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Abstract. A global land/ocean temperature record has been created by combining the Berkeley Earth monthly land temperature 

field with spatially-kriged version of the HadSST3 dataset. This combined product spans the period from 1850 to present and 

covers the majority of the Earth’s surface: approximately 57% in 1850, 75% in 1880, 95% in 1960, and 99.9% by 2015. It includes 

average temperatures in 1°x1° lat/lon grid cells for each month when available. It provides a global mean temperature record quite 

similar to records from Hadley’s HadCRUT4, NASA’s GISTEMP, NOAA’s GlobalTemp, and Cowtan and Way, and provides a 10 

spatially complete and homogeneous temperature field. Two versions of the record are provided treating areas with sea ice cover 

as either air temperature over sea ice or sea surface temperature under sea ice, the former being preferred for most applications. 

The choice of how to assess the temperature of areas with sea ice coverage has a notable impact on global anomalies over past 

decades due to rapid warming of air temperatures in the Arctic.  Accounting for rapid warming of Arctic air suggests ~0.1 ºC 

additional global-average temperature rise since the 19th century than temperature series that do not capture the changes in the 15 

Arctic.  Updated versions of this dataset will be presented each month at the Berkeley Earth website (http://berkeleyearth.org/data/), 

and a convenience copy of the version discussed in this paper has been archived and is freely available at 

https://doi.org/10.5281/zenodo.3634713 (Rohde & Hausfather, 2020). 

1 Introduction 

Global land-ocean temperature indices combining 2-meter surface air temperature over land with sea surface temperatures (SST) 20 

over oceans are commonly used to assess changes in the Earth’s climate.  While it is a less physically meaningful metric than earth 

system total heat content, it is well-measured with reliable data extending back to c.1850 for oceans (Kennedy et al., 2011) and as 

far back as c.1750 for land (Rohde et al., 2013a) and is the part of the Earth system most relevant for impacts on human civilization. 

Sea surface temperatures are used in lieu of marine air temperatures due to scarcity and inhomogeneity of marine air temperature 

data (Kent et al., 2013), though it is only an imperfect proxy and may be subject to slightly slower warming rates than marine air 25 

temperatures in recent decades (Cowtan et al., 2015; Richardson et al 2016; Jones 2020). 

 

A number of prior groups have developed global land/ocean surface temperature indexes, including NASA’s GISTEMP (Hansen 

et al., 2010; Lenssen et al 2019), Hadley/UEA’s HadCRUT4 (Morice et al., 2012), NOAA’s GlobalTemp (Smith et al., 2008; Vose 

et al., 2012; Huang et al 2020), and the Japan Meteorological Agency (JMA) (Ishihara 2006). Additionally, Cowtan and Way 30 

(2014) provide a spatially-interpolated variant of HadCRUT4 featuring greater spatial coverage, hereafter denoted CW2014. These 

series differ in a number of respects. They all largely utilize the same set SST measurements drawn from the ICOADS database 

(Freeman et al., 2017) and most of the same land temperature records contained in the Global Historical Climatological Network 

monthly database (GHCNm) (Lawrimore et al., 2011), though HadCRUT4 (and by extension CW2014) includes a more modest 

number of land stations than GISTEMP and GlobalTemp, which recently transitioned to using the much larger GHCNm v4 35 

database (Menne et al 2018). 
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Both GISTEMP and GlobalTemp utilize NOAA’s pairwise homogenization algorithm to detect and correct inhomogenities such 

as station moves or instrument changes in land stations (Menne and Williams 2009), though NASA applies an additional satellite 

nightlight-based urbanity correction (Hansen et al., 2010). GISTEMP and GlobalTemp both use NOAA’s Extended Reconstruction 40 

Sea Surface Temperature (ERSST) version 5 (Huang et al., 2017) for SSTs, HadCRUT4 and CW2014 use HadSST3 (Kennedy et 

al., 2011), and JMA uses COBE-SST (Ishii et al., 2005). HadCRUT4 and JMA include no spatial interpolation outside of 5-by-5 

latitude/longitude grid cells, while GlobalTemp includes some interpolation over land but has nearly complete ocean temperature 

fields with the primary exception that sea ice regions are masked as missing.  GISTEMP and CW2014 spatially interpolate 

temperatures out to regions with no direct station coverage (GISTEMP using a simple linear interpolation technique, while 45 

CW2014 uses Kriging). The upcoming HadCRUT5 will transition to HadSST4 and include spatial interpolation (Morice et al, 

submitted). 

