matrix (Kennedy et al. 2011b). 

 

 𝜎𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 = √∑ (𝐴(𝑥𝑗)𝜎𝑚(𝑥𝑗 , 𝑡))
2

𝑗        (8) 

 

Where 𝐴(𝑥𝑗) is the fraction of the Earth’s oceans represented by grid cell 𝑥𝑗 and 𝜎𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑  is the measurement uncertainty 215 

resulting from assuming that the measurement errors in individual grid cells are uncorrelated with other grid cells. 

 

We find that the measurement uncertainty reported by HadSST3 in the ocean-average is typically ~2.1 times larger than 

𝜎𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 , with some variation over time. 

 220 

We use this estimate as a benchmark to approximate the effect of error correlation on our analysis of measurement uncertainty. 

 

 𝜎𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑,   𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 =
𝜎𝐻𝑎𝑑𝑆𝑆𝑇,   𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝜎𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑
√∑ (𝐾(𝑥𝑗 , 𝑡)𝜎𝑚(𝑥𝑗 , 𝑡))

2

𝑗    (9) 

 𝐾(𝑥𝑗 , 𝑡) = (∬𝐾(𝑥𝑗 , 𝑥, 𝑡) 𝑑𝑥) (∬1 𝑑𝑥)⁄        (10) 

 225 

Where the double integral denotes the integral over the surface of the ocean.  Thus 𝐾(𝑥𝑗 , 𝑡) is effectively the weight of the 𝑥𝑗 

grid point in the global average. 
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The total uncertainty in the ocean-average is then found by assuming the components are independent. 

 230 

√𝜎𝑏𝑖𝑎𝑠
2 + 𝜎𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

2 + 𝜎𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑,   𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2      (11) 

  

In the early part of the time series, we find that interpolation does significantly reduce the uncertainty in the ocean-average.  At 

late times, though coverage uncertainty is improved, bias uncertainty plays a large role and the total uncertainty in the ocean-

average is little changed from the HadSST values.  However, even if the ocean-average uncertainty is not changed, some users 235 

will nonetheless benefit from having a more spatially complete interpolated SST field. 

 

 

Figure 2: Component uncertainties for the ocean-average of HadSST v3 and the corresponding transformed forms of those 

components after the application of the interpolation scheme described in the text.  All uncertainties are expressed as appropriate for 240 
95% confidence intervals on annual ocean-averages. 

2.3 Land and Ocean Combination 

The combined field is constructed by merging the Berkeley Earth Land Surface temperature with the interpolated SST field 

described above.  Two versions are considered that differ only in their treatment of sea ice, using either the land air temperature 

(LAT) or the SST field to estimate the temperature anomaly at sea ice locations.  From 1850 to near-present, the sea ice locations 245 

are estimated using the ice concentration fields in HadISST v2 (Titchner and Rayner 2014).   

 

To combine LAT and SST data, both data sets are expressed on the same grid.  To simplify the combination at cells that are part-

land and part-ocean, we have taken to adding in the spatial climatology and doing the combination in absolute temperatures.  

 250 

In the case where sea ice areas are represented by SST, the combination is straightforward: 
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𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑥, 𝑡) = 𝐿(𝑥) 𝑇𝐿𝐴𝑇(𝑥, 𝑡) + (1 − 𝐿(𝑥)) 𝑇𝑆𝑆𝑇(𝑥, 𝑡)     (12) 

 

Where 𝐿(𝑥) is the fraction of the grid cell at location x that is land, and 𝑇𝐿𝐴𝑇  and 𝑇𝑆𝑆𝑇  are respectively the LAT as estimated by 255 

Rohde et al. 2013a and the interpolated SST as described above. 

 

In the case where sea ice regions are treated as land: 

 

𝑇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑥, 𝑡) = 𝐿
∗(𝑥, 𝑡) 𝑇𝐿𝐴𝑇(𝑥, 𝑡) + (1 − 𝐿

∗(𝑥, 𝑡)) 𝑇𝑆𝑆𝑇(𝑥, 𝑡)    (13) 260 

𝐿∗(𝑥, 𝑡) = 𝐿(𝑥) + (1 − 𝐿(𝑥))𝐼(𝑥, 𝑡)       (14) 

 

Where 𝐼(𝑥, 𝑡) is the ice fraction at location x at time t as reported by HadISST v2 (Titchner and Rayner 2014).  For this purpose, 

