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Response to the referee comments 
 
Dear referees: 
 
Thank you for making these constructive comments on our manuscript. The responses to your comments can be 5 

found below. Please also take note on the marked-up manuscript in the following pages after the response letter, 
where all the changes from the original submission are highlighted. 
 
RC1 (sentences in blue colour is the original comments from the reviewer and the answer is in black colour):  

I	would	be	interested	to	hear	more	information	about	some	of	the	derived	datasets.	For	example,	the	10 
creation	of	the	herbaceous	carbon	stock	map	is	described	but	what	is	the	relative	proportion	of	vegetation	
carbon	found	within	the	herbaceous	layer	is	not	stated?	As	the	GPP	ensemble	is	used	in	the	estimation	of	
the	herbaceous	layer	what	is	the	uncertainty	in	the	herbaceous	carbon	content?	How	does	the	herbaceous	
carbon	stock	influence	ecosystem	turnover	time	vary	in	space,	i.e.	could	it	have	been	neglected?	 

Answer: We added some analysis of herbaceous biomass in the text per request. Please see the updated 15 
manuscript in detail but the simple answer is that the herbaceous biomass plays a minor role in the 
estimation of τ since it is less than 1% of soil carbon stock and 5% of vegetation carbon stock. 

  

Similarly,	the	soil	carbon	estimated	to	maximum	depth	would	be	interesting	to	investigate	further.	A	really	
simple	but	nice	addition	would	be	a	map	of	the	maximum	soil	depths	inferred	by	your	analysis.	 20 

Answer: We added the soil depth global distribution map (Figure S6). Please also note that the full soil 
depth is not inferred by our analysis but a global dataset (see Method). 

The	current	text	is	a	little	unbalanced	towards	Csoil	sometimes	to	the	exclusion	of	Cveg	or	GPP	in	the	
introduction,	results	and	discussion	sections.	The	introduction	sets	out	the	overall	challenge	and	
usefulness	of	such	datasets	in	constraining	Earth	System	Models	and	their	role	in	quantifying	the	response	25 
of	the	ter-	restrial	ecosystem	to	climate	change.	However,	the	fact	that	this	is	an	update	paper	is	not	made	
fully	clear.	Doing	so	would	I	think	make	it	straight	forward	to	highlight	the	weaknesses	of	the	previous	
analysis	and	how	they	are	being	improved	here	making	a	more	robust	and	unique	dataset.	I	honestly	do	
support	making	updates	and	im-	provement	to	existing	datasets	as	this	provides	a	clear	traceable	
advancement	in	the	science.	Because	the	current	manuscript	does	not	clearly	highlight	soil	as	a	weakness	/	30 
uncertainty	of	existing	works	the	introduction	reads	as	being	very	soil	dominated	with	little	introduction	
of	the	vegetation	carbon	stock	challenges	or	the	estimation	of	GPP.		
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Answer: Yes, we updated the manuscript to a more balanced way. Please see details in the line to line 
answer below and the marked-up manuscript.  35 

 

The	introduction	does	clearly	state	one	of	the	key	assumptions,	that	ecosystems	are	assumed	to	be	in	
steady	state.	What	is	missing	is	an	appreciation	that	much	of	the	worlds	vegetation	is	not	in	steady	state,	
either	due	to	direct	human	intervention	(biomass	removal	or	other	land	use	change)	or	as	a	result	of	
increasing	CO2	con-	centration.	Attempting	to	quantify	this	is	out	of	scope	but	I	think	it	would	be	useful	to	40 
include	either	in	the	introduction	or	discussion	the	potential	implications	of	this	assump-	tion	leading	to	an	
underestimate	in	turnover	times	(e.g.	Ge	et	al.,	2018).	 

Answer: Yes, we updated the manuscript to address this matter. Please see details in the line to line 
answer below and the marked-up manuscript.  

 45 

The	results	section,	like	the	introduction,	seems	to	be	biased	towards	soil	carbon	re-	sults	rather	than	a	
complete	overview.	This	should	be	addressed.	Further	information	can	be	found	below	in	the	technical	
comments.	The	discussion	lacks	any	discussion	of	the	vegetation	carbon	stocks	and	almost	any	discussion	
of	the	GPP	estimates.	I	also	find	it	odd	that	figures	1-4	are	not	mentioned	in	the	discussion	at	all.	The	
discussion	lacks	sufficient	comparison	with	existing	studies	/	ESM	outputs	which	this	dataset	should	be	50 
constraining.	One	exception	being	the	comparison	with	Todd-Brown	et	al.,	2013	comparing	soil	carbon	
turnover	times	from	CMIP5	models.	Discussion	of	GPP	importance	is	limited	to	its	uncertainty	contribution	
in	the	current	analysis.	While	I	have	no	problem	with	your	choice	to	use	FLUXCOM	GPP	estimates	as	
observation-orientated.	I	do	think	it	would	be	useful	to	include	some	discussion	/	context	that	compares	
your	GPP	estimate	to	alternate	approaches	e.g.	remote	sensing	products	(e.g.	Zhang	et	al.,	2017)	or	55 
terrestrial	ecosystem	models	constrained	with	remote	sensing	(e.g.	Norton	et	al.,	2019).	 

Answer: Yes, we updated the manuscript to a more balanced way. Please see details in the line to line 
answer below and the marked-up manuscript.  

	

	60 

Response	to	the	technical	comments:	

Please	check	the	modified	manuscript	if	the	answer	after	the	number	of	lines	is	‘revised’.	Otherwise,	the	
specific	modifications	or	reasons	are	listed.			

L14:	revised.	

L14-15:	revised.	65 
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L16:	revised. 

L19:	the	interquartile	range.	

L19:	added	the	reference.	

L22: revised. 

L22: Actually, the supporting results are shown in section 4.5 and Figure 4. Yes, this is probably a little bit 70 
surprising that Cveg doesn’t contribute much to the global uncertainty. This is because the uncertainty in soil 
carbon stock is dominant.  

L24: Added reference. 

L29-32: Great suggestions! The regarding part is moved up.  

L37: revised. 75 

L39: Indeed, revised. 

L41-43: They are added in the discussion. Please see Section 5.2. 

L49-55: revised. 

L81: revised. 

L100: revised. 80 

L108: revised. 

L112: ‘PH’ is deleted because of not related to the context. 

L167: revised. 

L175-180: Yes, it is added in Section 3.1. 

L214: No, but we propagated the uncertainty of different vegetation datasets into the turnover estimations.  85 

L220: revised. 

L223-234: revised. Now it should be clearer that we used the global full soil depth data which is listed in the data 
description. 

L255: Yes, it is added into the Section 3.1. 
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L263: revised. 90 

L264: revised. 

L266: Please see the updated Table 2.  

L272: We have changed according to the suggestions. Now the sections on the spatial distribution of soil carbon 
is merged and a new section is added below on vegetation and GPP. 

 L310: Added. Please see the updated Section 4.5 and Figure S5. 95 

L312: Revised. 

L328-329: Yes, as I mentioned in the manuscript, pattern maintains but the contribution is dampened when we 
used larger soil depth. 

L331-332: Revised. I found the numbers in the abstract is derived from an old experiment which is now corrected.   

L349: revised. 100 

L369: revised  

L368-370: Yes, revised according the previous similar suggestions. Now it is in the method. Also I added a 
paragraph of discussion on Cveg in Section 5.1. 

L375: revised 

L384-385: This is actually a part of the method where we extrapolated the soil and the results in shown in the 105 
supplement. We put it in the supplement not in the results section because it is too technical for the broad 
audience. We would like to leave it this way if it is possible.  

L386: revised. 

L388: Yes, we are aware of that. 

L388-389: revised. 110 

L396-403: It is a very good question. Unfortunately, we don’t know the globally distribution of the metabolically 
active soil depth. The only thing we can do right now is to fit the vertical soil profile using statistical approach 
and that is what we did. But better understanding on this matter is truly important, however, beyond our ability to 
answer.    

L405-409: Yes, added in Section 5.2. 115 

L410: revised.  
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L418-420: noted. 

L424-425: revised. 

L427: revised. 

