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Abstract. Tritium (3H) as a constituent of the water molecule is an important natural tracer in hydrological sciences. The 15 

anthropogenic tritium introduced into the atmosphere became unintentionally an excellent tracer of processes on the time scale 

of up to a 100 years. A prerequisite for tritium applications is to know the distribution of tritium activity in precipitation. Here 

we present the spatially continuous gridded database (isoscapes) for amount-weighted annual mean tritium activity in 

precipitation for the period 1976 to 2017 on 1×1 km grids for the Adriatic-Pannonian Region (using 39 stations), with a special 

focus on post-2010 years which are not represented by existing global models. Three stations were used to check the model 20 

performance independently confirming its capability to reproducing the spatiotemporal tritium variability in the region. This 

‘Regional model’ is capable of providing reliable spatiotemporal input data for hydrogeological application at any place within 

Slovenia, Hungary and its surroundings. Results also show a decrease in the average spatial representativity of the stations 

regarding tritium activity in precipitation from ~600 km in 1970s when bomb-tritium was still prevailing in precipitation, to 

~300 km in the 2010s. The post-2010 isoscapes can serve as benchmarks for background tritium activity for the region, helping 25 

to determine local increases of technogenic tritium from these backgrounds. The gridded tritium isoscape is available in 

NetCDF-4 at doi: 10.1594/PANGAEA.896938 (Kern et al., 2019). 
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Tritium (3H) is a radioactive isotope of hydrogen (Alvarez and Cornog, 1939) with a half-life of 12.32 years (4500 ± 8 days, 

(Lucas and Unterweger, 2000)). Natural tritium is formed mainly by spallation reactions of protons and neutrons of primary 

and secondary cosmic radiation with atmospheric nuclei, mainly by the interaction of fast neutrons with atmospheric nitrogen 

(Lal and Peters, 1967). Tritium emission by thermonuclear tests between the 1950s and 1980 enormously exceeded the natural 35 

production (Araguas-Araguas et al., 1996; Palcsu et al., 2018). Since that time, tritium emission to the atmosphere from 

anthropogenic sources (e.g. nuclear industry, medical applications) corresponds to ~10% of the natural production and 

influences 3H content in precipitation mainly at local to regional scales (Araguas-Araguas et al., 1996). Starting from the 1980s, 

the technogenic tritium became the prevailing anthropogenic atmospheric tritium input signal over the bomb tritium in Central 

Europe (Hebert, 1990).  40 

Tritium is introduced into the hydrological cycle following oxidation to tritiated water (3H1HO). Tritium is an excellent tracer 

for determining time scales for the mixing and flow of waters, and is ideal for studying processes that occur on a time scale of 

less than 100 years (Kendall and McDonnell, 2012). It proved to be a powerful tool in various applications in hydrological 

researches (Jasechko, 2019) such as estimating mean residence time for surface water and groundwater (Michel, 1992; Stewart 

and Morgenstern, 2016; Zuber et al., 2001); dating cave drip waters (Kluge et al., 2010); understanding water 45 

circulation/mixing in geothermal (Ansari et al., 2017; Chatterjee et al., 2019) or permafrost settings (Gibson et al., 2016).  

A prerequisite for such applications is either a measured or modelled reference of precipitation tritium activity (Stewart and 

Morgenstern, 2016). Long-term measurements for precipitation tritium activity are worldwide rare, and even the longest time 

series are usually intermitted by gaps. In the absence of on-site measurements, either remote monitoring data have to be used 

as references (Huang and Pang, 2010; Thatcher et al., 1961), or estimations are required. There are several methods to 50 

reconstruct precipitation tritium time series for geographical locations (Li et al., 2019). The prediction of the first global model 

for tritium distribution in precipitation from 1960 to 1986 (Doney et al., 1992) was improved and provided a higher accuracy 

estimate for precipitation 3H variations (Zhang et al., 2011) extending up to 2005 called, ‘Modified global model of tritium in 

precipitation (MGMTP)’. Unfortunately, the key parameters of MGMTP only available as isoline maps (Zhang et al., 2011), 

from which the model’s coefficients can be extracted with high uncertainty in a manual way, which leads them to be 55 

ambiguous. In addition, the quality of the estimated precipitation tritium activity values by MGMTP after1990 become quite 

poor (Zhang et al., 2011); for instance in the studied region it produced uninterpretable, negative values (Sect. 4). The most 

recent global model for precipitation tritium activity covering the period 1955-2010 (Jasechko and Taylor, 2015), used inverse 

distance weighting for interpolation and its output is available in gridded format. However, this is based only on precipitation 

3H activity concentration records of the stations of the Global Network of Isotopes in Precipitation (Rozanski et al., 1991) and 60 

it does not represent the most recent decade.  

