
 

Reviewer   1  
 
1.   The   biggest   issue   is   not   one   of   the   authors   own   making,   but   rather   indicative   of  
renewed   interests   in   surface   temperatures   and   a   proverbial   race   by   dataset   producers   to  
create   new   and   improved   versions   of   products,   presumably   for   inclusion   in   the  
upcoming   IPCC   assessment   report.   The   implications   are   two   fold   for   the   present   study  
as   follows.   
 
Firstly,   the   Hadley   Centre   have   recently   updated   their   SST   product   to   HadSSTv4   which  
builds   upon   the   new   ICOADS   R3.0   which   has   considerably   better   coverage   in   several  
critical   periods.   It   also   does   a   better   job   of   handling   modern   era   biases.   The   dataset   is  
available   from   https://www.metoffice.gov.uk/hadobs/hadsst4/   and   my   feeling   is   that   it  
would   future   proof   the   current   analysis   to   use   the   HadSSTv4   product   rather   than  
HadSST3   as   the   marine   basis.   I   am   assuming   that   updates   to   HadSSTv3   will   stop   when  
HadCRUTv5   becomes   operational   so   this   decision   will   be   enforced   onto   the   team   sooner  
or   later.   Changing   now   would   save   the   need   for   another   paper   /   the   situation   where   there  
is   a   mismatch   between   the   paper   and   the   operational   product.   Changing   would   also,  
presumably   improve   coverage   in   the   historical   eras   and   thus   improve   the   analyses.  
Unless   there   is   a   compelling   technical   impediment   to   doing   so   I   would   urge   the   authors  
to   switch   over   SST   source   to   HadSSTv4   now.   
 
We   are   well   aware   of   HadSSTv4   and   are   planning   to   incorporate   it   into   the   Berkeley   Earth  
product   when   it   is   operational.   Currently   HadSSTv4   is   not   updated   monthly   (it   only   runs   through  
December   2018),   so   it   is   not   a   good   fit   for   a   monthly-updated   product   like   Berkeley   Earth   until   it  
is   made   operational   (which   we   suspect   will   occur   in   early   2021).   
 
We   have   had   conversations   with   John   Kennedy   about   when   this   will   occur   and   are   preparing   to  
make   any   needed   tweaks   based   on   (minor)   changes   in   data   format.    Aside   from   certain   minor  
changes   in   the   communicated   data   format,   HadSSTv4   can   be   used   identically   to   HadSSTv3   in  
our   analysis   and   should   provide   a   drop-in   replacement   whenever   the   new   version   becomes  
operational.  
 
[As   an   aside,   we   are   also   aware   that   HadCRUTv5   will   be   including   a   new   interpolation   of   both  
CRUTEM   and   HadSST.    In   the   future,   we   may   choose   to   discontinue   our   own   interpolation   and  
replace   it   with   the   HadCRUTv5   approach.    However,   as   the   next   version   of   HadCRUT   is   not   yet  
published,   we   can’t   yet   evaluate   whether   that   course   of   action   is   desirable.]  
 
We   have   updated   the   manuscript   to   read   (lines   51-52):  
 
“The   ocean   component   of   the   land/ocean   product   uses   an   interpolated   variant   of   HadSST   v3,  
whose   construction   is   described   below.   …   Lastly,   we   note   that   HadSST   v3   will   be   replaced   with  
HadSST   v4   once   that   product   becomes   operational   (Kennedy   et   al.   2019).   Aside   from   minor  



 

differences   in   the   way   data   is   communicated   and   formatted,   HadSST   v4   should   be   usable  
following   the   same   steps   described   here.”   
 
Secondly,   the   new   versions   of   datasets   and   presence   of   new   products   means   updates  
are   likely   warranted   to   the   comparisons   section.   These   include:   •   HadCRUTv5   (in   final  
review)   –   contact   Colin   Morice   for   details   •  
https://essd.copernicus.org/articles/11/1629/2019/essd-11-1629-2019.pdf   -   the   Chinese  
merged   product   recently   extended   back   to   1850   •  
https://www.nature.com/articles/s41561-020-0582-5   which   provides   spatially   complete  
estimation   based   upon   HadCRUTv4   •  
https://journals.ametsoc.org/bams/article/doi/10.1175/BAMS-D-19-  
0095.1/348446/The-EUSTACE-project-delivering-global-daily   -   new   global   surface   air  
temperature   estimates   •  
https://journals.ametsoc.org/jcli/article/33/4/1351/346368/UncertaintyEstimates-for-Sea-S 
urface-Temperature   -   substantially   updated   uncertainty   estimates   on   the   NOAA   product  
Not   all   these   need   be   used   but   clearly   the   HadCRUTv5   and   updated   NOAA   estimates   are  
key   to   include   in   revisions   to   at   a   minimum   figure   7.   
 
While   we   agree   with   the   reviewer’s   suggestions   that   HadCRUTv5   should   be   used   if   possible   in  
Figures   3   and   7,   we   reached   out   to   Colin   Morice   and   he   indicated   that   their   paper   will   likely   not  
be   out   before   ours,   and   would   prefer   we   not   release   their   results   before   they   do.   We   do   not   feel  
that   excluding   this   yet-to-be-released   dataset   from   our   comparisons   should   be   a   reason   to   delay  
publication.  
 
We   have   updated   Figure   7   to   include   NOAA’s   revised   uncertainty   estimates.   We   have   also  
changed   references   in   the   text   from   ERSSTv4   to   ERSSTv5   to   reflect   the   latest   version   of   that  
dataset.  
 
2.   I   am   not   entirely   convinced   there   is   merit   in   persisting   with   a   version   that   uses   SST  
under   sea-ice   as   this   clearly   is   not   a   surface   temperature.   The   true   surface   temperature  
in   such   regions   is   either   the   ice   (near-)skin   temperature   or   the   air   temperature   at   some  
nominal   height   above   the   surface.   There   is   a   potential   risk   of   mis-use   of   a   product   that  
considers   sea   surface   temperature   under   ice   as   a   reasonable   estimate   of   a   true   surface  
temperature.   It   would   possibly   be   better   to   discuss   this   but   provide   only   the   air  
temperature   over   ice   version   as   this   is   the   only   realistic   product   over   these   regions.   It  
would   be   good   to   back   up   with   references   the   contention   made   line   277-281   in   this  
regard.   
 
We   agree   with   the   reviewer   that   the   use   of   water   temperatures   in   sea   ice   regions   is   not   a   natural  
way   to   think   about   global   temperature   changes,   and   we   have   now   try   to   de-emphasize   it   for   that  
reason.    However,   we   believe   that   it   remains   a   useful   comparison   for   a   variety   of   reasons.  
 



 

For   one,   ERSST   (e.g.   Huang   et   al.   2017)   continues   to   have   an   adjustment   that   shifts   SST  
estimates   towards   the   freezing   point   of   ocean   water   (-1.8   C)   in   regions   of   high   sea   ice  
concentration.    Functionally,   this   is   analogous   to   using   ocean   temperature   in   these   sea   ice  
regions.    If   one   is   specifically   working   with   ERSST,   then   a   treatment   of   SST   under   sea   ice   is   a  
natural   comparison.  
 
However,   one   must   also   acknowledge   that   ERSST’s   adjustment   has   only   a   minimal   impact   on  
NOAA   GlobalTemp   since   one   of   the   final   steps   in   constructing   NOAA   GlobalTemp   is   to   mask   all  
cells   with   a   high   sea   ice   concentration   as   missing   (e.g.   Vose   et   al.   2012).  
 
Similarly,   HadSST   will   only   use   SST   values   in   partial   sea   ice   regions   (when   data   exists),   though  
the   availability   of   such   measurements   is   relatively   rare.  
 
It   is   a   limited   audience,   but   people   working   specifically   with   ERSST   or   HadSST   may   naturally  
want   to   make   comparisons   with   ocean   temperature   in   the   sea   ice   region.  
 
A   more   important   point   is   that   this   analysis   allows   us   to   call   out   the   role   of   warming   in   sea   ice  
areas   on   the   overall   global   warming   trend.  
 