Reference: revised and added.  120 

 

 

Apparent ecosystem carbon turnover time: uncertainties and robust 
features 

Naixin Fan1, Sujan Koirala1, Markus Reichstein1, Martin Thurner3, Valerio Avitabile4, Maurizio 125 
Santoro5, Bernhard Ahrens1, Ulrich Weber1, Nuno Carvalhais1,2 
1Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07745 Jena, Germany 
2Departamento de Ciências e Engenharia do Ambiente, DCEA, Faculdade de Ciências e Tecnologia, FCT, Universidade 
Nova de Lisboa, 2829-516 Caparica, Portugal  

3Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 130 
60325 Frankfurt am Main, Germany 

4European Commission, Joint Research Centre, Via E. Fermi 2749, 21027 Ispra, Italy 

5Gamma Remote Sensing, 3073 Gümligen, Switzerland 
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Abstract. The turnover time of terrestrial carbon (τ) is an emergent ecosystem property that quantifies the strength of global 
carbon cycle – climate feedback. However, observations and simulations of the magnitude of τ and its response to climate 
change is still characterized by large uncertainty. In this study, by assessing apparent carbon turnover time as the ratio 
between carbon stocks and fluxes, we provide an update of diagnostic terrestrial carbon turnover times estimations and 

associated uncertainties on a global scale using multiple, state-of-the-art, observation-based datasets of soil organic carbon 140 
stock (Csoil), vegetation biomass (Cveg) and gross primary productivity (GPP). In spite of the large uncertainties in the 
different τ estimation, our findings reveal that the latitudinal gradients of τ are consistent across different datasets and soil 
depth. Furthermore, there is a strong consensus on the negative correlation between τ and temperature along latitude that is 
stronger in temperate zones (30ºN-60ºN) than in subtropical and tropical zones (30ºS-30ºN). Using this new ensemble of 
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data, we estimated the global average τ to be	40$%%&'  (median ± interquartile) years when the full soil depth (usually the soil 155 

depth beyond 100cm, see Methods) is considered, longer than the previous estimates of 23$*&' (Carvalhais et al., 2014)	years.	
Only considering the top 1 m (assuming maximum active layer depth is up to 1 meter) of soil carbon in circumpolar regions 

yields a global τ of 35$2&3 years. We show that Csoil account for approximately 82% of the total uncertainty in global τ 

estimates and GPP also contribute significantly (17%) whereas Cveg contribute a little (less than 1%) to the total uncertainty. 
Therefore, the high uncertainty in Csoil is the main factor behind the uncertainty in global τ, as reflected in the larger range of 160 
full-depth Csoil (3152-4372 PgC). The uncertainty is especially high in circumpolar regions with an uncertainty of 50% and 

the spatial correlations among different datasets are also low compared to other regions. Overall, we argue that current global 
datasets do not support robust estimates of τ globally, for which we need clarification on variations of Csoil with soil depth 
and stronger estimates of Csoil in circumpolar regions. Despite the large variation in both magnitude and spatial patterns of τ, 
we identified robust features in the spatial patterns of τ that emerge regardless of soil depth and differences in data sources of 165 
Csoil, Cveg and GPP. The identified robust patterns and associated uncertainties can be used to infer the response of τ to 

climate and for constraining contemporaneous behaviour of ESMs which could contribute to uncertainty reductions in future 
projections of the carbon cycle - climate feedback. The dataset of the terrestrial turnover time ensemble (DOI: 
10.17871/bgitau.201911) is openly available from the data portal: https://doi.org/10.17871/bgitau.201911 (Fan et al., 2019). 

1 Introduction 170 

Terrestrial ecosystem carbon turnover time (τ) is the average time that carbon atoms spend in terrestrial ecosystems from 

initial photosynthetic fixation until respiratory or non-respiratory loss (Bolin and Rodhe, 1973; Barrett, 2002; Carvalhais et 
al., 2014). Ecosystem turnover time an emergent property that represent the macro-scale turnover rate of terrestrial carbon 
that emerges from different processes such as plant mortality and soil decomposition. Alongside photosynthetic fixation of 
carbon, τ is a critical ecosystem property that co-determines the terrestrial carbon storage and the carbon sink potential. As a 175 

result of the balance between inputs and outputs of carbon, the terrestrial carbon pool can be approximated to reach the 
steady-state condition (inputs equal outputs) when long timescales are considered. This simplifies the calculation of τ to the 
ratio between the total terrestrial carbon storage and the influx or the outflux of carbon. The approach is advantageous to 
represent the highly heterogeneous intrinsic properties of the terrestrial carbon cycle as an averaged apparent ecosystem 
property which is more intuitive to infer large scale sensitivity of τ to climate change. Instead of focusing on the 180 

heterogeneity of individual compartment turnover times we show the change of carbon cycle on the ecosystem level using τ 
as an emergent diagnostic property.    

The magnitude of τ and its sensitivity to climate change is central to modelling carbon cycle dynamics. Therefore, τ has been 
used as an emergent ecosystem property to evaluate and constrain Earth system model (ESM) simulations of the carbon 
cycle. The current ensemble of ESMs shows a large spread in the simulation of soil and vegetation carbon stocks and its 185 

spatial distribution, mostly attributed to the differences in τ among ESMs (Friend et al., 2014; Todd-Brown, 2013,2014; 
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Wenzel, et al., 2014, Carvalhais et al. 2014; Thurner et al., 2017). The large uncertainties in the simulated total carbon stock 
of soil and vegetation represent potential missing key processes that lead to diverse or even opposite response of τ to the 205 

rising temperature. Thus, it is instrumental to use observational-based estimations of carbon turnover times and their 
associated uncertainty in order to constrain the models and better predict the response of carbon cycle to climate change.  

Current understanding of the factors that drive changes in τ are unclear due to the confounding effects of temperature and 
moisture even though it is well perceived that temperature and water availability are the main climate factors that affect root 
respiration and microbial decomposition (Raich, J. and W. H. Schlesinger,1992; Davidson and Janssens, 2006; Jackson, R. 210 

B., et al., 2017). Therefore, it is difficult to implement local temperature sensitivity of τ into carbon cycle models due the 
large discrepancy between intrinsic and apparent sensitivity of τ to temperature. As the soil environment and climate are 
highly heterogeneous in space, the temperature sensitivity of τ is substantially affected by other factors as spatial scale 
decreases (Jung et al., 2017).  

Model simulations and observations do not agree in how the global distribution of τ is related to climate. Carvalhais et al. 215 

(2014) combined observational datasets that cover both low latitudes and circumpolar regions to estimate global τ and 
compared with CMIP5 simulations. They found a divergent result of global simulated total terrestrial carbon stocks that 
range from 1101 Pg C to 3374 Pg C (mean difference of 36%) leading to a wide range of turnover times from 8.5 to 22.7 
years (mean difference of 29%). The models also exhibit a large discrepancy in the τ-temperature and τ-precipitation 

relationships across different latitudes compared to observations. Koven et al. (2017) illustrated a higher sensitivity of τ to 220 
temperature in cold regions than in warm regions using an observational-based soil dataset. They found that most of the 
ESMs fail to capture the global τ – temperature pattern. The difficulty of evaluating the response of soil carbon to climate 
change is partly due to the fact that the dynamical observations at relevant timescales e.g. multi-decadal to centennial are 
lacking and the magnitude of projected change of τ to climate change is still poorly constrained (Koven et al., 2017).  

There are not only large differences between simulations and observation-based estimates of τ, studies also show differences 225 
in the current observation-based estimates themselves. Specifically, estimates of global total carbon stock are characterized 
by large uncertainties as different in-situ measurements and methods were used to derive total carbon stocks (Batjes, 2016; 
Hengl et al., 2017; Sanderman et al., 2017). Alongside recent soil carbon datasets (Tifafi et al., 2018), there are also several 
different global vegetation biomass (Thurner et al., 2014; Avitabile et al., 2016; Saatchi et al., 2017; Santoro et al., 2018) and 

GPP (Gross Primary Production) (Jung et al., 2017) products which may lead to substantial differences in the global τ 230 
distribution and its relationship with climate. Thus, there is an urgent need to construct an ensemble of global τ estimates 
derived from different products and to quantify the uncertainty of the τ response to climate.    

This study thus aims at developing an ensemble global estimation of τ in the spatial resolution of 10 kilometres (0.083º)    

which is derived from different observation-based products. Specifically, we will (1) update τ estimations with multiple 
state-of-the-art datasets; (2) quantify the contribution of the different components of τ to the global and local uncertainties; 235 
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(3) identify the robust patterns across different ensemble members.  

2 Datasets 240 

The attributes of the τ dataset provided in this study, and the key external datasets that were used to estimate τ are 

summarized in Table 1. Details for each dataset are described in the below subsections.    

2.1 Soil organic carbon datasets 

Estimation of global soil carbon stock (Csoil) was based on five datasets that are derived from different approaches of 
estimating soil carbon:  245 
a. SoilGrids is an automated soil mapping system that provides consistent spatial predictions of soil properties and types in 

the original spatial resolution of 250m (Hengl et al., 2017). Global compilation of soil profiles is used to produce 
automated soil mapping based on machine learning algorithms. The data contains global soil organic carbon content at 
intervals of 0, 5, 15, 30, 60, 100 and 200 cm. In addition, chemical and physical properties such as bulk density and 
carbon concentration are provided. 158 remote-sensing based covariates including land cover classes, long-term 250 

averaged surface temperature was used to fit the model. According to Hengl et al. (2017), the new version of the dataset 
can explain more of the variance (68.8%) in soil carbon stock than the previous version (22.9%) (Hengl et al., 2014). 
However, it has also been recognized that the current version of SoilGrids (released on 2017.08.01, 
ftp://ftp.soilgrids.org/data/recent) may overestimate carbon stocks due to high values of bulk density (Tifafi et al., 2018).  
In general, the estimation of Csoil is hampered by the availability of field data, especially in the circumpolar regions. 255 

Even though in-situ measurements had a large spatial extent and cover most of the continents, the regions that are 
characterized by severe climate or remoteness were much less sampled.  