HadISST is also regridded on to the same grid as LAT and SST.  As HadISST is frequently delayed by a few months compared 

to other climate data, it is necessary to supplement this data set when producing near real-time estimates.  For this purpose, the 265 

Sea Ice Index of the National Snow and Ice Data Center (Fetterer et al. 2017) is used for months that are not yet available in 

HadISST.  The modern ice distribution in both HadISST and the Sea Ice Index are based on satellite observations; however, we 

found that the Sea Ice Index tended to have systematically more partial melting than HadISST.  To maintain consistency, a 

distribution transform was applied to the sea ice fractions provided in the Sea Ice Index based on comparing the 2014-2018 ice 

fields in each dataset. 270 

 

It is useful to note that regardless of whether one is using SST or LAT to estimate temperatures in association with sea ice, most 

such estimates involve a considerable extrapolation.  In the case of LAT, for example, conditions over sea ice will usually be 

extrapolated from Greenland, Canada, Scandinavia and Russia.  Whereas, when using SST, one extrapolates from rare SST 

measurements that may be far removed from the sea ice edge.  Or, in the case that analysis of the sea ice regions is excluded 275 

entirely, some methods are effectively substituting the ocean-average temperature anomaly. 

  

It is our belief that the anomaly field generated by extrapolating air temperatures over sea ice locations is a more sensible 

approach to characterizing climate change at the poles.  The air temperature changes over the sea ice can be quite large even 

while the water temperatures underneath are not changing at all.  In particular, over the last decades Arctic air has shown a very 280 

large warming trend during the winter. 

 

Regardless of the approach used, the spatial climatology can then be calculated and removed (differing from the original only in 

cells with a mix of land and water/sea ice).  Then the long-term trend in the climate can be computed using the spatial average of 

the anomaly fields. 285 

 

Uncertainties for the combined record are calculated by assuming the uncertainties in LAT and SST time series are independent 

and can be combined in proportion to the relative area of land and ocean.  In the case that LAT is used over sea ice, the 

uncertainties for both LAT and SST have to be slightly recalculated by assuming that the time varying mask 𝐿∗(𝑥, 𝑡) is applied 
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the relevant spatial averages in the uncertainty estimations described in Rohde et al. 2013a and in the SST section above.  Doing 290 

this adjustment causes a slightly increase in LAT uncertainty (due to the extrapolation over sea ice), and similar small decrease 

in SST uncertanty. 

3 Results and Conclusions 

The global mean anomalies obtained from the Berkeley Earth land/ocean temperature record are quite similar to other published 

records, as shown in Figure 3. With the exception of some short periods prior to 1880 and before and after World War 2, all four 295 

other temperature records examined lie within the uncertainty envelope of the Berkeley Earth record. Differences around World 

War 2 relate primarily to differences in adjustments to ERSST v4 and HadSST3 sea surface temperature records during that 

period. 

 

 300 
Figure 3: Comparison of published global surface temperature records. The top panel shows annual anomalies (relative to a 1961-1990 

baseline period), with the Berkeley Earth uncertainty as a shaded area. The bottom panel shows trends and two-sigma trend 
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uncertainties (calculated using an ARMA[1,1] approach to account for autocorrelation) for various starting dates through the end of 

2015 based on monthly anomalies. 

Berkeley Earth has the highest trend of any temperature record examined for the period from 1880 to 2015, largely due to lower 305 

surface temperature estimates prior to 1900. These differences are driven both by increased spatial coverage from the inclusion 

of additional land records and the spatial interpolation of both land and ocean records (which is absent in NOAA and Hadley 

records). Similarly, Berkeley Earth has among the highest warming rates in the recent period (1979-2015) due primarily to 

greater Arctic coverage (where warming was unusually rapid during that period). The other record that provides robust arctic 

interpolation, Cowtan and Way, also shows higher trends during this period. 310 

 

From 1955 to present (after the availability of data in Antarctica), Berkeley Earth provides globally complete coverage via 

spatial interpolation, similar to NASA’s GISTEMP and Cowtan and Way. This contrasts with HadCRUT4 and NOAA 

GlobalTemp which exclude any grid cells lacking station coverage or SST measurements. As shown in Figure 2, the patterns of 

spatial anomalies between the different groups tend to be quite similar, apart from differences due to spatial coverage or gridded 315 

field resolution. 