Although, global models are available, due to the differences in tritium activities around the globe, it is beneficial to define 

local precipitation 3H input curves (Stewart and Morgenstern, 2016). In the northern part of the Balkan region, for instance, it 

was shown that 3H content in precipitation deviated considerably after 1980 from the Vienna record (Miljevića et al., 1992) 

which is popularly used as remote reference station in hydrological modeling/calculations in the Adriatic-Pannonian region. 65 

https://doi.org/10.5194/essd-2019-244

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 19 February 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

The quality of such curves is vital for the reliability of a hydrological model outputs when employed as input signal/data in 

hydrological modeling/calculations (Koeniger et al., 2008; Miljevića et al., 1992). Indeed, it has recently been found that the 

(in)accuracy of the used precipitation tritium time series is the key uncertainty factor for groundwater recharge estimations (Li 

et al., 2019). 

Measurements of precipitation tritium activity in the Adriatic-Pannonian region began in Vienna Hohe Warte in 1961, which 70 

is the longest continuously operating station in the world, and in Central Europe (IAEA, 2016). Additional stations started 

operation in the past ~50 years with frequent interruption in data collection (Araguas-Araguas et al., 1996; Krajcar Bronić et 

al., 1998; Rozanski et al., 1991; Vreča et al., 2008). The demand in long-term tritium reference time-series in various 

hydrological/hydrogeological applications across the Adriatic-Pannonian region called forth the use of remote stations (e.g. 

Gessert et al. (2019); Kanduč et al. (2014); Kanduč et al. (2012)) and/or motivated the derivation of case specific “composite” 75 

tritium reference curves, e.g. Krajcar Bronić et al. (1992); Ozyurt et al. (2014); Szucs et al. (2015). 

The aim of this study was to create a spatially continuous gridded database for tritium (isoscape) in precipitation across the 

Adriatic-Pannonian Realm for the decades around the turn of the 21st century with a special focus on the post-2010 which is 

not covered by the existing global models.  

 80 

2. Materials and Methods 

2.1. Used 3H and precipitation data 

An initial dataset was collected with 8053 monthly precipitation tritium activity values from 45 stations (GNIP ((IAEA, 2016)), 

ANIP (Kralik et al., 2003), (Krajcar Bronić et al., 2020; Palcsu et al., 2018; Vreča et al., 2006; Vreča et al., 2015; Vreča et al., 

2014; Vreča et al., 2008) current project) covering the period from Jan 1961 to Dec 2017. To maximize the spatiotemporal 85 

density of the data set not only the Adriatic-Pannonian region, but the bordering areas were included in the analyses as well. 

The availability of 3H data varied in the investigated time period. Three time horizons were outlined with a relatively high 

abundance of data: early 1980s (number of annual data (na)≈15), early 2000s (na ≈14) and the early 2010s (na ≈21) (Fig. 1a). 

Until 1973 tritium activity data was only available from Austria. Monitoring of isotopes in precipitation on a larger scale in 

the region began in the mid-1970s in Belgrade (RS), Zagreb (HR) and Budapest (HU) as well. Following the initiation of these 90 

measurements becomes the network suitable - specifically from 1976 - for the spatiotemporal analysis of the large-scale 

variability of precipitation tritium activity in the region. Between 2003 and 2005, the number of stations dropped (<9, Fig. 1a) 

due to a halt in the data collection of the Austrian stations. This was the lowest number of active stations in the investigated 

period. For the purpose of further calculations, the geographical coordinates of the stations were converted from latitude and 

longitude (EPSG: 4326, WGS84 projection) to metric coordinate system (EPSG:3857, WGS 84 / Pseudo-Mercator projection), 95 

since interpolation (variography see Sect. 2.3) has to be done on a metric scale. 
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To be able to derive amount weighted annual tritium activity averages, (0.5° × 0.5°) monthly precipitation amounts were used 

from the GPCC database (Becker et al., 2013), derived as precipitation anomalies at stations interpolated and then 

superimposed on the GPCC Climatology V2011 (Meyer-Christoffer et al., 2011).  

