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Supplementary material 
1 Mass conservative aggregation  

In order to unify the spatial resolution and geographic coordinate system of dataset from different sources, we need to make 
sure that the total amount of stock for soil, vegetation, etc. doesn’t change during aggregation and transformation, i.e. the 
variable need to be mass conservative. However, ‘state’ variable such as temperature, vegetation types do not need to fulfill 5 
the mass conservative requirement, nor they should. In our study, we developed a mass conservative method to maintain 

mass for carbon stocks. We first multiply the variable that need to be aggregated (Xfine) by corresponding land area (Afine) at 

grid cell level represented by equation (1), then aggregate the product (XAfine) by summing the values in N×N grids cell 

depending on the target resolution (equation (2)). The land area is also sum to the target resolution (equation (3)). Finally, 
the area-weighted variable is derived by dividing aggregated product (XAcoarse) by corresponding land area (Acoarse) as 10 
illustrated by equation (4).      

 (1) 

 (2) 

 (3) 

(4) 15 

We applied the method to all datasets that requires aggregation including soil, vegetation and GPP that were used in the 
study.  

2 Bulk density correction 

The bulk density (BD) in SoilGrids and LandGIS are too high due to two reasons. First, the measurements of BD are less and 

missing in many horizons (Hengl et al., 2017). And the measurements of BD in permafrost region, especially in Canada 20 
forest soil and Russian, are problematic (personal communication with Tomislav Hengl).  In this study, we applied a 
pedotransfer function from Köchy et al. (2015) to make correction based on organic carbon concentration (we only applied 
the function to the grid cells where carbon > 8%): 

𝐵𝐷 = (1.38 − 0.31 × log /
𝑂𝐶
102) × 1000 
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X Afin e = Xfin e × Afin e

X Aco arse = SUM(X Afin e)

Aco arse = SUM(Afin e)

X Acoarse = X Acoarse
Acoarse
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3 Model selection for extrapolation of soil 

In this section, we introduce the framework that we used to select the models for extrapolating soil from 0 – 2m to full soil 

depth.  

3.1 Different characteristics of permafrost and non-permafrost soil 30 

The amount and vertical distribution of soil organic carbon are largely influenced by vegetation which fixes atmospheric 
CO2 and transport carbon into the land ecosystem. However, the SOC stock have a much more complicated relationship 
with productivity of plants than a simple linearly one (Jackson et al., 2017). The higher biomass, which implies more carbon 

sequestration by aboveground biomass, however, does not necessarily lead to increases in SOC storage. Although the 
processes of soil formation, accumulation, and stabilization have been intensively studied and debated, the mechanisms that 35 
determine the soil carbon stock, especially in deeper soil, are still unclear. Instead of using process modelling approach, we 
chose statistical approach to extrapolate each soil profiles in the gridded dataset from 2m to full depth. The reason of 
performing soil carbon stock extrapolation is that we have little knowledge on how much the carbon stored in the soil that is 

deeper than 2m, although deeper soil is a crucial component in the climate-carbon cycle feedback. The other reason is the 
different dataset report SOC stock at different depths. The advantage of using statistical method is that we do not need to 40 
know the mechanisms that control the soil processes. Instead, we select simple empirical mathematical models that can 
represent and predict the in-situ soil profiles. 

We used 425 permafrost peatland profiles from ISCN soil database and 1000 profiles from WOSIS soil database to study the 
characteristics of vertical distribution of SOC. Figure S1 shows the accumulated SOC stock profiles with depths in 
permafrost and non-permafrost region. The vertical distribution of carbon with depth in permafrost soil has a distinguished 45 
feature that the SOC has a high linear relationship with depth. This fact implies the soil carbon keeps increasing even after 3 
meters in permafrost soil (Figure S1b). However, we have no idea to what depth can soil carbon keep increasing and the total 

amount of the storage in permafrost peatland due to the limited observational depth of SOC. In contrast, soil profiles in non-
permafrost region stop increasing mostly before 2 meters. The results demonstrate the necessity of extrapolating soil to full 
depth, especially for permafrost soil. 50 

2.2 Selection of models 

We included 12 models (Table S1) for predicting SOC stock to full soil depth. Figure S2 shows an example result in which 

the data points that is shallower than 1m were used to fit all the models and predict the point that is deeper than 2m for a 
typical soil profile. Due to the different mathematical characteristics of the models, the prediction has quite a spread. 
Relatively ‘conservative’ models including model ensemble BHIJKL tend to underestimate the carbon stock while the more 55 
‘aggressive’ ones ACDEFG tend to overestimate the stock. 
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In the sense that we do not know which one or group of models can best predict the accumulated carbon storage, we 
conducted a selection process (see Methods) by grouping all the models into all possible combination and rank the 

performance for all the model averaging results as shown in Table 2 All the models were used to fit the WOSIS data which 
covers most of the biomes and ISCN database which covers only permafrost soil. We conducted three batch of experiments 60 
in the same manner but used data points within different depths. The data points lower than 50cm, 100cm and 200cm were 
used to predict the SOC that is higher than 200cm. Our goal is to find the ensemble of models that has the highest model 
performance, the best coverage, the minimum error and AIC. 

 

2.3 Extrapolating soil with different method 65 

The main goal of using several models is to search for the best group of models that can best predict the vertical distribution 
of soil carbon stock and we compared the below approaches for that purpose: 

1. The Bayesian Model Averaging (BMA) method is used in this study to find the best model ensemble for the prediction 
of soil carbon storage to full depth. The MODELAVG Matlab toolbox (Vrugt, 2016) which implemented many different 
model averaging techniques including BMA method. The advantage of BMA method is that it considers explicitly the 70 
uncertainty of prediction of a target variable which can provide a probabilistic distribution of weight for each model 
instead of only a weighted-average, deterministic prediction. By maximize the likelihood function from the training 

dataset, the weights b = {b1, …,bk} and standard deviation s = {s1, …, sk} are estimated.  

