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Abstract. Land cover is the physical evidence on the surface of the Earth. As the cause and result of global environmental 

change, land cover change (LCC) influences the global energy balance and biogeochemical cycles. Continuous and dynamic 

monitoring of global LC is urgently needed. Effective monitoring and comprehensive analysis of LCC at the global scale are 15 

rare. With the latest version of GLASS (The Global Land Surface Satellite) CDRs (Climate Data Records) from 1982 to 2015, 

we built the first record of 34-year long annual dynamics of global land cover (GLASS-GLC) at 5 km resolution using the 

Google Earth Engine (GEE) platform. Compared to earlier global LC products, GLASS-GLC is characterized by high 

consistency, more detailed, and longer temporal coverage. The average overall accuracy for the 34 years each with 7 classes, 

including cropland, forest, grassland, shrubland, tundra, barren land and snow/ice, is 82.81 % based on 2431 test sample units. 20 

We implemented a systematic uncertainty analysis and carried out a comprehensive spatiotemporal pattern analysis. Significant 

changes at various scales were found, including barren land loss and cropland gain in the tropics, forest gain in northern 

hemisphere and grassland loss in Asia, etc. A global quantitative analysis of human factors showed that the average human 

impact level in areas with significant LCC was about 25.49 %. The anthropogenic influence has a strong correlation with the 

noticeable vegetation gain, especially for forest. Based on GLASS-GLC, we can conduct long-term LCC analysis, improve 25 

our understanding of global environmental change, and mitigate its negative impact. GLASS-GLC will be further applied in 

Earth system modeling to facilitate research on global carbon and water cycling, vegetation dynamics, and climate change. 

The GLASS-GLC data set presented in this article is available at https://doi.org/10.1594/PANGAEA.913496 (Liu et al., 2020).  
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1 Introduction 

Land cover (LC) is the physical evidence on Earth. It is the result of both natural and human forces (Running, 2008;Sterling 30 

et al., 2013;Tucker et al., 1985;Gong et al., 2013;Yang et al., 2013). It is an important source of information to understand the 

complex interaction between human activities and global changes (Lambin et al., 2006). LC data is one of the most important 

variables to bring about the nine large social benefits in the field of Global Earth Observation Systems (Herold et al., 2008). 

Land cover change (LCC) is the cause and result of global environmental change (Turner et al., 2007), and it can change the 

energy balance and biogeochemical cycles (DeFries et al., 1999;Claussen et al., 2001), further affecting climate change and 35 

surface characteristics and the provision of ecosystem services (Pielke, 2005;Zhao et al., 2001;Gibbard et al., 2005;Reyers et 

al., 2009). Therefore, a long time series of LCC information is critical to the understanding of global environmental change 

(Matthews et al., 2004). LC and LCC information is also valuable to resource management, biodiversity conservation, food 

security, forest carbon, etc (Houghton et al., 2012;Achard et al., 2004;Andrew K et al., 2015). Therefore, more frequent land 

cover information at the global scale is highly desirable. 40 

However, LC is highly dynamic due to changes in natural phenology and human activities (Lambin et al., 2001). This 

characteristic poses a huge challenge to mapping, monitoring (Verburg et al., 2009;Lepers et al., 2005;Rindfuss et al., 2004), 

and quantitative analyses of global LCC (Ramankutty et al., 2006). The traditional method of LC mapping based on field 

studies can hardly be applied to large areas due to the required amount of labor (Gong, 2012). In addition, any mapping results 

obtained in this way would be difficult to update in a timely manner. Satellite observations are the most economically feasible 45 

means of large-scale LC monitoring (Fuller et al., 2003;Rogan and Chen, 2004). Due to the development of satellite sensors, 

the continuous accumulation of historical satellite data, and the advancement of relevant image processing algorithms, LC 

monitoring can be effectively carried out (Cihlar, 2000;Pal, 2005;Gallego, 2004;Chen et al., 2018). However, previous 

monitoring mainly focuses on the mapping of a particular area (Liu et al., 2002;Brink and Eva, 2009;Yuan et al., 2005;Margono 

et al., 2012;Feng et al., 2018) or in a single time period (Homer et al., 2004), and because of the differences in data sources 50 

and mapping methods, the consistency of mapping results from different sources and times is poor and lacks comparability, 

making it difficult to quantify the changes effectively (Friedl et al., 2010). 

Automatic mapping methods depend highly on the sample dataset for its representativeness, quantity and quality due to the 

considerable heterogeneity at the global level (Gong et al., 2013;Li et al., 2014). A combination of a comprehensive global 

sample dataset, professional interpretation, and support from mapping teams are needed (Li et al., 2017). In general, sample 55 

LC data are mainly collected from field visits or manual interpretation (Li et al., 2016;Hansen et al., 2000). Generalization 

from higher resolution LC map products can also be useful for coarser resolution mapping purposes (Song et al., 2018a). The 

former could be more accurate and effective but requires much manpower, resource, and effort (Li et al., 2016); the latter is a 

feasible option and is more efficient but largely depending on the accuracy of the parent product.  
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A number of global LC products exists. Some examples include Finer Resolution Observation and Monitoring of Global Land 60 

Cover product (FROM-GLC) in 2010, 2015 and 2017 (30 m and 10 m) (Gong et al., 2013;Gong et al., 2019), European Space 

Agency Climate Change Initiative (ESA-CCI) land cover product from 1992 to 2015 (300 m) (ESA, 2018b;GLASS, last access: 

27 December 2018;ESA, 2018a), MODIS Land Cover Type (MLCT) series products from 2001 to 2016 (500 m) (Friedl 

et al., 2010;Sulla-Menashe et al., 2019), International Geosphere-Biosphere Programme Data and Information System Cover 

map (IGBP-DISCover) (1 km) circa 1992 (Loveland et al., 2000), University of Maryland (UMD) land cover map circa 1992 65 

(1 km) (Hansen et al., 2000), Global Land Cover 2000 map (GLC2000) (1 km) (Bartholome and Belward, 2005). These 

mapping results tend to focus on a single or short period of time, and because of their different classification systems and 

resolutions, they are difficult to compare (Ban et al., 2015;Grekousis et al., 2015). However, high-resolution mapping results 

can be used as an effective reference for low-resolution mapping (Song et al., 2018a;DeFries et al., 1998). Therefore, when 

performing lower-resolution global mapping, it is possible to consider directly generating training samples from high-70 

resolution global mapping results (Wang et al., 2016). 

Long time-series LC mapping requires high consistency of data sources and also has certain requirements for multi-period 

samples (Huang et al., 2020). The commonly used satellite data that cover a long period of time (more than 30 years) include 

the Advanced Very High Resolution Radiometer (AVHRR) data and Landsat imagery (Giri et al., 2013;Franch et al., 

2017;Wulder et al., 2018). Landsat data has a higher spatial resolution of 30 m with some restrictions including more serious 75 

cloud contamination problem owing to a low temporal frequency, and data inconsistency problem caused by multiple 

generations of sensors (Gómez et al., 2016;Wulder et al., 2008;Xie et al., 2018). AVHRR data has a low spatial resolution of 

5 km, and the quality of the raw AVHRR data is poor. The requirements for pre-processing and consistency processing such 

as cloud removal and missing value filling are high. The GLASS CDRs based on AVHRR data tend to have better data 

consistency due to systematic data production (Liang et al., 2013). Using such data for LC mapping can significantly improve 80 

the consistency and comparability of mapping results, and thus can be effective in supporting change analysis. If the 

consistency of the original data source used is not good enough, it may be necessary to collect annual samples for classification 

to ensure the reliability of change analysis (Xu et al., 2018). 

Recently, some attempts have been made to map global LC over a long time series, but these have focused on a single class 

(such as water bodies (Wood et al., 2011;Pekel et al., 2016;Ji et al., 2018), impervious surface (Schneider et al., 2010;Zhang 85 

and Seto, 2011;Gong et al., 2020), cropland (Pittman et al., 2010), etc.) or a few classes such as Vegetation Continuous Fields 

(VCF) (Song et al., 2018a), mainly depicting vegetation changes). General purpose multi-class land cover mapping over a 

period of over 30 years does not exist.  