b. The dataset of soil carbon provided by Sanderman et al. (2017, hereafter Sanderman) used the same method as SoilGrids 
but different input covariates. The main difference between SoilGrids and Sanderman is that in addition to topographic, 
lithological, climatic covariates, Sanderman also incorporated land use and forest fraction into the model fitting. The 260 

relative importance analysis based on Random Forest model shows that soil depth, temperature, elevation and 
topography are the most important predictors which is similar to the model fitting results of SoilGrids. Land use types 
such as grazing and cropping land area also contributes significantly to the variance. The Sanderman dataset provides 
soil carbon stocks at soil depths of 0-30 cm, 30-100 cm and 100-200 cm and at a spatial resolution of 10 km.   

c. Harmonized World Soil Database (HWSD) was also used in this study which utilized over 16000 standardized soil-265 
mapping units worldwide which are harmonized into a global soil dataset (Batjes et al., 2016). HWSD is a 30 arc-second 
raster database that provides soil properties including organic carbon and water storage capacity at topsoil (0-30 cm) and 
subsoil (30-100 cm). HWSD combined regionally and nationally updated soil information worldwide to estimate soil 
properties in a harmonized way, and yet reliability of the data varies due to the different data sources. The database 

which was derived from the Soil and Terrain (SOFTER) database had the highest reliability (Central and Eastern 270 
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Europe, the Caribbean, Latin America, Southern and Eastern Africa) while the database that derived from the Soil Map 
of the World (North America, Australia, West Africa and Southern Asia) has a relatively lower reliability.  

d. We used the Northern Circumpolar Soil Carbon Database (NCSCD), which quantified soil organic carbon storage 280 
specifically in the northern circumpolar permafrost area (Hugelius et al., 2013). The dataset contained northern 
circumpolar soil organic carbon content for depths of 0-30, 0-100, 100-200, 200-300 cm. The soil samplings included 
pedons from published literature, existing datasets and unpublished material. The 200 and 300 cm depth soil data was 
obtained by extrapolating the lowermost available values for bulk density and carbon content for a specific pedon to the 

full depth if the field data were only available in the first 50 cm of the full soil depth. However, the deep soil carbon 285 
(100-300 cm) showed the lowest level of confidence due to lack of in-situ measurements and much lower spatial 
representativeness. The data was downloaded from https://bolin.su.se/data/ncscd/. 

e. The soil carbon stock and properties produced by the LandGIS maps development team (hereafter LandGIS) were also 
used in this study (Wheeler and Hengl, 2018). The soil profiles that were used in the training had a wide geographic 

coverage of America, Europe, Africa and Asia. One unique feature of LandGIS is that it included the soil profiles of 290 
Russia from the Dokuchaev Soil Science Institute/Ministry of Agriculture of Russia, which significantly improved the 
predictions of Csoil in Russia. Different machine learning methods including random forest, gradient boosting and 
multinomial logistic regression were used to upscale the soil profiles to a global gridded dataset. Continuous 3D soil 

properties were predicted at 6 standard depths: 0, 10, 30, 60, 100 and 200cm. In comparison with the SoilGrids dataset, 
LandGIS added new remote sensing layers as covariates in the training and used 5 times more training points (360000 295 
soil profiles) than SoilGrids (70000 soil profiles). The data was downloaded from 
https://zenodo.org/record/2536040#.XYs1wpP7TUI. 
 

2.2 Vegetation biomass datasets 

Four different datasets of biomass at global scale were used to produce the total vegetation biomass (Cveg).  300 
a. Thurner et al. (2014) estimated the above-ground biomass (AGB) and below-ground biomass (BGB) for northern 

hemisphere boreal and temperate forests (0.01° resolution, representative for the year 2010) based on satellite radar 
remote sensing retrievals of growing stock volume (GSV) and field measurements of wood density and biomass 

allometry. The carbon stocks of tree stems were estimated based on GSV retrieved with the BIOMASAR algorithm 
using remote sensing observations from the ASAR instrument on Envisat Satellite (Santoro et al., 2015), which was then 305 
converted to biomass using wood density information. The other tree biomass compartments (BC) including roots, 
foliage and branches were estimated from stem biomass based on field measurements of biomass allometry. The total 
carbon content of the vegetation was derived as the sum of the biomass of the different compartments, which was then 

converted to carbon units using carbon fraction parameters. Comparison between the biomass map and inventory-based 
data shows good agreement at regional scales in Russia, the United States and Europe (Thurner et al., 2014). Since data 310 
from Thurner et al only covered northern boreal and temperate forests (30-80°N), we used data from Saatchi et al (2011) 
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to cover the lower latitudes.  
b. We also incorporated a map of forest biomass carbon stocks for the tropical regions provided by Saatchi et al., (2011). 

The map was derived using lidar, optical and microwave satellite imagery, trained using 4079 in-situ forest inventory 
plots (Saatchi et al., 2011). The method used GLAS Lidar observations to sample forest structure and used a power-law 315 
functional relationship to estimate biomass from the Lidar-derived Lorey’s height of the canopy. This extended sample 
of biomass density is then extrapolated over the landscape using MODIS and radar imagery, resulting in a pantropical 
AGB map. BGB was estimated as a function of AGB and the two were used together to derive total forest carbon stock 

at a 1 km spatial resolution.  
c. The GlobBiomass map (Santoro et al., 2018) estimateed GSV and AGB density at global scale for the year 2010 at 100 320 

m spatial resolution. The AGB was derived from GSV using spatially explicit Biomass Expansion and Conversion 
Factors (BCEF) obtained from an extensive dataset of wood density and compartment biomass measurements. GSV was 
estimated using space-borne SAR imagery (ALOS PALSAR and Envisat ASAR), Landsat-7, ICESAT LiDAR and 

auxiliary datasets, using the BIOMASAR algorithm to relate SAR backscattered intensity with GSV (Santoro et al., 
2018b) 325 

d. A pantropical AGB map (Avitabile et al., 2016) that combined two existing AGB datasets (Saatchi et al., 2011; Baccini 
et al., 2012) was also incorporated in the data ensemble. This map used a large independent reference biomass dataset to 

calibrate and optimally combine the two maps. The fusion approach was based on the bias removal and weighted-
average of the input maps, which incorporated the spatial patterns presented by the reference data in the fused map. The 
resulting map presents a total AGB stock for the tropics which was 9-18% lower than the two input maps and gave 330 
different spatial patterns over large areas. The fused biomass map has a spatial resolution of 1 km. 

 

2.3 Soil depth dataset 

A full soil depth dataset was obtained from the Global Soil Texture and Derived Water-Holding Capacities database (Webb, 
et al., 2000). Standardized values of soil depth and texture on a global scale, which were selected for the same soil types for 335 
each continent, were contained in the database. The full soil depth depends on soil texture and water availability which is 
usually higher than 100cm. In permafrost soil, full soil depth can extend beyond 400cm (Figure S6).   

2.4 The FLUXCOM global gross primary productivity dataset 

FLUXCOM is an initiative to upscale biosphere-atmosphere fluxes measurements from eddy covariance flux towers 
(FLUXNET) to global scale (Jung et al., 2017). In this study, we used the mean annual GPP datasets based on remote-340 
sensing forcing and nine machine learning methods with two flux partitioning methods trained on daily carbon fluxes, that is, 
18 members of GPP (Tramontana et al., 2016). In order to produce high resolution (0.083º) spatial grids of carbon fluxes, 

only high-resolution satellite-based predictors were used in model training. In this study, we derived the long-term mean 
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annual GPP by averaging annual GPP from 2001 to 2014. We note that all the 18 members is used independently to 350 
estimated τ (not averaged). 

2.5 Climate datasets 

A high spatial resolution (~1km) climate dataset WorldClim 2 (Fick and Hijmans, 2017) was used to investigate the 
relationship between τ and climate. The data included monthly maximum, minimum and average temperature, precipitation, 
solar radiation, vapor pressure and wind speed. The data was produced by assimilating between 9000 to 60000 ground-355 
station measurements and covariates such as topography, distance to the coast, and remote-sensing satellite products 

including maximum and minimum land surface temperature, and cloud cover in model fitting. For different regions and 
climate variables, different combinations of covariates were used. The two-fold cross-validation statistics showed a very 
high model accuracy for temperature-related variables (r > 0.99), and a moderately high accuracy for precipitation (r = 0.86). 

