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Abstract. Land cover (LC) is an important terrestrial variable and key information for understanding the interaction between 

human activities and global change. As the cause and result of global environmental change, land cover change (LCC) 

influences the global energy balance and biogeochemical cycles. Continuous and dynamic monitoring of global LC is urgently 15 

needed. Effective monitoring and comprehensive analysis of LCC at the global scale is rare. Using the latest version of GLASS 

(The Global Land Surface Satellite) CDRs (Climate Data Records) from 1982 to 2015, we built the first set of CDRs to record 

the annual dynamics of global land cover (GLASS-GLC) at 5 km resolution using the Google Earth Engine (GEE) platform. 

Compared to earlier global LC products, GLASS-GLC is characterized by high consistency, more detailed classes, and longer 

temporal coverage. The average overall accuracy is 85 %. We implemented a systematic uncertainty analysis at the global 20 

scale. In addition, we carried out a comprehensive spatiotemporal pattern analysis. Significant changes and patterns at various 

scales were found, including deforestation and agricultural land expansion in the tropics, afforestation and forest expansion in 

northern high latitudes, land degradation in Asian grassland and reclamation in northeast China, etc. A global quantitative 

analysis of human factors showed that the average human impact level in areas with significant LCC was about 25.49 %. The 

anthropogenic influence has a strong correlation with the noticeable Earth greening. Based on GLASS-GLC, we can conduct 25 

long-term LCC analysis, improve our understanding of global environmental change, and mitigate its negative impact. 

GLASS-GLC will be further applied in Earth system modeling in order to facilitate research on global carbon and water cycling, 

vegetation dynamics and climate change. The data set presented in this article is published in the Tagged Image File Format 

(TIFF) at https://doi.org/10.1594/PANGAEA.898096. The data set includes 34 TIFF files and one instruction doc file. 
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1 Introduction 30 

Land cover (LC) is the physical evidence on Earth. It is the result of both natural and human forces (Running, 2008;Sterling 

et al., 2013;Tucker et al., 1985;Gong et al., 2013;Yang et al., 2013). It is an important source of information to understand the 

complex interaction between human activities and global changes (Lambin et al., 2006). LC data is one of the most important 

variables needed to bring about the nine large social benefits in the field of Global Earth Observation Systems (Herold et al., 

2008). Land cover change (LCC) is the cause and result of global environmental change (Turner et al., 2007), and it can change 35 

the energy balance and biogeochemical cycles (DeFries et al., 1999;Claussen et al., 2001), further affecting climate change 

and surface attributes and the provision of ecosystem services (Pielke, 2005;Zhao et al., 2001;Gibbard et al., 2005;Reyers et 

al., 2009). Therefore, a long time series of LCC information is critical to the understanding of global environmental change 

(Matthews et al., 2004). LC and LCC information is also valuable to resource management, biodiversity conservation, food 

security, forest carbon, etc (Houghton et al., 2012;Achard et al., 2004;Andrew K et al., 2015). Therefore, more frequent land 40 

cover information at the global scale is highly desirable. 

However, LC is highly dynamic due to changes in natural phenology and human activities (Lambin et al., 2001). This 

characteristic poses a huge challenge to mapping and monitoring (Verburg et al., 2009;Lepers et al., 2005;Rindfuss et al., 2004), 

and an effective quantitative analysis of global LCC is lacking (Ramankutty et al., 2006). The traditional method of LC 

mapping based on field studies can hardly be applied to large areas due to the required amount of labor (Gong, 2012). In 45 

addition, any mapping results obtained in this way would be difficult to update in a timely manner. Satellite observations are 

the most economical and feasible means of large-scale LC monitoring (Fuller et al., 2003;Rogan and Chen, 2004). Due to the 

development of satellite sensors, the continuous accumulation of historical satellite data, and the advancement of relevant 

image processing algorithms, LC monitoring can be effectively carried out (Cihlar, 2000;Pal, 2005;Gallego, 2004;Chen et al., 

2018). However, previous monitoring mainly focuses on the mapping of a particular area (Liu et al., 2002;Brink and Eva, 50 

2009;Yuan et al., 2005;Margono et al., 2012;Feng et al., 2018) or in a single period (Homer et al., 2004), and because of the 

differences in data sources and mapping methods, the consistency of mapping results between different sources and periods is 

poor and lacks comparability, making it difficult to quantify the changes effectively (Friedl et al., 2010). 

Automatic mapping methods depend highly on the sample dataset for its representativeness, quantity and quality due to the 

considerable heterogeneity at the global level (Gong et al., 2013;Li et al., 2014). A combination of a comprehensive global 55 

sample dataset, professional interpretation and support from mapping teams are needed (Li et al., 2017). In general, sample 

LC data are mainly collected from field visits or manual interpretation (Li et al., 2016;Hansen et al., 2000). Generalization 

from higher resolution LC map products can also be useful for coarser resolution mapping purposes (Song et al., 2018a). The 

former is more accurate and effective, but requires much manpower, resource and effort (Li et al., 2016); the latter is a feasible 

option and is more efficient but largely depending on the accuracy of the parent product.  60 
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A number of global LC products exists. Some examples include the 30 m Finer resolution observation and monitoring of global 

land cover (FROM-GLC) (Gong et al., 2013), the 1992-2015 annual 300 m global land cover data 

(http://maps.elie.ucl.ac.be/CCI/viewer/index.php), MODIS global land cover product (Friedl et al., 2010), 1 km International 

Geosphere-Biosphere Programme Data and Information System Cover map (IGBP-DISCover) (Loveland et al., 2000), 1 km 

University of Maryland (UMD) land-cover map (Hansen et al., 2000), 1 km Global Land Cover 2000 (GLC2000) map 65 

(Bartholome and Belward, 2005). These mapping results tend to focus on a single or short period of time, and because of their 

different classification systems and resolutions, they are difficult to compare (Ban et al., 2015;Grekousis et al., 2015). However, 

high-resolution mapping results can be used as an effective reference for low-resolution mapping (Song et al., 2018a;DeFries 

et al., 1998). Therefore, when performing lower-resolution global mapping, it is possible to consider directly generating 

training samples from high-resolution global mapping results, which will meet the mapping requirements, (Wang et al., 2016). 70 

Long time-series LC mapping requires high consistency of data sources, and also has certain requirements for multi-period 

samples (Wardlow and Egbert, 2008). The commonly used satellite data that cover a long period of time (more than 30 years) 

include the Advanced Very High Resolution Radiometer (AVHRR) data and Landsat imagery (Giri et al., 2013;Franch et al., 

2017;Wulder et al., 2008). While Landsat data has higher resolution, in many areas they are more prone to cloud, consistency 

and data volume (Gómez et al., 2016;Wulder et al., 2008;Xie et al., 2018). AVHRR data has a low spatial resolution, and the 75 

quality of the raw AVHRR data is poor. The requirements for pre-processing and consistency processing such as cloud removal 

and missing value filling are high. The GLASS CDRs based on AVHRR data tend to have better data consistency due to the 

systematic data production (Liang et al., 2013). Using such data for LC mapping can significantly improve the consistency 

and comparability of mapping results, and thus can be effective in supporting change analysis. If the consistency of the original 

data source used is not good enough, it may be necessary to collect annual samples for classification to ensure the reliability 80 

of change analysis (Xu et al., 2018). 

Recently, some attempts have been made to map global LC over a long time series, but these have focused on a single class 

(such as water bodies (Wood et al., 2011;Pekel et al., 2016), impervious surface (Schneider et al., 2010;Zhang and Seto, 2011), 

cropland (Pittman et al., 2010), etc.) or a few classes (such as Vegetation Continuous Fields (VCF) (Song et al., 2018a), mainly 

depicting vegetation changes). General purpose multi-class land cover mapping over a period of over 30 years does not exist 85 

before.  