Due to the lack of long time-series general purpose global LC maps, using the Google Earth Engine (GEE) platform (Gorelick 

et al., 2017), we produced the first CDR set of consistent and reliable LC products, GLASS-GLC, covering the period from 90 

1982 to 2015. The data used was primarily the 0.05 ° AVHRR-based GLASS CDRs. The classification system is adjusted from 
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the FROM-GLC according to the data characteristics. Below, we describe the methods used, results obtained with some 

preliminary change analyses. 

2 Data and methods 

The framework for mapping GLASS-GLC is shown in Fig. 1. It includes annual input data collection and construction, training 95 

sample generation, classification, and temporal consistency adjustment, accuracy assessment and product inter-comparison. 

The entire framework is implemented in the GEE. The GEE is a cloud-based platform for planetary-scale geospatial analysis 

that brings Google's massive computational capabilities to bear on a variety of high-impact societal issues 

including deforestation, drought, disaster, disease, food security, water management, climate monitoring and environmental 

protection (Gorelick et al., 2017). We uploaded GLASS data to GEE and did subsequent analysis in GEE.  100 

2.1 Data sources 

The annual input data collection from 1982 to 2015 involves a variety of data products, the most important of which is the 

latest version of Global LAnd Surface Satellite (GLASS) Climate Data Records (CDRs) (Liang et al., 2013). CDRs require 

data with a long time series, high consistency and high continuity, which is not the same as the commonly-used remote sensing 

products (Hollmann et al., 2013;Cao et al., 2008). Derived from AVHRR data, the GLASS CDRs include a wide range of 105 

surface parameters that are important to LC classification (available at: http://glass-product.bnu.edu.cn/, last access: 27 

December 2018). The products have a spatial resolution of 0.05 °, a temporal frequency of 8 days with a time span of 1982-

2015. In our study, Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) (Xiao et al., 2016), Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) (Xiao et al., 2015), Evapotranspiration (ET) (Yao et al., 2014), Gross 

Primary Production (GPP) (Yuan et al., 2010), Broadband Emissivity (BBE) (Cheng et al., 2016), White-sky Albedo in Visible 110 

band (ABD_WSA_VIS), White-sky Albedo in Near Infrared band (ABD_BSA_NIR) and White-sky Albedo in Shortwave 

band (ABD_WSA_shortwave) (Qu et al., 2014) are the variables used for subsequent classification. 

To provide a further reference, VCF5kyrv001 MEaSUREs Vegetation Continuous Fields (VCF) Yearly Global 0.05 Deg 

products (Hansen, 2020) are used to aid classification. The VCF products describe the surface as a combination of vegetation 

proportions according to information from remotely sensed data. To match the resolution of the GLASS CDRs, the VCF 115 

products used here (Song et al., 2018a) also have a spatial resolution of 0.05 °, and are obtained from the Land Processes 

Distributed Active Archive Center (LP DACC; available at https://lpdaac.usgs.gov/, last access: 1 November 2018). These 

products are mainly based on AVHRR, and the interannual consistency has been maintained. Based on the training samples 

from Landsat products from around 2000 (Hansen et al., 2013;Ying et al., 2017), with a supervised regression tree model, the 

VCF products from 1982 to 2016 (data missing in 1994 and 2000) were generated and were composed of the percentages of 120 

tree canopy (TC), short vegetation (SV) and bare ground (BG) in each pixel.  
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In addition, in order to enhance the discriminating capacity, we also used terrain data from Global Multi-resolution Terrain 

Elevation Data 2010 (GMTED2010). Based on the elevation data, the slope information can be further calculated to reflect the 

terrain and help distinguish different vegetation types growing on steep slopes to those on level ground. The dataset comes 

from the GEE platform and contains Earth Elevation data collected from various sources (USGS, 2020). The primary source 125 

is the Shuttle Radar Topography Mission (SRTM) Digital Terrain Elevation Data (DTED) (void-filled) 1-arc-second data. 

Other sources are used for filling the gaps in areas outside the SRTM coverage. As the terrain is relatively stable over years, 

using the data as input for multiple years is plausible. The spatial resolution of the GMTED2010 data used is 7.5 arc seconds 

and it has been upsampled to 5 km in subsequent analyses. 

2.2 Classification system  130 

The classification system in FROM-GLC Version 2 (FROM-GLC_v2) defines eleven main classes that can be easily mapped 

to the Food and Agricultural Organization of the United Nations (FAO) LC Classification System and the International 

Geosphere–Biosphere Programme (IGBP) classification system (Wang et al., 2015). This classification system evolved from 

the classification system of FROM-GLC Version 1 (Gong et al., 2013) with the addition of leaf information. 

We adjusted some classes of the original classification system according to the spatial resolution and situation of the data used 135 

here. Our data are land surface products, where water surface has been masked out, the class of "water bodies" cannot be 

extracted from the GLASS dataset. Wetland is a highly variable class and impervious surface whose patches are small in size. 

They are difficult to identify at the spatial resolution of 0.05 °(Wang et al., 2015). Thus, the water body, impervious surface, 

and wetland classes were not included in this work, and they shall be derived with more specialized methods. While water and 

impervious surface mapping have achieved satisfactory results(Ji et al., 2018;Gong et al., 2020), wetland mapping remains a 140 

great challenge (Gong et al., 2013). In addition, the "cloud" class was removed. The adjusted classification system consists of 

7 classes, including cropland, forest, grassland, shrubland, tundra, barren land, snow/ice, as shown in Table 1, where the 

snow/ice class here refers to permanent snow or ice cover. 

2.3 Training samples 

In order to obtain the training samples, we adopted the majority-class synthesis strategy. First, we projected the 30m FROM-145 

GLC_v2 results, that were created using Landsat data acquired mainly from 2013-2015 (Li et al., 2017), into a 0.05 ° coordinate 

system. By calculating the area ratio of each class in each 0.05 ° pixel, the class with the greatest area ratio in each pixel was 

used as the new class label in the aggregated 0.05 ° mapping results. Subsequently, sample points were randomly generated 

with greater than 0.1 ° geographical distances away. The class label for each sample unit is obtained from the aggregated 

FROM-GLC_v2 0.05 ° mapping result (adjusted to be consistent with the new classification system). Finally, 10,000 training 150 

sample units were obtained. The spatial distribution of training sample units is shown in Fig. 2 (a), and the percentage of 
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training sample in each class is shown in the inner pie chart. 

2.4 Input data collection 

We constructed an input data set with a strong discrimination ability to detect LC from multiple aspects such as terrain, 

phenology, spectrum, and spectral index, etc. The annual percentiles (including 0, 10, 25, 50, 75, 90, 100) of all bands of the 155 

GLASS CDRs and the mean and standard deviation of the NDVI between two adjacent percentiles are calculated, as an annual 

input data collection from GLASS CDRs. Among them, the percentile that represents specific phenological information can 

provide simplified time series information, reduce the noise of annual time series, and help improve the classification accuracy 

(Hansen et al., 2013). By extracting the statistical information between adjacent percentiles, the time series information can be 

further supplemented. Due to the systematic deviation of AVHRR products (Song et al., 2018b), in order to ensure the inter-160 

annual consistency of the GLASS data, we used the processing method developed for generating the VCF products, with the 

corresponding MODIS products for end-member correction, where desert and intact forest are regarded as the end-member of 

each pixel (Song et al., 2018a). After the correction, the inter-annual inconsistency of input data collection from the GLASS 

CDRs is improved. Figure S1 shows the time series of the global median value of the GLASS ABD_WSA_VIS band, where 

the orange one represents the curve before the correction and the grey one is the result after the correction. It can be seen that 165 

after the correction, the fluctuations of the input data become smaller, and the individual abnormal values are also adjusted. 

Taking into account the time span of the GLASS CDR-based input data collection, the VCF products from 1982 to 2015 are 

used, with the missing 1994 and 2000 data supplemented by calculating the average of the adjacent years. The VCF consists 

of percentages of tree cover (TC), short vegetation (SV), and bare ground (BG) for each year. Based on the GMTED2010 

dataset, the slope information is calculated and finally included to obtain an average slope value for each 0.05 ° pixel. In 170 

addition, the central latitude and longitude information of each 0.05 ° pixel is also recorded as part of input data. Finally, an 

annual collection of 81 kinds of input for the period of 1982 to 2015 was constructed, including the annual GLASS CDR 

percentiles (7×9), the mean and standard deviation of the NDVI annual adjacent percentiles (6×2) and VCF percentages (3), 

slope information (1), latitude (1), and longitude (1) information (Table 2). 