 100 

 

Figure 1: Temporal and spatial characteristics of the dataset. Number of data from precipitation stations producing measurements of 3H 

(1975-2017) A). The thick orange line represents the number of stations applicable for computing precipitation amount weighted annual 
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averages later used in the interpolation (1976-2017). The largest distance between the neighboring active stations of the studied 3H network 

in each year for 1976-2017 B). The spatial distribution of the monitoring sites C), where the height of the blue columns is proportional to 105 

the number of monthly data available between 1976 and 2017 at a given station; max=479 data at Podersdorf Austria. The country codes 

follow the ISO-3166-1 ALPHA-2. The basemap was taken from Bing maps, HERE Technologies 2019; accessed on 27.09.2019. 

 

2.2. Data preprocessing 

A sequential univariate outlier detection procedure (Ben-Gal, 2005) was applied to the data to find possible outlying values, 110 

which deviate to a high extent from the other observations (Barnett and Lewis, 1974; Hawkins, 1980). During the procedure, 

the time series of the stations were pairwise compared for each year. The approach is similar to the relative homogeneity test 

applied to meteorological data, in which e.g. a candidate station’s time series is compared to its neighboring stations’; e.g. 

(Alexandersson, 1986; Lindau and Venema, 2019; Sugahara et al., 2012). 

To avoid comparing a station with all the others from the network, including distant ones recording different environmental 115 

conditions (e.g. Alpine region vs. Great Hungarian Plain), the comparison was done only within a given search radius. The 

network was screened for each station’s distance to its nearest neighbor for each year. Then out of all the years, the most 

frequently occurring largest nearest neighbor (~320 km) was chosen (Fig. 1b) to serve as the search radius for the sequential 

univariate outlier detection. There were 15 years when a station did not have a pair to compare it with. In 1976, 1993-2000 

and 2003 it was Belgrade-, while between 2013 and 2017 it was Debrecen due to their relatively isolated location from the 120 

others in the network. These are the southeasternmost and northeasternmost stations (Fig. 1c). 

Pairwise differences of 3H data in monthly steps were calculated for each station with its neighbors within the ~320 km search 

radius. These pairwise differences were then averaged per month and the values belonging to the same calendar year were 

handled together. Due to the decrease in atmospheric concentration in tritium (Palcsu et al., 2018; Rozanski et al., 1991), the 

difference values were not comparable between the years, so the outliers were identified annually. The monthly average 125 

difference values were annually standardized. 

It was found that the standardized mean differences were mostly within the ±1 interval (82 %; Fig. 2) suggesting the usually 

small difference between neighboring records. In rare occasions (n=6 occurrences; 0.09%) the difference value was outside 

the ±7 interval. These deviations were considered as threshold, determining the set of possibly erroneous data (outlier (Ben-

Gal, 2005)), which were investigated one-by-one, if possible by consulting the data providers. For example, in Dec 1994 at 130 

Zagreb, the standardized differences indicated a possible error (d= -9.33), which coincided with experimental research in the 

nearby facility in which technogenic tritium was used (Krajcar Bronić et al., 2020), thus the sample was excluded from the 

analysis (Fig. 2). 
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  135 

Figure 2: Histogram representing the distribution of the standardized difference values between the precipitation stations within a ~320 km 

search radius (1976-2017). The grey shaded background highlights the ±1 standardized difference interval. The standardized difference of -

9 (in a red rectangle) corresponds to an outlier measured at Zagreb (Dec 1994); it is shown on the inset map along with the 3H records from 

its neighbors within the search radius. For further details see text. 

 140 

Annual amount-weighted means were only calculated if at least 85% of the fallen precipitation was analyzed for 3H. If more 

than 15% of the fallen precipitation was not analyzed for 3H, the year in question will be referred to as an “incomplete year”. 