As   the   reviewer   knows,   there   are   important   differences   in   how   global   averages   consider   the   sea  
ice   region.    NASA   GISTEMP   uses   air   temperature   extrapolation,   similar   to   our   preferred  
method.    NOAA   GlobalTemp   simply   omits   missing   values   (including   all   regions   with   high   sea   ice  
concentrations)   in   performing   their   averages.    Similarly,   HadCRUT   omits   missing   values   in   their  
averages,   which   will   include   most   of   the   cells   in   sea   ice   areas.    Omission   of   missing   cells   will   in  
effect   treat   those   regions   as   having   an   average   equivalent   to   the   global   average   of   non-missing  
cells.    Given   the   large   role   of   Arctic   amplification,   omission   of   Arctic   cells   is   likely   to  
underestimate   the   true   extent   of   global   warming.    While   not   exactly   equivalent   to   omitting   sea  
ice   cells,   the   extrapolation   of   SST   values   into   the   sea   ice   regions   also   removes   most   of   the  
effect   of   warming   in   these   regions.    Thus   comparing   the   averages   resulting   from   SST  
interpolation   to   that   involving   air   temperatures   helps   to   characterize   the   magnitude   of   the  
missing   warming.  
 
To   summarize,   we   think   the   SST   interpolation   is   somewhat   informative   and   useful,   though  
primarily   of   specialist   interest.    However,   for   most   applications,   the   air   temperature   interpolation  
in   the   sea   ice   regions   is   the   more   applicable   tool.  
 
We   have   now   added   multiple   comments   to   the   paper   to   emphasize   that   the   analysis   using   air  
temperatures   over   sea   ice   is   the   result   that   should   be   preferred   in   most   applications.  
 
 
3.   The   discussion   in   ln   30   to   ln   34   is   dated.   The   ICOADS   release   3.0   is   described   in   a  
newer   manuscript   (Freeman   et   al.,   2017,   doi:10.1002/joc.4775)   and   forms   the   basis   for  
HadSSTv4   and   ERSSTv5.   The   GHCN   dataset   has   been   updated   in   Menne   et   al.,   2019  



 

(https://doi.org/10.1175/JCLI-D-18-0094.1)   and   now   includes   very   many   more   stations  
arising   from   the   efforts   of   Rennie   et   al   to   improve   land   holdings.   NASA   don’t,   any   longer,  
therefore   use   additional   stations.   This   whole   passage   could   be   expanded   and   made   a  
little   more   clear   to   provide   a   better   and   more   accurate   context   for   the   reader   here.   More  
generally   the   discussion   of   others   efforts   is   somewhat   perfunctory   and   in   several  
aspects   significantly   dated.   The   whole   introductory   section   requires   substantive   updates  
including   several   additional   new   products   and   new   versions   of   products   as   noted   in  
major   comment   1.   In   particular,   with   the   move   to   HadCRUT5   all   products   will   employ  
some   form   of   interpolation.   
 
We   agree   with   the   author   that   a   number   of   these   references   are   dated   and   reflect   developments  
in   the   time   between   when   this   portion   of   the   manuscript   was   originally   written   and   ultimately  
submitted.   
 
We   have   updated   lines   26-43   to   read:  
 
“A   number   of   prior   groups   have   developed   global   land/ocean   surface   temperature   indexes,  
including   NASA’s   GISTEMP   (Hansen   et   al.,   2010;   Lenssen   et   al   2019),   Hadley/UEA’s  
HadCRUT4   (Morice   et   al.,   2012),   NOAA’s   GlobalTemp   (Smith   et   al.,   2008;   Vose   et   al.,   2012;  
Huang   et   al   2020),   and   the   Japan   Meteorological   Agency   (JMA)   (Ishihara   2006).   Additionally,  
Cowtan   and   Way   (2014)   provide   a   spatially-interpolated   variant   of   HadCRUT4   featuring   greater  
spatial   coverage.   These   series   differ   in   a   number   of   respects.   They   all   largely   utilize   the   same  
set   SST   measurements   drawn   from   the   ICOADS   database   (Freeman   et   al.,   2017)   and   most   of  
the   same   land   temperature   records   contained   in   the   Global   Historical   Climatological   Network  
monthly   database   (GHCNm)   (Lawrimore   et   al.,   2011),   though   HadCRUT4   (and   by   extension  
Cowtan   and   Way)   includes   a   more   modest   number   of   land   stations   than   GISTEMP   and  
GlobalTemp,   which   recently   transitioned   to   using   the   much   larger   GHCNm   v4   database   (Menne  
et   al   2018).  
  
Both   GISTEMP   and   GlobalTemp   utilize   NOAA’s   pairwise   homogenization   algorithm   to   detect  
and   correct   inhomogenities   such   as   station   moves   or   instrument   changes   in   land   stations  
(Menne   and   Williams   2009),   though   NASA   applies   an   additional   satellite   nightlight-based  
urbanity   correction   (Hansen   et   al.,   2010).   GISTEMP   and   GlobalTemp   both   use   NOAA’s  
Extended   Reconstruction   Sea   Surface   Temperature   (ERSST)   version   5   (Huang   et   al.,   2017)   for  
SSTs,   HadCRUT4   and   Cowtan   and   Way   use   HadSST3   (Kennedy   et   al.,   2011),   and   JMA   uses  
COBE-SST   (Ishii   et   al.,   2005).   HadCRUT4   and   JMA   include   no   spatial   interpolation   outside   of  
5-by-5   latitude/longitude   grid   cells,   while   GlobalTemp   includes   some   interpolation   over   land   but  
has   nearly   complete   ocean   temperature   fields   with   the   primary   exception   that   sea   ice   regions  
are   masked   as   missing.    GISTEMP   and   Cowtan   and   Way   spatially   interpolate   temperatures   out  
to   regions   with   no   direct   station   coverage   (GISTEMP   using   a   simple   linear   interpolation  
technique,   while   Cowtan   and   Way   uses   Kriging).   The   upcoming   HadCRUT5   will   transition   to  
HadSST4   and   include   spatial   interpolation   (Morice   et   al,   submitted).”  
 



 

Menne   et   al   2018   GHCNv4   paper:  
https://journals.ametsoc.org/jcli/article/31/24/9835/90961/The-Global-Historical-Climatology-Net 
work-Monthly  
 
Huang   et   al   2017   ERSSTv5   paper:  
https://journals.ametsoc.org/jcli/article/30/20/8179/33181/Extended-Reconstructed-Sea-Surface- 
Temperature  
 
Morice   et   al   2020,   submitted.  
 
4.   The   temperature   to   distance   correlation   assumption   in   the   ocean   interpolation   step   is  
probably   reasonable   in   ocean   interior   gyres.   But   it   presumably   breaks   down   in   vicinity   of  
upwelling,   downwelling,   coastal   shelf   seas   and   boundary   currents.   A   little   more  
justification   /   discussion   is   required   than   is   given   in   ln   77-79.   I   suspect   that   you   will   need  
to   provide   a   specific   caveat   about   likely   location-specific   performance   in   such   regions.   
 
The   reviewer   is   correct   that   the   use   of   a   uniform   correlation   structure   is   an   imperfect  
assumption.  
 
Central   ocean   basins   will   actually   have   a   longer   average   correlation   than   indicated,   with   polar  
regions,   geographically   complex   basins,   and   regions   of   variable   currents   having   a   shorter  
average   correlation.  
 
On   the   monthly   time   scale,   interpolation   across   these   areas   may   be   less   reliable,   and   we   have  
added   a   caveat   to   this   effect.   
 
“This   treatment,   using   a   single   scale   length   for   the   whole   ocean,   simplifies   the   analysis;  
however,   it   does   ignore   some   of   the   real   variations   across   the   oceans.    For   example,   in   regions  
with   boundary   currents,   upwelling/downwelling,   or   complex   ocean   to   land   geographies,   the  
scale   length   of   monthly   average   temperature   variations   may   be   smaller   than   suggested   here.    In  
practice,   the   5x5   degree   gridding   of   HadSST   already   precludes   a   detailed   analysis   of   most  
small   features.    The   interpolation   presented   here   primarily   serves   to   improve   the   representation  
by   smoothing   over   noise   and   filling   gaps,   but   it   won’t   necessarily   capture   the   smallest   features.”  
 