 

Here we describe the global land/ocean surface temperature product from Berkeley Earth that combines the Berkeley Earth land 

temperature data (Rohde et al 2013a; Rohde et al 2013b) with SST data from HadSST3 (Kennedy et al., 2011). It uses a Kriging-50 

based spatial interpolation to provide an extensive spatial coverage for the period from 1850 to present. The land data utilizes 

significantly more land station data (over 40,000 stations) compared to the ~10,000 land stations used by some of the other groups 

(though GISTEMP and GlobalTemp have both recently updated their records to include a larger number of land stations, including 

more 20,000 sites in GHCNv4). The land component also includes the novel homogenization technique of the Berkeley Earth 

temperature record that detects breakpoints through neighbor difference series comparisons, cuts land stations into fragmentary 55 

records at breakpoints, and combines these fragmentary records into a temperature field. The ocean component of the land/ocean 

product uses an interpolated variant of HadSST v3, whose construction is described below. A version of the Berkeley Earth 

interpolated dataset has been publicly available for some time, but has not been formally described. Lastly, we note that HadSST 

v3 will be replaced with HadSST v4 once that product becomes operational (Kennedy et al. 2019). Aside from minor differences 

in the way data is communicated and formatted, HadSST v4 should be usable following the same steps described here. 60 

2 Methods 

The Berkeley Earth Land/Ocean temperature record combines the Berkeley Earth land record (Rohde et al 2013a) with SST data 

from HadSST3 (Kennedy et al. 2011a, Kennedy et al. 2011b). The HadSST3 data is adjusted in several ways.  The primary 

manipulation is to replace the gridded data with an interpolated field using a Kriging-based approach.  The HadSST3 data set 

provides grid cell averages on a 5° by 5° grid and only reports monthly averages for cells where data was present during the month 65 

in question.  HadSST3 often reports no data for ~40% of ocean grid cells.  As described below, the interpolation produces a more 

complete field and reduces the component of uncertainty associated with incomplete coverage.  While providing a more complete 

field, the interpolation does not materially change the apparent rate of warming in the oceans. 

 

After interpolation, the ocean temperature anomaly field is merged with Berkeley Earth land anomaly field using the fraction of 70 

land / water in each grid cell (typically reported with a 1° by 1° latitude/longitude resolution).  As described below, two versions 

are considered with respect to the role of sea ice.  The version using air temperature above sea ice is recommended for most users, 

though the other version may be useful for certain specialists and diagnostic purposes.   
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2.1 Interpolation Method 75 

The HadSST3 gridded fields provide several critical components, the temperature anomaly, the number of observations, and 

several estimates of the uncertainty (Kennedy et al. 2011a, Kennedy et al. 2011b).  The grid cell uncertainties and observation 

counts allow one to treat some grid cells as having greater confidence than others.  Unlike land surface station data, where each 

monthly average represents many temperature observations, the ocean observation counts are a true measure of the number of 

instantaneous SST measurements. 80 

 

Analogous to Rohde et al 2013a, the core of the interpolation approach is to generate a Kriging-based field using an assumed 

distance-based correlation function.  As with Rohde et al 2013a, a correlation-based approach is used rather than the more common 

covariance-based approach to simplify the computational considerations, and should be adequate as long as the variance changes 

relatively slowly with changes in position.  A review of both the HadSST data and climate model outputs suggested that the 85 

temperature to distance correlation function could be modeled effectively via the same spherical correlation function approach 

used for land surface temperatures: 

 

	 𝑅(𝑑) = 𝑅! '1 −
"

"!"#
*
#
'1 + "

#	"!"#
* , 𝑑 < 𝑑%&'		 	 	 	 	 	 (1)	

𝑅(𝑑) = 0, 𝑑 ≥ 𝑑%&'	 	90 

 

The empirically estimated distance parameter 𝑑%&' was found to have a value of 2,680 km based on the spatial variance of the 