2.5 Classification method and temporal consistency check 175 

We used a random forest classifier for global LC mapping following the good performance of the random forest classifier in 

the machine learning field (Rodriguez-Galiano et al., 2012;Pal, 2005). The number of trees was 200 with out-of-bag mode 

turned on. The number of variables per split was set to 0, as the square root of the number of variables. The minimum size of 

a terminal node, the fraction of input to bag per tree, and random seed were set to be 1, 0.5, and 0, respectively. The classifier 

was trained using the training sample with an annual data collection constructed as the input. The global LC maps from 1982 180 

to 2015 were obtained using the trained classifier. The out of bag accuracy reached 87.12%.  
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In order to further ensure the temporal consistency of the mapping results, we used the “LandTrendr” method (Kennedy et al., 

2010;Cohen et al., 2018) and implemented a linear regression-based algorithm for the constructed annual input data collection 

to find the breakpoints in the time series (Li et al., 2018). The class labels in the time series between adjacent breakpoints will 

be updated to the mode values of the class label time series for the time period. Through this strategy, we can smooth the time 185 

series of the mapping results, avoid noise interference as much as possible, and finally get the adjusted GLASS-GLC. 

2.6 Accuracy assessment 

To verify the reliability of GLASS-GLC CDR products from multiple perspectives, we performed accuracy assessments and 

uncertainty analyses. The test sample was extracted from the 30 m resolution FROM-GLC_v2 (Li et al., 2017) to evaluate the 

2015 LC mapping results. First, we dropped those sample units whose classes were not included in our classification system. 190 

The remaining test sample units were then overlapped with the abovementioned aggregated 0.05 ° FROM-GLC_v2 mapping 

result, and only those whose class labels were consistent were kept. These were regarded as huge homogeneous sample units 

(H-homo sample) reserved as the final test sample. A total of 23459 H-homo test sample units from FROM-GLC_v2 were 

obtained to test the 2015 global LC mapping result. In addition, another 525 test sample units from the FLUXNET site data 

(Gong, 2009) for 2015 were selected to supplement the test sample to test the 2015 result further. The distribution of the entire 195 

test sample in 2015 is shown in Fig. 2 (b), where the percentage of test sample for each class is shown in the inner pie chart.  

In addition to obtaining the classification confusion matrix in 2015 based on the above test sample, in order to identify regions 

where classification is difficult, an uncertainty analysis was carried out. The incorrect test sample locations are marked as 1, 

while the correct test sample locations are marked as 0. The spatial distribution map of the uncertainty of the LC mapping 

result in 2015 is depicted based on a Kriging interpolation method (Oliver and Webster, 1990). The search radius parameter of 200 

Kriging interpolation is set to 12 nearby sample units, the other parameters as default. The value of the uncertainty ranges from 

0 to 1. A value near 0 indicates a lower uncertainty, while a value near to 1 indicates a higher uncertainty and a higher possibility 

of misclassification.  

Other than these, we collected an independent test sample and performed accuracy assessment. Specifically, we 

collected 2431 randomly distributed 5 km sample points in different years around the world. According to the 205 

majority principle, we manually interpreted the land cover class of each sample as an independent test sample. To 

prove the impact of change detection, we further compared the accuracies with and without change detection. The 

geographical distribution of the independent test sample is shown in Fig. 2 (c), and the temporal distribution is 

shown in the inner chart.  

2.7 Data inter-comparison 210 

To better reflect the product quality, We inter-compared GLASS-GLC with other available global land cover products with 
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a relatively long time series. Land cover products from MODIS and the ESA-CCI were used. The MLCT global land 

cover products come from Collection 6 (C6) MLCT products (Sulla-Menashe et al., 2019), and are supervised 

classification results from 2001 to 2016. Considering the comparability to our classification system, the FAO-Land Cover 

Classification System land use (LCCS2) layer was used. The corresponding relationships of classes are listed as follows, 215 

and the class names we used are the latter: barren - barren land, permanent snow and ice – snow/ice, all kinds of forest 

– forest, forest/cropland mosaics and natural herbaceous/cropland mosaic – cropland, natural herbaceous and herbaceous 

cropland – grassland, shrubland - shrubland. The ESA-CCI land cover products (Bontemps et al., 2013) are 300m 

resolution yearly products ranging from 1992 to 2015. The products were developed using the GlobCover unsupervised 

classification chain and merging multiple available Earth observation products based on the GlobCover products of the 220 

ESA (Liu et al., 2018). Referring to the class relationships in (Liu et al., 2018), we cross-walked classes including 

cropland, forest, grassland, shrubland, barren land, and snow/ice. 

Apart from land cover products, we also compared GLASS-GLC with the Food and Agricultural Organization of the 

United Nations statistical data (FAOSTAT) on cropland and forest (forest land) classes, which are the main sources of 

country-level land cover data for many applications. The annual FAOSTAT data set on cropland we used ranged from 225 

1982 to 2015, and that on forest we used ranged from 1990 to 2015. 

We made an inter-comparison between classes, including cropland, forest, grassland, shrubland, barren land and snow/ice. 

The main inter-comparison is the area corresponding to the top 50 countries in each class. Besides, to compare the 

accuracy of different products, test samples from FLUXNET site data in 2015 are given for independent accuracy 

assessment.  230 

2.8 Statistical analysis of LCC 

To extract the area of LCC, we estimated the trend of change through statistical analysis and avoided the influence of abnormal 

fluctuations from the obtained time series LC products. The annual area for each class on the scales of latitudinal zones, 

continents are summarized. A time series of the annual area for each class was generated. The boundary data of countries and 

continents were obtained from the Bureau of Surveying and Mapping of China. Eco-region data were obtained from the FAO 235 

global eco-region dataset (Simons et al., 2001;FAO, 2018). 

Although the inter-annual consistency has been ensured as much as possible in the above mapping framework, the effects of 

inter-annual changes due to climate conditions and phenological changes may still exist. To estimate the long-term trend of 

change, we fitted a linear trend (Theil-Sen estimator (Sen, 1968)) in area for each class, where the slope of annual change and 

the 95 % confidence interval of the slope is given. In addition, a Mann-Kendall test (Mann, 1945) was used to test the trend of 240 

time series with a p-value given. If p < 0.05, it is considered that the trend of change is significant. 

Further, we obtained the change mask where all pixels showed a significant change trend (Wang et al., 2016). First, we 
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downscaled the grid from 0.05 ° to 0.25 °, and the time series of the area ratio of all classes in each 0.25 ° grid was summed. 

Using the Mann-Kendall test, those grids showing a significant change (p < 0.05) were obtained. Then the slope of annual 

change based on area ratio for each grid with an increasing or decreasing trend was found using a Theil-Sen estimator. The 245 

change ratios were then summarized at regional scales to estimate the corresponding significant areas of change from 1982 to 

2015. 

In order to quantify the magnitude of global LCC between 1982 and 2015 and reveal the global temporal LCC pattern, we 

calculated the ratio of annual global LCC to the global total terrestrial LC area by different time periods. To ensure the 

quantified LCC to be non-accidental, we limited the computation area within the change mask in which all grids show a 250 

statistically significant loss or gain trend. We then summarized the annual LCC by 5-year and 10-year time intervals, 

respectively.  

To further identify the direct causes of LCC, we assessed the LC conversion from 1982 to 2015. Based on the 0.05 ° LC 

mapping results for 1982 and 2015, a map of LC conversion can be obtained. The computation was also limited to the change 

mask to ensure statistical significance. The conversion sources and destinations of LC classes were separately computed, to 255 

assess the direct causes of change in various LC classes.  