2. Equal weights averaging (EWA) which consider each the participating model have the same weight and the prediction is 
derived by equal-weighted averaging the model results.  75 
 

The complete combination among different models are also compared and the best model ensembles are obtained by 
maximizes MEF, minimizes KL and minimizes AIC. The results show that EWA and BMA methods have similar 
performances (Table S2). We choose EWA method due to it have a slightly better coverage of observations.    

Two model ensembles were selected from the model selection framework that can best represent circumpolar and non-80 
circumpolar region based on observational datasets in the two regions, respectively. The performance of the chosen 
ensemble is synthesized in Figure S3. It shows the ensemble DIJKL overall can well predict the carbon stock in non-
circumpolar region that is deeper than 200cm only using points lower than 50cm. Model efficiency is 0.83 and the residue 
between observation and prediction is little biasd in the prediction (Figure S3c). The histogram (Figure S3b) shows the 

prediction has the same distribution as the observations. The ensemble was also used to predict observations within different 85 
percentiles and over 70% of observations can be included in the uncertainty ([-σ, +σ]). The results show that the selected 
models can well represent the vertical distribution of Csoil thus we used them to extrapolate the global gridded datasets in 
order to obtain the total soil carbon storage in the soil. The selected model ensemble ACDEF for the circumpolar soil have 
lower model efficiency and less well represent the soil in the region (Figure S4). We then applied extrapolation on three 
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global datasets which are Sanderman, SoilGrids and LandGIS. The averaged results of ensemble DIJKL is used to 90 
extrapolate non-circumpolar soil from 2m to full soil depth and ensemble ACDEF to extrapolate circumpolar soil. 

References 

Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., and Piñeiro, G.: The ecology of soil carbon: pools, 
vulnerabilities, and biotic and abiotic controls, Annual Review of Ecology, Evolution, and Systematics, 48, 419-445, 2017. 
 95 
Hengl, T., de Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., 
Geng, X., and Bauer-Marschallinger, B.: SoilGrids250m: Global gridded soil information based on machine learning, PloS 
one, 12, e0169748, 2017. 
 
Köchy, M., Hiederer, R., and Freibauer, A.: Global distribution of soil organic carbon–Part 1: Masses and frequency 100 
distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world, Soil, 1, 351-365, 2015. 
 
 

 
Figure S1: The vertical distribution of accumulated SOC stock (kg.m-2) with depth (cm). (a) 425 soil profiles of permafrost peatland 105 
region and (c)1000 soil profiles of non-permafrost region. The probability distribution density of SOC for (b) permafrost, (d) non-
permafrost. The blue open circle represents observational data points in each profile. 
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Figure S2: An example of soil profile vs models. Overlay the observational points and model results.  
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 120 
Figure S3: Performance of the averaged results of model D, I, J, K and L in predicting soil carbon storage from 50cm to 200cm 
using WOSIS data. (a) Ensemble mean vs. observation, 1:1 line in blue. (b) The histogram of observation, model ensemble and each 
model. It shows the Kullback-Leibler distance from model ensemble mean to observation, the two-sample Kolmogorov-Smirnov test (1 
represent the model ensemble mean and the observation come from the same distribution, 0 otherwise), the p-value of Kruskal-Wallis test 
(significant if p<0.05). (c) residue between model ensemble mean and observation. KS represents the one-sample Kolmogorov-Smirnov 125 
test (1 represent the model ensemble mean and the observation come from the same distribution, 0 otherwise). AD represents Anderson-
Darling test (1 represent the model ensemble mean and the observation come from the same distribution, 0 otherwise). (d) The coverage of 
observation data points within [-σ, +σ], [min, max], [25%, 75%] and average. 
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 130 
Figure S4: The same as Figure 3 except for using ISCN data and model ensemble of A, C, D, E and F to predict soil carbon storage 
from 200cm to deep soil. 
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Table S1: Empirical functions candidates for extrapolation of soil carbon 

 Equation 
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A 𝑎 ∙ 𝐷6 + 𝐶 

B 𝑎 ∙ 𝑒6∙9 + 𝑐 ∙ 𝑒;∙9 

C 𝑎 ∙ 𝑙𝑜𝑔	(𝑏 ∙ 𝐷 + 1) 

D 𝑎 ∙ log	(𝑏 ∙ 𝐷 + 𝑐) 

E 𝐾 ∙ 𝑙𝑜𝑔BC(𝐷) + 𝐼 

F (10E ∙ 𝐷FGB)/(K + 1) + c 

G 𝑎 + 𝑏 ∙ 𝐷 

H 𝑏 ∙ (1 − 𝛽9) 

I 𝑏 ∙ (1 − 𝛽9)L 

J 𝑎 ∙ (1 − 𝑒M(9/6)N) 

K 𝑎 ∙ (1 − 𝑒M6∙9)O 

L 
𝑎 ∙ (1 −

log(1 − (1 − 𝑏) ∙ 𝑒MO∙9)
log	(𝑏)

) 
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Table S2: Performance of different methods. 150 
 Circumpolar Non-circumpolar 
 

EWA BMA EWA BMA 

RMSE 36.575 37.686 5.482 5.292 

AIC 1516.134 1528.526 3977.226 3895.513 

KL 0.020 0.020 0.039 0.036 

MEF 0.640 0.617 0.862 0.872 

Coverage (%) 14.5 13.5 61.9 50.3 

 