Because of the lack of long time-series general purpose global LC maps, using the Google Earth Engine (GEE) platform 

(Gorelick et al., 2017), we produced the first CDR set of consistent and reliable LC products, GLASS-GLC, covering the 

period from 1982 to 2015. The data used was primarily the 0.05 ° AVHRR-based GLASS CDRs. The classification system is 

adjusted from the FROM-GLC according to the data characteristics. Below, we describe the methods used, results obtained 90 

with some preliminary change analysis. 
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2 Data and methods 

The framework for mapping GLASS-GLC is shown in Fig. 1. It includes annual feature collection and construction, training 

sample generation, classification and time consistency adjustment, accuracy assessment and product inter-comparison. The 

entire framework is implemented in the GEE. The GEE is a cloud-based platform for planetary-scale geospatial analysis that 95 

brings Google's massive computational capabilities to bear on a variety of high-impact societal issues including deforestation, 

drought, disaster, disease, food security, water management, climate monitoring and environmental protection (Gorelick et al., 

2017). We uploaded GLASS data to GEE and did subsequent analysis in GEE.  

2.1 Data 

The annual feature collection from 1982 to 2015 involves a variety of data products, the most important of which is the latest 100 

version of GLASS CDRs. CDRs require data with a long time series, high consistency and high continuity, which is not the 

same as the commonly-used remote sensing products (Hollmann et al., 2013;Cao et al., 2008). Derived from AVHRR data, the 

GLASS CDRs include a wide range of surface parameters that are important for LC classification (http://glass-

product.bnu.edu.cn/). The products have a spatial resolution of 0.05 °, a temporal frequency of 8 days with a time span of 

1982-2015. In our study, Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) (Xiao et al., 2016), Fraction 105 

of Absorbed Photosynthetically Active Radiation (FAPAR) (Xiao et al., 2015), Evapotranspiration (ET) (Yao et al., 2014), 

Gross Primary Production (GPP) (Yuan et al., 2010), Broadband Emissivity (BBE) (Cheng et al., 2016), White-sky Albedo in 

Visible band (ABD_WSA_VIS), White-sky Albedo in Near Infrared band (ABD_BSA_NIR) and White-sky Albedo in 

Shortwave band (ABD_WSA_shortwave) (Qu et al., 2014) are the variables used for subsequent classification. 

To provide further reference, vegetation cover fraction (VCF) products are used to aid classification. The VCF products express 110 

the surface as a combination of vegetation proportions according to information from remotely sensed data. To match the 

resolution of the GLASS CDRs, the VCF products used here (Song et al., 2018a) also have a spatial resolution of 0.05 °, and 

are obtained from the Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/). These products are mainly 

based on AVHRR, and the interannual consistency has been maintained. Based on the training samples from Landsat products 

from around 2000 (Hansen et al., 2013;Ying et al., 2017), with a supervised regression tree model, the VCF products from 115 

1982 to 2016 (data missing in 1994 and 2000) were generated, and were composed of the percentages of tree canopy (TC), 

short vegetation (SV) and bare ground (BG) in each pixel.  

In addition, in order to enhance the distinguishing capacity, we also used terrain data provided by the Global Multi-resolution 

Terrain Elevation Data of 2010 (GMTED2010). Based on the elevation data, the slope information can be further calculated 

to reflect the terrain and help to distinguish different vegetation types growing on steep slopes to those on level ground. The 120 

dataset comes from the GEE platform and contains 2010 Earth Elevation data collected from various sources. The primary 

source is the Shuttle Radar Topography Mission (SRTM) Digital Terrain Elevation Data (DTED) (void-filled) 1-arc-second 
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data. Other sources are used for filling the gaps in areas outside the SRTM coverage. As the terrain is relatively stable over 

years, using the data of one single year is plausible. The spatial resolution of the GMTED2010 data used is 7.5 arc seconds 

and it has been upsampled to 5 km in subsequent analyses. 125 

2.2 Classification system  

The classification system in FROM-GLC Version 2 (FROM-GLC_v2) defines eleven Level 1 classes that can be easily mapped 

to the Food and Agricultural Organization of the United Nations (FAO) LC Classification System and the International 

Geosphere–Biosphere Programme (IGBP) classification system (Wang et al., 2015). This classification system evolved from 

the classification system of FROM-GLC Version 1 (Gong et al., 2013) with addition of leaf information. 130 

We adjusted some classes of the original classification system according to the spatial resolution and situation of the used data. 

Because the data used here are land surface products, where the water surface has been masked, the class of "water bodies" 

cannot be extracted from the GLASS dataset. Wetland is a highly variable class and impervious surface whose patches are 

small in size. They are difficult to identify at the spatial resolution of 0.05 °(Wang et al., 2015). Thus, the water body, 

impervious surface, and wetland classes were not included in this work, and they shall be derived with more specialized 135 

methods. While water and impervious surface mapping have achieved satisfactory results (Ji et al.;Gong et al., submitted), 

wetland mapping remains a great challenge (Gong et al., 2013). In addition, the "cloud" class was removed. The adjusted 

classification system consists of 7 classes, including cropland, forest, grassland, shrubland, tundra, barren land, snow/ice, as 

shown in Table 1. 

2.3 Training samples 140 

In order to obtain the training samples, we adopted the majority-class synthesis strategy. First, we projected the 30m FROM-

GLC_v2 results, that were created using Landsat data acquired mainly from 2013-2015 (Li et al., 2017), into a 0.05 ° coordinate 

system. By calculating the area ratio of each class in each 0.05 ° pixel, the class with the greatest area ratio in each pixel was 

used as the new class label in the aggregated 0.05 ° mapping results. Subsequently, sample points were randomly generated 

(with a limited interval greater than 0.1 °) with the class label obtained from the aggregated FROM-GLC_v2 0.05 ° mapping 145 

result (adjusted to be consistent with the new classification system). Finally, 10,000 training sample units were obtained. The 

spatial distribution of training sample units is shown in Fig. 2, and the class distribution of training samples is shown in the 

inner pie chart. 

2.4 Feature collection 

We constructed a feature collection with a strong discrimination ability to detect LC from multiple aspects such as terrain, 150 

phenology, spectrum, and spectral index, etc. The annual percentiles (including 0, 10, 25, 50, 75, 90, 100) of all bands of the 
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GLASS CDRs and the mean and standard deviation of the NDVI between two adjacent percentiles are calculated, as an annual 

feature collection from GLASS CDRs. Among them, the percentile that represents specific phenological information can 

provide simplified time series information, reduce the noise of annual time series, and help improve the classification accuracy 

(Hansen et al., 2013). By extracting the statistical information between adjacent percentiles, the time series information can be 155 

further supplemented. Due to the systematic deviation of AVHRR products (Song et al., 2018b), in order to ensure the inter-

annual consistency of the GLASS features, we used the processing method developed for generating the VCF products, with 

the corresponding MODIS products for end-member correction, where desert and intact forest are regarded as the end-element 

of each pixel (Song et al., 2018a). After the correction, the inter-annual inconsistency of feature collection from the GLASS 

CDRs is improved. Figure 3 shows the time series of the global median value of the GLASS ABD_WSA_VIS band, where 160 

the orange one represents the curve before the correction and the grey one is the result after the correction. It can be seen that 

after the correction, the fluctuations of the feature become smaller, and the individual abnormal values are also adjusted. 