2.9 Human impact process 

To further explore the role of human impact in regions with significant LCC, the results are evaluated based on data from the 

human impact campaign (Fritz et al., 2017) (available at https://doi.pangaea.de/10.1594/PANGAEA.869680, last access: 

20 November 2018). The original study area was generated in the 2011 campaign to evaluate a map of land availability for 260 

biofuel production (Fritz et al., 2013), collected using a Geo-Wiki crowdsourcing platform. Pixels with a resolution of 1 km 

were randomly provided to volunteers. For each pixel, volunteers needed to point out the overall degree of human impact (HI, 

0-100 %) which was visible from Google Earth's high-resolution satellite image and they were required to provide confidence 

levels in four categories: unsure; less sure; quite sure; and sure. Here, HI refers to the degree to which the landscape modified 

by humans visible from satellite images (Fritz et al., 2017). A total of 151942 point-records are available. To get the global 265 

distribution map of HI, we performed Kriging interpolation on the point records that had previously excluded the category of 

unsure confidence level. The search radius parameter of the Kriging interpolation was set to 12 nearby points and the other 

parameters as default. As shown in Fig. S2, we can see that the interpolation results reflect the global distribution of the 

intensity of human activity. 
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3 Results 270 

3.1 Reliability of the products 

3.1.1 Accuracy assessment 

First of all, to evaluate the magnitude of the errors introduced by our training samples, we randomly selected 500 samples 

from the training sample for manual interpretation and evaluation, and the assessment accuracy was 92.26 %. It shows that the 

training sample we generate from 30m FROM-GLC_v2 is sufficient for our data production.  275 

The global LC mapping result in 2015 is shown in Fig. 6. Its accuracy was tested with the H-homo sample in 2015 to obtain a 

confusion matrix (Table 3). The overall accuracy for the year 2015 reached 86.51 %. As for each class, the accuracies for forest, 

barren land, and tundra are relatively high, where the user’s accuracies and producer’s accuracies are over 90 %. The accuracy 

of cropland is also high, with the user’s accuracy and producer’s accuracy reaching 73.54 % and 78.62 %, respectively. The 

user’s accuracy of shrubland reached 83.62 %, while that of grassland is 67.58 %. Grassland is mainly mixed with cropland 280 

and shrubland. Table 4 shows the testing results of the FLUXNET test samples in which the number of sample units for 

shrubland, tundra, barren land, and snow/ice are relatively small. The overall accuracy of all classes is 82.10 % with the 

FLUXNET sample. Among them, the user’s accuracy and the producer’s accuracy for forest reach 91.01 % and 88.04 %, 

respectively. The producer’s accuracy for cropland is 69.23 %, while its user’s accuracy is 73.26 %.  

Putting the test results from FROM-GLC_v2 and FLUXNET together, a spatial distribution map of the uncertainty of the 2015 285 

LC mapping result was generated. As can be seen from Fig. 7, most of the world is shown in green color, which means that 

the mapping result for most regions is most likely to be correct, and the result for 2015 is highly credible. There are still some 

regions showing a yellow or orange color, and a smaller number of regions showing red, representing those regions that may 

have been misclassified. Since there are no test samples in Greenland., the interpolation results are ignored. In general, the 

places with high uncertainty are Africa, East and South America, South Alaska, North and East Australia and Southwest 290 

Indonesia. 

The assessment result with independent test samples is shown in Table 5 and Table 6. It shows that the overall accuracy of the 

GLASS-GLC without change detection is 81.28 %, and that with change detection is 82.81 %. This reflects the reliability of 

GLASS-GLC since the test samples are randomly distributed along the spatial and temporal dimensions, and also confirm the 

significance and effectiveness of the change detection method.  295 

3.1.2 Data inter-comparison 

The assessment results of MLCT products and ESA-CCI land cover products based on test samples from FLUXNET site data 

are shown in Table 7 and Table 8, respectively. The overall accuracies of ESA-CCI products and MLCT products are 73.90 % 
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and 80.38 % in 2015, respectively. Compared to these, The overall accuracy of GLASS-GLC (82.10 %, Table 4) is better. 

Although the cross-walk of the different classification systems may be slightly different, It can still reflect the high accuracy 300 

of our GLASS-GLC products. 

Figure 5 shows an inter-comparison with MLCT products, Figure 6 with ESA-CCI products, and Figure 7 with FAOSTAT. The 

scatter plots and the linear fit lines reflected the results in 2015, and the box plots represent the distribution of R2 of the annual 

linear fit lines for each class. It can be seen that various classes in several different products are relatively equivalent, although 

they are under different classification systems. In comparison with MLCT products, the results of 2001-2015 for cropland, 305 

forest, and snow/ice have high R2. In comparison with ESA-CCI products, the mean R2 of the linear fit lines of forest, grassland, 

and snow/ice from 1992 to 2015 reach 0.99, 0.82, and 0.98, respectively, while the R2 for shrubland is low. The inter-

comparison of some other classes is poor, which may be caused by differences in the class definition in various classification 

systems. For instance, our classification system incorporates tundra, while the other two did not. Compared with FAOSTAT, 

the mean R2 of the linear fit lines of cropland and forest is 0.82, and 0.87, respectively. In general, our GLASS-GLC products 310 

have a reasonable consistency with other products and statistics, and the difference is not significant. What is more, the duration 

of GLASS-GLC, 34 years, is much longer than MLCT and ESA-CCI land cover products (as shown in Fig. 8). The comparison 

with other data illustrates the reliability and accurateness of GLASS-GLC.  

3.2 Spatiotemporal patterns in LCC 

3.2.1 Global temporal patterns 315 

Figure 9 shows the temporal changes of the global area for various LC classes from 1982 to 2015, where dotted lines are the 

corresponding trend lines. Overall, the global area of forest increases significantly (p = 0.0000) from 1982 to 2015. As for 

shrubland, although fluctuating, it shows a significant increasing trend (p = 0.0017). The global area of grassland, tundra, 

barren land snow/ice significantly decreases with p = 0.0000, p = 0.0019, p = 0.0000, and p = 0.0003, respectively.  

Figure 10 shows the annual ratio of the global LCC to the global total terrestrial area, shown and organized in different time 320 

periods, where Fig. 10 (a) shows the results with a 5-year interval and Fig. 10 (b) with a 10-year interval. Overall, the annual 

ratio ranges from 0.35 % to 0.70 %, with an average of 0.52 % between 1982 and 2015. 5-year interval ratios show a relatively 

fluctuating trend. The average ratio reaches 0.63 % in 1991-1995, the highest among the seven intervals. The ratios had 

relatively large fluctuations in 2006-2010. All in all, the ratios before 1995 are generally higher, and it gradually decreases 

since then. With 10-year interval, ratios after 2000 are generally lower, with an average of only 0.40 % in 2011-2015. 325 

3.2.2 Patterns along latitudinal gradients 

The global distribution of 0.25 ° grids with significant LCC from 1982 to 2015 is shown in Fig. 11 and Fig. S3 for the whole 

world, where the color depth represents the estimated change in area ratio per year. The distribution of significant LCC along 
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latitudes is shown in the right, where the red curve represents a significant increase, green a significant decrease, and blue a 

net change. 330 

The distribution pattern of LCC along latitudes is different, especially for cropland and forest, where it can be seen that cropland 

has increased significantly in the northern tropics and the southern hemisphere. It is confirmed that the significant increase in 

cropland has occurred mainly in the tropics and southern hemisphere (Gibbs et al., 2010). Forest has decreased significantly 

in the southern hemisphere and has increased significantly in the northern hemisphere, showing regional differences. In 

particular, in the high latitudes of the north, forest has increased significantly with a decrease of tundra. However, the increase 335 

in forest area in the northern hemisphere is significantly larger than that in the southern hemisphere, reflecting an overall 

increase in total forest area.  

The grassland area has reduced at almost all latitudes. There might exist an increasing trend in global vegetation coverage, 

where shrubland and forest expansion led to a reduction in the grassland area. It can be seen that shrubland has increased 

significantly in the southern hemisphere, corresponding to the reduction in the grassland area there. The area of barren land is 340 

decreasing, especially in the middle and high latitudes of the north, which further reflects the increase in vegetation coverage. 

The area of snow/ice in the northern high latitudes has reduced.  

3.2.3 Continental patterns 

The statistical results for each class at the continental scale are shown in Table 9, Table 10, Table 11, Table 12, Table S1, Table 

S2, and Table S3, where the slope and p-values are estimated according to the class area time series. At the same time, gain 345 

and loss are the computed values from 0.25 ° grids with significant LCC. 