Table 1. Summary of the τ database and external datasets attributes. 360 

Dataset source Dataset name Horizontal 

coverage 

Horizontal 

resolution 

Vertical 

resolution 

File format External link 

 Csoil 

Sanderman et 

al. (2017, 

PNAS) 

Sanderman Global 10km 0,30,100,200

cm 

GeoTIFF https://github.com/whrc/Soil-Carbon-

Debt/tree/master/SOCS 

 

SoilGrids SoilGrids Global 250m 0,5,15,30,60,

100,200cm 

GeoTIFF https://files.isric.org/soilgrids/data/ 

 

LandGIS LandGIS 

Global 250m 

0,10,30,60,1

00,200cm GeoTIFF 

https://zenodo.org/record/2536040#.XhxHRBf0

kUF 

 

Harmonized 

World Soil 

Database 

HWSD Global 1km 0,30,100cm Raster http://www.fao.org/soils-portal/soil-survey/soil-

maps-and-databases/harmonized-world-soil-

database-v12/en/ 

 

The Northern 

Circumpolar 

Soil Carbon 

Database 

NCSCD Circumpolar 1km 0,30,60,100,

200,300 

GeoTIFF/ 

NetCDF 

https://bolin.su.se/data/ncscd/ 

 

WoSIS Soil 

Profile 

Database 

WoSIS Global In-situ 0-300cm Shape https://www.isric.org/explore/wosis/accessing-

wosis-derived-datasets 

 

International 

Soil Carbon 

Network 

ISCN Global In-situ 0-400cm Microsoft 

Excel 

https://iscn.fluxdata.org/ 

 

Global Soil Full soil depth Global 100km Single layer ASCII https://daac.ornl.gov/SOILS/guides/Webb.html 
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Texture And 

Derived Water-

Holding 

Capacities 

database 

 

 Cveg 

Global biomass 

dataset  

Saatchi Global 1km Single layer GeoTIFF Dataset available from provider (Saatchi et al., 

2011) 

 

GEOCARBON 
global forest 

biomass 

 

Avitabile Global 1km Single layer GeoTIFF http://lucid.wur.nl/datasets/high-carbon-

ecosystems 

 

Integrated 

global biomass 

dataset  

Saatchi-Thurner Global 1km Single layer GeoTIFF https://www.pnas.org/content/108/24/9899 

https://onlinelibrary.wiley.com/doi/full/10.1111

/geb.12125 

 

GlobBiomass Santoro Global 1km Single layer GeoTIFF https://globbiomass.org/ 

 

 GPP 

FLUXCOM GPP Global 10km Single layer NetCDF http://www.fluxcom.org/ 

 

 Climate 

WorldClim Mean annual temperature  

Mean annual precipitation 

Global 1km Single layer GeoTIFF http://worldclim.org/version2 

 

 τ database 

τ database Terrestrial carbon turnover 

times 

Global 50km 100, 200, FD 

(cm) 

NetCDF https://www.bgc-

jena.mpg.de/geodb/projects/FileDetails.php 

 

 

3 Methods 

3.1 Estimation of ecosystem turnover times 365 

The total land carbon storage can be estimated by summing soil carbon stocks derived from extrapolation and vegetation 
biomass. Assuming steady state in which the total efflux (autotrophic and heterotrophic respiration, fire, etc.) equals to influx 
(GPP). Then τ can be calculated as the ratio between carbon stock and influx: 
 

𝜏 =
𝐶89:; + 𝐶=>?

𝐺𝑃𝑃 	370 
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Here Csoil and Cveg are the total soil and vegetation carbon stocks, respectively. We combined three soil carbon stock at three 

soil depth (1m, 2m, full soil depth), four vegetation, eighteen GPP that is, 648 members in total.   
 

3.2 Estimation of global vegetation biomass stock 375 

The aboveground biomass datasets only contain biomass of trees, meaning the herbaceous part is not considered. To account 
for herbaceous biomass, we used the same method as Carvarhais et al. (2014) which assumed the live vegetation fraction has 

a mean turnover time of one year, then using a uniformly distributed probability distribution of respiratory costs between 25 
to 75 percent, we were able to relate GPP with the carbon stock of vegetation as: 

𝐶B = 𝐺𝑃𝑃 ⋅ (1 − 𝛼)	 ⋅ 𝑓B	380 

Where CH is the carbon stock for the herbaceous vegetation biomass; GPP is based on the FLUXCOM estimations; α is the 
percentage of respiration cost and fH is the fraction of herbaceous part for each grid cell based on the SYNMAP database 
(Jung et al., 2006).  

Two vegetation biomass datasets (GlobBiomass and the Avitabile dataset) do not include BGB, in contrast to Saatchi’s and 
Thurner’s products. In order to make all Cveg products comparable, we estimated the BGB from the empirical relationship 385 
bewteen AGB and BGB derived previously by Saatchi et al. (2011): 

𝐵𝐺𝐵 = 0.489 ⋅ 𝐴𝐺𝐵M.N3 

3.3 Extrapolation of soil datasets 

Extrapolation is necessary to obtain the accumulated carbon stock from surface to full soil depth because the soil datasets 
only extend to 2 meters below the surface. However, a large amount of Csoil is stored below this depth, especially in peatland 390 
where soil carbon content is much higher in deeper soil (Hugelius et al., 2013). To estimate the total carbon storage in the 
land ecosystem, different empirical mathematical models were used (Table S1). The Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) method was used to optimize parameters of the models which is based on an evolutionary 
algorithm which used the pool of stochastically generated parameters of a model as the parents for the next generation 
(Hansen et al., 2001). 395 
Extrapolation, which involves using empirical numerical models, may cause arbitrary bias and higher uncertainty if the 
models are not appropriately chosen. Here we used the in-situ observational data from the World Soil Information Service 

(WOSIS) (Batjes et al., 2019) and the International Soil Carbon Network (ISCN) (Nave et al., 2017) to select the ensemble 
of the models that could best simulate soil carbon stocks at full depth. The approach (i) fit of each empirical model against 
cumulative Csoil with all data points up to 2m; then (ii) predicted the cumulative Csoil at full soil depth (see section 2.3 for the 400 
data) for each soil profile independently. The ability of a particular empirical model or combination of models (see Section 
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3.2) was then evaluated by comparing the predictions of Csoil at full depth against the observations. This procedure was 
applied on the two different in situ datasets, WOSIS which covers most of the biomes and ISCN which has more coverage in 405 

circumpolar regions. Finally, after comparing different model averaging methods (see supplement Table S2) we chose two 

model ensembles that could best represent circumpolar and non-circumpolar regions based on observational datasets, 

respectively. The performance of the chosen ensembles is synthesized in Figure S3 and S4. 

3.4 Uncertainty analysis 

We performed a N-way ANOVA on different variables in order to calculate the uncertainties that stem from different data 410 
sources. The method can provide the sum of square variance and the total variance which derived the contribution of each 

data source to the total uncertainty. We defined the final contribution from each component involved in the calculation of τ 
as 
 

𝐶O = 	
𝑆𝑆O
𝑆𝑆Q9QR;

	415 

 
Where Cn is the contribution of uncertainty from a certain variable SSn, SStotal is the sum of square variance of all variables. 

The contributions of uncertainties from soil, vegetation, GPP and soil depth of all ensemble members to the target variable τ 
were calculated. The uncertainty analysis reflects the relative spread of each group and the effect on the spread of τ.  
 420 

3.5 The analysis of zonal correlations 

The local correlation between τ and climate across latitudes was obtained by using a zonal moving window approach in 

which the Pearson partial correlations between τ and MAT/MAP were calculated using a 360º (longitudinal span) ×2.5º 

(latitudinal span) moving window. This approach allowed for the assessment of the relative importance for each climate 
parameter. The lowest and highest 1% of data points in each moving window was removed to avoid the effect of potential 425 
outliers. In order to investigate the effect of latitudinal span, we chose different band size of 0.5º, 2.5º and 5º and performed 
the correlation analysis in the same manner for each selection. 

 

4 Results 

4.1 The global carbon stock 430 

Table 2 shows the estimates of Csoil Cveg and GPP. Globally, estimates of soil carbon stocks within the top 2-meters of soil 
are 2749 PgC, 3628 PgC and 3546 PgC for the datasets of S2017, SoilGrids and LandGIS, respectively (bulk density 

corrected, see Supplement). The significant differences among different datasets indicate a high uncertainty in our current 
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estimation of global soil carbon storage. The extrapolation of Csoil to full soil depth (FD) shows that approximately 18% of 
carbon stored is below 2 meters. Compared to the previous generation of soil data HWSD (available only within the top 1 435 

meter), the state-of-the-art datasets of the current study have significantly higher carbon stocks within the top 1-meter of soil 
(Table 2). On the other hand, the current datasets of vegetation biomass show global Cveg ranges from 407 to 451 PgC and 
has less relative uncertainty than Csoil. The estimation of the uncertainty that derived from different GPP members shows a 
narrow range of 99 to 106 PgC from different products. Overall, the results show the difference in Csoil is much larger than 
Cveg and GPP. We next access the spatial distribution of soil, vegetation carbon and GPP in order to understand the 440 

contribution of each component to the spatial uncertainties of τ.  
 
Table 2. Estimates of soil organic carbon stocks, vegetation biomass and GPP (Pg C). 