HadSST monthly averages.  This is similar to, though somewhat smaller than, the 3,310 km scale adopted in the land surface 

temperature study (Rohde et al. 2013a).  By contrast, the local correlation parameter 𝑅! = 0.47 was estimated to be much lower 

in the oceans (compared to 0.86 on land).  This is due to two factors.  Firstly, ocean observations are individual measurements 95 

whereas land observations reflect monthly averages.  Secondly, the typical monthly fluctuations in the oceanic environment are 

much smaller in than on land, causing a reduced signal-to-noise ratio.  The estimation of 𝑅! was based on a comparison of the 

variance in HadSST grid cells with a single measurement to those with > 100 observations.  The latter condition provides a proxy 

for cells where the random portion of measurement and sampling uncertainty could plausibly be neglected. 

 100 

Figure 1 shows an empirically estimated average correlation versus distance between HadSST grid cells.  This shows the empirical 

length scale, though a larger intercept is used (~0.75) reflecting the fact that the average HadSST grid cell incorporates many 

observations.  The lower value for 𝑅! represents the typical relationship between a single measurement and the monthly average. 

 

This treatment, using a single scale length for the whole ocean, simplifies the analysis; however, it does ignore some of the real 105 

variations across the oceans.  For example, in regions with boundary currents, upwelling/downwelling, or complex ocean to land 

geographies, the scale length of monthly average temperature variations may be smaller than suggested here.  In practice, the 5x5 

degree gridding of HadSST already precludes a detailed analysis of most small features.  The interpolation presented here primarily 

serves to improve the representation by smoothing over noise and filling gaps, but it won’t necessarily capture the smallest features. 

 110 
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Figure 1: Empirically estimated correlation versus distance for monthly average sea surface temperatures.  Correlation was estimated 
by comparing root-mean-square differences for all possible pairs of HadSST grid cells and all months, and binning the population by 
distance.  The black curve reflects a best fit for the spherical correlation function model.  The red dashed curve shows the corresponding 
correlation model derived for land-based measurements (Rohde et al. 2013a). 115 

The distance correlation function gives rise to a Kriging formulation that: 
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	 𝑁2339𝑥) , 𝑡: =
4!(

56!.'&,(07
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Where t is the current month, 𝑇(𝑥, 𝑡) is the interpolated temperature at a general location 𝑥, 𝑆𝑆𝑇9𝑥) , 𝑡: is the HadSST anomaly 

value in the grid cell centered at location 𝑥), and 𝜎%9𝑥) , 𝑡: is the measurement uncertainty associated with location 𝑥), and 𝑠% is 125 

the average measurement uncertainty of a single measurement.  𝑁2339𝑥) , 𝑡: is then an effective number of independent 

measurements associated with the grid cell.  Though HadSST provides the true number of observations per cell, 𝑁9𝑥) , 𝑡:, we found 

that 𝑁2339𝑥) , 𝑡:, which incorporates the measurement uncertainty appeared to give superior results than simply relying on the 

reported number of observations.  The incorporation of 𝑁2339𝑥) , 𝑡: into the determination of the Kriging coefficients K has the 
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effect of giving greater weight to grid cells with less uncertainty.  For integer values of 𝑁2339𝑥) , 𝑡:, the formulation of 𝐷9𝑥) , 𝑡: is 130 

mathematically equivalent to having 𝑥) appear 𝑁2339𝑥) , 𝑡: independent times in the correlation matrix.  Note also that any empty 

HadSST grid cells at time t are omitted from the matrix formulation for K. 

 

𝜃( is a free parameter at each time t and effectively represents the global ocean average temperature anomaly.  Its value is found 

iteratively by insisting that the spatial average of 𝑇(𝑥, 𝑡) − 𝜃( = 0. 135 

 

It is instructive to note that this Kriging formulation has the property that 𝑇9𝑥) , 𝑡: → 𝑆𝑆𝑇9𝑥) , 𝑡: in the limit that 𝑁2339𝑥) , 𝑡: → ∞, 

but will ordinarily produce a temperature estimate based on a weighted average of multiple HasSST grid points in the case that 

𝑁2339𝑥) , 𝑡: is small or moderate.  The latter property can be useful in suppressing noise at grid locations with high uncertainty 

and/or very few measurements. 140 

 

It is also important to recognize that that though the correlation function 𝑅(𝑑) has a very long tail, this does not mean that average 

necessarily extends over a large area.  In general, the Kriging coefficients 𝐾9𝑥) , 𝑥, 𝑡: constructed in this way will heavily favor the 

nearest several data points.  As long as nearby data is available, little weight will be given to distant grid cells.  However, the long-

tail of the correlation function means that the Kriging will attempt to fill large holes using distant data if no nearby data is available. 145 

 

An absolute value field was also created by applying a similar interpolation to the HadSST climatology. 