Taking into account the time span of the GLASS CDR-based feature collection, the VCF products from 1982 to 2015 are used, 

with the missing 1994 and 2000 data supplemented by calculating the average of the adjacent years. There are three features 

of the percentage of tree cover (TC), short vegetation (SV) and bare ground (BG) for each year. Based on the GMTED2010 165 

dataset, the slope information is calculated and finally added to obtain an average slope value for each 0.05 ° pixel. In addition, 

the central latitude and longitude information of each 0.05 ° pixel is also recorded as part of the input features. Finally, an 

annual collection of 81 input features for the period of 1982 to 2015 was constructed, including the annual GLASS CDR 

percentile feature (7×9), the mean and standard deviation of the NDVI annual adjacent percentiles (6×2) and VCF features (3), 

assisting the slope information (1) and latitude (1), longitude (1) information (Table 2). 170 

2.5 Classification and time consistency 

We used a random forest classifier for global LC mapping following the good performance of the random forest classifier in 

the machine learning field (Rodriguez-Galiano et al., 2012;Pal, 2005). The number of trees was 200, and other parameters 

were set as default. The classifier was trained using the training sample with an annual feature collection constructed as the 

input. The global LC maps from 1982 to 2015 were obtained using the trained classifier. 175 

In order to further ensure the time consistency of the mapping results, we used the “LandTrendr” method (Kennedy et al., 

2010;Cohen et al., 2018) and implemented a linear regression-based algorithm for the constructed annual feature collection to 

find the breakpoints in the time series (Li et al., 2018). The class labels in the time series between adjacent breakpoints will be 

updated to the mode of the class label time series for the time period. Through this strategy, we can smooth the time series of 

the mapping results, avoid noise interference as much as possible, and finally get the adjusted GLASS-GLC. 180 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-23

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 25 February 2019
c© Author(s) 2019. CC BY 4.0 License.



7 
 

2.6 Accuracy assessment 

To verify the reliability of GLASS-GLC CDR products from multiple perspectives, we performed accuracy assessments and 

uncertainty analyses. Testing samples was extracted from the 30m resolution FROM-GLC_v2 (Li et al., 2017) to evaluate the 

2015 LC mapping results. First, we dropped those sample units whose classes were not included in our classification system. 

The remaining test samples units were then overlapped with the abovementioned aggregated 0.05 ° FROM-GLC_v2 mapping 185 

result, and only those whose class labels were consistent were kept. These were regarded as huge homogeneous samples (H-

homo samples) reserved as the final test samples. A total of 23459 huge homogeneous test samples units from FROM-GLC_v2 

were obtained to test the 2015 global LC mapping result. In addition, another 525 test samples units from the FLUXNET site 

data (Gong, 2009) for 2015 were selected to supplement the test samples to further test the 2015 result. The distribution of the 

entire test samples in 2015 is shown in Fig. 4, where the class distribution of the test samples is shown in the inner pie chart.  190 

In addition to obtaining the classification confusion matrix in 2015 based on the above test samples, in order to identify regions 

where classification is difficult, an uncertainty analysis was carried out. The incorrect test samples locations are marked as 1, 

while the correct test samples locations are marked as 0. The spatial distribution map of the uncertainty of the LC mapping 

result in 2015 is depicted based on a Kriging interpolation method (Oliver and Webster, 1990). The search radius parameter of 

Kriging interpolation is set to 12 nearby points, the other parameters as default. The value of the uncertainty ranges from 0 to 195 

1. A value near 0, indicates a lower uncertainty while a value near to 1, indicates a higher uncertainty and a higher possibility 

of misclassification.  

2.7 Statistical analysis 

To extract the area of LCC, we estimated the trend of change through statistical analysis and avoided the influence of abnormal 

fluctuations from the obtained long time series of global LC products. The annual area of each class on the scales of latitudinal 200 

zones, continents are summarized. A time series of the annual area for each class was generated. The boundary data of countries 

and continents were obtained from the Bureau of Surveying and Mapping of China. Eco-region data were obtained from the 

FAO global eco-region dataset (Simons et al., 2001) 

(http://www.fao.org/geonetwork/srv/en/metadata.show?CurrTab=simple&id=1255). 

Although the inter-annual consistency has been ensured as much as possible in the above mapping framework, the effects of 205 

inter-annual changes due to climate conditions and phenological changes were removed by fitting a linear trend (Theil-Sen 

estimator (Sen, 1968))  to estimate the long-term trend of change in area for each class, where the annual change slope and 

the 95 % confidence interval of the slope is given. In addition, a Mann-Kendall test (Mann, 1945) was used to test the trend of 

time series and the p-value is given. If p < 0.05, it is considered that the trend of change is significant. 

Further, we got the change mask where all pixels showed a significant change trend guaranteed by statistical hypothesis testing 210 

(Wang et al., 2016). First, we downscaled the grid from 0.05 ° to 0.25 °, and the time series of the area ratio of all classes in 
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each 0.25 ° grid was summed. Using the Mann-Kendall test, those grids showing a significant change (p < 0.05) were obtained. 

Then the annual change in slope of area ratio for each grid with an increasing or decreasing trend was found using a Theil-Sen 

estimator. The change ratios were then summarized for the regional scales to estimate the corresponding significant areas of 

change from 1982 to 2015. 215 

2.8 LC conversion 

In order to quantify the magnitude of global LCC between 1982 and 2015 and reveal the global temporal LCC pattern, we 

calculated the ratio of annual global LCC to the global total terrestrial LC area by different time periods. To ensure the 

quantified LCC to be non-accidental, we limited the computation area within the change mask in which all grids show a 

statistically significant loss or gain trend. We then summarized the annual LCC by 5-year and 10-year time intervals, 220 

respectively. 

To further identify the direct causes of LCC, we assessed the LC conversion from 1982 to 2015. Based on the 0.05 ° LC 

mapping results of 1982 and 2015, a map of LC conversion can be obtained. The computation was also limited to the change 

mask to ensure the statistical significance. The conversion sources and destinations of LC classes were separately computed, 

so as to directly assess the direct causes of change in various classes of LC.  225 

2.9 Human impact 

To further explore the role of human impact in regions with significant LCC, the results are evaluated based on data from the 

human impact campaign (Fritz et al., 2017), which can be downloaded from 

https://doi.pangaea.de/10.1594/PANGAEA.869680. The original study area was generated in the 2011 campaign to evaluate a 

map of land availability for biofuel production (Fritz et al., 2013), collected using a Geo-Wiki crowdsourcing platform. Pixels 230 

with a resolution of 1 km were randomly provided to volunteers. For each pixel, volunteers needed to point out the overall 

degree of human impact (HI, 0-100 %) which was visible from Google Earth's high-resolution satellite image and they were 

required to provide confidence levels in four categories: unsure; less sure; quite sure; and sure. Here, HI refers to the degree 

to which the landscape modified by humans visible from satellite images (Fritz et al., 2017). A total of 151942 point-records 

are available. To get the global distribution map of HI, we performed Kriging interpolation on the point records that had 235 

previously excluded the category of unsure confidence level. The search radius parameter of the Kriging interpolation was set 

to 12 nearby points and the other parameters as default. As shown in Fig. 5, we can see that the interpolation results reflect the 

global distribution of the intensity of human activity. 
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3 Results 

3.1 Reliability of the products 240 

The global LC mapping result in 2015 is shown in Fig. 6. Its accuracy was tested with the H-homo sample in 2015 to obtain a 

confusion matrix (Table 3). The overall accuracy for the year 2015 reached 86.51 %. As for each class, the accuracies of forest, 

barren land and tundra are relatively high, where the user’s accuracies and producer’s accuracies are over 90 %. The accuracy 

of cropland is also high, with the user’s accuracy and producer’s accuracy reaching 73.54 % and 78.62 %, respectively. The 

user’s accuracy of shrubland reached 83.62 %, while that of grassland is 67.58 %. Grassland is mainly mixed with cropland 245 

and shrubland. Table 4 shows the testing results of the FLUXNET test samples in which the number of sample units for 

shrubland, tundra, barren land, and snow/ice are relatively small. The overall accuracy of all classes is 82 % tested against the 

FLUXNET sample. Among them, the user’s accuracy and the producer’s accuracy for forest reach 91 % and 88 %, respectively. 

The producer’s accuracy for cropland is 69 %, while its user’s accuracy is 73 %.  

Putting the test results from FROM-GLC_v2 and FLUXNET together, a spatial distribution map of the uncertainty of the 2015 250 

LC mapping result was generated. As can be seen from Fig. 7, most of the world is shown in a green color, which means that 

the mapping result for most regions is most likely to be correct, and the result for 2015 is highly credible. There are still some 

regions showing a yellow or orange color, and a smaller number of regions showing red, representing those regions that may 

have been misclassified. Since there are no test samples in Greenland., the interpolation results are ignored. In general, the 

places with high uncertainty are Africa, East and South America, South Alaska, North and East Australia and Southwest 255 

Indonesia. 