Carbon stock in PgC Non-circumpolar Circumpolar Global 

Csoil 0-1m 0-2m 0-FD 0-1m 0-2m 0-FD 0-1m 0-2m 0-FD 

S2017 1215 1861 2131 510 887 1020 1725 2749 3152 

SoilGrids 1399 2292 2944 796 1335 1326 2195 3628 4269 

LandGIS 1305 2093 2606 787 1453 1766 2091 3546 4372 

HWSD 764 N/a N/a 568 N/a N/a 1332 N/a N/a 

NCSCD N/a N/a N/a 567 868 N/a N/a N/a N/a 

Mean 1171 2082 2560 646 1136 1371 1836 3308 3931 

Median 1260 2093 2606 568 1111 1326 1908 3546 4269 

Cveg    

Saatchi 358 49 407 

Avitabile 412 39 451 

Saatchi-Thurner 399 38 437 

Santoro 393 42 435 

Mean 391 42 433 

Median 396 41 436 

Herbaceous 24 1 25 

GPP    

Mean 96 7 102 

Median 96 6 102 

P10 92 6 99 

P90 99 8 106 

 

4.2 The spatial distribution of soil carbon stock 445 

A significant amount of soil organic carbon is stored in high-latitude terrestrial ecosystems, especially in the permafrost 
region (Hugelius et al., 2013). However, in comparison with low latitudes, the uncertainties of Csoil distribution and storage 

in high latitudes are potentially higher due to fewer available observations of soil profiles. We therefore divided the global 
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soil carbon into the non-circumpolar (Figure 1) and the circumpolar (Figure 2) regions based on the northern permafrost 450 
region map of NCSCD. The results show that the mean value and range (maximum - minimum) of Csoil in non-circumpolar 

region (Table 2) in the top 2m is 2082 PgC and 431 PgC (20% of mean value) and that in the circumpolar region within the 
top 2m is 1225 PgC and 566 PgC (46% of mean). The extrapolation of Csoil to full soil depth in non-circumpolar region 
results in a higher mean value of 2560 PgC and range of 813 PgC (32% of mean) and 1371 PgC and 746 PgC (54% of mean) 
in the circumpolar region. The results show that the relative difference of Csoil in circumpolar regions is two times larger than 455 
that in non-circumpolar regions among all datasets.  

4.3 The spatial distribution of soil carbon stock 

The spatial distribution of Csoil is more consistent across datasets in the non-circumpolar region than in the circumpolar 
region (Figure 1). The correlation coefficients (r) between each pair of datasets in the non-circumpolar region are generally 
higher than in the circumpolar region. Our results show a moderate agreement among the datasets in the spatial distribution 460 
of Csoil globally (r>0.65). However, there are significant differences in the spatial patterns between the HWSD and each of 

the recent datasets (Figure 1) as the correlation coefficients are all below 0.3. In addition, there is 2-fold lower carbon 
storage in the HWSD than the other datasets. Ratios between the total Csoil in the top 100 cm (Fig 1: upper off diagonal plots) 
show that LandGIS, SoilGrids and S2017 are consistent in temperate regions but show poor agreement in the tropical and the 
boreal regions. The comparison also shows that the gradient in carbon stocks between Europe and the lower latitudes 465 
diminished in the HWSD soil map. In addition, the spatial distribution and the amount of carbon stocks in Indonesia is 

significantly different in the HWSD. 
Higher dissimilarities of spatial patterns across the datasets in the circumpolar region is shown in Figure 2. We included the 
NCSCD dataset, which specifically focuses on the circumpolar region. The spatial correlations between each pair of the four 
datasets show low r values, which range from 0.2 to 0.5. In contrast with the non-circumpolar region, the high spatial 470 

dissimilarity in circumpolar region indicates higher uncertainty regarding the estimation of total carbon storage. However, 
there is no clear evidence on which dataset is more credible in terms of total carbon storage and spatial pattern. The large 
differences are possibly due to fewer observational soil profiles in the northern high-latitude regions, which are crucial is the 
model training process. 
The comparison of all datasets shows that there is a good agreement in the vertical structure of terrestrial carbon stocks. The 475 

Csoil in the top 1-meter is about half of the total terrestrial carbon and 80% for the top 2-meter Csoil regardless of region or 
data source. For the non-circumpolar region, all the datasets show significantly higher carbon storage in the top 1m (451-635 
PgC higher) than that in the HWSD, while showing less divergence of carbon storage among these three datasets (Table 2). 
In general, the current datasets show similar vertical distribution of Csoil with consistent values and ratios between 1m and 
2m soil. The extrapolation results indicate that about 15% of carbon is stored below 2m in the non-circumpolar region. For 480 

the circumpolar region, the four datasets show a clear trend that the difference of Csoil increases with soil depth, as shown in 
Table 2. The difference between the top 1m Csoil among datasets has a higher difference than that of 2m. However, the ratio 
between storage in 1m and 2m is similar across all datasets. 
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4.4 The spatial distribution of vegetation and GPP 

In comparison with soil carbon, the results show much more consistency and convergent global number of carbon stock 

among the four global vegetation datasets (Figure 3). Our results show that global vegetation carbon stock is 10% to 25% of 
the global soil carbon stock, depending on soil depth. The high spatial correlations (r>0.75) between each pair of data 490 
indicate the current estimations of vegetation is consistent. Different from the spatial distribution of soil carbon, most 
vegetation carbon is located in the tropics whereas much less carbon in higher latitudes. As a matter of fact, the Cveg in 

circumpolar region is only 10% of that in non-circumpolar region (Table 2). Here we address that the Cveg is consist of three 
components including AGB, BGB and herbaceous biomass among which the herbaceous biomass is estimated from mean 
annual GPP (see Methods). We show the herbaceous biomass is only 5% of the total Cveg and less than 1% of the total Csoil 495 
indicating the minor role of herbaceous biomass in affecting the spatial distribution of total carbon stock and the uncertainty. 
The comparison among the four vegetation datasets shows relatively higher level of disagreement in arid and some cold 

regions (Figure 3, upper off-diagonal subplots). Nevertheless, the current estimations of global vegetation from different 
sources show consistent spatial distributions.  
Our results show that the spatial pattern of the global GPP is similar to the Cveg where there is higher primary productivity in 500 
the tropics and lower in the higher latitudes (Figure 4). The different members of the GPP estimation (see Methods) show 
very high consistency globally except for arid and polar region. The relative uncertainties in arid and polar region range from 

50% to 100% whereas there is less than 50% of uncertainties in other regions.  
Although the differences among different vegetation and GPP estimations, in general, are not as high as soil, we show the 
uncertainties can be regionally high. We thus next investigate the contribution of each component to the spatial distribution 505 
and uncertainty.         

4.5 The ecosystem carbon turnover times and associated uncertainties 

Using Csoil, Cveg and GPP, we estimated the carbon turnover times with different combinations of datasets in order to 
quantify the uncertainty. We calculated τ in the same manner as the previous study (Carvalhais et al., 2014) in which they 
used only 1m of soil in the circumpolar region and full soil depth in the non-circumpolar region. We compared the spatial 510 
distribution of the τ estimations of the previous and our study (Figure S5). Our results show a large range of relative 

difference and low spatial correlation (r = 0.51). We found the main differences are in the northern circumpolar region, 
which is caused by the differences in the Csoil estimations, indicating a large uncertainty of τ estimations the in this region. 
Our estimation of global mean τ is 35 years with an interquartile range of 29 to 43 years, which is much longer than the 
previous study of 23 years with interquartile range of 19 to 30 years. In addition, we derived a global τ of 40 years with an 515 
interquartile range of 29 to 47 years by assuming the maximum active layer thickness to be the full soil depth in the 

circumpolar regions instead of using only 1-meter Csoil as was done in the previous study. The incorporation of deep soil in 
the circumpolar region increased the global τ by 7 years. The global spatial distribution of τ (Figure 5) shows great 
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heterogeneity, which ranges from 5 years in the tropics to over 1000 years in northern high latitudes. The results show a U-530 
shaped distribution of τ along latitudes where τ increases nearly three orders of magnitude from low to high latitudes. Figure 

5b shows the map of relative uncertainty that is derived from different datasets. The higher relative uncertainty indicates 
more spread among the datasets used to estimate τ. Our result shows that peatland and arid regions generally have higher 
uncertainties than the rest of the world. We found several regions with very different estimations of τ among the datasets 
including north-east Canada, central Russia and central Australia where the relative uncertainties are over 100%.  535 
Csoil, Cveg and GPP contribute differently to the overall uncertainty of τ as shown in Figure 6. The difference among soil 

datasets is the dominating factor of τ uncertainty, especially in the circumpolar regions and the Indonesian peatland where 
there is large amount of soil organic carbon in subsoil. On the other hand, the uncertainties of τ in arid and semi-arid regions 
are controlled by the difference in GPP products. The contribution of vegetation to the uncertainty in τ is most significant in 
the tropics and warm temperate regions where there is large vegetation biomass. It is worth to note that contributions from 540 
each component also vary with depth of carbon stock that was used to calculate τ. For instance, the uncertainty contribution 

from Cveg becomes smaller when the Csoil up to 2 meters is used compared to only using 1-meter in calculating τ. However, 
the fact that the difference in the soil products was the major contributor to the τ uncertainty remains no matter what soil 
depth is used. Globally, the uncertainty of τ is mostly derived from soil and GPP, which dominate 82% and 17% of the 
global land area, while vegetation plays a minor role globally (1%).  545 

4.6 The zonal pattern of turnover times 

The latitudinal distributions of τ can be best represented by a second-degree polynomial function (Figure 7b). After fitting 
the data of all ensemble members, the rate of τ change with latitude can be obtained by taking the first derivative of the fitted 
polynomial function. We found that the rate of τ change (Figure 7c) has very consistent zonal patterns for different τ 
ensemble members from different data sources. The result shows a consensus on the change of τ with latitude of different 550 

datasets. We also found that the zonal τ gradients were not significantly (P > 0.05) different from each other for different 
selections of soil depth, indicating soil depth has no significant effect on the τ gradient along latitude. It is worth to note that 
there is a significant difference in the zonal τ gradient between the northern and southern hemisphere (P < 0.0001) and that τ 
increases faster from low to high latitude in northern latitudes than in the southern latitudes. The results show that we have 
high confidence in the zonal distribution of τ and that the difference across datasets does not affect the robustness of the 555 

pattern. 