While   not   discussed   in   this   paper,   on   longer   timescales,   higher   resolution   models   seem   to  
suggest   that   temperatures   in   areas   of   boundary   currents   still   tend   to   evolve   at   a   similar   rate   to  
larger   regional   trends   (with   a   few   exceptions).    So,   while   failure   to   resolve   small   scale   processes  
does   reduce   the   utility   of   our   local   fields,   it   might   not   matter   very   much   in   the   estimation   of  
long-term   trends   in   most   cases.  
 
Minor   comments   
1.   It   feels   dangerous   to   claim   on   ln   11   of   the   abstract   that   the   product   is   more  
homogeneous.   Without   an   absolute   benchmark   it   is   impossible,   sadly,   to   say   whether  

https://journals.ametsoc.org/jcli/article/31/24/9835/90961/The-Global-Historical-Climatology-Network-Monthly
https://journals.ametsoc.org/jcli/article/31/24/9835/90961/The-Global-Historical-Climatology-Network-Monthly
https://journals.ametsoc.org/jcli/article/30/20/8179/33181/Extended-Reconstructed-Sea-Surface-Temperature
https://journals.ametsoc.org/jcli/article/30/20/8179/33181/Extended-Reconstructed-Sea-Surface-Temperature


 

any   given   product   is   more   homogeneous   than   another   and   aspects   such   as   spatial  
smoothness   can   be   misleading   as   pointed   out   in   Sherwood   et   al.,   2009  
(https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.1825).   I   don’t   see   an   explicit  
justification   for   such   a   statement   from   the   underlying   text.   
 
We   agree   that   this   language   is   too   strong,   and   have   revised   the   line   to   avoid   the   impression   that  
the   dataset   is   more   spatially   complete   or   homogenous   than   existing   datasets:  
 
“It   agrees   quite   well   with   records   from   Hadley’s   HadCRUT4,   NASA’s   GISTEMP,   NOAA’s  
GlobalTemp,   and   Cowtan   and   Way,   and   provides   a   spatially   complete   and   homogeneous  
temperature   field.”   
 
 
2.   There   are   several   newer   analyses   than   Cowtan   et   al.   2015   on   ln   25   regarding   SST/SAT.  
Richardson   et   al.,   2018   plus   newer   in   press   papers   by   Lea   Beusch,   Nathan   Gillett,   Gareth  
Jones   and   others.   It   would   also   be   worth   being   explicit   how   these   measures   may   be  
expected   to   differ   with   time   e.g.   that   SAT   would   be   expected   to   warm   /   cool   a   little   more  
than   the   underlying   SST   were   to   warm   or   cool.   
 
We   have   revised   line   25   to   read:   
 
“..though   it   is   only   an   imperfect   proxy   and   may   be   subject   to   slightly   slower   warming   rates   than  
marine   air   temperatures   in   recent   decades   (Cowtan   et   al.,   2015;   Richardson   et   al   2016;   Jones  
2020).”  
 
Richardson   et   al   2016:    https://www.nature.com/articles/nclimate3066   
Jones   2020:    https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3871   
 
3.   Ln   28   the   product   is   a   joint   effort   between   the   Hadley   Centre   and   UEA’s   CRU   
 
We   have   revised   this   to   read   “Hadley/UEA’s   HadCRUT4”.  
 
4.   Ln   28   Note   newer   references   exist   for   the   NOAA   product   and   its   uncertainty   estimation  
(see   major   comments)   
 
Updated   to   read   “NOAA’s   GlobalTemp   (Smith   et   al.,   2008;   Vose   et   al.,   2012;   Huang   et   al   2020)”  
 
5.   Please   double   check   with   GISS   colleagues   whether   they   continue   to   apply   an  
additional   night-lights   based   adjustment   as   my   reading   of   Lenssen   et   al   ended   up  
ambiguous   in   this   regard.   
  
Our   understanding   is   that   night   lights   still   play   a   minor   role   though   it   has   been   reduced   with   the  
introduction   of   the   homogenized   station   data   from   NOAA.  

https://www.nature.com/articles/nclimate3066
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3871


 

 
6.   Both   NOAA   and   NASA   have   switched   to   using   ERSSTv5   so   the   text   and   reference   ln  
38-39   needs   changing   accordingly.   
 
ERSSTv4   had   been   changed   to   ERSSTv5   there   and   on   line   297.  
 
7.   Globaltemp   (ln40)   does   include   some   limited   interpolation   over   land   and   is   complete  
over   the   oceans.   This   needs   to   be   corrected   accordingly.   
 
The   reviewer’s   caveat   is   partially   incorrect.    ERSST   is   complete   over   the   oceans,   but  
GlobalTemp   masks   as   missing   all   cells   with   a   sea   ice   concentration   over   50%   (Vose   et   al.   2012)  
so   GlobalTemp   has   missing   cells   in   both   land   and   ocean   areas.  
 
We’ve   updated   this   to   read:   “HadCRUT4   and   JMA   include   no   spatial   interpolation   outside   of  
5-by-5   latitude/longitude   grid   cells,   while   GlobalTemp   includes   some   interpolation   over   land   but  
has   nearly   complete   ocean   temperature   fields   with   the   primary   exception   that   sea   ice   regions  
are   masked   as   missing.”  
 
8.   Ln   47-49   NOAA   and   NASA   now   use   closer   to   20   thousand   stations   following   the  
GHCNv4   update   and   this   should   be   reflected   here.   
 
We’ve   update   this   to   include   the   proper   GHCNv4   number.   The   sentence   now   reads:  
 
“The   land   data   utilizes   significantly   more   land   station   data   (over   40,000   stations)   compared   to  
the   ~10,000   land   stations   used   by   some   of   the   other   groups   (though   GISTEMP   and   GlobalTemp  
have   both   recently   updated   their   records   to   include   a   larger   number   of   land   stations,   including  
more   20,000   sites   in   GHCNv4).”   
 
9.   Ln   233-236   makes   little   sense   as   written.   I   think   you   mean   to   say   that   in   the   more  
recent   past   coverage   uncertainty   diminishes   in   importance   and   bias   uncertainty  
becomes   increasingly   important?   
 
We’ve   rewritten   this   paragraph   to   make   the   intention   clearer.  
 
“Over   all   time   periods,   we   find   that   interpolation   does   reduce   the   uncertainty   associated   with  
missing   coverage.    In   the   early   period,   this   results   in   an   appreciable   reduction   in   total  
uncertainty.    However,   the   total   uncertainty   in   the   global   average   is   little   changed   in   the   recent  
period.    This   is   because   bias   and   measurement   uncertainties   play   a   dominant   role   in   the   recent  
period,   and   the   impact   of   these   uncertainties   on   the   global   average   are   little   changed   as   a   result  
of   the   interpolation.    However,   even   if   the   ocean-average   uncertainty   is   not   changed   during   the  
recent   period,   the   interpolation   may   still   aid   in   the   interpretation   of   local   to   regional-scale  
features.”  
 



 

 
10.   Ln   273-274   or   Antarctic   coastal   stations,   surely?   There   are   two   hemispheres   with  
sea-ice   …   
 
We’ve   added   mention   for   Antarctica.  
 
11.   Can   a   reference   be   given   e.g.   to   the   ERSSTv5   paper   to   back   up   the   assertion   on  
ln296-298?   Note   also   that   NASA   and   NOAA   use   ERSSTv5   and   not   v4   as   noted   in   a   prior  
comment.   
We   have   added   a   references   to   Huang   et   al   2017,   Kennedy   et   al   2019,   and   Cowtan   et   al   2017,  
which   examines   these   issue   in   depth:  
 
Differences   around   World   War   2   relate   primarily   to   differences   in   adjustments   to   ERSST   v5   and  
HadSST3   sea   surface   temperature   records   during   that   period   (Huang   et   al   2017;   Kennedy   et   al  
2019;   Cowtan   et   al   2017).  
 