Cropland significantly increased in South America, with a growth rate of 9.1×103 km2/year (p = 0.0108). The area of 

significantly increased cropland in Asia and Africa reached 67×103 km2 and 23×103 km2, respectively. Corresponding to the 

increase in cropland, forest decreased significantly in South America, at a rate of 10.8×103 km2/year (p = 0.0242). Meanwhile, 

the area of forest in Africa has significantly decreased by 29×103 km2. The area of forest in Asia has increased at the fastest 350 

speed. The area of forest in Europe and North America has also increased significantly. Meanwhile, the tundra area in Asia, 

Europe, and North America decreased significantly by 132×103 km2, 12×103 km2 and 22×103 km2, respectively. Shrubland has 

increased significantly in Africa at a rate of 47.4×103 km2/year (p = 0.0030). However, as shown in Fig. 3, the LC mapping 

result in 2015 in Africa is of high uncertainty, the trend here should be treated carefully. Shrubland also increased significantly 

in Oceania, by an area of 38×103 km2. The decrease of grassland in Asia is serious, and the area of grassland in Asia decreased 355 

significantly by 315×103 km2. Barren land in Asia also significantly decreased by 82×103 km2. The global snow/ice area has 

decreased significantly, at a speed of 19.2×103 km2/year (p = 0.0003). 
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3.3 Characteristics of LC class conversion 

We attempted to find out some high-frequency LC class conversions for the period 1982 to 2015 (Table 13). Besides, the 

conversion sources and destinations of each LC class are computed separately, as shown in Fig. 12. 360 

Among land converted to cropland in 2015, grassland was the biggest source (Fig. 12 (b)), accounting for 67.58 %. 6.61 % of 

cropland was converted from forest (Fig. 12 (b)), showing the process of forest destruction. Among land converted to forest, 

the proportion of cropland reached 21.74 % (Fig. 12 (b)). Barren land and grassland were respectively the large sources of 

grassland and barren land (Fig. 12 (b)), reflecting the dynamic transformation between the two classes. Grassland accounted 

for 35.00 % of the increasing source of barren land (Fig. 12 (b)), indicating the process of grassland loss (Bai et al., 2008). 365 

The most frequent direction of conversion from cropland in 1982 was forest (Fig. 12 (a)), which reached 78.22 %. At the same 

time, forest was also the main cause of loss of grassland and shrubland (Fig. 12 (a)). The conversion of forest to grassland 

accounted for 59.04 % of all conversions from forest (Fig. 12 (a)). The main conversion direction of tundra was forest, reaching 

64.60 % (Fig. 12 (a)). 

Overall, the increase in forest accounted for the highest proportion of all conversion processes, reaching 44.17 % (Table 13). 370 

The increase of grassland and cropland were second and third highest, reaching 19.79 % and 13.64 %, respectively (Table 13). 

In addition, the proportions of grassland to shrubland and barren land to grassland were 7.73 % and 5.75 %, respectively (Table 

13). Cropland gain and vegetation gain were the main phenomena reflected by the changes in global LC from 1982 to 2015. 

3.4 Human impact evaluation 

Figure 13 (a) shows different human impact (HI) levels among different LCC areas. Overall, the average HI level in regions 375 

with significant changes in all LC classes is 25.49 %, indicating that human activity has a great impact on LCC. The highest 

HI level was found in those regions with significant increases in cropland, reaching an average value of 51.38 %. Meanwhile, 

the HI level of cropland loss reached 48.02 %, while the HI level for forest loss was 26.91 %. In addition, in any change of 

vegetation, such as forest, grassland and shrubland, the HI level in regions of vegetation loss is higher than that of gain.  

The HI levels along continents can be found in Fig. 13 (b). The highest level of HI is found in Europe and the lowest in Oceania. 380 

The HI in Europe reached 46.86 %, indicating that human activity played a relatively important role in regions with significant 

LCC. Asia came second, with a HI level of 32.07 %. In South America and Oceania in the southern hemisphere, the overall 

HI level in the LCC regions is small. 

As shown in Fig. 13 (c), the polar regions and the boreal conifer forest regions at high northern latitudes with significant LCC 

have lower HI levels. The level of HI in subtropical regions is high, among which HI levels in subtropical steppe and 385 

subtropical humid forest regions reached 38.23 % and 43.90 %, indicating that the role of LC conversion caused by human 

activity in subtropical climate areas is significant. In addition, in the temperate steppe regions, the HI level in the regions of 

significant LCC is also high, reaching 39.87 %. In the tropics, the average HI level in dry forest regions is highest among 
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regions of significant LCC, reaching 34.04 %.  

3.5 Local hotspots of LCC 390 

Regarding LC, more attention tends to be paid to global and regional LCC. At the local scale, we can further explore the hot 

spots of LCC. The main regions of LCC hotspots are shown in Fig. 14, where the depth of color represents a significant change.  

In the north of Eurasia, forest has increased significantly (Fig. 14 (a)), and that in Siberia has moved northward to the tundra 

regions. In northern North America, such as Alaska and the north of Canada, forest has also increased but the extent of the 

increase is weaker than that in North Eurasia. In the Great Plains of Central North America, grassland has decreased and 395 

cropland has increased (Fig. 14 (b)). In most countries of South America, croplands have expanded substantially (Fig. 14 (d)) 

and forests have decreased significantly (Fig. 14 (c)), especially in the southeastern part of the Amazon rainforest. In Southeast 

Asia, such as Cambodia, Vietnam, Indonesia, and Malaysia, forest has also decreased significantly, and cropland has increased. 

While our LCC analysis shows these trends in the Asian tropics, higher resolution data and more specific land cover mapping 

are needed to explicitly determine the reasons for LCC in this region (Cheng et al., 2018). In Africa, forest in the northern part 400 

of the Congo Basin has expanded while forest in the southern Miombo forest belt has decreased (Fig. 14 (e)). In China, forest 

has increased (Fig. 14 (f)). Some grassland in Mongolia and Inner Mongolia of China showed a trend of decrease (Fig. 14 (g)). 

There is an obvious increase in grassland areas in the eastern part of the Qinghai-Tibet Plateau (Fig. 14 (h)) and a decrease of 

grassland in central Asia and parts of Western Asia (Fig. 14 (i)).In some parts of the former Soviet Union in Eastern Europe, a 

decrease of cropland (Fig. 14 (j)) and an increase of forest can be observed.  405 

4 Discussions 

Based on the accuracy assessment and data inter-comparison results, it can be seen that the global LC mapping products of 

1982-2015, GLASS-GLC are reliable with high accuracies, and the global long-term mapping framework we designed is 

effective. Using GLASS-GLC CDRs in change analysis of LC can reflect a 34-year global landscape change pattern. Many 

phenomena and patterns can be confirmed by existing research. In addition, we have assessed the impact of human effects 410 

within different LC classes, and have further explored local LCC hotspots. 

However, there are still deficiencies in the design of the mapping framework. First, the large grid size of 0.05 °, can only reflect 

the average change state of LC in a large area; thus many small-area phenomena cannot be well reflected (Gómez et al., 2016). 

For example, the reduction of much cropland is due to urbanization, and the expansion of cities is usually sporadic. Although 

those changes are large at the global scale, they can hardly be reflected with 0.05 ° pixels. Moreover, due to the synthesis 415 

principle, the classification result of each pixel can only represent the class with the largest proportion in area, and the 

information of remaining classes is ignored even though they can sometimes be more than 50 % in total. Such a neglect, due 

to the famous “Scale Effect” (Turner et al., 1989) can also cause great deviations in the final statistical summary of the LC 
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area leading to uncertainties when compared with mapping results at finer resolutions. 