3.2 Spatiotemporal patterns in LCC 

3.2.1 Global temporal patterns 

Figure 8 shows the variation curves of the global area for various LC classes from 1982 to 2015, where dotted lines are the 

corresponding trend lines. Overall, the global area of forest increases significantly (p = 0.0000) from 1982 to 2015. As for 260 

shrubland, although fluctuating, it shows a significant increasing trend (p = 0.0017). The global area of grassland, tundra, 

barren land snow/ice significantly decreases with p = 0.0000, p = 0.0019, p = 0.0000, and p = 0.0003 respectively.  

Figure 9 shows the ratio of annual global LCC to the global total terrestrial LC area, calculated by different time periods, where 

Fig. 9(a) shows the results with a 5-year interval and Fig. 9(b) with a 10-year interval. Overall, the annual ratio ranges from 

0.35 % to 0.70 %, with an average of 0.52 % between 1982 and 2015. 5-year interval ratios show a relatively fluctuating trend. 265 

The average ratio reaches 0.63 % in 1991-1995, the highest among the seven intervals. The ratios have relatively large 

fluctuations in 2006-2010. All in all, the ratios before 1995 are generally higher, and it gradually decreases since then. With 

10-year interval, ratios after 2000 are generally lower with an average of only 0.40 % in 2011-2015. 
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3.2.2 Patterns along latitudinal gradients 

The global distribution of 0.25 ° girds with significant LCC from 1982 to 2015 is shown in Fig. 10 for the whole world, where 270 

the color depth represents the estimated change in area ratio per year. The distribution of significant LCC along latitudes is 

shown in the right, where the red curve represents a significant increase, green a significant decrease, and blue a net change. 

The distribution pattern of LCC along latitudes is different, especially for cropland and forest, where it can be seen that cropland 

has increased significantly in the northern tropics and the southern hemisphere. It is confirmed that the significant increase in 

cropland has occurred mainly in the tropics and southern hemisphere (Gibbs et al., 2010). Forest has decreased significantly 275 

in the southern hemisphere and has increased significantly in the northern hemisphere, showing regional differences. In 

particular, in the high latitudes of the north, forest has increased significantly with a decrease of tundra. However, the increase 

in forest area in the northern hemisphere is significantly larger than that in the southern hemisphere, reflecting an overall 

increase in total forest area.  

The grassland area has reduced at almost all latitudes. This phenomenon may reflect the degradation of grassland. On the other 280 

hand, there might exist an increased trend in global vegetation coverage, where shrubland and forest expansion led to a 

reduction in the grassland area. It can be seen that shrubland has increased significantly in the southern hemisphere, 

corresponding to the reduction in the grassland area there. The area of barren land is decreasing, especially in the middle and 

high latitudes of the north, which further reflects the increase in vegetation coverage. The area of snow/ice in the northern high 

latitudes has reduced.  285 

3.2.3 Continental patterns 

The statistical results for each class at the continental scale are shown in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 

and Table 11,where the slope and p-values are estimated according to the class area time series, while gain and loss are the 

computed values from 0.25 ° grids with significant LCC. 

There is significant geographical heterogeneity among continents due to differences in latitude and longitude, as well as 290 

economic and social development differences, where significant causes of LCC are from both natural and human influences 

(Lambin et al., 2001).  

Cropland significantly increased in South America, with a growth rate of 9.1×103 km2/year (p = 0.0108). The area of 

significantly increased cropland in Asia and Africa reached 67×103 km2 and 23×103 km2, respectively. Many developing 

countries in South America, Asia and Africa have relatively poor economic and social development, rapid population growth 295 

and increasing demand for food (Barbier, 2004). At the same time, the international demand for food has increased, stimulating 

the export of crop products and requiring access to new land, which ultimately leads to the expansion of cropland. 

Corresponding to the increase in cropland, forest decreased significantly in South America, at a rate of 10.8×103 km2/year (p 

= 0.0242). Meanwhile, the area of forest in Africa has significantly decreased by 29×103 km2. In In addition to cropland 
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expansion, the production of fuelwood and charcoal is also an important driving factor for deforestation (Hosonuma et al., 300 

2012). 

The area of forest in Asia has increased at the fastest speed. The area of forest in Europe and North America has also increased 

significantly. Meanwhile, the tundra area in Asia, Europe and North America decreased significantly by 132×103 km2, 12×103 

km2 and 22×103 km2, respectively. The increase of forest in Asia, Europe and North America is related to afforestation projects 

and forest restoration policies in some regions (Aide et al., 2013;Pan et al., 2011). On the other hand, the increase of forest and 305 

the decrease of tundra in the northern high latitudes may be the result of climate warming which promotes forest growth (Zhu 

et al., 2016). Many studies have shown that in the past 30 years, a warming climate with rising temperatures and melting ice 

and snow has promoted vegetation growth i.e. greening in the north (Myneni et al., 1997;Park et al., 2016). 

Shrubland has increased significantly in Africa at a rate of 47.4×103 km2/year (p = 0.0030). Shrubland also increased 

significantly in Oceania, by an area of 38×103 km2. The main source of shrubland conversion is grassland, which can be 310 

regarded as another manifestation of greening, where a warming climate makes vegetation grow more vigorously and plant 

height increase. 

The degradation of grassland in Asia is serious. The area of grassland in Asia decreased significantly by 315×103 km2, which 

may be due to drought (Dangal et al., 2016;Zhang et al., 2018). At the same time, human activity may also play a significant 

role. Another reason is overgrazing that may lead to grassland degradation, and the development of irrigation agriculture that 315 

can seriously reduce groundwater levels, which will further aggravate drought (Dubovyk et al.). Barren land in Asia also 

significantly decreased by 82×103 km2, which may imply the effects of desertification control in some regions. The global 

snow/ice area has decreased significantly, at a speed of 19.2×103 km2/year (p = 0.0003), reflecting the melting of ice and snow 

under a warming environment. 

3.3 Characteristics of LC coversion 320 

Whether LCC is caused by natural or human factors, there is often a significant coupling effect. We attempted to find out some 

high-frequency LC class conversions for the period 1982 to 2015 (Table 12). In addition, the conversion sources and 

destinations of each LC class are computed separately, as shown in Fig. 11. 

Among land converted to cropland in 2015, grassland was the biggest source, accounting for 67.58 %, which indicated that a 

large amount of cropland came from reclamation (Liu et al., 2005). 6.61 % of cropland was converted from forest, showing 325 

the process of forest destruction. Among land converted to forest, the proportion of cropland reached 21.74 %, partly due to 

the fact that abandoned croplands were restored to forest. Barren land and grassland were respectively the large sources of 

grassland and barren land, reflecting the dynamic transformation between the two classes. Grassland accounted for 35.00 % 

of the increasing source of barren land, indicating the process of land degradation (Bai et al., 2008). 

The most frequent direction of conversion from cropland in 1982 was forest, which reached 78.22 %, reflecting the process of 330 
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forest expansion. At the same time, forest was also the main cause of loss of grassland and shrubland, which also confirms the 

process of forest expansion. The conversion of forest to grassland accounted for 59.04 % of all conversions from forest. The 

main conversion direction of tundra was forest, reaching 64.60 %, indicating an expansion of forest in the high latitudes of the 

northern hemisphere. 

Overall, the increase of forest accounted for the highest proportion of all conversion processes, reaching 44.17 %, reflecting 335 

the phenomenon of forest expansion. The increase of grassland and cropland were second and third highest, reaching 19.79 % 

and 13.64 %, respectively, showing the phenomenon of cropland and pasture expansion. In addition, the proportions of 

grassland to shrubland and barren land to grassland were 7.73 % and 5.75 %, respectively. Cropland expansion and surface 

greening were the main phenomena reflected by the changes in global LC from 1982 to 2015. 