 

 
Figure 4: Global gridded temperature anomalies for December 2015 relative to a 1961-1990 baseline for each global temperature 

dataset. Grid resolution is based on the highest resolution dataset provided by each group; 1x1 lat/lon for Berkeley Earth, 5x5 for 320 
HadCRUT4, 1x1 for NASA GISTEMP, 5x5 over land and 2x2 over oceans for NOAA GlobalTemp, and 5x5 for Cowtan and Way. 

https://doi.org/10.5194/essd-2019-259

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

When constructing a global surface temperature record, sea ice produces a challenging edge-case. The water temperature under 

sea ice is tightly constrained by the freezing point of water, and can only change with changes in sea ice cover. Air temperatures 

over sea ice are less well constrained, and can vary significantly over time. Whether areas with sea ice coverage are estimated 

using sea surface temperatures or surface air temperatures will have a notable result on the record. While most groups 325 

(GISTEMP, Cowtan and Way) that interpolate temperatures over areas with sea ice cover use air temperatures, Berkeley Earth 

has provided both variants to allow researchers to select the series that best supports their needs. Both variants of the Berkeley 

Earth record are shown in Figure 5 as well as the HadCRUT temperature series for comparison; the use of SSTs under sea ice 

leads to lower warming trends in recent years, as it excludes air temperatures in parts of the Arctic that have been warming 

rapidly over the past two decades. 330 

 

 
Figure 5: (Top) Two variants of the Berkeley Earth global surface temperature product estimating temperatures under sea ice based 

on SSTs (red) or proximate air temperature measurements (blue), as well as the HadCRUT temperature series for comparison.  

(Bottom) The same two versions of the Berkeley Earth data set with the HadCRU time series subtracted. 335 

Figure 5 also aids in understanding the difference between Berkeley Earth and HadCRUT.  The interpolated SST field adopted 

here has a nearly identical trend to the HadSST field, differing by less than 0.01 ºC / century.  Part of the difference between 

Berkeley Earth’s global temperature series and HadCRU is due to differences in the amount of warming estimated ot have 

occurred over land.  This is the primary source of difference when comparing the Berkeley Earth series with SST at sea ice to the 

HadCRUT series (blue line in Figure 5).  While this difference is not insignificant, the larger difference is due to the treatment of 340 

the Arctic and the extrapolation of land temperature over sea ice areas (red line in Figure 5).  Inclusion of the rapid warming 

above Arctic sea ice suggests the global average has increased an additional ~0.1 C during the last 100 years compared to 

estimates that do not include the changes in this region.  

 

In addition to monthly temperature anomalies, Berkeley Earth produces monthly absolute temperature fields. A climatology field 345 

is estimated via Kriging observations, using elevation as a factor in the kriging process over land. Both absolute temperature 
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variants with air temperature over sea ice and water temperature under sea ice are available, as shown in Figure 4. Absolute 

temperatures are created by adding the climatology field to monthly anomalies. 

 

 350 
Figure 6: Berkeley Earth average absolute climatology for the period from 1951-1980 with the air temperature at sea ice (top panel) 

and ocean temperature under sea ice (bottom) variants shown. 

Figure 7 provides a comparison between published uncertainties (two sigma) for each of the major global land/ocean temperature 

series. The Berkeley Earth, GISTEMP, and Cowtan and Way records have the lowest uncertainty of the groups providing annual 

values, in part due to their spatial interpolation reducing the uncertainty associated with coverage. 355 

 
Figure 7: Comparison of published annual uncertainty estimates (two sigma) for Berkeley Earth, HadCRUT4 (Morice et al 2012), 

GISTEMP (Lenssen et al 2019), GlobalTempv5 (Vose et al 2012), and Cowtan and Way (2014). 

 

https://doi.org/10.5194/essd-2019-259

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 2 June 2020
c© Author(s) 2020. CC BY 4.0 License.



14 

 

The Berkeley Earth Land/Ocean surface temperature record presented here has already been used by a number of publications 360 

(e.g. Jones 2015; Thorne et al 2016; Sutton et al 2015). It joins a number of existing land/ocean surface temperature products that 

help provide a diverse examination of the Earth’s changing climate since 1850, and can be used for diverse applications 

including climate model validation, estimating transient climate response, examining changes in extreme events, and other 

research areas.  

Data Availability 365 

The Land/Ocean temperature product will be updated monthly on the berkeleyearth.org website, and is freely available for use to 

all interested researchers.  A convenience copy of the dataset available at the time this paper was created has been registered with 

Zenodo and is available at DOI:10.5281/zenodo.3634713 (Rohde & Hausfather 2020). 
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