4.7 The zonal correlation between turnover time and climate 

The correlations between τ and mean annual temperature and mean annual precipitation are analysed for all the ensemble 
members on global scale (see Method section). The correlation (Figure 8a) is the strongest in northern mid-to-high latitudes 
between 25º N and 60 º N, and it decreases rapidly from 20º N to the equator. In the southern hemisphere, it increases until 560 

40º S, albeit having a weaker gradient than in the northern hemisphere. The uncertainties originating from different data 
sources are shown by the shaded area (Figure 8). The result shows that there are high uncertainties in the transitional regions 
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between the temperate and Arctic regions (50 – 70º N) as well as tropical regions (20º N to 20º S). Similar to the previous 
result of uncertainty contribution where soil is the dominating factor, the differences in Csoil also cause the spread in τ - T 

correlation. However, the patterns of correlation along latitude do not change regardless of the data source and the soil depth. 575 
All ensemble members agree that τ is negatively associated with temperature, with stronger associations in cold regions than 
in warm regions.  
The correlation between τ and precipitation, in general, has larger variability across latitude and a higher uncertainty due to 
differences in data (Figure 8b). Contrary to the τ - T relationship, the uncertainty of the τ - P relationship derived from both 

different data sources and soil depths are smaller in the tropics than in high latitudes. Negative correlations dominate the 580 
latitudes between 20 and 50º N as well as between 20 and 40º S, while there is a stronger positive correlation in the tropics. 
There is a shift in the sign of the correlation coefficient from negative in temperate zone to positive in tropics, indicating the 
role of water changes from water-limited regions to water-excessive regions. We found the pattern of correlation between τ 
and precipitation is different from the previous study (Carvalhais et al., 2014), especially in the tropics. We therefore 

investigated the possible cause of the difference by mixing all components (Csoil, Cveg and GPP) between the previous and 585 
current study. By examining the correlation between each mixed τ estimation and climate factors, our results show that 
positive correlation in the tropics is caused by the Csoil (Figure S7). This is consistent with the previous results (Figure 1) 
which shows large difference in the spatial distribution of Csoil in the tropics between the three soil datasets we used in this 

study and HWSD soil dataset. 

5 Discussion 590 

In this section, we will discuss the robustness of the current state-of-the-art estimation on global terrestrial carbon turnover 
times and their response to climate change. We first show the variation of spatial and vertical distribution of carbon stock in 
different regions and the possible reason for the difference, and we then discuss the robustness of zonal distribution of 

turnover times and zonal changing rates across different datasets. Finally, we focus on the sensitivity of turnover times to 
climate and implications. 595 

5.1 Estimation of global carbon stock 

Accurate estimation of terrestrial carbon storage and turnover time are essential for understanding carbon cycle-climate 
feedback (Saatchi et al., 2011; Jobbágy et al., 2000). Our analysis benchmarks soil, vegetation carbon storage and GPP from 

multiple state-of-the-art observational based datasets at global scale and provide not only an estimate of the total carbon 
stock but also the vertical distribution and spatial variability of global carbon stock. We divide the global map into 600 
circumpolar and non-circumpolar regions due to the different characteristics and uncertainty. 
We found that there is a significant difference across the current soil carbon datasets in both circumpolar and non-
circumpolar regions. The results show that the uncertainty of Csoil estimations in the circumpolar region is two times larger 

than that of the non-circumpolar region (Figure 6). The spatial patterns of total ecosystem Csoil among the soil datasets are 
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more consistent in the non-circumpolar region than in the circumpolar region. In contrast with the non-circumpolar region, 610 
there is lower confidence in the circumpolar region in estimating Csoil due the fact that there is low spatial correlation across 

datasets. The difference can be caused by various reasons. As an important input to the machine learning method, in-situ soil 
profiles are very important factors that influence the final results of the upscaling. The sparse coverage of soil profiles in the 
circumpolar region may cause the large divergence in the northern circumpolar region. A major difference between S2017 
and the other two soil datasets is that soil carbon stock was a direct target of upscaling in the former dataset, while in the 615 
latter two datasets each component used to calculate Csoil (carbon density, bulk density and percentage of coarse fragments) 

was predicted individually. In addition, the climatic covariates that were used in the upscaling were different (see Method).   
In contrast with the non-circumpolar region, the circumpolar Csoil does not have a decreasing trend up to 4 meters of soil 
depth (Figure S1) which indicates that there is a significant amount of carbon stores in deep soil. The deep soil turnover is a 
key process to the global carbon cycle yet poorly understood (Todd-Brown et al., 2013). In this study, we extrapolated the 620 
soil carbon stock to full soil depth. We chose the model ensembles from a framework to pick out the models that had a 

minimum distance between prediction and observations by using in-situ soil profiles (see Supplement). Two model 
ensembles were selected that can best represent the soil vertical distribution in circumpolar and non-circumpolar regions by 
comparing model simulations and in-situ observations. The final results depend on the information from the soil profiles and 
also the characteristics of the empirical models. The extrapolation gave us insights to the carbon storage and vertical 625 

distribution in deep soil. The results of extrapolation show there is approximately 15% of carbon stored below 2 meters 
globally and over 20% of carbon stored below 2 meters in the northern circumpolar region. Although the total amount of 
carbon storage in the ecosystem shows a large divergence among different datasets, the ratio between different soil depths 
are quite consistent indicating a high confidence in the vertical structure of soil compare to the total amount. 
The global soil carbon stocks across observational-based datasets are much less divergent than the current earth system 630 

model (ESM) simulations. The CMIP5 results show the simulated carbon storage ranges from 500-3000 PgC making τ varies 
by a factor of 3.6, from 11 to 39 years (Todd-Brown et al., 2013). Our results show that the amount of carbon in the 
ecosystem is much higher than the estimation by ESMs. Even the lowest estimation (S2017 dataset) of total carbon storage is 
about 500 PgC higher than the highest ESM estimation (MPI-ESM-LR). The spatial distribution of carbon stocks among 
ESMs have a large variation across models while the observational-based datasets are more consistent in the non-635 

circumpolar region. But we leave a question mark to the soil carbon in the circumpolar region, which is characterized by 
large uncertainty as shown by the current observational-based soil datasets. 
Compared with soil, the higher level of consistency in the vegetation and GPP estimates indicate there is a consensus on the 
current estimations in the above-ground carbon stock. However, we note that the regional differences in the products can 

significantly affect the spatial distribution and uncertainty of τ. Nevertheless, vegetation and GPP contributes a little to the 640 
global mean value of τ estimations.  
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5.2 The terrestrial carbon turnover time and uncertainty   

The uncertainty analysis showed that our current estimation of τ has a considerable spread which derived from the state-of-
the-art observations of soil, vegetation and carbon fluxes. In this study, we showed the uncertainty is contributed mainly by 

the soil carbon stock and GPP, where the former dominates the vast areas in the circumpolar region and the tropical peatland 645 
while the latter dominates the semi-arid and arid regions. We showed that GPP is the second largest contributor to the total 
uncertainty which potentially leads to significant differences in the estimation of τ considering different products of GPP 
(Zhang et al., 2017; Norton et al., 2019). This result is consistent with the previous study (Todd-Brown et al., 2013) that the 

bias in estimated primary productivity can affect the carbon turnover estimations to a large extent not only by using 
observational-based data but in the ESMs simulations. However, the uncertainty comes not only from the differences across 650 
datasets but also from the soil depth we chose to estimate τ. The frozen permafrost soil in the circumpolar region, although 
containing a large amount of carbon is an important component in the process of turnover (Zimov et al., 2006). However, we 
do not know to what soil depth we should use in the τ estimation since currently our knowledge on the active layer thickness 

of frozen permafrost soil is still lacking. In addition, the active layer thickness of permafrost changes with climate, which 
adds more uncertainty to the estimation of τ. Thus, we argue that the current datasets cannot support robust estimation of 655 
global τ. It is worth to note that our estimation of τ is based on the steady-state assumption, that is, the net exchange of 
carbon between the terrestrial ecosystem and the atmosphere equals to zero. In our study, the steady-state assumption is a 
proper assumption for that our analysis focused on the τ estimation at long-term temporal scale and large spatial scale. 

However, this assumption is valid to a much less extent at site-level as the net exchange of carbon is, most of the time, not in 
balance (Ge et al., 2018).  660 
Although the current estimation of τ has a large variation, we show that the zonal distribution of τ is a robust feature that 
changes little with different datasets, which indicates that the current state-of-the-art datasets all agree on the latitudinal 

gradient of the carbon turnover time. Another robust feature is that the zonal changing rate of τ does not change with the soil 
depth (Figure 7). It has always been a problem of what soil depth should we use to represent the functional part of carbon in 
the ecosystem. The selection of soil depth is usually arbitrary and varies from study to study. For example, Koven et al. 665 
(2017) and Wang et al. (2017) used the top one-meter of soil carbon to represent the total terrestrial carbon pool while 
Carvalhais et al. (2014) extrapolated soil to full depth and used it as the pool. Our results demonstrate that the selection of 

the soil depth does not affect the zonal pattern that we observed. This can be better seen in the next section with the response 
of τ to climate. 