3.4 Human impact 340 

Figure 12 shows different human impact (HI) levels among different LCC areas. Overall, the average HI level in regions with 

significant changes in all LC classes is 25.49 %, indicating that human activity has a great impact on LCC (Meyer and Turner, 

1992). The highest HI level was found in those regions with significant increases in cropland, reaching an average value of 

51.38 %. Meanwhile, the HI level of cropland loss reached 48.02 % while the HI level for forest loss was 26.91 %. In addition, 

in any change of natural vegetation, such as forest, grassland and shrubland, the HI level in regions of vegetation loss is higher 345 

than that of gain, which indicates that human activity has a destructive effect on natural vegetation, while other factors may 

promote an increase in natural vegetation (Richardson et al., 2013;Cramer et al., 2001).  

The HI levels along continents can be found in Fig. 13. The highest level of HI is found in Europe and lowest in Oceania. The 

HI in Europe reached 46.86 %, indicating that human activity played a relatively important role in regions with significant 

LCC. Asia came second, with an HI level of 32.07 %. In South America and Oceania in the southern hemisphere, the overall 350 

HI level in the LCC regions is small. 

As shown in Fig. 14, the polar regions and the boreal coniferous forest regions at northern high latitudes with significant LCC 

have lower HI levels, indicating that LCC in those regions may be more related to natural factors like climate change 

(Buermann et al., 2014;Macias-Fauria et al., 2012). The level of HI in subtropical regions is high, among which HI levels in 

subtropical steppe and subtropical humid forest regions reached 38.23 % and 43.90 %, indicating that the role of LC conversion 355 

caused by human activity in subtropical climate areas is significant. In addition, in the temperate steppe regions, the HI level 

in the regions of significant LCC is also high, reaching 39.87 %, which may be due to intense grazing from agricultural 

activities (Marlon et al., 2008;Bellwood et al., 2011), resulting in the higher HI level. In the tropics the average HI level in dry 

forest regions is highest among regions of significant LCC, reaching 34.04 %. Such HI level in this eco-region may be caused 

by forest destruction, deforestation, and cropland expansion.  360 
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3.5 Local hotspots of LCC 

Regarding LC, more attention tends to be paid to global and regional LCC. At the local scale, we can further explore the hot 

spots of LCC and investigate the causes of such change by area. The main regions of LCC hotspots are shown in Fig. 15, where 

the depth of color represents a significant change.  

In the north of Eurasia, forest has increased significantly, and that in Siberia has moved northward to the tundra regions, which 365 

is mainly the result of climate warming. The increase in temperature and soil moisture (thawing of the permafrost) has 

promoted plant growth (Berner et al., 2013).  

In northern North America, such as Alaska and the north of Canada, forest has also increased but the extent of the increase is 

weaker than that in North Eurasia. Studies have shown that this may be related to an insignificant temperature rise in North 

America and even a slight cooling trend (Wang et al., 2011). In addition, fire disturbance in northern North America has 370 

interrupted forest succession (Alcaraz‐Segura et al., 2010) and drought disasters in parts of the United States and Canada have 

increased tree mortality (Van Mantgem et al., 2009;Peng et al., 2011). These could also be possible reasons for the constant, 

or even decreasing, forest areas in these regions. In addition to climate warming, the decrease of cropland and increase of 

forest in the eastern part of the United States are related to forest restoration and management measures (Herrick et al., 2010). 

In the Great Plains of Central North America, grassland has decreased and cropland has increased. It has been found that rising 375 

gasoline prices and the development of biofuels have led to increasing planting areas of corn and soybean in the United States 

(Lark et al., 2015;Wright and Wimberly, 2013). 

In most countries of South America, croplands have expanded substantially and forests have decreased significantly, especially 

in the southeastern part of the Amazon rainforest (shown in Fig. 16). This corresponds to the expansion of soybean planting 

areas and the development of the cattle ranching industry (Zak et al., 2008;De Sy et al., 2015). In these regions, forest 380 

destruction and deforestation owing to human factors overtook the increase of vegetation caused by climate warming.  

In Southeast Asia, such as Cambodia, Vietnam, Indonesia and Malaysia, forest has also decreased significantly and cropland 

has increased. The expansion of cash crops (mainly oil palm) plantations and logging activities in Southeast Asia have led to 

serious destruction of primitive forests (Wilcove et al., 2013;Miettinen et al., 2011). Natural forest has either been turned into 

artificial forest or cut down, resulting in huge loss of biodiversity and increased greenhouse gas emissions (Stibig et al., 2013). 385 

In Africa, forest in the northern part of the Congo Basin has expanded while forest in the southern Miombo forest belt has 

decreased (Devine et al., 2017). Studies have shown that the increase of forest in the northern part of Africa is related to low 

population growth, increased carbon dioxide and increased precipitation, while the decrease of forest in the southern part 

corresponds to high population growth (Brandt et al., 2017). It was also found that the rapid integration of global agricultural 

markets in recent decades and subsequent urbanization has caused cropland loss and promoted large-scale tropical 390 

deforestation in South America and Southeast Asia (Ordway et al., 2017). Increasing land scarcity and stricter land use 
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regulations in South America and Southeast Asia may prompt export-oriented commodity crops to be outsourced to sub-

Saharan Africa. 

In China, forest has increased. In addition to carbon dioxide elevation and climate warming, human activities such as 

afforestation and agricultural management (such as agricultural intensification) have also had a great impact on this trend (Piao 395 

et al., 2015;Guo and Gong, 2016). In addition, the increase in population and demand for food has led to the expansion of 

cropland in the Loess Plateau regions of China, while the increase in cropland in Northeast China has come mainly from 

wasteland reclamation (Liu et al., 2014). 

Some grassland in Mongolia and Inner Mongolia of China showed a trend of degradation. Studies have shown overgrazing to 

be the main cause of vegetation degradation in this region, while drought and soil erosion have played a secondary role (Yin 400 

et al., 2018). The obvious increase of grassland areas in the eastern part of the Qinghai-Tibet Plateau implies that the 

temperature rise has promoted vegetation growth in highly elevated regions, as vegetation growth in this region is usually 

limited by low temperatures (Wang et al., 2012). The decrease of grassland in central Asia and parts of Western Asia may be 

related to climate change where the area of land desertification has increased under the influence of drought (Cook et al., 2010). 

In some parts of the former Soviet Union in Eastern Europe, a decrease of cropland and an increase of forest can be observed. 405 

Studies have found that a large number of cropland areas were abandoned after the dissolution of the Soviet Union and the 

transition from a planned economy to a market economy in these regions (Meyfroidt et al., 2016;Wertebach et al., 

2017;Kuemmerle et al., 2011),which reflects the role of socio-economic systems in LCC. 

4 Discussions 

Based on the accuracy assessment results, it can be seen that the global LC mapping products of 1982-2015, GLASS-GLC are 410 

reliable with high accuracies, and the global long-term mapping framework we designed is effective. Using GLASS-GLC 

CDRs in change analysis of LC can reflect a 34-year global landscape change pattern. Many phenomena and patterns can be 

confirmed by existing research, such as the expansion of tropical agricultural land, greening in the northern region, 

deforestation in the southern hemisphere and melting of snow and ice. In addition, we have assessed the impact of human 

effects within different LC classes, and have further explored the causes of LCC in local hotspots, combined with field visits 415 

and literature reviews. 

However, there are still deficiencies in the design of the mapping framework. First, the large grid size of 0.05 °, due to the 

coarse spatial resolution, can only reflect the average change state of LC in a large area, thus many small-area phenomena 

cannot be well reflected (Gómez et al., 2016). For example, the reduction of much agricultural land is due to urbanization, and 

the expansion of cities is usually sporadic. Although those changes are large at the global scale, they can hardly be reflected 420 

with 0.05 ° pixels. Moreover, due to the synthesis principle, the classification result of each pixel can only represent the class 
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with the largest proportion in area, and the information of remaining classes is ignored even though they can sometimes be 

more than 50 % in total. Such a neglect, due to the famous “Scale Effect” (Turner et al., 1989) can also cause great deviations 

in the final statistical summary of the LC area leading to uncertainties when compared with mapping results at finer resolutions. 