This required completeness is stricter criterion than the GNIP protocol (70%; (IAEA, 1992). These amount-weighted annual 

averages served as the input values for deriving the isoscapes with variography.  

A robust hemispheric-scale pattern is a poleward increasing trend of precipitation 3H (Rozanski et al., 1991). Regression 145 

analysis between geographical latitude (using the metric coordinates in EPSG:3857) and amount weighted-annual precipitation 

3H activity concentration mostly yielded insignificant linear relationships or contradictory to what was expected (i.e. poleward 

decreasing values e.g. 1987). The limited latitudinal extent of the study area (°5) might explain the failure to detect the expected 

relationship. However, due to the lack of a clear spatial trend statistical trend removal was not conducted on the amount-

weighted annual mean 3H activities instead they were used for regional isoscape modeling.  150 

 

2.3. Derivation of precipitation amount-weighted annual mean tritium activity isoscapes 

Semivariograms (Webster and Oliver, 2008) were used as the weighting function in kriging (Cressie, 1990) to explore the 

spatial variance of precipitation amount-weighted annual mean 3H activity for the stations of the Adriatic-Pannonian region. 
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The empirical semivariogram may be calculated using the Matheron algorithm (Matheron, 1965), where 𝛾(ℎ)  is the 155 

semivariogram and 𝑍(𝑥) and 𝑍(𝑥 + ℎ) are the values of a parameter sampled at a planar distance |ℎ| from each other 

 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑𝑁(ℎ)
𝑖=1 [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2  (1) 

N(h) is the number of lag-h differences, i.e. n× (n-1)/2 and n corresponds to the number of sampling locations at a distance h. 

The most important properties of the semivariogram are the nugget, quantifying the variance at the sampling location 160 

(including information regarding the error of the sampling), the sill that is, the level at which the variogram stabilizes, which 

is the sum of the nugget (c0) and the reduced sill (c), and the range (a), which is the distance within which the samples have 

an influence on each other and beyond which they are uncorrelated (Chilès and Delfiner, 2012). If the semivariogram does not 

have a rising part and the points of the empirical semivariogram align parallel to the abscissa, a nugget-type variogram is 

obtained. In this case, the sampling frequency is insufficient to estimate the sampling range using variography (Hatvani et al., 165 

2017).  

For geostatistical modeling (e.g. kriging), theoretical semivariograms have to be used to approximate the empirical ones 

(Cressie, 1990). Gaussian semivariograms were obtained with a maximum lag distance of 400 km and 11 uniform bins (steps) 

in order to achieve the most balanced number of station pairs per bin in the analysis. The effective range (ae), which is the 

distance within which the samples have an influence on each other and beyond which they are uncorrelated (Chilès and 170 

Delfiner, 2012) were determined and used to evaluate the spatial representativity of the network. The reported ranges in the 

study area are planar distances in km; conversion to geodetic distance in the region: dplanar×0.678 ≈ dgeodetic.  

In a preliminary screening it was found that semivariograms had to have at least 3 station pairs in the first bin and more than 

14 pairs in the first 3 bins to be applicable for interpolation; these were the minimum requirements for kriging. Semivariograms 

perfectly applicable for interpolation were obtained from years 1977, 1982, 2007, 2010, 2011 and 2012. The number of active 175 

stations in these years varied between 13 and 24. These years where further on used as the reference years. The years with a 

reduced number of available stations (Fig. 1a) produced semivariograms not applicable for kriging (for technical explanation 

see Appendix 1), because the data were sporadically spread in space and/or none of the stations provided continuous 

measurements in time.  

Both types of data gaps can be classified as missing at random (MAR) (Little and Rubin, 2002). Because most modern data-180 

imputation-methods start by assuming the missing data is MAR, imputation tools could have been applied in years with 

insufficient data density for proper interpolation. However, in every case, no method can provide an ‘automatic’ solution to 

the problem of missing data, and any approach must be used with caution considering the context of the problem (Kenward 

and Carpenter, 2007); for instance, the accuracy of the imputed value will not be optimal and the spatial correlation and intra-

variable relationships will be corrupted (Barnett and Deutsch, 2015).  185 
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Thus, in these – so called - “intermediate” years, the semivariogram of the reference years having the most overlap with regard 

to its station distribution, was used as the weight for kriging. To do so, it was investigated for each intermediate year, how 

many sites are commonly active in its temporally neighboring reference year. The following requirements were also 

considered:  