 

𝐶(𝑥,𝑚) = 𝑃(𝑥,𝑚) + ∑ '𝐾89𝑥) , 𝑥,𝑚:9𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: − 𝑃(𝑥,𝑚):*) 		 	 	 (6)	

	150 

𝐶(𝑥,𝑚) is the interpolated climatology for month m, 𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: is the reported climatology, 𝐾89𝑥) , 𝑥,𝑚: is a set of Kriging 

parameters, which are the same as 𝐾9𝑥) , 𝑥,𝑚: except that 𝑅! and 𝐷9𝑥) , 𝑡: are both replaced with 1, effectively treating the 

𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: as if it has no uncertainty.  𝑃(𝑥,𝑚) a background prediction function dependent only on the month and the 

latitude of x.  It is described as a piece-wise cubic spline with 11 knots as free parameters equally spaced in the cosine of latitude.  

These free parameters are chosen to minimize the spatial average of 𝐶(𝑥,𝑚) − 𝑃(𝑥,𝑚).  By construction, 𝐶9𝑥) , 𝑚: =155 

	𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: for all 𝑥), and this construction merely provides a way of interpolating between grid cell centers. 

 

In addition to the above description, a physical cutoff was applied to the absolute temperature 𝐶(𝑥,𝑚) + 	𝑇(𝑥, 𝑡) at a fixed 

minimum temperature of -1.8 C, which is freezing temperature of seawater.  If the interpolation would suggest a value lower than 

this, 𝑇(𝑥, 𝑡) was adjusted accordingly to maintain the minimum value of -1.8 C.  Such adjustments are rare. 160 

 

Finally, one last interpolation is performed using an assumption of temporal persistence.  Unlike land temperature anomalies, 

where the temporal correlation is often only a couple weeks, ocean temperature anomalies typically have a temporal correlation 

measured in months.  This can be exploited to estimate ocean temperatures based on adjacent months when no other information 

is available. 165 
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Analogous to Rohde et al. 2013a, a diagnostic criterion can be constructed 𝑉(𝑥, 𝑡) = ∑ 𝐾9𝑥) , 𝑥, 𝑡:) .  Because of the nature of the 

Kriging coefficients, 𝑉(𝑥, 𝑡) → 1 in the presence of dense data and 𝑉(𝑥, 𝑡) → 0 if there is no HadSST data in the neighborhood of 

x. 

 170 

The final estimate of the SST, including a temporal persistence adjustment for regions of low 𝑉(𝑥, 𝑡) is then 

 

𝑇39:&;(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) + 91 − 𝑉(𝑥, 𝑡): '<(',(-*)?(',(-*)-<(',(,*)?(',(,*)
<(',(-*)-<(',(,*)

− 𝜃(*	 	 	 (7)	

	

Here, t-1 and t+1 refer to the temperature field one month earlier and one month later, respectively.  This adjustment allows for a 175 

modest reduction in uncertainty at early times when data is temporally sparse. 

  

As described, this analysis is agnostic about the resolution used to sample the final temperature field.  In practice, we generally use 

the same 15984-element equal-area grid as Rohde et al. 2013a to calculate 𝑇39:&;(𝑥, 𝑡), though with non-ocean elements masked 

out. 180 

2.2 Ocean Uncertainty 

The ocean-average uncertainty in our ocean reconstruction is estimated following essentially the same model as adopted by 

HadSST3.  HadSST3 estimates the total reconstruction uncertainty as the combination of measurement uncertainty, coverage 

uncertainty, and bias uncertainty (Kennedy et al. 2011a, Kennedy et al. 2011b).  Bias uncertainty, 𝜎@9&4, which reflects biases 

created due to variations over time in the ways that SST has been measured, is brought forward essentially unchanged by our 185 

analysis process (Figure 2).  Due to its slowly varying nature, this uncertainty remains the most important limitation of the detection 

of long-term averages. 