Second, our sampling strategy for training has certain limitations. On the one hand, since the training sample is generated from 420 

30m resolution maps of more than 73 % accuracy, this will inevitably propagate and accumulate error to 5 km resolution. Of 

course, due to the higher signal-to-noise ratio of the high-resolution data, the sampling is still satisfactory compared to the 

direct visual interpretation of the coarse resolution images. On the other hand, the training sample used is only from a single 

year of circa 2015. Although we have implemented a time series correction for the original input data and performed a time-

consistent post processing on the classification results, the effects of inter-annual fluctuations in data cannot be completely 425 

avoided (Song et al., 2018a). On the other hand, according to the stable classification with limited sample theory (Gong et al., 

2019), a representative sample collected in one year with less than 20 % in error should suffice in multiannual use at the global 

scale. Therefore, a multi-year sample set may not be as critical for multiannual classification provided the sample is better than 

80 % accurate. In our case, although the source training data has an accuracy of 73.17 %, we are not certain if the aggregated 

sample set exceeds an accuracy of 80 %. While this needs further assessment, the expected loss of accuracy should be within 430 

a couple of percents (Cheng et al., 2018). According to the 92.26 % test accuracy reported in 3.1.1, the aggregated sample set 

can be satisfactory.  

For the generation of test sample units in 2015, we have adopted the scale-up approach. That is to say, we first upscaled the 

30m test sample set to 5 km by maximum area synthesis, which contains unavoidable errors because of scale transformation. 

Due to the difficulty of visual interpretation in coarse scale and field investigation (Gong et al., 2013), establishing a sample 435 

library at 5 km resolution is not easy. Thus, instead, we adopted the data aggregation method based on the 30m FROM-GLC_v2 

results. Since mixed pixel problems for remotely sensed data are unavoidable at any scale, choosing one category for mixed 

pixels is inevitable and the cost of simplification in a traditional classification process. The development of LC ratio mapping 

products (similar to VCF products), rather than hard classification, especially for the case of coarse resolution, should be 

considered and further assessed. However, the independent interpreted 5 km test sample set alleviates the problem.  440 

We have eliminated wetland and impervious surface in our classification system. This is a tradeoff when working at the 5 km 

scale. Patches of wetland and impervious surface are usually small, and it is difficult to achieve a pixel size of 0.05 ° for many 

situations, so the classification of the two types is extremely difficult. However, both are important LC types. Wetland is a 

transitional zone between terrestrial ecosystems and aquatic ecosystems (Davidson, 2014). The impervious surface can 

represent the urban area. In recent years, urban expansion has been a relatively significant phenomenon in global environmental 445 

change (Seto et al., 2011). Urban expansion reflects an important type of human activity, so the impervious surface is also one 

of the essential components to reflect anthropogenic influence. However, the total area of its change is usually small. 

It should be pointed out that at a coarse resolution of 0.05 °, our definition of forest is more inclined to the tree canopy cover. 

Thus the changes in internal density of trees can also be reflected in the area change of forest instead of just the stand-

replacement type (Korhonen et al., 2006). In addition, the dominant-class synthesis strategy we adopted also makes it 450 
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unavoidable to include internal density change of various classes, which in turn will further affect the classification and change 

area calculation of forest class. 

In addition, because we are mainly depicting the natural biophysical properties of vegetated areas with limitation in resolution, 

some artificial characteristics cannot be distinguished, such as plantations (rubber, oil palm, and various fruit trees) and natural 

forest, which are uniformly included as forest in our classification system. 455 

In the statistical analysis, although we have already conducted post-classification time-consistency processing for the original 

LC mapping results as much as possible, it is inevitable that there are still large fluctuations and interferences from various 

unknown factors unfavorable to the extraction of long-term trend of LCC. In order to ensure that the trend of the resulting time 

series is significant, we have to scale up the classification result from 0.05 ° to 0.25 °, converting the original class label of 

each 0.05 ° pixel to the class area ratio of 0.25 ° grid. The long-term time series of the area ratios are tested for statistical 460 

significance. However, in some cases, this procedure will also be influenced by the “Scale Effect”. 

In the analysis of anthropogenic influences, indirect effects of many human activities were ignored because the main objective 

was to include the effects of directly visible human activities. For example, human activities increase the concentration of 

carbon dioxide in the atmosphere, which in turn affects the global climate, leading to higher temperature, and thus increasing 

vegetation coverage (Piao et al., 2006;Bonan, 2008). This pathway of action is indirect, but it is difficult to reflect in the human 465 

impact data we use, which results in an underestimation of the assessment of anthropogenic influences. 

GLASS-GLCs contain more detailed LC classes, longer temporal coverage (34 years), high consistency, which meets the 

requirement for CDR. GLASS-GLC CDRs are the first collection of global LC dynamics of 5 km, and fill the existing gap for 

high-reliability and consistency of long-term general purpose global LC products. In addition, our strategy of generating 

samples from high-resolution classification products can greatly reduce the cost and investment of sample collection. It can 470 

flexibly and effectively be extended to other coarse-resolution LC mapping tasks in the future. 

In the future, with the advancement of technology and the accumulation of remote sensing datasets, the use of remote sensing 

products for LC mapping with higher resolution and longer time series will undoubtedly better reflect the global LC and its 

changes. However, under limited conditions, we can consider using coarse-resolution satellite data to determine the locations 

of potential rapid change, and then use high-resolution data in these hotspots to accurately estimate the rate and mode of change. 475 

Moreover, it is necessary to establish a multi-year sample library to assess the impact of inter-annual fluctuations in input data 

on the accuracy of change characterization and analysis. Wetland and impervious surface are LC classes that have extremely 

high value. It would be useful to supplement the mapping and change analysis of these two classes when suitable data become 

available. For the analysis of global LCC, systematic and in-depth attribution analysis and research can be further carried out.  



17 

 

5 Data availability 480 

GLASS-GLC products at 5 km resolution from 1982 to 2015 are available to the public in the GeoTIFF format at 

https://doi.org/10.1594/PANGAEA.913496 (Liu et al., 2020).  

GLASS CDRs were provided by Beijing Normal University Data Center (available at http://glass-product.bnu.edu.cn/, last 

access: 27 December 2018). VCF products were obtained from LP DAAC (available at https://lpdaac.usgs.gov/, last access: 

20 December 2018). GMTED2010 were acquired from Google Earth Engine (available at 485 

https://code.earthengine.google.com/, last access: 24 December 2018). Geo-Wiki points came from the human impact 

campaign (available at https://doi.pangaea.de/10.1594/PANGAEA.869680, last access: 30 November 2018). Eco-region data 

were obtained from the FAO global eco-region dataset (available at 

http://www.fao.org/geonetwork/srv/en/metadata.show?CurrTab=simple&id=1255, last access: 3 December 2018). 

6 Conclusions 490 

In order to better reflect the global land changes, continuous and dynamic monitoring of global LC is necessary. We built 

GLASS-GLC, the first CDRs for global LC on the GEE platform. It can capture the global LCC information from 1982 to 

2015. Compared to previous global LC products, GLASS-GLC products cover a longer time period and have higher 

consistency and more detailed classes. Our entire mapping framework is based on FROM-GLC_v2, including the classification 

system and high-quality H-homo sample generation.  495 

Based on over ten thousand independent test samples units from both the FROM-GLC sample set and FLUXNET site data in 

2015, the overall accuracy of GLASS-GLC was shown to exceed 80 %. With 2431 test sample units in different years, the 

overall accuracy of GLASS-GLC is also over 80 %, at 82.81 %. Using inter-comparisons with other global LC products of 

different resolutions from various data sources, we verified the effectiveness and reliability of GLASS-GLC from different 

perspectives. Systematic uncertainty analysis was also performed on a global scale based on the results of the accuracy 500 

assessment and its geographical distribution. This shows that GLASS-GLC CDR products have relatively low uncertainty in 

most parts of the world. Our results also indicate that GLASS CDRs have potential for multi-class LC mapping and can provide 

more than enough information to distinguish different LC classes, with relatively strong temporal and spatial consistency, 

which can produce extremely reliable change information.  

Comprehensive spatiotemporal pattern analysis based on GLASS-GLC reflected and revealed many significant global LCC 505 

phenomena and patterns, such as forest loss and cropland gain in the tropics, forest gain in the northern regions, etc. An analysis 

of the global LC conversion pattern from 1982 to 2015 revealed hot spots of LCC.  