5.3 Robust associations of τ and climate 670 

Despite the large uncertainty in the τ estimations, we identified robust response of τ to climate change . It is well recognized 
that the sensitivity of terrestrial carbon to climate is a major uncertainty, which is reflected by the spread of τ estimation by 

the different ESMs. However, we need reliable estimations of τ to quantify its climate sensitivity and provide robust 
constraints to improve the performance of the current ESMs. We showed the zonal correlation between τ and temperature 
varies with latitude where high correlations are found in the high latitude and low to moderate correlation in low latitude, 675 
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especially the tropics. The zonal pattern of τ-precipitation is more complicated in that water availability can cause local 
variability to a great extent. The correlation between turnover times and precipitation in the tropics is higher than that with 

temperature as shown in Figure 8d indicating a potentially more dominant role of precipitation in the tropics. The role shifted 685 
along latitude between temperature and precipitation in the pattern of τ due to the variation in the relative importance for 
each parameter. However, the temperature gradient shaped the zonal distribution of τ as it can be seen that τ increases with 
latitude. All of these relationships are verified by each ensemble member of the data. We found the correlations, although 
they vary in strength, are very robust. The intimate interaction of energy and water along with other factors such as land use 

change all affect τ but on different spatial and temporal scales. It is worth mentioning that the τ - T relationship is similar 690 
when compared with previous results (Carvalhais et al., 2014) whereas there are considerable differences in the τ - 
precipitation relationship, specifically in tropical regions where the turnover times were always negatively correlated with 
precipitation in previous study. The different τ – P zonal patterns of correlation between the previous and the current study, 
as shown before, is mainly caused by the difference in the soil carbon stock (Figure S7). This finding indicates the response 

of τ to moisture is characterized by large uncertainty. 695 
 

6 Data availability 

The dataset of whole ecosystem turnover times of carbon provided here can be downloaded 
from: https://doi.org/10.17871/bgitau.201911 (DOI: 10.17871/bgitau.201911). 
 700 
 

7 Conclusion 

A full assessment of the global turnover times of carbon is provided using an observational-based ensemble of current state-
of-the-art datasets of soil carbon stocks, vegetation biomass and GPP. At the global scale, the uncertainties in τ estimates are 
dominated by the large uncertainties in soil carbon stocks. The uncertainty of carbon stocks and τ estimation in the 705 

circumpolar region is significantly higher than that in the non-circumpolar region. Our results show that there is a consistent 
vertical distribution of soil carbon across datasets, and it is estimated that soils below 2 meters take up to 20% of total soil 
carbon globally. A spatial analysis shows that both soil carbon and GPP are the major contributors of local uncertainties in τ 
estimation. The differences in soil stocks between datasets dominates the uncertainties of τ in the circumpolar region and in 

tropical peatlands, while the spread in GPP dominates the uncertainty in semi-arid and arid regions. The difference in 710 
vegetation data has a minor contribution to the uncertainty.  
Despite the differences, we identified several robust patterns that change only marginally across different ensemble members 
of τ that derived from different datasets or different soil depths. First, we found a consistent latitudinal pattern in τ that can 
be described by a second-degree polynomial function. The changing rate of τ with latitude can be described equally well for 
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all ensemble members and the changing rate of τ with latitude is highly consistent across different datasets and does not 720 
change with soil depth. The same zonal correlations between τ and climate showed there is a robust association of τ with 

temperature and with precipitation. However, we note that association between temperature/precipitation and τ change with 
latitude. Specifically, temperature mainly affects the τ variation in middle to high latitudes beyond 20ºN and 20ºS while 
precipitation affects τ not only in temperate zones but also in the tropical regions. Thus, the sensitivity of τ to a certain 
climate factor makes more sense to be calculated and interpreted in regions where the climate factor is the main driver of the 725 
τ variation. Overall, this study synthesizes the current state-of-the-art data on global carbon turnover estimation and argues 

that the zonal distribution of τ and its response to climate is robust regardless of different datasets or assumptions on soil 
depth. This is a critical advancement since previous studies usually made arbitrary decisions on the soil depth that use to 
estimate τ, and supports exercises for benchmarking ESMs. Future studies should further investigate τ with regional spatial 
scale and its response to climate as well as other factors such as land use change, in order to have an in-depth understanding 730 
of carbon cycle turnover. 
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Figure 1: Spatial distribution of soil carbon storage at 0-100cm in non-circumpolar region. The total amount of carbon stock is 895 
shown in the bottom of each diagonal subplot. The upper off-diagonal are the ratios between each pair of datasets (column/row). The 
bottom off-diagonal subplots show the density of the scattering and major axis regression line between each pair of datasets (m: slope, b: 
intercept, r: correlation coefficient). 

 
 900 
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Figure 2: The same as Figure 1 except for the Csoil in 0-200cm in circumpolar region.  

 905 
 
 
 

 
 910 
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Figure 3: The spatial distribution of vegetation carbon stock and relative uncertainty (interquartile range/mean). The total amount 
of carbon stock of vegetation (AGB+BGB+herbaceous) is shown in the bottom of each diagonal subplot. The upper off-diagonal are the 
ratios between each pair of datasets (column/row). The bottom off-diagonal subplots show the major axis regression between each pair of 915 
datasets (m: slope, b: intercept, r: correlation coefficient). 



30 
 

 
Figure 4: The spatial distribution of mean GPP and relative uncertainty (interquartile range/mean). Upper subplot, spatial 
distribution of GPP. Bottom subplot is relative uncertainty. 
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 920 
 
Figure 5: The spatial distribution of mean turnover time (in log scale) and relative uncertainty (interquartile range/mean). Upper 
subplot, spatial distribution of turnover times. Below subplot, relative uncertainty. 

 

 925 
Figure 6: The contribution of τ uncertainty. Derived from difference sources of soil (0 - 2m), vegetation and GPP. Contribution from a 
certain variable is represented by a specific color, e.g. the green colored region indicates the uncertainty is dominated by Cveg. 
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 930 
Figure 7: (a) The zonal distribution of τ. (b) Second-degree polynomial fit. (c) Zonal change rate (first derivative of the 
polynomial function) of τ with latitude.  Solid lines represent the mean τ for different soil depth (1m, green; 2m, red; full depth, purple) 
and dashed lines are the interquartile range for different soil depth. The polynomial function is fitted to Northern and Southern hemisphere 
individually. 
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a b c 

d e f 

Figure 8: Correlation between zonal τ and Climate variables. Annual mean temperature (a, b, c) and mean annual precipitation (d, e, f) 
a and d colored by different soil depth (1m, green; 2m, red; full depth, purple) with shaded areas of interquartile range. Subplots b and e  
are colored by different soil source; Subplots c and f show each ensemble member and are colored by different soil data source. 
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Supplementary material 

1 Mass conservative aggregation  945 

In order to unify the spatial resolution and geographic coordinate system of dataset from different sources, we need to make 

sure that the total amount of stock for soil, vegetation, etc. doesn’t change during aggregation and transformation, i.e. the 
variable need to be mass conservative. However, ‘state’ variable such as temperature, vegetation types do not need to fulfill 
the mass conservative requirement, nor they should. In our study, we developed a mass conservative method to maintain 
mass for carbon stocks. We first multiply the variable that need to be aggregated (Xfine) by corresponding land area (Afine) at 950 

grid cell level represented by equation (1), then aggregate the product (XAfine) by summing the values in N×N grids cell 

depending on the target resolution (equation (2)). The land area is also sum to the target resolution (equation (3)). Finally, 
the area-weighted variable is derived by dividing aggregated product (XAcoarse) by corresponding land area (Acoarse) as 
illustrated by equation (4).      

 (1) 955 

 (2) 

 (3) 

(4) 

We applied the method to all datasets that requires aggregation including soil, vegetation and GPP that were used in the 

study.  960 

2 Bulk density correction 

The bulk density (BD) in SoilGrids and LandGIS are too high due to two reasons. First, the measurements of BD are less and 
missing in many horizons (Hengl et al., 2017). And the measurements of BD in permafrost region, especially in Canada 
forest soil and Russian, are problematic (personal communication with Tomislav Hengl).  In this study, we applied a 

pedotransfer function from Köchy et al. (2015) to make correction based on organic carbon concentration (we only applied 965 
the function to the grid cells where carbon > 8%): 

X Afin e = Xfin e × Afin e

X Aco arse = SUM(X Afin e)

Aco arse = SUM(Afin e)

X Acoarse = X Acoarse
Acoarse
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𝐵𝐷 = (1.38 − 0.31 × log X
𝑂𝐶
10Z) × 1000 

  
 

3 Model selection for extrapolation of soil 970 

In this section, we introduce the framework that we used to select the models for extrapolating soil from 0 – 2m to full soil 
depth.  