● the maximum number of sites active in a given intermediate year which are not active in the reference year 190 

can be 3 

● if the difference in the number of active stations between an intermediate year and the “neighboring” two 

reference years is the same, then the semivariogram of the reference year with the greater number of active stations 

was used rendering that variogram more robust, 

● and the one closest to the intermediate year in time. 195 

Finally, 42 stations were considered for further evaluation out of which 39 stations were used for tritium isoscape derivation 

while three were excluded from interpolation and used to test the performance of the interpolated products (Table 1): Zgornja 

Radovna (active: 2010-2017) from Slovenia, Siófok (active: 2013-2016) from Hungary, and Malinska (active: 2000-2001) 

from Croatia.(IAEA, 1992). 

All computations were performed using Golden Software Surfer 15, ArcGIS 10, R (R Core Team, 2019) GS+ 10. For certain 200 

visualizations of the results, Gimp 2.8 and MS Excel 365 were used. 

 

Table 1: Sampling sites with basic geographical information used in the study arranged by country alphabetically. The stations below the 

dashed line were used for model performance testing; for details see Sect. 4. 

Name Latitude Longitude Elevation Country 
No. of monthly 

data (1976-2017) 

Apetlon 47.741 16.831 119 AT 321 

Bad Aussee 47.600 13.783 640 AT 15 

Eisenkappl 46.489 14.584 550 AT 106 

Gloggnitz 47.675 15.943 440 AT 96 

Gößl 47.640 13.901 710 AT 59 

Graz Universität 47.078 15.450 366 AT 447 

Gutenstein 47.875 15.886 475 AT 447 

Karlgraben 47.678 15.560 775 AT 193 

Klagenfurt 46.643 14.320 447 AT 446 

Lackenhof 47.870 15.142 882 AT 51 

Nasswald 47.764 15.688 774 AT 95 

Planneralm 47.403 14.200 1605 AT 106 

Podersdorf 47.855 16.835 120 AT 467 
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St. Peter im Katschtal 47.027 13.596 1220 AT 121 

Villacher Alpe 46.603 13.672 2164 AT 451 

Wien Hohe Warte 48.249 16.356 203 AT 444 

Wildalpen 47.664 14.978 610 AT 447 

Zistersdorf 48.544 16.750 201 AT 88 

Plitvice 44.881 15.619 580 HR 65 

Zagreb1 45.817 15.983 157 HR 133 

Zavižan 44.815 14.976 1594 HR 39 

Budapest  47.464 19.073 101 HU 181 

Debrecen 47.475 21.494 110 HU 202 

Met-B 46.070 18.111 177 HU 41 

Met-Boda 46.087 18.047 233 HU 82 

Met-Het 46.125 18.047 165 HU 82 

Met-II. üz 46.100 18.093 332 HU 27 

Met-V. üz 46.122 18.092 330 HU 58 

Met-Z 46.037 18.125 117 HU 75 

Belgrade 44.783 20.533 243 RS 283 

Kozina 45.604 13.932 486 SI 35 

Kredarica 46.379 13.849 2514 SI 91 

Ljubljana2 46.095 14.597 282 SI 371 

Murska Sobota 46.652 16.191 186 SI 11 

Portorož 45.467 13.617 2 SI 196 

Postojna 45.766 14.198 533 SI 5 

Rateče 46.497 13.713 864 SI 88 

Sv. Urban 46.184 15.591 283 SI 16 

Liptovský Mikuláš 49.098 19.590 570 SK 96 

Siófok 46.911 18.041 108 HU 39 

Malinska 45.121 14.526 1 HR 10 

Zgornja Radovna 46.428 13.943 750 SI 89 

1: In the investigated period two stations were conducting measurements in Zagreb in a non-overlapping way (Krajcar Bronić et al., 2020) 205 

2: In the investigated period three stations were conducting measurements in Ljubljana in a non-overlapping way (Vreča et al., 2014; Vreča et al., 2008) 

 

 

 