Since anthropogenic influence has become one of the most important driving forces for LCC, especially after the industrial 

revolution, we quantified the level of human impact in areas of significant LCC. The results show that the average human 
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impact level in areas of significant LCC is about 25.49 %.  510 

With increasing economic globalization, LCC has increased. Based on GLASS-GLC, effective global LC and change analysis 

could be conducted, enhancing our understanding of global environmental change, and even mitigating its negative impact to 

some extent, which is also beneficial to the achievement of sustainable development goals. 
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Figure 1: The framework for building GLASS-GLC (annual dynamics of global land cover) CDRs (Climate Data Records).  800 
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Table 1: Classification system, with 7 land cover classes.  

Class Subclass with reference to (Li et al., 2017) Description 

Cropland Rice paddy   

Greenhouse   

Other farmland   

Orchard   

Bare farmland   

Forest Broadleaf, leaf-on Tree cover≥10%; 

Height>5m; 

For mixed leaf, neither coniferous nor 

broadleaf types exceed 60% 

Broadleaf, leaf-off 

Needle-leaf, leaf-on 

Needle-leaf, leaf-off 

Mixed leaf type, leaf-on 

Mixed leaf type, leaf-off 

Grassland Pasture, leaf-on Canopy cover≥20% 

Natural grassland, leaf-on 

Grassland, leaf-off 

Shrubland Shrub cover, leaf-on  Canopy cover≥20%; 

Height<5m Shrub cover, leaf-off 

Tundra Shrub and brush tundra 

Herbaceous tundra 

 

Barren land Barren land Vegetation cover<10% 

Snow/Ice Snow  

Ice  
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Figure 2: The geographical distribution training and test sample. (a) training sample in 2015, where different colors represent the 805 

different classes. (b) huge homogeneous test samples (H-homo sample) in 2015, where the different colors represent the source of 

the sample units, either FROM-GLC_v2 or FLUXNET. (c) independent test sample in different years, where the temporal 

distribution is shown in the inner chart.  
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Table 2: The explanatory table of the constructed input data collection*.  810 

Product Band Input Number Product reference 

GLASS CDRs, 0.05 °, 

8-day, dynamic, 1982-

2015 

NDVI 

Percentiles [0, 10, 25, 50, 75, 90, 

100] of all 9 bands 
63 

(Liang et al., 2013) 

(available at 

http://glass-

product.bnu.edu.cn/

, last access: 

27 December 2018)

LAI 

FAPAR 

ET 

GPP 

Mean, standard derivation of 

NDVI between adjacent two 

percentiles of NDVI 

12 

BBE  

ABD_WSA_VIS 

ABD_BSA_NIR 

ABD_WSA_shortwave 

VCF5kyrv001, 0.05 °, 

yearly, dynamic, 1982-

2015 

TC TC 

3 

(Song et al., 

2018a;Hansen, 

2020) 

SV SV 

BG BG 

GMTED2010, 7.5 s, 

static 

Elevation Mean slope in each 0.05 ° pixel 1 (Danielson and 

Gesch, 

2011;USGS, 2020)

Location, static Latitude, longitude Center latitude, longitude of 

each 0.05 ° pixel 

2  

Total 81  

*GLASS CDRs represent Global LAnd Surface Satellite (GLASS) Climate Data Records (CDRs). VCF5kyrv001 stands for 

VCF5kyrv001 MEaSUREs Vegetation Continuous Fields (VCF) Yearly Global 0.05 Deg products, and GMTED2010 refers 

to Global Multi-resolution Terrain Elevation Data 2010. NDVI, LAI, FAPAR, ET, GPP, and BBE are abbreviations for 

normalized difference vegetation index, leaf area index, fraction of absorbed photosynthetically active radiation, 

evapotranspiration, gross primary production, broadband emissivity, respectively. ABD_WSA_VIS, ABD_BSA_NIR, and 815 

ABD_WSA_shortwave represent white-sky albedo in visible band, near infrared band, and shortwave band, respectively. TC, 

SV, and BG stand for tree canopy, short vegetation, and bare ground cover, respectively. 
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Figure 3: GLASS-GLC (annual dynamics of global land cover) CDRs (Climate Data Records) result in 2015.  820 
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Table 3: Classification accuracy of GLASS-GLC (annual dynamics of global land cover) in 2015 based on FROM-GLC_v2 (Finer 

Resolution Observation and Monitoring of Global Land Cover product Version 2) test samples. (Overall accuracy = 86.51 %, UA = 

User’s Accuracy and PA = Producer’s Accuracy) 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 

land 
Snow/ice Total UA 

Cropland 1390 166 221 101 0 12 0 1890 73.54 %

Forest 115 7427 279 145 18 0 3 7987 92.99 %

Grassland 199 431 2820 534 45 141 3 4173 67.58 %

Shrubland 47 65 185 1986 0 92 0 2375 83.62 %

Tundra 0 32 36 0 1157 24 2 1251 92.49 %

Barren land 17 5 91 27 48 5336 20 5544 96.25 %

Snow/ice 0 2 10 0 7 41 179 239 74.90 %

Total 1768 8128 3642 2793 1275 5646 207 23459   

PA 78.62 % 91.38 % 77.43 % 71.11 % 90.75 % 94.51 % 86.47 %   86.51 %

  825 
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Table 4: Classification accuracy of GLASS-GLC (annual dynamics of global land cover) in 2015 based on FLUXNET test samples. 

(Overall accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy) 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 

land 
Snow/ice 

Total 

number 
UA 

Cropland 63 5 17 1 0 0 0 86 73.26 %

Forest 13 243 9 2 0 0 0 267 91.01 %

Grassland 8 21 91 2 0 2 0 124 73.39 %

Shrubland 7 3 0 19 0 0 0 29 65.52 %

Tundra 0 3 0 0 14 0 0 17 82.35 %

Barren land 0 1 0 0 0 1 0 2 50.00 %

Snow/ice 0 0 0 0 0 0 0 0 - 

Total number 91 276 117 24 14 3 0 525   

PA 69.23 % 88.04 % 77.78 % 79.17 % 100.00 % 33.33 % -   82.10 %
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Figure 4: The geographical distribution of uncertainty for GLASS-GLC (annual dynamics of global land cover) CDRs (Climate 830 

Data Records) in 2015, where regions in red represent higher uncertainty levels while those in green represent lower uncertainty 

levels.  
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Table 5: Classification accuracy of GLASS-GLC (annual dynamics of global land cover) without change detection under 

independent test samples. (Overall accuracy = 81.28 %, UA = User’s Accuracy and PA = Producer’s Accuracy) 835 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 

land 
Snow/ice 

Total 

number 
UA 

Cropland 257 21 34 15 0 31 0 358 71.79% 

Forest 35 620 45 27 22 1 1 751 82.56% 

Grassland 17 26 248 12 3 19 4 329 75.38% 

Shrubland 7 6 10 154 9 12 0 198 77.78% 

Tundra 0 9 11 12 250 3 0 285 87.72% 

Barren land 4 1 13 14 5 355 6 398 89.20% 

Snow/ice 0 4 3 0 0 13 92 112 82.14% 

Total number 320 687 364 234 289 434 103 2431 

PA 80.31% 90.25% 68.13% 65.81% 86.51% 81.80% 89.32% 
 

81.28%
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Table 6: Classification accuracy of GLASS-GLC (annual dynamics of global land cover) with change detection under independent 

test samples. (Overall accuracy =82.81 %, UA = User’s Accuracy and PA = Producer’s Accuracy) 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 

land 
Snow/ice 

Total 

number 
UA 

Cropland 262 19 32 20 0 25 0 358 73.18% 

Forest 33 637 29 28 24 0 0 751 84.82% 

Grassland 24 24 254 6 13 8 0 329 77.20% 

Shrubland 12 3 11 159 6 7 0 198 80.30% 

Tundra 0 12 9 4 250 10 0 285 87.72% 

Barren land 5 1 17 8 7 357 3 398 89.70% 

Snow/ice 0 5 6 0 0 7 94 112 83.93% 

Total number 336 701 358 225 300 414 97 2431 

PA 77.98% 90.87% 70.95% 70.67% 83.33% 86.23% 96.91% 
 

82.81%

 840 
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Table 7: Classification accuracy of the MLCT (MODIS Land Cover Type) product in 2015 based on FLUXNET test samples. 