Huang   et   al   2017   ERSSTv5   paper:  
https://journals.ametsoc.org/jcli/article/30/20/8179/33181/Extended-Reconstructed-Sea-Surface- 
Temperature  
 
Kennedy   et   al   2019:    https://www.metoffice.gov.uk/hadobs/hadsst4/HadSST4_accepted.pdf  
 
Cowtan   et   al   2017:    https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3235  
 
12.   In   figure   3   are   the   trends   OLS   fits?   You   need   to   be   explicit   not   just   about   the   ARMA  
model   applied   but   also   the   trend   calculation   method.   
 
We’ve   clarified   the   caption   to   indicate   that:  
 
“The   bottom   panel   shows   trends   calculated   via   an   OLS   fit   and   two-sigma   trend   uncertainties  
(calculated   using   an   ARMA[1,1]   approach   to   account   for   autocorrelation)   for   various   starting  
dates   through   the   end   of   2019   based   on   monthly   anomalies.”  
 
Similar   approaches   (central   trend   estimate   from   OLS,   uncertainties   from   ARMA   model)   have  
been   used   in   other   papers,   e.g.   Hausfather   et   al   2017:  
https://advances.sciencemag.org/content/3/1/e1601207  
 
13.   As   noted   in   a   prior   comment   NOAA   is   interpolated   to   an   extent   so   Ln   307   and   Ln313-  
314   require   revision   accordingly.   
 
Line   307   has   been   revised   to   “...(which   are   more   limited   in   both   the   NOAA   and   Hadley  
records).”  
 

https://journals.ametsoc.org/jcli/article/30/20/8179/33181/Extended-Reconstructed-Sea-Surface-Temperature
https://journals.ametsoc.org/jcli/article/30/20/8179/33181/Extended-Reconstructed-Sea-Surface-Temperature
https://www.metoffice.gov.uk/hadobs/hadsst4/HadSST4_accepted.pdf
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3235
https://advances.sciencemag.org/content/3/1/e1601207


 

Lines   313-314   have   been   revised   to   “This   contrasts   with   HadCRUT4   which   exclude   any   grid  
cells   lacking   station   coverage   or   SST   measurements,   or   and   NOAA   GlobalTemp   where  
interpolation   is   more   limited.”   
 
14.   HadCRUT   and   not   HadCRU   in   ln   338  
 
Fixed.  
 
 
 
Reviewer   2  
 
1)   As   one   of   the   other   reviewers   comments,   the   use   of   HadSST3   rather   than   HadSST4  
is   not   ideal,   although   I   appreciate   that   the   HadSST3   version   has   been   available   for  
some   time.   I   suspect   the   authors   will   also   want   to   use   HadSST4   (and   will   have   to  
soon),   but   as   long   as   the   methods   don’t   change   when   swapping   for   HadSST4   then   this  
paper   sufficiently   describes   the   approach   to   creating   the   overall   dataset.  
 
As   discussed   in   our   response   to   Reviewer   1,   we   are   preparing   to   switch   to   HadSST4   once   that  
dataset   is   operational   and   updated   monthly   (likely   early   in   2021).   We   have   updated   the  
manuscript   to   read   (lines   51-52):  
 
“Lastly,   we   note   that   HadSST   v3   will   be   replaced   with   HadSST   v4   once   that   product   becomes  
operational   (Kennedy   et   al.   2019).   Aside   from   minor   differences   in   the   way   data   is  
communicated   and   formatted,   HadSST   v4   should   be   usable   following   the   same   steps   described  
here.”   
 
2)   I   also   agree   with   one   of   the   other   reviewers   when   they   question   the   use   of   a   version  
of   the   dataset   that   uses   SSTs   under   ice.   Is   this   appropriate   as   a   measure   of   global  
temperature   change?   But,   if   the   authors   want   to   include   it   then   that   should   be   their  
Choice.  
 
Please   see   our   response   to   the   other   reviewer.    While   we   agree   that   extending   the   SST   field  
under   the   sea   ice   is   not   a   good   measure   of   global   temperature   change,   we   do   think   it   has   some  
utility   for   making   comparisons   to   other   datasets   that   do   this   (e.g.   ERSST)   and   for   helping   to  
characterize   the   effects   of   Arctic   Amplification.  
 
Minor   comments:  
1)   Abstract:   ’agrees   quite   well’   is   not   very   precise   and   could   be   expanded.  
 
These   comparisons   are   expanded   later   in   the   text,   but   we   have   changed   it   to   “It   provides   a  
global   mean   temperature   record   quite   similar   to   records   from…”   to   be   more   precise   in   the  
abstract.   



 

 
2)   l23   -   there   are   more   observations   of   MATs   than   SSTs   before   around   1900   so   this  
sentence   could   be   edited   slightly.   There   is   a   new   NMAT   dataset   -   Cornes   et   al.   (in  
press)   -   for   example.  
 
We   have   changed   it   to   “Sea   surface   temperatures   are   used   in   lieu   of   marine   air   temperatures  
due   to   relative   scarcity   post-1900   and…”   to   reflect   this.  
 
3)   l338   -   typo   ’ot’   ->   ’to’  
 
Fixed.  
 
4)   Is   it   worth   adding   ERA5   to   the   post-1979   trends?  
 
While   ERA5   is   quite   a   useful   dataset,   it   is   substantially   different   in   its   construction   from  
instrumental   surface   temperature   records   that   we   think   its   inclusion   here   is   probably   not  
warranted   (though   comparisons   are   certainly   useful   in   other   contexts!).   The   long   length   of   other  
records   would   also   make   ERA5   difficult   to   see   in   the   top   panel   of   Figure   3.  
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Abstract. A global land/ocean temperature record has been created by combining the Berkeley Earth monthly land temperature 

field with spatially-kriged version of the HadSST3 dataset. This combined product spans the period from 1850 to present and 

covers the majority of the Earth’s surface: approximately 57% in 1850, 75% in 1880, 95% in 1960, and 99.9% by 2015. It includes 

average temperatures in 1°x1° lat/lon grid cells for each month when available. It provides a global mean temperature record quite 

similar to records from Hadley’s HadCRUT4, NASA’s GISTEMP, NOAA’s GlobalTemp, and Cowtan and Way, and provides a 10 

spatially complete and homogeneous temperature field. Two versions of the record are provided treating areas with sea ice cover 

as either air temperature over sea ice or sea surface temperature under sea ice, the former being preferred for most applications. 

The choice of how to assess the temperature of areas with sea ice coverage has a notable impact on global anomalies over past 

decades due to rapid warming of air temperatures in the Arctic.  Accounting for rapid warming of Arctic air suggests ~0.1 ºC 

additional global-average temperature rise since the 19th century than temperature series that do not capture the changes in the 15 

Arctic.  Updated versions of this dataset will be presented each month at the Berkeley Earth website (http://berkeleyearth.org/data/), 

and a convenience copy of the version discussed in this paper has been archived and is freely available at 

https://doi.org/10.5281/zenodo.3634713 (Rohde & Hausfather, 2020). 

1 Introduction 

Global land-ocean temperature indices combining 2-meter surface air temperature over land with sea surface temperatures (SST) 20 

over oceans are commonly used to assess changes in the Earth’s climate.  While it is a less physically meaningful metric than earth 

system total heat content, it is well-measured with reliable data extending back to c.1850 for oceans (Kennedy et al., 2011) and as 

far back as c.1750 for land (Rohde et al., 2013a) and is the part of the Earth system most relevant for impacts on human civilization. 

Sea surface temperatures are used in lieu of marine air temperatures due to scarcity and inhomogeneity of marine air temperature 

data (Kent et al., 2013), though it is only an imperfect proxy and may be subject to slightly slower warming rates than marine air 25 

temperatures in recent decades (Cowtan et al., 2015; Richardson et al 2016; Jones 2020). 