 210 
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3. Tritium isoscapes (1976-2017) 

According to the obtained regional gridded precipitation amount-weighted annual mean 3H activity time series for the Adriatic-

Pannonian region (referred to hereinafter as Regional model) the monitoring network provides a proper representativity of the 

study area (e.g. Fig. 3, in-set maps). 215 

The most striking long-term temporal pattern (decrease in precipitation 3H activity; Fig. 3) prevailing in the whole region seen 

from the isoscapes is also reflected in time series of distant locations (Fig. 4). Moreover, the distinctive interannual fluctuation 

of amount-weighted annual mean 3H activity at Budapest and Ljubljana (Fig. 4) also indicate that the Regional model produced 

differing sub-regional variability over the modelled time. For instance, the maxima of the modelled precipitation 3H activity 

occurs in 1979 and 1976, while a local minima from the early ‘90s in 1990 and 1991 at Budapest (Fig. 4a) and Ljubljana (Fig. 220 

4b) are observed, respectively.  

Although no significant relationship was documented between latitude and/or continentality, still increasing precipitation 3H 

activity was observable inland with the lowest values documented along the Slovenian and northern Croatian coast in all years 

(see e.g. 2010; Fig. 3). This pattern can be related to the generally observed lower activity at maritime coastal stations due to 

the higher contribution of primary marine evaporation practically free from 3H (Eastoe et al., 2012; Rozanski et al., 1991; 225 

Vreča et al., 2006) and higher contribution of recycled modern meteoric water over the continent. For instance, moisture 

originating from continental Europe and the Atlantic Ocean was found to be distinct regarding tritium concentrations (8.8 TU 

and ~0 TU, respectively) (Juhlke et al., 2019).  

Results show a decrease in the spatial autocorrelation of tritium activity concentration of precipitation from the 1970s to the 

2010s (Fig. 3): ~600 km in the 1970s, ~450 km in the 1980s, to ~300 km in the 2010s. This period (1970-2010) was 230 

characterized by the removal of bomb-tritium from the atmosphere (Araguas-Araguas et al., 1996; Palcsu et al., 2018). The 

overwhelming activity of bomb-produced 3H was several orders of magnitude higher than the natural background (Rozanski 

et al., 1991), and largely masked the smaller-scale natural variability. During last 2-3 decades the tritium activity in 

precipitation has declined globally and regionally, approaching the natural pre-bomb level and the bomb-tritium is barely 

present in modern precipitation. Since, in the Adriatic Pannonian region, the 3H activity in precipitation approached natural 235 

levels by the early-1990s (Krajcar Bronić et al., 2020; Palcsu et al., 2018; Vreča et al., 2008), it can be expected that the ~300 

km range obtained for the 2010s reflects the range of similarity of natural 3H variability in the study area (SE Europe and E 

Central Europe). Regarding spatial coverage, the northwestern part of the region was much more represented in all years, due 

to the expected denser station network along the Austrian border with Slovenia and Hungary (Fig. 1c; Fig 3).  

 240 
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Figure 3: Isoscapes of 3H activity (TU) and semivariograms for the reference years (upper panels: 1977, 1982, 2007; lower panels: 2010, 

2011, 2012) in the Adriatic-Pannonian Region. The areas outside the union of the range ellipses of a given year are dimmed and the Adriatic 

Sea marked in white. Isoscape grid resolution: 1 × 1 km. Easting and northing in 105 km. The inset figures show the empirical- (empty black 

squares) and theoretical semivariograms (blue line) used for kriging along with the obtained effective ranges (ae planar distances in km) and 245 

the fit (r2) of the theoretical semivariograms. The dotted horizontal line indicates the average variance. 