Second, our sampling strategy for training has certain limitations. On one hand, since the training sample is generated from 425 

30m global mapping results of more than 75 % accuracy, this will inevitably propagate and accumulate error to 5 km resolution. 

Of course, due to the higher signal-to-noise ratio of the high-resolution data, the sampling is still satisfactory compared to 

direct visual interpretation of the coarse resolution images. On the other hand, the training sample used is only from a single 

year of circa 2015. Although we have implemented a time series correction for the original input features and performed a 

time-consistent post processing on the classification results, the effects of inter-annual fluctuations of the features cannot be 430 

completely avoided (Song et al., 2018a). On the other hand, according to the stable classification with limited sample theory 

(Gong et al., submitted), a representative sample collected in one year with less than 20 % in error should suffice in multiannual 

use at the global scale. Therefore, a multi-year sample set may not be as critical for multiannual classification provided the 

sample is better than 80 % accurate. In our case, although the source training data has an accuracy of 77 % (Gong et al., 2017), 

we are not certain if the aggregated sample set exceeds an accuracy of 80 %. This needs further assessment. 435 

For the generation of test samples, we have actually adopted the scale-up approach. That is to say, we first upscaled the 30m 

test samples set to 5 km by maximum area synthesis, which contains unavoidable errors because of scale transformation. The 

best way to verify the accuracy, of course, is to use a 0.05 ° test samples set directly derived at this resolution. However, due 

to the difficulty of visual interpretation in coarse scale and field investigation (Gong et al., 2013), establishing a sample library 

at 5 km resolution is not easy. Thus, instead, we adopted the method of aggregation of 30m FROM-GLC_v2 results to 5 km 440 

scale to generate samples. It is plausible to regard the selected test samples as “H-homo samples” that can be used for coarse 

resolution mapping. Although this method is feasible to a certain extent, there are inevitably errors. 

We have eliminated wetland and impervious surface in our classification system. This is a tradeoff when working at the 5 km 

scale. Patches of wetland and impervious surface are usually small, and it is difficult to achieve a pixel size of 0.05 ° for many 

situations, so the classification of the two types is extremely difficult. However, both are important LC types. Wetland is a 445 

transitional zone between terrestrial ecosystems and aquatic ecosystems (Davidson, 2014). The impervious surface can 

represent the urban area. In recent years, urban expansion has been a relatively significant phenomenon in global environmental 

change (Seto et al., 2011). Urban expansion reflects an important type of human activity, so the impervious surface is also one 

of the essential components to reflect anthropogenic influence though the total area of its change is usually small. 

It should be pointed out that at a coarse resolution of 0.05 °, our definition of forest is more inclined to the tree canopy cover. 450 

Thus the changes in internal density of trees can also be reflected in the area change of forest, instead of just the stand-

replacement type (Korhonen et al., 2006). In addition, the largest-class synthesis strategy we adopted also makes it unavoidable 

to include internal density change of various class, which in turn will further affect the classification and change area 
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calculation of forest class. 

The result of our statistical summary shows that the global vegetated area increased significantly between 1982 and 2015, 455 

which is inconsistent with the results of FAO and some other global mapping products. This inconsistency originates from, on 

one hand, the above limitations of our designed mapping framework, and on the other hand, the statistics collected by FAO, 

and other census-based datasets, which are also affected by errors from many aspects, and its effectiveness is yet to be evaluated. 

Nevertheless, many studies can also confirm our results, such as (Song and Hansen, 2017;Song et al., 2018a;Piao et al., 

2015;Pan et al., 2018) who have proved that the global vegetation area has increased with the increasing NDVI and LAI in 460 

time. To some extent, the sum of the global change area of forest, shrubland, and grassland is showing an increasing trend in 

our results, which can be seen as the sign of global vegetation growth. 

In addition, because we are mainly depicting the natural biophysical properties of vegetated areas with limitation in resolution, 

some artificial features cannot be distinguished, such as plantations (rubber, oil palm, and various fruit trees) and natural forest, 

which are uniformly included as forest in our classification system. 465 

In the statistical analysis, although we have already conducted post-classification time-consistency processing for the original 

LC mapping results as much as possible, it is inevitable that there are still large fluctuations and interferences from various 

unknown factors unfavorable to the extraction of long-term trend of LCC. In order to ensure that the trend of the resulting time 

series is significant, we have to scale up the classification result from 0.05 ° to 0.25 °, converting the original class label of 

each 0.05 ° pixel to the class area ratio of 0.25 ° grid. The long-term time series of the area ratios is tested for statistical 470 

significance. However, in some cases this procedure will also be influenced by the “Scale Effect”. 

In the analysis of anthropogenic influences, indirect effects of many human activities were ignored because the main objective 

was to include the effects of directly visible human activities. For example, human activities increase the concentration of 

carbon dioxide in the atmosphere, which in turn affects the global climate, leading to higher temperature, and thus increasing 

vegetation coverage (Piao et al., 2006;Bonan, 2008). This pathway of action is indirect, but it is difficult to reflect in the human 475 

impact data we use, which results in an underestimation of the assessment of anthropogenic influences. 

GLASS-GLCs contain more detailed LC classes, longer temporal coverage (34 years), high consistency, which meet the 

requirement for CDR. GLASS-GLC CDRs are the first collection of global LC dynamics of 5 km, and fill the existing gap for 

high-reliability and consistency of long-term general purpose global LC products. In addition, our strategy of generating 

samples from high-resolution classification products can greatly reduce the cost and investment of sample collection, and can 480 

flexibly and effectively be extended to other coarse-resolution LC mapping tasks in the future. 

In the future, with the advancement of technology and the accumulation of remote sensing datasets, the use of remote sensing 

products for LC mapping with higher resolution and longer time series will undoubtedly better reflect the global LC and its 

changes. However, under limited conditions, we can consider using coarse-resolution satellite data to determine the locations 

of potential rapid change, and then use high-resolution data in these hotspots to accurately estimate the rate and mode of change. 485 
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Moreover, it is necessary to establish a multi-year sample library to assess the impact of inter-annual fluctuations in features 

on the accuracy of change characterization and analysis. Wetland and impervious surface are LC classes that have extremely 

high value. It would be useful to supplement the mapping and change analysis of these two classes when suitable data become 

available. For the analysis of global LCC, systematic and in-depth attribution analysis and research can be further carried out. 

In addition, the development of LC ratio mapping products (similar to VCF products) with techniques of soft classification, 490 

rather than hard classification, especially for the case of coarse resolution, should be considered. 

5 Data availability 

GLASS-GLC products at 5 km resolution from 1982 to 2015 are available to the public in the TIFF format at 

https://doi.org/10.1594/PANGAEA.898096 (Liu et al., 2019).  

GLASS CDRs were provided by Beijing Normal University Data Center (http://glass-product.bnu.edu.cn/, last access: 495 

27 December 2018). VCF products were obtained from the Land Processes Distributed Active Archive Center 

(https://lpdaac.usgs.gov/, last access: 20 December 2018). GMTED2010 were acquired from Google Earth Engine 

(https://code.earthengine.google.com/, last access: 24 December 2018). Geo-Wiki points came from the human impact 

campaign (https://doi.pangaea.de/10.1594/PANGAEA.869680, last access: 30 November 2018). Eco-region data were 

obtained from the FAO global eco-region dataset 500 

(http://www.fao.org/geonetwork/srv/en/metadata.show?CurrTab=simple&id=1255, last access: 3 December 2018). 

6 Conclusions 

In order to better reflect the global land changes, continuous and dynamic monitoring of global LC is necessary. We built 

GLASS-GLC, the first CDRs for global LC on the GEE platform. It can capture the global LCC information from 1982 to 

2015. Compared to previous global LC products, GLASS-GLC products cover a longer time period and have higher 505 

consistency and more detailed classes. Our entire mapping framework is based on FROM-GLC_v2, including the classification 

system and high-quality H-homo sample generation.  