 

The coverage uncertainty, 𝜎ABC2D&E2, is the uncertainty in the large-scale average arising due to incomplete sampling of the spatial 

field.  As with HadSST3, our estimate of the coverage uncertainty is constructed by sampling a known field, applying our 190 

interpolation procedure, and seeing how well we reproduce the underlying average of the known field.  Following HadSST3, we 

used the SST fields provided by HadISST v2 as our target.  The HadISST fields are spatially complete, observation-based historical 

reconstructions of SST and sea ice concentration (Titchner and Rayner 2014).  To estimate the coverage uncertainty associated 

with a specified HadSST sampling field, we mask every month of the HadISST dataset using that sampling field, interpolate the 

remaining data, and measure the error in the interpolated average relative to the true ocean-average of the whole HadISST field.  195 

The deviations in the ocean-average are then collected across all HadISST months and the uncertainty for that coverage mask is 

reported as the root-mean-square average of the deviations.  Using this technique, which is directly analogous to the HadSST3 

coverage assessment technique, we estimate that the application of our interpolation approach typically reduces the coverage 

uncertainty by 20-40% (Figure 2). 

   200 

Lastly, we consider the impact of our interpolation on the measurement and sampling uncertainty.  Measurement uncertainty 

essentially captures the errors in individual observations, while sampling uncertainty reflect the fact that water temperatures can 

vary on timescales shorter than a month and spatial scales smaller than a grid box.  Though interpolation does not change the 
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underlying uncertainty associated with individual measurements, by adjusting the weight of individual observations in the overall 

average, we affect the way that individual measurement errors propagate into the global average.  In particular, in the presence of 205 

sparse data, limited measurements may be extrapolated over a large area.  In some circumstances, this can cause the effective 

uncertainty in the global average due to these uncertainties to increase.  In essence, the interpolation may trade improvements in 

coverage uncertainty against a greater impact for measurement uncertainty.  This largely limits our ability to reduce the overall 

uncertainty by interpolation. 

 210 

The impact of measurement uncertainty on a large-scale average depends on the error correlation.  If the measurement uncertainties 

were uncorrelated, then the error would generally be expected to decline with the square root of the number of measurements.  In 

actuality, the measurement uncertainties are frequently correlated.  In most cases, single ships report many measurements per 

month.  Each of those measurements can have both random errors and a potential for systematic bias.  For a single ship, we cannot 

expect this bias component of a measurement error to be reduced by increasing the number of observations.  In their analysis 215 

HadSST3 models the entire error correlation matrix to understand the effect of measurement errors on the global average 

uncertainty. 

 

For HadSST3, the error correlation matrices were not published.  As a result, it is not possible to exactly determine the effect of 

our interpolation procedure on the measurement uncertainty.  However, we can make a reasonable estimate.  Since HadSST3 220 

releases both the per grid cell measurement uncertainties and the global average measurement uncertainty, we can compare the 

expected measurement uncertainty treating all grid cell as independent to what is actually observed by HadSST3 using the whole 

error correlation matrix (Kennedy et al. 2011b). 

 

	 𝜎F:ABDD2;&(2" = c∑ '𝐴9𝑥):𝜎%9𝑥) , 𝑡:*
#

) 	 	 	 	 	 	 	 (8)	225 

 

Where 𝐴9𝑥): is the fraction of the Earth’s oceans represented by grid cell 𝑥) and 𝜎F:ABDD2;&(2" is the measurement uncertainty 

resulting from assuming that the measurement errors in individual grid cells are uncorrelated with other grid cells. 

 

We find that the measurement uncertainty reported by HadSST3 in the ocean-average is typically ~2.1 times larger than 230 

𝜎F:ABDD2;&(2", with some variation over time. 

 

We use this estimate as a benchmark to approximate the effect of error correlation on our analysis of measurement uncertainty. 