 

4. Verification of goodness of interpolation 

Two of the longest records from both Slovenia (Ljubljana) and Hungary (Budapest) illustrate the performance of the 

estimations and their potential in mitigating lack of data. Budapest- and Ljubljana 3H records - used both in the variograms of 250 

the “anchor years” and in the interpolation - were compared to the interpolated product’s time series of the nearest grid cell 

(Fig. 4). In the years when the measured values were used in interpolation, there is an expected perfect match between the 

measured and modelled values. It becomes clear that the estimated records are more than capable in filling the gaps of the 

measured time series, when there were no measurements (e.g. Ljubljana: 1985 and 1996; Fig. 4b) or in the case of “incomplete 

years”, when the ratio of fallen precipitation not analyzed for 3H in a given year was >15% (e.g. Budapest: 1987 and 1991, 255 

Fig. 4a; Ljubljana: 1986, 1997-1998, 2000 and 2010, Fig. 4b). In these particular years, when the measured 3H values were 
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not used for interpolation, the modelled values seem more capable of reproducing the actual 3H variability using the 

neighboring stations’ than from the fragmented 3H data of the incomplete year.  

The average differences between the Regional model and measured values were -0.03TU for Budapest, and 1.13TU for 

Ljubljana, excluding the years with not enough precipitation represented. In the meanwhile, the average difference in the so-260 

called incomplete years was ~17 to 0 TU for Budapest and Ljubljana, with a general tendency of obtaining higher differences 

with a higher ratio of precipitation not represented by tritium measurements. It is noteworthy, that although the short-term 

intradecadal variability of atmospheric tritium is different at the two sites, their long-term decrease concurs even at a ~ 400 km 

distance, again indicating the goodness of the interpolation.  

The presented Regional model of tritium activity was compared with the spatially corresponding output of both currently 265 

available global precipitation tritium isoscapes: the Modified global model of tritium in precipitation (MGMTP (Zhang et al., 

2011)) and the Global inverse distance weighted model (GIDW) at Budapest (Fig. 4a) and Ljubljana (Fig. 4b). Between 1975 

and 1980 the Regional model’s and the MGMTP’s estimates are very similar and resemble the actual weighted annual mean 

precipitation 3H at Budapest. However, only at Ljubljana is the MGMTP capable of steadily reproducing the actual 

measurements until the late-1990. Afterwards, it indicates solely negative values, which are uninterpretable, just as most of 270 

the MGMTP predicted values at Budapest after 1980. In the meanwhile, the Regional model gave much more accurate and 

reliable results (Fig. 4) as discussed above. Note here, that the weak estimation of the MGMTP can be attributed to the 

difficulties in reading the precipitation tritium activity values from the only available output (isoline map) of the model and 

the undocumented factors of the model in given years. 

The GIDW (Jasechko and Taylor, 2015) model was capable of reproducing the measured precipitation tritium values much 275 

more accurately at all locations than the MGMTP (Fig. 4). Nevertheless, the GIDW model produced a striking overestimation 

at the beginning of the modelled period, for example, in 1977, when the measured values at Budapest were overestimated by 

>20 TU (Fig. 4a). On the contrary, the GIDW model underestimated the actual values from 1981 to 1991, except for one year 

(Fig. 4a). It should be noted, that the Regional model gave an even better regional estimate, then either of the global models. 

 280 
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Figure 4: Measured and estimated 3H values at Budapest, Hungary (A) and Ljubljana, Slovenia (B) between 1976 and 2017. The black 

dotted lines indicate the estimations of the ‘modified global model of tritium in precipitation’ (MGMTP; (Zhang et al., 2011) and the red 

dashed ones indicate the Global inverse distance weighted model (GIDW). Note here that uninterpretable negative estimates of MGMTP 

were not shown. The percentages next to the modelled values indicate the ratio of fallen precipitation not analyzed for 3H in a given year, if 285 

it was >0%. The empty circles indicate an “incomplete year” in which the given 3H value was not used for interpolation. 

 

As an additional out-of-sample verification, the measured precipitation tritium records at stations Zgornja Radovna (2010-

2017), Siófok (2013-2016) and Malinska (Dec 2000 and 2001) were compared to the Regional model’s estimated 3H time 

series of the grid closest to the stations. The average annual difference between the modelled and measured values was 3.8 TU 290 

in 2001 at Malinska (Fig. 5a), 0.1 TU at Zgornja Radovna (Fig. 5b) and -1.7 TU at Siófok stations (Fig. 5c), while the st. dev. 