Based on over ten thousand independent test samples units from both the FROM-GLC sample set and FLUXNET site data, 

the average overall accuracy of GLASS-GLC was shown to exceed 80 %. Using inter-comparisons with other global LC 

products of different resolutions from various data sources, we verified the effectiveness and reliability of GLASS-GLC from 510 

different perspectives. Systematic uncertainty analysis was also performed on a global scale based on the results of the accuracy 

assessment and its geographical distribution. This shows that GLASS-GLC CDR products have relatively low uncertainty in 

most parts of the world. Our results also indicate that GLASS CDRs have potential for multi-class LC mapping and can provide 

more than enough features and information to distinguish different LC classes, with relatively strong temporal and spatial 
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consistency, which can produce extremely reliable change information.  515 

Comprehensive spatiotemporal pattern analysis based on GLASS-GLC reflected and revealed many significant global LCC 

phenomena and patterns, such as deforestation and agricultural land expansion in the tropics, afforestation and forest expansion 

in the northern regions, etc. An analysis of the global LC conversion pattern from 1982 to 2015 revealed hot spots of LCC 

such as land degradation, forest restoration, reclamation and agricultural land abandonment.  

Since anthropogenic influence has become one of the most important driving forces for LCC, especially after the industrial 520 

revolution, we quantified the level of human impact in areas of significant LCC. The results show that the average human 

impact level in areas of significant LCC are about 25.49 %, suggesting that anthropogenic influence plays a strong role in 

vegetation destruction, expansion of tropical agricultural land, and degradation of grassland areas, etc. Under the current global 

climate change scenario with significantly elevated GHG concentrations and temperature rises, this remarkable human impact 

has also contributed to a noticeable greening trend of the Earth because of the effect of carbon dioxide fertilization. 525 

Combined with field visits and literature reviews on local LCC hot spots, we can see that global LC is affected by the synergetic 

effect of many complicated and multi-faceted factors, including human activity, climate change, socio-economic policies, and 

the natural environment transition, etc., and such change could further influence global and regional climate, environment, 

biodiversity, etc. 

With increasing economic globalization, LCC has increased. Based on GLASS-GLC, effective global LC and change analysis 530 

could be conducted, enhancing our understanding of global environmental change, and even mitigating its negative impact to 

some extent, which is also beneficial to the achievement of sustainable development goals. 
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Figure 1: The framework for building GLASS-GLC (annual dynamics of global land cover) CDRs (Climate Data Records).  
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Table 1: Classification system, with 7 Level 1 classes and 21 Level 2 classes.  905 

Level 1 class Level 2 class 

Cropland Rice fields 
Greenhouse 
farming 

Other 
croplands 

Orchards 
Bare 
farmlands 

  

Forest 
Broadleaf 
forests, 
leaf-on 

Broadleaf 
forests, 
leaf-off 

Needleleaf 
forests, 
leaf-on 

Needleleaf 
forests, 
leaf-off 

Mixed 
forests, 
leaf-on 

Mixed 
forests, 
leaf-off 

Grassland Pastures 
Natural 
grasslands 

Grasslands, 
leaf-off 

      

Shrubland 
Shrublands, 
leaf-on 

Shrublands, 
leaf-off 

        

Tundra 
Herbaceous 
tundra 

Shrub and 
brush 
tundra 

        

Barren land             

Snow/ice Snow Ice         
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Figure 2: The geographical distribution of training samples, where different colors represent the different years.  
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Figure 3: Global median value time series of GLASS ABD_WSA_VIS before and after the end-member correction with reference 

to MODIS.  
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Table 2: The explanatory table of the constructed feature collection, with a total 81 features each year.  915 

Product Band Feature Number of features 
GLASS CDR, 0.05 °, 1982-2015 NDVI 

Percentiles [0, 10, 25, 50, 75, 
90, 100] of all 10 bands 

63 
LAI 
FAPAR 
ET 
GPP 

Mean, standard derivation of 
NDVI between adjacent two 
percentiles of NDVI 

12 
BBE  
ABD_WSA_VIS 
ABD_BSA_NIR 
ABD_WSA_shortwave

VCF, 0.05 °, 1982-2015 TC TC 
3 SV SV 

BG BG 
GMTED2010, 7.5 s, 2010 DEM Mean slope in each 0.05 ° pixel 1 
Location Latitude, longitude Center latitude, longitude of 

each 0.05 ° pixel 
2 

Total number of features 81 
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Figure 4: The geographical distribution of different types of huge homogeneous test samples (H-homo sample), where the different 

colors represent the source of the sample units, either FROM-GLC_v2 or FLUXNET.  920 
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Figure 5: The geographical distribution of the spatial interpolation results of human impact where the darker color indicates a value 

closer to 100 and a higher human impact.  
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Figure 6: GLASS-GLC (annual dynamics of global land cover) CDRs (Climate Data Records) result in 2015.  
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Table 3: Classification accuracy in 2015 based on FROM-GLC_v2 test samples. (Overall accuracy = 86.51 %, UA = User’s Accuracy 

and PA = Producer’s Accuracy) 930 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 
land 

Snow/ice Total UA 

Cropland 1390 166 221 101 0 12 0 1890 73.54 %
Forest 115 7427 279 145 18 0 3 7987 92.99 %
Grassland 199 431 2820 534 45 141 3 4173 67.58 %
Shrubland 47 65 185 1986 0 92 0 2375 83.62 %
Tundra 0 32 36 0 1157 24 2 1251 92.49 %
Barren land 17 5 91 27 48 5336 20 5544 96.25 %
Snow/ice 0 2 10 0 7 41 179 239 74.90 %
Total 1768 8128 3642 2793 1275 5646 207 23459   
PA 78.62 % 91.38 % 77.43 % 71.11 % 90.75 % 94.51 % 86.47 %   86.51 %
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Table 4: Classification accuracy in 2015 based on FLUXNET testing samples. (Overall accuracy = 82.10 %, UA = User’s Accuracy 

and PA = Producer’s Accuracy) 935 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 
land 

Snow/ice 
Total 
number 

UA 

Cropland 63 5 17 1 0 0 0 86 73.26 %
Forest 13 243 9 2 0 0 0 267 91.01 %
Grassland 8 21 91 2 0 2 0 124 73.39 %
Shrubland 7 3 0 19 0 0 0 29 65.52 %
Tundra 0 3 0 0 14 0 0 17 82.35 %
Barren land 0 1 0 0 0 1 0 2 50.00 %
Snow/ice 0 0 0 0 0 0 0 0 - 
Total number 91 276 117 24 14 3 0 525   
PA 69.23 % 88.04 % 77.78 % 79.17 % 100.00 % 33.33 % -   82.10 %
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Figure 7: The geographical distribution of uncertainty for GLASS-GLC (annual dynamics of global land cover) CDRs (Climate 

Data Records) in 2015, where regions in red represent higher uncertainty levels while those in green represent lower uncertainty 

levels.  940 
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Figure 8: Area curves of global annual land cover change from 1982 to 2015.  
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Figure 9: Comparison and distribution of ratios of annual global land cover change (LCC) to the global total terrestrial land cover 

(LC) area by different time periods and time intervals (a) 5-year interval, (b) 10-year interval.  
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Figure 10: The geographical distribution of global regions with significant land cover change during 1982-2015, and the summarized 950 

results along latitudinal gradients for each class, (a) cropland, (b) forest, (c) grassland, (d) shrubland, (e) tundra, (f) barren land and 

(g) snow/ice.  
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Table 5: Statistical results of change analysis for cropland (on the scale of continents). Annual change slope and its 95 % confidence 

interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are 955 

summarized results relating to the whole time series.  

Continent 
Slope (103 
km2/year) 

Lower (103 
km2/year) 

Upper (103 
km2/year) 

p Trend 
Gain (103 
km2) 

Loss (103 
km2) 

Africa 5.3  1.5  10.0  0.0099 increasing 23  -6  
Asia -1.7  -9.2  7.1  0.6999 no trend 67  -70  
Europe -30.4  -43.6  -17.9  0.0005 decreasing 12  -99  
North America -4.9  -10.9  2.8  0.1635 no trend 37  -54  
South America 9.1  2.1  19.3  0.0108 increasing 35  -4  
Oceania -0.5  -1.8  0.6  0.3580 no trend 1  -1  
Global -27.5  -54.7  3.1  0.0968 no trend 175  -238  
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Table 6: Statistical results of change analysis for forest (on the scale of continents) . Annual change slope and its 95 % confidence 

interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are 960 

summarized results relating to the whole time series.  