 

A number of prior groups have developed global land/ocean surface temperature indexes, including NASA’s GISTEMP (Hansen 

et al., 2010; Lenssen et al 2019), Hadley/UEA’s HadCRUT4 (Morice et al., 2012), NOAA’s GlobalTemp (Smith et al., 2008; Vose 

et al., 2012; Huang et al 2020), and the Japan Meteorological Agency (JMA) (Ishihara 2006). Additionally, Cowtan and Way 30 

(2014) provide a spatially-interpolated variant of HadCRUT4 featuring greater spatial coverage. These series differ in a number of 

respects. They all largely utilize the same set SST measurements drawn from the ICOADS database (Freeman et al., 2017) and 

most of the same land temperature records contained in the Global Historical Climatological Network monthly database (GHCNm) 

(Lawrimore et al., 2011), though HadCRUT4 (and by extension Cowtan and Way) includes a more modest number of land stations 

than GISTEMP and GlobalTemp, which recently transitioned to using the much larger GHCNm v4 database (Menne et al 2018). 35 

 

Deleted: It agrees quite well with records from Hadley’s 
HadCRUT4, NASA’s GISTEMP, NOAA’s GlobalTemp, and 
Cowtan and Way, but provides a more spatially complete and 
homogeneous temperature field. 40 

Deleted: slightly different warming rates (Cowtan et al., 2015).

Deleted: Hadley’s

Deleted: Woodruff et al., 2011

Deleted: though both GISTEMP and HadCRUT4 (and by 
extension Cowtan and Way) include a modest number of additional 45 
land stations, most notably in Antarctica in the case of GISTEMP. 
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Both GISTEMP and GlobalTemp utilize NOAA’s pairwise homogenization algorithm to detect and correct inhomogenities such 

as station moves or instrument changes in land stations (Menne and Williams 2009), though NASA applies an additional satellite 

nightlight-based urbanity correction (Hansen et al., 2010). GISTEMP and GlobalTemp both use NOAA’s Extended Reconstruction 

Sea Surface Temperature (ERSST) version 5 (Huang et al., 2017) for SSTs, HadCRUT4 and Cowtan and Way use HadSST3 50 

(Kennedy et al., 2011), and JMA uses COBE-SST (Ishii et al., 2005). HadCRUT4 and JMA include no spatial interpolation outside 

of 5-by-5 latitude/longitude grid cells, while GlobalTemp includes some interpolation over land but has nearly complete ocean 

temperature fields with the primary exception that sea ice regions are masked as missing.  GISTEMP and Cowtan and Way spatially 

interpolate temperatures out to regions with no direct station coverage (GISTEMP using a simple linear interpolation technique, 

while Cowtan and Way uses Kriging). The upcoming HadCRUT5 will transition to HadSST4 and include spatial interpolation 55 

(Morice et al, submitted). 

 

Here we describe the global land/ocean surface temperature product from Berkeley Earth that combines the Berkeley Earth land 

temperature data (Rohde et al 2013a; Rohde et al 2013b) with SST data from HadSST3 (Kennedy et al., 2011). It uses a Kriging-

based spatial interpolation to provide an extensive spatial coverage for the period from 1850 to present. The land data utilizes 60 

significantly more land station data (over 40,000 stations) compared to the ~10,000 land stations used by some of the other groups 

(though GISTEMP and GlobalTemp have both recently updated their records to include a larger number of land stations, including 

more 20,000 sites in GHCNv4). The land component also includes the novel homogenization technique of the Berkeley Earth 

temperature record that detects breakpoints through neighbor difference series comparisons, cuts land stations into fragmentary 

records at breakpoints, and combines these fragmentary records into a temperature field. The ocean component of the land/ocean 65 

product uses an interpolated variant of HadSST v3, whose construction is described below. A version of the Berkeley Earth 

interpolated dataset has been publicly available for some time, but has not been formally described. Lastly, we note that HadSST 

v3 will be replaced with HadSST v4 once that product becomes operational (Kennedy et al. 2019). Aside from minor differences 

in the way data is communicated and formatted, HadSST v4 should be usable following the same steps described here. 

2 Methods 70 

The Berkeley Earth Land/Ocean temperature record combines the Berkeley Earth land record (Rohde et al 2013a) with SST data 

from HadSST3 (Kennedy et al. 2011a, Kennedy et al. 2011b). The HadSST3 data is adjusted in several ways.  The primary 

manipulation is to replace the gridded data with an interpolated field using a Kriging-based approach.  The HadSST3 data set 

provides grid cell averages on a 5° by 5° grid and only reports monthly averages for cells where data was present during the month 

in question.  HadSST3 often reports no data for ~40% of ocean grid cells.  As described below, the interpolation produces a more 75 

complete field and reduces the component of uncertainty associated with incomplete coverage.  While providing a more complete 

field, the interpolation does not materially change the apparent rate of warming in the oceans. 

 

After interpolation, the ocean temperature anomaly field is merged with Berkeley Earth land anomaly field using the fraction of 

land / water in each grid cell (typically reported with a 1° by 1° latitude/longitude resolution).  As described below, two versions 80 

are considered with respect to the role of sea ice.  The version using air temperature above sea ice is recommended for most users, 

though the other version may be useful for certain specialists and diagnostic purposes.   

 

Deleted:  

Deleted: 4 85 
Deleted: 2014

Deleted: HadCRUT4, GlobalTemp, and JMA include no spatial 
interpolation outside of 5-by-5 latitude/longitude gridcells

Deleted: ,

Deleted: while 90 

Deleted: the greatest possible

Deleted: A version of this dataset has been publically available for 
some time, but has not been formally described.
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2.1 Interpolation Method 

The HadSST3 gridded fields provide several critical components, the temperature anomaly, the number of observations, and 95 

several estimates of the uncertainty (Kennedy et al. 2011a, Kennedy et al. 2011b).  The grid cell uncertainties and observation 

counts allow one to treat some grid cells as having greater confidence than others.  Unlike land surface station data, where each 

monthly average represents many temperature observations, the ocean observation counts are a true measure of the number of 

instantaneous SST measurements. 

 100 

Analogous to Rohde et al 2013a, the core of the interpolation approach is to generate a Kriging-based field using an assumed 

distance-based correlation function.  As with Rohde et al 2013a, a correlation-based approach is used rather than the more common 

covariance-based approach to simplify the computational considerations, and should be adequate as long as the variance changes 

relatively slowly with changes in position.  A review of both the HadSST data and climate model outputs suggested that the 

temperature to distance correlation function could be modeled effectively via the same spherical correlation function approach 105 

used for land surface temperatures: 

 

	 𝑅(𝑑) = 𝑅! '1 −
"

"!"#*
#

'1 +
"

#	"!"#* , 𝑑 < 𝑑%&'		 	 	 	 	 	 (1)	

𝑅(𝑑) = 0, 𝑑 ≥ 𝑑%&'	 	

 110 

The empirically estimated distance parameter 𝑑%&' was found to have a value of 2,680 km based on the spatial variance of the 

HadSST monthly averages.  This is similar to, though somewhat smaller than, the 3,310 km scale adopted in the land surface 

temperature study (Rohde et al. 2013a).  By contrast, the local correlation parameter 𝑅! = 0.47 was estimated to be much lower 

in the oceans (compared to 0.86 on land).  This is due to two factors.  Firstly, ocean observations are individual measurements 

whereas land observations reflect monthly averages.  Secondly, the typical monthly fluctuations in the oceanic environment are 115 

much smaller in than on land, causing a reduced signal-to-noise ratio.  The estimation of 𝑅! was based on a comparison of the 

variance in HadSST grid cells with a single measurement to those with > 100 observations.  The latter condition provides a proxy 

for cells where the random portion of measurement and sampling uncertainty could plausibly be neglected. 

 

Figure 1 shows an empirically estimated average correlation versus distance between HadSST grid cells.  This shows the empirical 120 

length scale, though a larger intercept is used (~0.75) reflecting the fact that the average HadSST grid cell incorporates many 

observations.  The lower value for 𝑅! represents the typical relationship between a single measurement and the monthly average. 

 

This treatment, using a single scale length for the whole ocean, simplifies the analysis; however, it does ignore some of the real 

variations across the oceans.  For example, in regions with boundary currents, upwelling/downwelling, or complex ocean to land 125 

geographies, the scale length of monthly average temperature variations may be smaller than suggested here.  In practice, the 5x5 

degree gridding of HadSST already precludes a detailed analysis of most small features.  The interpolation presented here primarily 

serves to improve the representation by smoothing over noise and filling gaps, but it won’t necessarily capture the smallest features. 
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 130 
Figure 1: Empirically estimated correlation versus distance for monthly average sea surface temperatures.  Correlation was estimated 
by comparing root-mean-square differences for all possible pairs of HadSST grid cells and all months, and binning the population by 
distance.  The black curve reflects a best fit for the spherical correlation function model.  The red dashed curve shows the corresponding 
correlation model derived for land-based measurements (Rohde et al. 2013a). 