3.1 Different characteristics of permafrost and non-permafrost soil 

The amount and vertical distribution of soil organic carbon are largely influenced by vegetation which fixes atmospheric 
CO2 and transport carbon into the land ecosystem. However, the SOC stock have a much more complicated relationship with 975 
productivity of plants than a simple linearly one (Jackson et al., 2017). The higher biomass, which implies more carbon 
sequestration by aboveground biomass, however, does not necessarily lead to increases in SOC storage. Although the 

processes of soil formation, accumulation, and stabilization have been intensively studied and debated, the mechanisms that 
determine the soil carbon stock, especially in deeper soil, are still unclear. Instead of using process modelling approach, we 
chose statistical approach to extrapolate each soil profiles in the gridded dataset from 2m to full depth. The reason of 980 
performing soil carbon stock extrapolation is that we have little knowledge on how much the carbon stored in the soil that is 

deeper than 2m, although deeper soil is a crucial component in the climate-carbon cycle feedback. The other reason is the 
different dataset report SOC stock at different depths. The advantage of using statistical method is that we do not need to 
know the mechanisms that control the soil processes. Instead, we select simple empirical mathematical models that can 
represent and predict the in-situ soil profiles. 985 
We used 425 permafrost peatland profiles from ISCN soil database and 1000 profiles from WOSIS soil database to study the 

characteristics of vertical distribution of SOC. Figure S1 shows the accumulated SOC stock profiles with depths in 
permafrost and non-permafrost region. The vertical distribution of carbon with depth in permafrost soil has a distinguished 
feature that the SOC has a high linear relationship with depth. This fact implies the soil carbon keeps increasing even after 3 
meters in permafrost soil (Figure S1b). However, we have no idea to what depth can soil carbon keep increasing and the total 990 
amount of the storage in permafrost peatland due to the limited observational depth of SOC. In contrast, soil profiles in non-

permafrost region stop increasing mostly before 2 meters. The results demonstrate the necessity of extrapolating soil to full 
depth, especially for permafrost soil. 

2.2 Selection of models 

We included 12 models (Table S1) for predicting SOC stock to full soil depth. Figure S2 shows an example result in which 995 

the data points that is shallower than 1m were used to fit all the models and predict the point that is deeper than 2m for a 
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typical soil profile. Due to the different mathematical characteristics of the models, the prediction has quite a spread. 
Relatively ‘conservative’ models including model ensemble BHIJKL tend to underestimate the carbon stock while the more 

‘aggressive’ ones ACDEFG tend to overestimate the stock. 
In the sense that we do not know which one or group of models can best predict the accumulated carbon storage, we 1000 
conducted a selection process (see Methods) by grouping all the models into all possible combination and rank the 
performance for all the model averaging results as shown in Table 2. All the models were used to fit the WOSIS data which 
covers most of the biomes and ISCN database which covers only permafrost soil. We conducted three batch of experiments 

in the same manner but used data points within different depths. The data points lower than 50cm, 100cm and 200cm were 
used to predict the SOC that is higher than 200cm. Our goal is to find the ensemble of models that has the highest model 1005 
performance, the best coverage, the minimum error and AIC. 
 

2.3 Extrapolating soil with different method 

The main goal of using several models is to search for the best group of models that can best predict the vertical distribution 
of soil carbon stock and we compared the below approaches for that purpose: 1010 

1. The Bayesian Model Averaging (BMA) method is used in this study to find the best model ensemble for the prediction 
of soil carbon storage to full depth. The MODELAVG Matlab toolbox (Vrugt, 2016) which implemented many different 
model averaging techniques including BMA method. The advantage of BMA method is that it considers explicitly the 
uncertainty of prediction of a target variable which can provide a probabilistic distribution of weight for each model 

instead of only a weighted-average, deterministic prediction. By maximize the likelihood function from the training 1015 

dataset, the weights b = {b1, …,bk} and standard deviation s = {s1, …, sk} are estimated.  

2. Equal weights averaging (EWA) which consider each the participating model have the same weight and the prediction is 
derived by equal-weighted averaging the model results.  
 

The complete combination among different models are also compared and the best model ensembles are obtained by 1020 
maximizes MEF, minimizes KL and minimizes AIC. The results show that EWA and BMA methods have similar 
performances (Table S2). We choose EWA method due to it have a slightly better coverage of observations.    
Two model ensembles were selected from the model selection framework that can best represent circumpolar and non-
circumpolar region based on observational datasets in the two regions, respectively. The performance of the chosen 

ensemble is synthesized in Figure S3. It shows the ensemble DIJKL overall can well predict the carbon stock in non-1025 
circumpolar region that is deeper than 200cm only using points lower than 50cm. Model efficiency is 0.83 and the residue 
between observation and prediction is little biasd in the prediction (Figure S3c). The histogram (Figure S3b) shows the 
prediction has the same distribution as the observations. The ensemble was also used to predict observations within different 
percentiles and over 70% of observations can be included in the uncertainty ([-σ, +σ]). The results show that the selected 
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models can well represent the vertical distribution of Csoil thus we used them to extrapolate the global gridded datasets in 1030 
order to obtain the total soil carbon storage in the soil. The selected model ensemble ACDEF for the circumpolar soil have 

lower model efficiency and less well represent the soil in the region (Figure S4). We then applied extrapolation on three 
global datasets which are Sanderman, SoilGrids and LandGIS. The averaged results of ensemble DIJKL is used to 
extrapolate non-circumpolar soil from 2m to full soil depth and ensemble ACDEF to extrapolate circumpolar soil. 
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Figure S9: The vertical distribution of accumulated SOC stock (kg.m-2) with depth (cm). (a) 425 soil profiles of permafrost peatland 
region and (c)1000 soil profiles of non-permafrost region. The probability distribution density of SOC for (b) permafrost, (d) non-

permafrost. The blue open circle represents observational data points in each profile. 1050 
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Figure S10: An example of soil profile vs models. Overlay the observational points and model results.  
 1060 
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Figure S11: Performance of the averaged results of model D, I, J, K and L in predicting soil carbon storage from 50cm to 200cm 
using WOSIS data. (a) Ensemble mean vs. observation, 1:1 line in blue. (b) The histogram of observation, model ensemble and each 1065 
model. It shows the Kullback-Leibler distance from model ensemble mean to observation, the two-sample Kolmogorov-Smirnov test (1 
represent the model ensemble mean and the observation come from the same distribution, 0 otherwise), the p-value of Kruskal-Wallis test 
(significant if p<0.05). (c) residue between model ensemble mean and observation. KS represents the one-sample Kolmogorov-Smirnov 
test (1 represent the model ensemble mean and the observation come from the same distribution, 0 otherwise). AD represents Anderson-
Darling test (1 represent the model ensemble mean and the observation come from the same distribution, 0 otherwise). (d) The coverage of 1070 
observation data points within [-σ, +σ], [min, max], [25%, 75%] and average. 
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Figure S12: The same as Figure 3 except for using ISCN data and model ensemble of A, C, D, E and F to predict soil carbon 
storage from 200cm to deep soil. 1075 
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Figure S13: Comparison of τ estimations between the previous study (Carvarhais et al., 2014) and the current study. The upper off-
diagonal subplot is the ratios between each pair of datasets (column/row). The bottom off-diagonal subplot shows the major axis 1080 
regression between each pair of datasets (m: slope, b: intercept, r: correlation coefficient). 

 

 
Figure S14: Global distribution of full soil depth.  
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 1085 
Figure S15: The zonal pattern of the correlation between τ and climate factors. Each component (Csoil, Cveg and GPP) from the 
previous study (Carvalhais et at., 2014) is mixed with each component of the current study. The prefix ‘old’ stands for the component from 
the previous study and the prefix ‘new’ stands for the component from the current study. 
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Table S1: Empirical functions candidates for extrapolation of soil carbon 

 Equation 

A 𝑎 ∙ 𝐷] + 𝐶 

B 𝑎 ∙ 𝑒]∙_ + 𝑐 ∙ 𝑒a∙_ 

C 𝑎 ∙ 𝑙𝑜𝑔	(𝑏 ∙ 𝐷 + 1) 

D 𝑎 ∙ log	(𝑏 ∙ 𝐷 + 𝑐) 

E 𝐾 ∙ 𝑙𝑜𝑔%M(𝐷) + 𝐼 

F (10h ∙ 𝐷i&%)/(K + 1) + c 

G 𝑎 + 𝑏 ∙ 𝐷 

H 𝑏 ∙ (1 − 𝛽_) 

I 𝑏 ∙ (1 − 𝛽_)R 

J 𝑎 ∙ (1 − 𝑒$(_/])n) 

K 𝑎 ∙ (1 − 𝑒$]∙_)o 

L 
𝑎 ∙ (1 −

log(1 − (1 − 𝑏) ∙ 𝑒$o∙_)
log	(𝑏)

) 
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Table S2: Performance of different methods. 

 Circumpolar Non-circumpolar 
 

EWA BMA EWA BMA 

RMSE 36.575 37.686 5.482 5.292 

AIC 1516.134 1528.526 3977.226 3895.513 

KL 0.020 0.020 0.039 0.036 

MEF 0.640 0.617 0.862 0.872 

Coverage (%) 14.5 13.5 61.9 50.3 

 
 