of the differences was 0.3 and 1.6 TU for Zgornja Radovna and Siófok respectively. The Regional model estimated annual 
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amount-weighted 3H activity at Zgornja Radovna very accurately, while the somewhat higher difference at Siófok could be 

explained by the closeness of the largest shallow freshwater lake in Central Europe, Lake Balaton (Hatvani et al., 2014). The 

mean residence time in the largest basin of the lake, Siófok Basin, was estimated to be between 2 and 6 yrs in the 1990s 295 

(Istvánovics et al., 2002), which presumably in the same range in the 2010s as well. Keeping in mind the gradual decrease of 

3H in meteoric waters (in the region e.g. Fig. 4), the evaporation from this ‘aged’ reservoir can provide an isotopically 

detectable contribution to the atmospheric moisture measured at Siófok station, resulting in higher tritium activity values than 

the modelled ones (Fig. 5c). 

The high difference (+3.8 TU) between the Regional model and the measured values at Malinska can be attributed to the high 300 

portion of precipitation (20%) not having corresponding tritium measurements in either year. Moreover, at Malinska, the 

Regional model provided more reliable estimates than the MGMTP, which produced negative - thus meaningless - values in 

the period when direct measurements were available (Fig. 5a). 

 

 305 

Figure 5: Tritium activity concentration values (measured and modelled by the Regional model) at stations Malinska (Krk Island) in 2000 

and 2001 (A), Zgornja Radovna (B) and Siófok (C) between 2009 and 2017. The percentages next to the modelled values indicate the ratio 

of fallen precipitation not analyzed for 3H in a given year, if it was >0%. The red empty circle indicates a single available monthly measured 
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value for December 2000. Error bars show measurement uncertainties, although it is smaller than the marker in B and C. The inset map 

shows the location of the sites used for out-of-sample verification. 310 

 

5. Possibility of applications (outlook, conclusions) 

Continuous long-term records of tritium in precipitation are scarcely available worldwide, thus estimations or modelling are 

necessary to exploit its potential in hydrological researches. In order to decrease the uncertainty of tritium activity in the 

hydrological models, the application of regional 3H models have to be increased, since these are more capable of producing 315 

accurate estimations than global ones (Stewart and Morgenstern, 2016).  

Instead of using remote station data or ad hoc composite curves, site specific time-series retrieved from the presented Regional 

precipitation amount-weighted annual mean 3H isoscapes should be used. These isoscapes (Kern et al., 2019) can serve as a 

reference dataset for studies on infiltration dynamics, water transport through various compartments of the hydrological cycle, 

mixing processes, run-off modelling; e.g. to estimate mean residence time in surface waters and groundwater (Kanduč et al., 320 

2014; Ozyurt et al., 2014; Szucs et al., 2015). As a specific type of hydrogeological application, the Regional model of 3H 

time-series will serve as a benchmark in estimating the mean infiltration age of dripwater (Kluge et al., 2010) which can 

provide an additional tool for ongoing cave monitoring studies from the region (e.g. Czuppon et al. (2018); Czuppon et al. 

(2013); Fehér et al. (2016); Surić et al. (2010)) in a spatiotemporally accurate way. 

The higher precipitation 3H activity observed at a lakeshore station (Fig. 5c) reflects moisture recycling from the aged lake 325 

surface water via evaporation to the local precipitation. The observed deviation highlights the potential of the database to 

reveal sub-regional anomalous local sources in the hydrological cycle. As a special case the post-2010 isoscapes can serve as 

benchmarks for background tritium activity for the region, helping to determine local increases of technogenic tritium from 

these backgrounds. 

Our Regional model was able to provide better estimates than either of the global models for the study area. Prior to 1975 we 330 

encourage the use of the GIDW model’s estimations (Jasechko and Taylor, 2015) as a reference for studies dealing with 

precipitation tritium activity. The Regional model and the GIDW model should be spliced together at 1975 and can be used 

together in the need of a semi-centennial precipitation tritium activity dataset.  

 

6. Data format and availability 335 

The final product, the spatially continuous annual (1976-2017) 1×1 km grids of precipitation amount-weighted annual mean 

tritium activity for the Adriatic-Pannonian Region is provided in a netCDF-4 (net-work common data form) format available 

at PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.896938) (Kern et al., 2019), compiled using the EPSG 3857 

projection. A script written to be able to browse the dataset and convert the projection to EPGS 4326 is provided in the 

supplement. 340 
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