The distance correlation function gives rise to a Kriging formulation that: 135 

 

	 𝑇(𝑥, 𝑡) = 𝜃( +∑ '𝐾9𝑥) , 𝑥, 𝑡:9𝑆𝑆𝑇9𝑥) , 𝑡: − 𝜃(:*) 	 	 	 	 	 	 (2)	
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	 	 	 	 	 	 	 	 (4)	140 

	 𝑁2339𝑥) , 𝑡: =
4!(

56!.'&,(07
(,	minimum	value	of	1	 	 	 	 	 	 (5)	

	

Where t is the current month, 𝑇(𝑥, 𝑡) is the interpolated temperature at a general location 𝑥, 𝑆𝑆𝑇9𝑥) , 𝑡: is the HadSST anomaly 

value in the grid cell centered at location 𝑥), and 𝜎%9𝑥) , 𝑡: is the measurement uncertainty associated with location 𝑥), and 𝑠% is 

the average measurement uncertainty of a single measurement.  𝑁2339𝑥) , 𝑡: is then an effective number of independent 145 

measurements associated with the grid cell.  Though HadSST provides the true number of observations per cell, 𝑁9𝑥) , 𝑡:, we found 

that 𝑁2339𝑥) , 𝑡:, which incorporates the measurement uncertainty appeared to give superior results than simply relying on the 

reported number of observations.  The incorporation of 𝑁2339𝑥) , 𝑡: into the determination of the Kriging coefficients K has the 
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effect of giving greater weight to grid cells with less uncertainty.  For integer values of 𝑁2339𝑥) , 𝑡:, the formulation of 𝐷9𝑥) , 𝑡: is 

mathematically equivalent to having 𝑥) appear 𝑁2339𝑥) , 𝑡: independent times in the correlation matrix.  Note also that any empty 150 

HadSST grid cells at time t are omitted from the matrix formulation for K. 

 

𝜃( is a free parameter at each time t and effectively represents the global ocean average temperature anomaly.  Its value is found 

iteratively by insisting that the spatial average of 𝑇(𝑥, 𝑡) − 𝜃( = 0. 

 155 

It is instructive to note that this Kriging formulation has the property that 𝑇9𝑥) , 𝑡: → 𝑆𝑆𝑇9𝑥) , 𝑡: in the limit that 𝑁2339𝑥) , 𝑡: → ∞, 

but will ordinarily produce a temperature estimate based on a weighted average of multiple HasSST grid points in the case that 

𝑁2339𝑥) , 𝑡: is small or moderate.  The latter property can be useful in suppressing noise at grid locations with high uncertainty 

and/or very few measurements. 

 160 

It is also important to recognize that that though the correlation function 𝑅(𝑑) has a very long tail, this does not mean that average 

necessarily extends over a large area.  In general, the Kriging coefficients 𝐾9𝑥) , 𝑥, 𝑡: constructed in this way will heavily favor the 

nearest several data points.  As long as nearby data is available, little weight will be given to distant grid cells.  However, the long-

tail of the correlation function means that the Kriging will attempt to fill large holes using distant data if no nearby data is available. 

 165 

An absolute value field was also created by applying a similar interpolation to the HadSST climatology. 

 

𝐶(𝑥,𝑚) = 𝑃(𝑥,𝑚) + ∑ '𝐾89𝑥) , 𝑥,𝑚:9𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: − 𝑃(𝑥,𝑚):*) 		 	 	 (6)	

	

𝐶(𝑥,𝑚) is the interpolated climatology for month m, 𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: is the reported climatology, 𝐾89𝑥) , 𝑥,𝑚: is a set of Kriging 170 

parameters, which are the same as 𝐾9𝑥) , 𝑥,𝑚: except that 𝑅! and 𝐷9𝑥) , 𝑡: are both replaced with 1, effectively treating the 

𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: as if it has no uncertainty.  𝑃(𝑥,𝑚) a background prediction function dependent only on the month and the 

latitude of x.  It is described as a piece-wise cubic spline with 11 knots as free parameters equally spaced in the cosine of latitude.  

These free parameters are chosen to minimize the spatial average of 𝐶(𝑥,𝑚) − 𝑃(𝑥,𝑚).  By construction, 𝐶9𝑥) , 𝑚: =

	𝑆𝑆𝑇𝐶𝐿𝐼𝑀9𝑥) , 𝑚: for all 𝑥), and this construction merely provides a way of interpolating between grid cell centers. 175 

 

In addition to the above description, a physical cutoff was applied to the absolute temperature 𝐶(𝑥,𝑚) + 	𝑇(𝑥, 𝑡) at a fixed 

minimum temperature of -1.8 C, which is freezing temperature of seawater.  If the interpolation would suggest a value lower than 

this, 𝑇(𝑥, 𝑡) was adjusted accordingly to maintain the minimum value of -1.8 C.  Such adjustments are rare. 

 180 

Finally, one last interpolation is performed using an assumption of temporal persistence.  Unlike land temperature anomalies, 

where the temporal correlation is often only a couple weeks, ocean temperature anomalies typically have a temporal correlation 

measured in months.  This can be exploited to estimate ocean temperatures based on adjacent months when no other information 

is available. 

 185 
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Analogous to Rohde et al. 2013a, a diagnostic criterion can be constructed 𝑉(𝑥, 𝑡) = ∑ 𝐾9𝑥) , 𝑥, 𝑡:) .  Because of the nature of the 

Kriging coefficients, 𝑉(𝑥, 𝑡) → 1 in the presence of dense data and 𝑉(𝑥, 𝑡) → 0 if there is no HadSST data in the neighborhood of 

x. 

 

The final estimate of the SST, including a temporal persistence adjustment for regions of low 𝑉(𝑥, 𝑡) is then 190 

 

𝑇39:&;(𝑥, 𝑡) = 𝑇(𝑥, 𝑡) + 91 − 𝑉(𝑥, 𝑡): '
<(',(-*)?(',(-*)-<(',(,*)?(',(,*)

<(',(-*)-<(',(,*)
− 𝜃(*	 	 	 (7)	

	

Here, t-1 and t+1 refer to the temperature field one month earlier and one month later, respectively.  This adjustment allows for a 

modest reduction in uncertainty at early times when data is temporally sparse. 195 

  

As described, this analysis is agnostic about the resolution used to sample the final temperature field.  In practice, we generally use 

the same 15984-element equal-area grid as Rohde et al. 2013a to calculate 𝑇39:&;(𝑥, 𝑡), though with non-ocean elements masked 

out. 

2.2 Ocean Uncertainty 200 

The ocean-average uncertainty in our ocean reconstruction is estimated following essentially the same model as adopted by 

HadSST3.  HadSST3 estimates the total reconstruction uncertainty as the combination of measurement uncertainty, coverage 

uncertainty, and bias uncertainty (Kennedy et al. 2011a, Kennedy et al. 2011b).  Bias uncertainty, 𝜎@9&4, which reflects biases 

created due to variations over time in the ways that SST has been measured, is brought forward essentially unchanged by our 

analysis process (Figure 2).  Due to its slowly varying nature, this uncertainty remains the most important limitation of the detection 205 

of long-term averages. 

 

The coverage uncertainty, 𝜎ABC2D&E2, is the uncertainty in the large-scale average arising due to incomplete sampling of the spatial 

field.  As with HadSST3, our estimate of the coverage uncertainty is constructed by sampling a known field, applying our 

interpolation procedure, and seeing how well we reproduce the underlying average of the known field.  Following HadSST3, we 210 

used the SST fields provided by HadISST v2 as our target.  The HadISST fields are spatially complete, observation-based historical 

reconstructions of SST and sea ice concentration (Titchner and Rayner 2014).  To estimate the coverage uncertainty associated 

with a specified HadSST sampling field, we mask every month of the HadISST dataset using that sampling field, interpolate the 

remaining data, and measure the error in the interpolated average relative to the true ocean-average of the whole HadISST field.  