 

	 𝜎9:(2DGB;&(2",			%2&4FD2%2:( =
6)"*++,,			!$"/01$!$23

6024511$6"3$*
c∑ '𝐾f9𝑥) , 𝑡:𝜎%9𝑥) , 𝑡:*

#
) 	 	 	 (9)	235 

	 𝐾f9𝑥) , 𝑡: = 9∬𝐾9𝑥) , 𝑥, 𝑡:	𝑑𝑥: (∬1	𝑑𝑥)i 	 	 	 	 	 	 	 (10)	

 

Where the double integral denotes the integral over the surface of the ocean.  Thus 𝐾f9𝑥) , 𝑡: is effectively the weight of the 𝑥) grid 

point in the global average. 

 240 
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The total uncertainty in the ocean-average is then found by assuming the components are independent. 

 

j𝜎@9&4# + 𝜎ABC2D&E2# + 𝜎9:(2DGB;&(2",			%2&4FD2%2:(#	 	 	 	 	 	 (11)	

  

Over nearly all time periods, we find that interpolation does reduce the uncertainty associated with missing coverage.  In the early 245 

period, the interpolation results in an appreciable reduction in total uncertainty.  However, the total uncertainty in the global average 

is little changed in the recent period.  This is because the bias and measurement uncertainties play a dominant role in the recent 

period, and the impact of these uncertainties on the global average is little changed as a result of the interpolation.  However, even 

if the ocean-average uncertainty is not changed during the recent period, the interpolation may still aid in the interpretation of local 

to regional-scale features. 250 

 

 
Figure 2: Component uncertainties for the ocean-average of HadSST v3 and the corresponding transformed forms of those components 
after the application of the interpolation scheme described in the text.  All uncertainties are expressed as appropriate for 95% confidence 
intervals on annual ocean-averages. 255 

2.3 Land and Ocean Combination 

The combined field is constructed by merging the Berkeley Earth Land Surface temperature with the interpolated SST field 

described above.  Two versions are considered that differ only in their treatment of sea ice, using either the land air temperature 

(LAT) or the SST field to estimate the temperature anomaly at sea ice locations.  From 1850 to near-present, the sea ice locations 

are estimated using the ice concentration fields in HadISST v2 (Titchner and Rayner 2014).   260 

 

To combine LAT and SST data, both data sets are expressed on the same grid.  To simplify the combination at cells that are part-

land and part-ocean, we have taken to adding in the spatial climatology and doing the combination in absolute temperatures.  
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In the case where sea ice areas are represented by SST, the combination is straightforward: 265 

 

𝑇AB%@9:2"(𝑥, 𝑡) = 𝐿(𝑥)	𝑇HI?(𝑥, 𝑡) + (1 − 𝐿(𝑥))	𝑇JJ?(𝑥, 𝑡)	 	 	 	 	 (12)	

 

Where 𝐿(𝑥) is the fraction of the grid cell at location x that is land, and 𝑇HI? and 𝑇JJ? are respectively the LAT as estimated by 

Rohde et al. 2013a and the interpolated SST as described above. 270 

 

In the case where sea ice regions are treated as land: 

 

𝑇AB%@9:2"(𝑥, 𝑡) = 𝐿∗(𝑥, 𝑡)	𝑇HI?(𝑥, 𝑡) + 91 − 𝐿∗(𝑥, 𝑡):	𝑇JJ?(𝑥, 𝑡)	 	 	 	 (13)	

𝐿∗(𝑥, 𝑡) = 𝐿(𝑥) + 91 − 𝐿(𝑥):𝐼(𝑥, 𝑡)	 	 	 	 	 	 	 (14)	275 

 

Where 𝐼(𝑥, 𝑡) is the ice fraction at location x at time t as reported by HadISST v2 (Titchner and Rayner 2014).  For this purpose, 

HadISST is also regridded on to the same grid as LAT and SST.  As HadISST is frequently delayed by a few months compared to 

other climate data, it is necessary to supplement this data set when producing near real-time estimates.  For this purpose, the Sea 

Ice Index of the National Snow and Ice Data Center (Fetterer et al. 2017) is used for months that are not yet available in HadISST.  280 

The modern ice distribution in both HadISST and the Sea Ice Index are based on satellite observations; however, we found that 

the Sea Ice Index tended to have systematically more partial melting than HadISST.  To maintain consistency, a distribution 

transform was applied to the sea ice fractions provided in the Sea Ice Index based on comparing the 2014-2018 ice fields in each 

dataset. 