Continent 
Slope (103 
km2/year) 

Lower (103 
km2/year) 

Upper (103 
km2/year) 

p Trend 
Gain (103 
km2) 

Loss (103 
km2) 

Africa -8.4  -18.6  2.6  0.1463 no trend 15  -29  
Asia 128.6  86.8  165.0  0.0000 increasing 365  -12  
Europe 53.1  34.9  67.4  0.0000 increasing 131  -1  
North America 45.1  24.7  65.0  0.0000 increasing 132  -16  
South America -10.8  -19.6  -1.4  0.0242 decreasing 23  -49  
Oceania 1.4  -0.1  2.6  0.0802 no trend 6  -1  
Global 201.3  120.9  278.1  0.0000 increasing 680  -109  
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Table 7: Statistical results of change analysis for grassland (on the scale of continents) . Annual change slope and its 95 % confidence 

interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are 965 

summarized results relating to the whole time series.  

Continent 
Slope (103 
km2/year) 

Lower (103 
km2/year) 

Upper (103 
km2/year) 

p Trend 
Gain (103 
km2) 

Loss (103 
km2) 

Africa -18.9  -36.4  3.0  0.0855 no trend 50  -108  
Asia -52.7  -67.1  -38.1  0.0000 decreasing 85  -315  
Europe -11.8  -21.7  -2.0  0.0207 decreasing 6  -59  
North America -39.6  -48.4  -26.9  0.0000 decreasing 25  -114  
South America -16.1  -29.0  -4.7  0.0070 decreasing 68  -54  
Oceania -4.6  -9.5  0.7  0.1029 no trend 9  -11  
Global -136.6  -172.9  -86.4  0.0000 decreasing 246  -663  
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Table 8: Statistical results of change analysis for shrubland (on the scale of continents) . Annual change slope and its 95 % confidence 

interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are 970 

summarized results relating to the whole time series.  

Continent 
Slope (103 
km2/year) 

Lower (103 
km2/year) 

Upper (103 
km2/year) 

p Trend 
Gain (103 
km2) 

Loss (103 
km2) 

Africa 47.4  16.1  74.8  0.0030 increasing 120  -11  
Asia -0.2  -1.4  1.0  0.8125 no trend 1  -1  
Europe 0.0  0.0  0.0  0.7561 no trend 0  0  
North America 0.5  -3.0  5.0  0.8356 no trend 8  -7  
South America 17.8  -0.5  34.7  0.0618 no trend 38  -6  
Oceania 19.9  3.9  36.2  0.0150 increasing 38  -2  
Global 75.6  26.1  125.3  0.0017 increasing 207  -28  
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Table 9: Statistical results of change analysis for tundra (on the scale of continents) . Annual change slope and its 95 % confidence 

interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are 975 

summarized results relating to the whole time series.  

Continent 
Slope (103 
km2/year) 

Lower (103 
km2/year) 

Upper (103 
km2/year) 

p Trend 
Gain (103 
km2) 

Loss (103 
km2) 

Africa 0.0  0.0  0.0  1.0000 no trend 0  0  
Asia -46.7  -66.6  -25.3  0.0002 decreasing 24  -132  
Europe -4.1  -6.8  -2.0  0.0015 decreasing 3  -12  
North America 11.4  0.6  21.5  0.0408 increasing 42  -22  
South America 0.0  0.0  0.0  1.0000 no trend 0  0  
Oceania 0.0  0.0  0.0  1.0000 no trend 0  0  
Global -42.0  -63.7  -20.9  0.0019 decreasing 71  -167  
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Table 10: Statistical results of change analysis for barren land (on the scale of continents) . Annual change slope and its 95 % 

confidence interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas 980 

are summarized results relating to the whole time series.  

Continent 
Slope (103 
km2/year) 

Lower (103 
km2/year) 

Upper (103 
km2/year) 

p Trend 
Gain (103 
km2) 

Loss (103 
km2) 

Africa -26.1  -37.4  -17.7  0.0000 decreasing 2  -43  
Asia -28.3  -40.6  -18.1  0.0000 decreasing 12  -82  
Europe -2.8  -3.5  -1.8  0.0000 decreasing 0  -6  
North America -8.8  -21.3  -1.0  0.0353 decreasing 26  -49  
South America 1.6  -2.3  5.3  0.3737 no trend 4  -5  
Oceania -16.8  -32.2  4.0  0.1161 no trend 0  -25  
Global -78.5  -116.4  -48.8  0.0001 decreasing 48  -213  
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Table 11: Statistical results of change analysis for snow/ice (on the scale of continents) . Annual change slope and its 95 % confidence 

interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are 985 

summarized results relating to the whole time series.  

Continent 
Slope (103 
km2/year) 

Lower (103 
km2/year) 

Upper (103 
km2/year) 

p Trend 
Gain (103 
km2) 

Loss (103 
km2) 

Africa 0.0  0.0  0.0  0.1342 no trend 0  0  
Asia -2.4  -4.6  -0.4  0.0117 decreasing 2  -2  
Europe -0.8  -1.2  -0.2  0.0091 decreasing 1  -1  
North America -12.6  -20.6  -6.3  0.0015 decreasing 4  -11  
South America -0.2  -0.3  -0.2  0.0000 decreasing 0  0  
Oceania 0.0  -0.1  0.0  0.0856 no trend 0  0  
Global -19.2  -27.6  -9.1  0.0003 decreasing 8  -16  
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Figure 11: Land cover conversions with significant land cover change (LCC) between 1982 and 2015, The inner pie in (a) shows the 990 

percentages of different gross gain for each land cover, and the outer ring indicates which land cover the gross gain came from. The 

inner pie in (b) shows the percentage of different gross loss for each land cover, and the outer ring in indicates which land cover the 

gross loss went to.  
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Table 12: Area ratio (%) of land cover conversions from 1982 to 2015, where the red color denotes a higher ratio, and the blue color 995 

represents a lower ratio.  

Class 
2015 

Cropland Forest Grassland Shrubland Tundra Barren land Snow/ice 

1982 

Cropland - 9.6 2.22 0.37 0 0.09 0 

Forest 0.9 - 6.26 3.24 0.19 0.01 0.01 

Grassland 9.22 24.27 - 7.73 0.6 1.6 0.06 

Shrubland 0.45 1.7 1.62 - 0 0.66 0 

Tundra 0 8.48 3.82 0 - 0.79 0.04 

Barren land 3.07 0.07 5.75 2.23 2.93 - 0.29 

Snow/ice 0 0.05 0.13 0 0.13 1.43 - 
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Figure 12: The mean human impact (HI) of regions with significant land cover change (on the scale of LCC).  1000 
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Figure 13: The mean human impact (HI) of regions with significant land cover change (on the scale of continents).  
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 1005 
Figure 14: The mean human impact (HI) of regions with significant land cover change (on the scale of eco-regions).  
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Figure 15: Visualization of local hotspots of land cover change, (a) north Eurasia, forest, (b) Great Plains of Central North America, 

cropland, (c) South America, forest, (d) South America, cropland, (e) Africa, forest, (f) China, forest, (g) Mongolia and Inner 1010 

Mongolia of China, grassland, (h) Qinghai-Tibet Plateau, grassland, (i) central Asia, grassland, (j) the former Soviet Union in 

Eastern Europe, cropland.  
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Figure 16: Example visualization for the cropland expansion and deforestion phenomenon in the southeastern part of the Amazon 1015 

rainforest from Google Earth images in (a) 1984, (b) 1994, (c) 2000, (d) 2015, where the phenomenon is significant in area within red 

circles.  
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