The deviations in the ocean-average are then collected across all HadISST months and the uncertainty for that coverage mask is 215 

reported as the root-mean-square average of the deviations.  Using this technique, which is directly analogous to the HadSST3 

coverage assessment technique, we estimate that the application of our interpolation approach typically reduces the coverage 

uncertainty by 20-40% (Figure 2). 

   

Lastly, we consider the impact of our interpolation on the measurement and sampling uncertainty.  Measurement uncertainty 220 

essentially captures the errors in individual observations, while sampling uncertainty reflect the fact that water temperatures can 

vary on timescales shorter than a month and spatial scales smaller than a grid box.  Though interpolation does not change the 
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underlying uncertainty associated with individual measurements, by adjusting the weight of individual observations in the overall 

average, we affect the way that individual measurement errors propagate into the global average.  In particular, in the presence of 

sparse data, limited measurements may be extrapolated over a large area.  In some circumstances, this can cause the effective 225 

uncertainty in the global average due to these uncertainties to increase.  In essence, the interpolation may trade improvements in 

coverage uncertainty against a greater impact for measurement uncertainty.  This largely limits our ability to reduce the overall 

uncertainty by interpolation. 

 

The impact of measurement uncertainty on a large-scale average depends on the error correlation.  If the measurement uncertainties 230 

were uncorrelated, then the error would generally be expected to decline with the square root of the number of measurements.  In 

actuality, the measurement uncertainties are frequently correlated.  In most cases, single ships report many measurements per 

month.  Each of those measurements can have both random errors and a potential for systematic bias.  For a single ship, we cannot 

expect this bias component of a measurement error to be reduced by increasing the number of observations.  In their analysis 

HadSST3 models the entire error correlation matrix to understand the effect of measurement errors on the global average 235 

uncertainty. 

 

For HadSST3, the error correlation matrices were not published.  As a result, it is not possible to exactly determine the effect of 

our interpolation procedure on the measurement uncertainty.  However, we can make a reasonable estimate.  Since HadSST3 

releases both the per grid cell measurement uncertainties and the global average measurement uncertainty, we can compare the 240 

expected measurement uncertainty treating all grid cell as independent to what is actually observed by HadSST3 using the whole 

error correlation matrix (Kennedy et al. 2011b). 

 

	 𝜎F:ABDD2;&(2" = c∑ '𝐴9𝑥):𝜎%9𝑥) , 𝑡:*
#

) 	 	 	 	 	 	 	 (8)	

 245 

Where 𝐴9𝑥): is the fraction of the Earth’s oceans represented by grid cell 𝑥) and 𝜎F:ABDD2;&(2" is the measurement uncertainty 

resulting from assuming that the measurement errors in individual grid cells are uncorrelated with other grid cells. 

 

We find that the measurement uncertainty reported by HadSST3 in the ocean-average is typically ~2.1 times larger than 

𝜎F:ABDD2;&(2", with some variation over time. 250 

 

We use this estimate as a benchmark to approximate the effect of error correlation on our analysis of measurement uncertainty. 

 

	 𝜎9:(2DGB;&(2",			%2&4FD2%2:( =
6)"*++,,			!$"/01$!$23

6024511$6"3$* c∑ '𝐾f9𝑥) , 𝑡:𝜎%9𝑥) , 𝑡:*
#

) 	 	 	 (9)	

	 𝐾f9𝑥) , 𝑡: = 9∬𝐾9𝑥) , 𝑥, 𝑡:	𝑑𝑥: (∬1	𝑑𝑥)i 	 	 	 	 	 	 	 (10)	255 

 

Where the double integral denotes the integral over the surface of the ocean.  Thus 𝐾f9𝑥) , 𝑡: is effectively the weight of the 𝑥) grid 

point in the global average. 
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The total uncertainty in the ocean-average is then found by assuming the components are independent. 260 

 

j𝜎@9&4
# + 𝜎ABC2D&E2# + 𝜎9:(2DGB;&(2",			%2&4FD2%2:(#	 	 	 	 	 	 (11)	

  

Over nearly all time periods, we find that interpolation does reduce the uncertainty associated with missing coverage.  In the early 

period, the interpolation results in an appreciable reduction in total uncertainty.  However, the total uncertainty in the global average 265 

is little changed in the recent period.  This is because the bias and measurement uncertainties play a dominant role in the recent 

period, and the impact of these uncertainties on the global average is little changed as a result of the interpolation.  However, even 

if the ocean-average uncertainty is not changed during the recent period, the interpolation may still aid in the interpretation of local 

to regional-scale features. 

 270 

 
Figure 2: Component uncertainties for the ocean-average of HadSST v3 and the corresponding transformed forms of those components 
after the application of the interpolation scheme described in the text.  All uncertainties are expressed as appropriate for 95% confidence 
intervals on annual ocean-averages. 

2.3 Land and Ocean Combination 275 

The combined field is constructed by merging the Berkeley Earth Land Surface temperature with the interpolated SST field 

described above.  Two versions are considered that differ only in their treatment of sea ice, using either the land air temperature 

(LAT) or the SST field to estimate the temperature anomaly at sea ice locations.  From 1850 to near-present, the sea ice locations 

are estimated using the ice concentration fields in HadISST v2 (Titchner and Rayner 2014).   

 280 

To combine LAT and SST data, both data sets are expressed on the same grid.  To simplify the combination at cells that are part-

land and part-ocean, we have taken to adding in the spatial climatology and doing the combination in absolute temperatures.  

 

Deleted: In the early part of the time series, we find that 
interpolation does significantly reduce the uncertainty in the ocean-285 
average.  At late times, though coverage uncertainty is improved, 
bias uncertainty plays a large role and the total uncertainty in the 
ocean-average is little changed from the HadSST values.  However, 
even if the ocean-average uncertainty is not changed, some users 
will nonetheless benefit from having a more spatially complete 290 
interpolated SST field.¶
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In the case where sea ice areas are represented by SST, the combination is straightforward: 

 

𝑇AB%@9:2"(𝑥, 𝑡) = 𝐿(𝑥)	𝑇HI?(𝑥, 𝑡) + (1 − 𝐿(𝑥))	𝑇JJ?(𝑥, 𝑡)	 	 	 	 	 (12)	

 295 

Where 𝐿(𝑥) is the fraction of the grid cell at location x that is land, and 𝑇HI? and 𝑇JJ? are respectively the LAT as estimated by 

Rohde et al. 2013a and the interpolated SST as described above. 

 

In the case where sea ice regions are treated as land: 

 300 

𝑇AB%@9:2"(𝑥, 𝑡) = 𝐿∗(𝑥, 𝑡)	𝑇HI?(𝑥, 𝑡) + 91 − 𝐿
∗(𝑥, 𝑡):	𝑇JJ?(𝑥, 𝑡)	 	 	 	 (13)	

𝐿∗(𝑥, 𝑡) = 𝐿(𝑥) + 91 − 𝐿(𝑥):𝐼(𝑥, 𝑡)	 	 	 	 	 	 	 (14)	

 

Where 𝐼(𝑥, 𝑡) is the ice fraction at location x at time t as reported by HadISST v2 (Titchner and Rayner 2014).  For this purpose, 

HadISST is also regridded on to the same grid as LAT and SST.  As HadISST is frequently delayed by a few months compared to 305 

other climate data, it is necessary to supplement this data set when producing near real-time estimates.  For this purpose, the Sea 

Ice Index of the National Snow and Ice Data Center (Fetterer et al. 2017) is used for months that are not yet available in HadISST.  

The modern ice distribution in both HadISST and the Sea Ice Index are based on satellite observations; however, we found that 

the Sea Ice Index tended to have systematically more partial melting than HadISST.  To maintain consistency, a distribution 

transform was applied to the sea ice fractions provided in the Sea Ice Index based on comparing the 2014-2018 ice fields in each 310 

dataset. 