 285 

It is useful to note that regardless of whether one is using SST or LAT to estimate temperatures in association with sea ice, most 

such estimates involve a considerable extrapolation.  In the case of LAT, for example, conditions over sea ice in the Arctic will 

usually be extrapolated from Greenland, Canada, Scandinavia and Russia.  Similarly, in the Antarctic, coastal stations will be 

extrapolated outward over the ice.  By contrast, when using SST, one extrapolates from rare SST measurements that may be far 

removed from the sea ice edge.  Or, in the case that analysis of the sea ice regions is excluded entirely, averaging methods are 290 

effectively substituting the ocean or global average temperature anomaly. 

  

It is our belief that the anomaly field generated by extrapolating air temperatures over sea ice locations is a more sensible approach 

to characterizing climate change at the poles.  The air temperature changes over the sea ice can be quite large even while the water 

temperatures underneath are not changing at all.  In particular, over the last decades Arctic air has shown a very large warming 295 

trend during the winter. 

 

Regardless of the approach used, the spatial climatology can then be calculated and removed (differing from the original only in 

cells with a mix of land and water/sea ice).  Then the long-term trend in the climate can be computed using the spatial average of 

the anomaly fields. 300 
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Uncertainties for the combined record are calculated by assuming the uncertainties in LAT and SST time series are independent 

and can be combined in proportion to the relative area of land and ocean.  In the case that LAT is used over sea ice, the uncertainties 

for both LAT and SST have to be slightly recalculated by assuming that the time varying mask 𝐿∗(𝑥, 𝑡) is applied the relevant 

spatial averages in the uncertainty estimations described in Rohde et al. 2013a and in the SST section above.  Doing this adjustment 305 

causes a slightly increase in LAT uncertainty (due to the extrapolation over sea ice), and similar small decrease in SST uncertanty. 

3 Results and Conclusions 

The global mean anomalies obtained from the Berkeley Earth land/ocean temperature record are quite similar to other published 

records, as shown in Figure 3. With the exception of some short periods prior to 1880 and before and after World War 2, all four 

other temperature records examined lie within the uncertainty envelope of the Berkeley Earth record. Differences around World 310 

War 2 relate primarily to differences in adjustments to ERSST v5 and HadSST3 sea surface temperature records during that period 

(Huang et al 2017; Kennedy et al 2019; Cowtan et al 2017). 
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Figure 3: Comparison of published global surface temperature records. The top panel shows annual anomalies (relative to a 1961-1990 315 
baseline period), with the Berkeley Earth uncertainty as a shaded area. The bottom panel shows trends and two-sigma trend uncertainties 
(calculated using an ARMA[1,1] approach to account for autocorrelation) for various starting dates through the end of 2015 based on 
monthly anomalies. 

Berkeley Earth has the highest trend of any temperature record examined for the period from 1880 to 2015, largely due to lower 

surface temperature estimates prior to 1900. These differences are driven both by increased spatial coverage from the inclusion of 320 

additional land records and the spatial interpolation of both land and ocean records (which are more limited in both the NOAA and 

Hadley records). Similarly, Berkeley Earth has among the highest warming rates in the recent period (1979-2015) due primarily 

to greater Arctic coverage (where warming was unusually rapid during that period). The other records that provides robust arctic 

interpolation, CW2014 and NASA GISTEMP, also show higher trends during this period. 

 325 



12 
 

From 1955 to present (after the availability of data in Antarctica), Berkeley Earth provides globally complete coverage via spatial 

interpolation, similar to NASA’s GISTEMP and CW2014. This contrasts with HadCRUT4 which exclude any grid cells lacking 

station coverage or SST measurements, or NOAA GlobalTemp where interpolation is more limited. As shown in Figure 4, the 

patterns of spatial anomalies between the different groups tend to be quite similar, apart from differences due to spatial coverage 

or gridded field resolution. 330 

 

 
Figure 4: Global gridded temperature anomalies for December 2015 relative to a 1961-1990 baseline for each global temperature dataset. 
Grid resolution is based on the highest resolution dataset provided by each group; 1x1 lat/lon for Berkeley Earth, 5x5 for HadCRUT4, 
1x1 for NASA GISTEMP, 5x5 over land and 2x2 over oceans for NOAA GlobalTemp, and 5x5 for Cowtan and Way (CW2014). 335 

When constructing a global surface temperature record, sea ice produces a challenging edge-case. The water temperature under 

sea ice is tightly constrained by the freezing point of water, and can only change with changes in sea ice cover. Air temperatures 

over sea ice are less well constrained, and can vary significantly over time. Whether areas with sea ice coverage are estimated 

using sea surface temperatures or surface air temperatures will have a notable result on the record. While most groups (GISTEMP, 

CW2014) that interpolate temperatures over areas with sea ice cover use air temperatures, Berkeley Earth has provided both 340 

variants to allow researchers to select the series that best supports their needs. We consider the variant using air temperature above 

sea ice to be a better description of global climate change, but the ocean temperature variants may be useful for comparison and 

for certain specialists. Both variants of the Berkeley Earth record are shown in Figure 5 as well as the HadCRUT temperature series 
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for comparison. When SSTs under sea ice are used the apparent warming trend in recent years is lower than when air temperatures 

are used. Comparing these versions helps to reveal the contribution of sea ice areas to the overall global warming rate. 345 

 

 
Figure 5: (Top) Two variants of the Berkeley Earth global surface temperature product estimating temperatures under sea ice based on 
SSTs (red) or proximate air temperature measurements (blue), as well as the HadCRUT temperature series for comparison.  (Bottom) 
The same two versions of the Berkeley Earth data set with the HadCRU time series subtracted. 350 

Figure 5 also aids in understanding the difference between Berkeley Earth and HadCRUT.  The interpolated SST field adopted 

here has a nearly identical trend to the HadSST field, differing by less than 0.01 ºC / century.  Part of the difference between 

Berkeley Earth’s global temperature series and HadCRUT is due to differences in the amount of warming estimated to have 

occurred over land.  This is the primary source of difference when comparing the Berkeley Earth series with SST at sea ice to the 

HadCRUT series (blue line in Figure 5).  While this difference is not insignificant, the larger overall difference is due to the 355 

incorporation of air temperature warming in sea ice regions, especially in the Arctic (red line in Figure 5).  Inclusion of the rapid 

warming above Arctic sea ice suggests the global average has increased an additional ~0.1 ºC during the last 100 years compared 

to estimates that do not include the changes in this region.  

 

In addition to monthly temperature anomalies, Berkeley Earth produces monthly absolute temperature fields. A climatology field 360 

is estimated via Kriging observations, using elevation as a factor in the kriging process over land. Both absolute temperature 

variants with air temperature over sea ice and water temperature under sea ice are available, as shown in Figure 6. Absolute 

temperatures are created by adding the climatology field to monthly anomalies. 
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 365 
Figure 6: Berkeley Earth average absolute climatology for the period from 1951-1980 with the air temperature at sea ice (top panel) and 
ocean temperature under sea ice (bottom) variants shown. 

Figure 7 provides a comparison between published uncertainties (two sigma) for each of the major global land/ocean temperature 

series. The Berkeley Earth, GISTEMP, and CW2014 records have the lowest uncertainty of the groups providing annual values, 

in part due to their spatial interpolation reducing the uncertainty associated with coverage. 370 

 
Figure 7: Comparison of published annual uncertainty estimates (two sigma) for Berkeley Earth, HadCRUT4 (Morice et al 2012), 
GISTEMP (Lenssen et al 2019), GlobalTempv5 (Vose et al 2012), and Cowtan and Way (2014). 

 
The Berkeley Earth Land/Ocean surface temperature record presented here has already been used by a number of publications (e.g. 375 

Jones 2015; Thorne et al 2016; Sutton et al 2015). It joins a number of existing land/ocean surface temperature products that help 
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provide a diverse examination of the Earth’s changing climate since 1850, and can be used for diverse applications including 

climate model validation, estimating transient climate response, examining changes in extreme events, and other research areas.  

Data Availability 

The Land/Ocean temperature product will be updated monthly on the berkeleyearth.org website, and is freely available for use to 380 

all interested researchers.  A convenience copy of the dataset available at the time this paper was created has been registered with 

Zenodo and is available at DOI:10.5281/zenodo.3634713 (Rohde & Hausfather 2020). 
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