 

It is useful to note that regardless of whether one is using SST or LAT to estimate temperatures in association with sea ice, most 

such estimates involve a considerable extrapolation.  In the case of LAT, for example, conditions over sea ice in the Arctic will 

usually be extrapolated from Greenland, Canada, Scandinavia and Russia.  Similarly, in the Antarctic, coastal stations will be 315 

extrapolated outward over the ice.  By contrast, when using SST, one extrapolates from rare SST measurements that may be far 

removed from the sea ice edge.  Or, in the case that analysis of the sea ice regions is excluded entirely, averaging methods are 

effectively substituting the ocean or global average temperature anomaly. 

  

It is our belief that the anomaly field generated by extrapolating air temperatures over sea ice locations is a more sensible approach 320 

to characterizing climate change at the poles.  The air temperature changes over the sea ice can be quite large even while the water 

temperatures underneath are not changing at all.  In particular, over the last decades Arctic air has shown a very large warming 

trend during the winter. 

 

Regardless of the approach used, the spatial climatology can then be calculated and removed (differing from the original only in 325 

cells with a mix of land and water/sea ice).  Then the long-term trend in the climate can be computed using the spatial average of 

the anomaly fields. 
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Uncertainties for the combined record are calculated by assuming the uncertainties in LAT and SST time series are independent 

and can be combined in proportion to the relative area of land and ocean.  In the case that LAT is used over sea ice, the uncertainties 

for both LAT and SST have to be slightly recalculated by assuming that the time varying mask 𝐿∗(𝑥, 𝑡) is applied the relevant 

spatial averages in the uncertainty estimations described in Rohde et al. 2013a and in the SST section above.  Doing this adjustment 335 

causes a slightly increase in LAT uncertainty (due to the extrapolation over sea ice), and similar small decrease in SST uncertanty. 

3 Results and Conclusions 

The global mean anomalies obtained from the Berkeley Earth land/ocean temperature record are quite similar to other published 

records, as shown in Figure 3. With the exception of some short periods prior to 1880 and before and after World War 2, all four 

other temperature records examined lie within the uncertainty envelope of the Berkeley Earth record. Differences around World 340 

War 2 relate primarily to differences in adjustments to ERSST v5 and HadSST3 sea surface temperature records during that period 

(Huang et al 2017; Kennedy et al 2019; Cowtan et al 2017). 
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 345 
Figure 3: Comparison of published global surface temperature records. The top panel shows annual anomalies (relative to a 1961-1990 
baseline period), with the Berkeley Earth uncertainty as a shaded area. The bottom panel shows trends and two-sigma trend uncertainties 
(calculated using an ARMA[1,1] approach to account for autocorrelation) for various starting dates through the end of 2015 based on 
monthly anomalies. 

Berkeley Earth has the highest trend of any temperature record examined for the period from 1880 to 2015, largely due to lower 350 

surface temperature estimates prior to 1900. These differences are driven both by increased spatial coverage from the inclusion of 

additional land records and the spatial interpolation of both land and ocean records (which are more limited in both the NOAA and 

Hadley records). Similarly, Berkeley Earth has among the highest warming rates in the recent period (1979-2015) due primarily 

to greater Arctic coverage (where warming was unusually rapid during that period). The other records that provides robust arctic 

interpolation, Cowtan and Way and NASA GISTEMP, also shows higher trends during this period. 355 
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From 1955 to present (after the availability of data in Antarctica), Berkeley Earth provides globally complete coverage via spatial 

interpolation, similar to NASA’s GISTEMP and Cowtan and Way. This contrasts with HadCRUT4 which exclude any grid cells 360 

lacking station coverage or SST measurements, or NOAA GlobalTemp where interpolation is more limited. As shown in Figure 

4, the patterns of spatial anomalies between the different groups tend to be quite similar, apart from differences due to spatial 

coverage or gridded field resolution. 

 

 365 
Figure 4: Global gridded temperature anomalies for December 2015 relative to a 1961-1990 baseline for each global temperature dataset. 
Grid resolution is based on the highest resolution dataset provided by each group; 1x1 lat/lon for Berkeley Earth, 5x5 for HadCRUT4, 
1x1 for NASA GISTEMP, 5x5 over land and 2x2 over oceans for NOAA GlobalTemp, and 5x5 for Cowtan and Way. 

When constructing a global surface temperature record, sea ice produces a challenging edge-case. The water temperature under 

sea ice is tightly constrained by the freezing point of water, and can only change with changes in sea ice cover. Air temperatures 370 

over sea ice are less well constrained, and can vary significantly over time. Whether areas with sea ice coverage are estimated 

using sea surface temperatures or surface air temperatures will have a notable result on the record. While most groups (GISTEMP, 

Cowtan and Way) that interpolate temperatures over areas with sea ice cover use air temperatures, Berkeley Earth has provided 

both variants to allow researchers to select the series that best supports their needs. We consider the variant using air temperature 

above sea ice to be a better description of global climate change, but the ocean temperature variants may be useful for comparison 375 

and for certain specialists. Both variants of the Berkeley Earth record are shown in Figure 5 as well as the HadCRUT temperature 
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series for comparison. When SSTs under sea ice are used the apparent warming trend in recent years is lower than when air 

temperatures are used. Comparing these versions helps to reveal the contribution of sea ice areas to the overall global warming 

rate. 

 

 385 
Figure 5: (Top) Two variants of the Berkeley Earth global surface temperature product estimating temperatures under sea ice based on 
SSTs (red) or proximate air temperature measurements (blue), as well as the HadCRUT temperature series for comparison.  (Bottom) 
The same two versions of the Berkeley Earth data set with the HadCRU time series subtracted. 

Figure 5 also aids in understanding the difference between Berkeley Earth and HadCRUT.  The interpolated SST field adopted 

here has a nearly identical trend to the HadSST field, differing by less than 0.01 ºC / century.  Part of the difference between 390 

Berkeley Earth’s global temperature series and HadCRUT is due to differences in the amount of warming estimated to have 

occurred over land.  This is the primary source of difference when comparing the Berkeley Earth series with SST at sea ice to the 

HadCRUT series (blue line in Figure 5).  While this difference is not insignificant, the larger overall difference is due to the 

incorporation of air temperature warming in sea ice regions, especially in the Arctic (red line in Figure 5).  Inclusion of the rapid 

warming above Arctic sea ice suggests the global average has increased an additional ~0.1 ºC during the last 100 years compared 395 

to estimates that do not include the changes in this region.  

 

In addition to monthly temperature anomalies, Berkeley Earth produces monthly absolute temperature fields. A climatology field 

is estimated via Kriging observations, using elevation as a factor in the kriging process over land. Both absolute temperature 

variants with air temperature over sea ice and water temperature under sea ice are available, as shown in Figure 6. Absolute 400 

temperatures are created by adding the climatology field to monthly anomalies. 
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 415 
Figure 6: Berkeley Earth average absolute climatology for the period from 1951-1980 with the air temperature at sea ice (top panel) and 
ocean temperature under sea ice (bottom) variants shown. 

Figure 7 provides a comparison between published uncertainties (two sigma) for each of the major global land/ocean temperature 

series. The Berkeley Earth, GISTEMP, and Cowtan and Way records have the lowest uncertainty of the groups providing annual 

values, in part due to their spatial interpolation reducing the uncertainty associated with coverage. 420 

 
Figure 7: Comparison of published annual uncertainty estimates (two sigma) for Berkeley Earth, HadCRUT4 (Morice et al 2012), 
GISTEMP (Lenssen et al 2019), GlobalTempv5 (Vose et al 2012), and Cowtan and Way (2014). 

 
The Berkeley Earth Land/Ocean surface temperature record presented here has already been used by a number of publications (e.g. 425 

Jones 2015; Thorne et al 2016; Sutton et al 2015). It joins a number of existing land/ocean surface temperature products that help 

Deleted: 



15 
 

provide a diverse examination of the Earth’s changing climate since 1850, and can be used for diverse applications including 

climate model validation, estimating transient climate response, examining changes in extreme events, and other research areas.  

Data Availability 430 

The Land/Ocean temperature product will be updated monthly on the berkeleyearth.org website, and is freely available for use to 

all interested researchers.  A convenience copy of the dataset available at the time this paper was created has been registered with 

Zenodo and is available at DOI:10.5281/zenodo.3634713 (Rohde & Hausfather 2020). 
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