(Overall accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy) 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 

land 
Snow/ice 

Total 

number 
UA 

Cropland 7 5 73 0 0 0 0 85 8.24% 

Forest 1 261 5 0 0 0 0 267 97.75% 

Grassland 1 15 108 1 0 0 0 125 86.40% 

Shrubland 0 9 9 11 0 0 0 29 37.93% 

Tundra 0 3 6 8 0 0 0 17 - 

Barren land 0 0 1 0 0 1 0 2 50.00% 

Snow/ice 0 0 0 0 0 0 0 0 - 

Total number 9 293 202 20 0 1 0 525   

PA 77.78% 89.08% 53.47% 55.00% - 100.00% -   73.90%

 

  845 
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Table 8: Classification accuracy of the ESA-CCI (European Space Agency Climate Change Initiative) land cover product in 2015 

based on FLUXNET test samples. (Overall accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy) 

Class Cropland Forest Grassland Shrubland Tundra 
Barren 

land 
Snow/ice 

Total 

number 
UA 

Cropland 81 1 4 0 0 0 0 86 94.19% 

Forest 11 246 4 5 0 1 0 267 92.13% 

Grassland 28 7 76 5 0 8 0 124 61.29% 

Shrubland 2 7 1 19 0 0 0 29 65.52% 

Tundra 0 3 9 0 0 5 0 17 - 

Barren land 0 0 2 0 0 0 0 2 0.00% 

Snow/ice 0 0 0 0 0 0 0 0 - 

Total number 122 264 96 29 0 14 0 525   

PA 66.39% 93.18% 79.17% 65.52% - 0.00% -   80.38%
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Figure 5: Inter-comparison with the MLCT (MODIS Land Cover Type) product, (a) cropland circa 2015, (b) forest circa 2015, (c) 

grassland circa 2015, (d) shrubland circa 2015, (e) barren land circa 2015 and (f) snow/ice circa 2015; (g) mean R2 of the annual 850 

linear fit lines for all years (2001-2015). 
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Figure 6: Inter-comparison with the ESA-CCI (European Space Agency Climate Change Initiative) land cover product, (a) 

cropland circa 2015, (b) forest circa 2015, (c) grassland circa 2015, (d) shrubland circa 2015, (e) barren land circa 2015 and (f) 855 

snow/ice circa 2015; (g) mean R2 of the annual linear fit lines for all years (1992-2015).  
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Figure 7: Inter-comparison with the FAOSTAT data set, (a) cropland circa 2015, (b) forest circa 2015, (c) mean R2 of the annual 

linear fit lines of cropland for years 1982-2015 and forest for years 1990-2015.  860 
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Figure 8: The duration of different land cover products, including GLASS-GLC (annual dynamics of global land cover), MLCT 

(MODIS Land Cover Type), and ESA-CCI (European Space Agency Climate Change Initiative) land cover products.  
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Figure 9: Area curves of global annual land cover change from 1982 to 2015.  
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Figure 10: Comparison and distribution of ratios of annual global land cover change (LCC) to the global total terrestrial land cover 870 

(LC) area by different time periods and time intervals (a) 5-year interval, (b) 10-year interval. The box extends from the first quartile 

(Q1) to third quartile (Q3) values of the data, with an orange line at the median. The upper whisker extends to the last datum less 

than Q3 + 1.5 * IQR, and the lower whisker extends to the first datum greater than Q1 - 1.5 * IQR. Flier points are those past the 

end of the whiskers. 
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Figure 11: The geographical distribution of global regions with significant land cover change during 1982-2015, and the summarized 

results along latitudinal gradients for each class, (a) cropland, (b) forest, (c) grassland, and (d) barren land.  
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Table 9: Statistical results of change analysis for cropland (on the scale of continents). Annual change slope and its 95 % confidence 880 

interval are given by Thei-sen estimator, p-value, and trend information from a Mann-Kendall test. Gain and Loss areas are 

summarized results relating to the whole time series.  

Continent 
Slope (103 

km2/year) 

Lower (103 

km2/year) 

Upper (103 

km2/year) 
p Trend 

Gain (103 

km2) 

Loss (103 

km2) 

Africa 5.3  1.5  10.0  0.0099 increasing 23  -6  

Asia -1.7  -9.2  7.1  0.6999 no trend 67  -70  

Europe -30.4  -43.6  -17.9  0.0005 decreasing 12  -99  

North America -4.9  -10.9  2.8  0.1635 no trend 37  -54  

South America 9.1  2.1  19.3  0.0108 increasing 35  -4  

Oceania -0.5  -1.8  0.6  0.3580 no trend 1  -1  

Global -27.5  -54.7  3.1  0.0968 no trend 175  -238  
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Table 10: Statistical results of change analysis for forest (on the scale of continents). Annual change slope and its 95 % confidence 885 

interval are given by Thei-sen estimator, p-value, and trend information from a Mann-Kendall test. Gain and Loss areas are 

summarized results relating to the whole time series.  

Continent 
Slope (103 

km2/year) 

Lower (103 

km2/year) 

Upper (103 

km2/year) 
p Trend 

Gain (103 

km2) 

Loss (103 

km2) 

Africa -8.4  -18.6  2.6  0.1463 no trend 15  -29  

Asia 128.6  86.8  165.0  0.0000 increasing 365  -12  

Europe 53.1  34.9  67.4  0.0000 increasing 131  -1  

North America 45.1  24.7  65.0  0.0000 increasing 132  -16  

South America -10.8  -19.6  -1.4  0.0242 decreasing 23  -49  

Oceania 1.4  -0.1  2.6  0.0802 no trend 6  -1  

Global 201.3  120.9  278.1  0.0000 increasing 680  -109  
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Table 11: Statistical results of change analysis for grassland (on the scale of continents). Annual change slope and its 95 % confidence 890 

interval are given by Thei-sen estimator, p-value, and trend information from a Mann-Kendall test. Gain and Loss areas are 

summarized results relating to the whole time series.  

Continent 
Slope (103 

km2/year) 

Lower (103 

km2/year) 

Upper (103 

km2/year) 
p Trend 

Gain (103 

km2) 

Loss (103 

km2) 

Africa -18.9  -36.4  3.0  0.0855 no trend 50  -108  

Asia -52.7  -67.1  -38.1  0.0000 decreasing 85  -315  

Europe -11.8  -21.7  -2.0  0.0207 decreasing 6  -59  

North America -39.6  -48.4  -26.9  0.0000 decreasing 25  -114  

South America -16.1  -29.0  -4.7  0.0070 decreasing 68  -54  

Oceania -4.6  -9.5  0.7  0.1029 no trend 9  -11  

Global -136.6  -172.9  -86.4  0.0000 decreasing 246  -663  
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Table 12: Statistical results of change analysis for barren land (on the scale of continents). Annual change slope and its 95 % 895 

confidence interval are given by Thei-sen estimator, p-value, and trend information from a Mann-Kendall test. Gain and Loss areas 

are summarized results relating to the whole time series.  

Continent 
Slope (103 

km2/year) 

Lower (103 

km2/year) 

Upper (103 

km2/year) 
p Trend 

Gain (103 

km2) 

Loss (103 

km2) 

Africa -26.1  -37.4  -17.7  0.0000 decreasing 2  -43  

Asia -28.3  -40.6  -18.1  0.0000 decreasing 12  -82  

Europe -2.8  -3.5  -1.8  0.0000 decreasing 0  -6  

North America -8.8  -21.3  -1.0  0.0353 decreasing 26  -49  

South America 1.6  -2.3  5.3  0.3737 no trend 4  -5  

Oceania -16.8  -32.2  4.0  0.1161 no trend 0  -25  

Global -78.5  -116.4  -48.8  0.0001 decreasing 48  -213  
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 900 

Figure 12: Land cover conversions with significant land cover change (LCC) between 1982 and 2015, The inner pie in (a) shows the 

percentages of different gross gain for each land cover, and the outer ring indicates which land cover the gross gain came from. The 

inner pie in (b) shows the percentage of different gross loss for each land cover, and the outer ring indicates which land cover the 

gross loss went to.  
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Table 13: Area ratio (%) of land cover conversions from 1982 to 2015, where the red color denotes a higher ratio, and the blue color 

represents a lower ratio.  

Class 
2015 

Cropland Forest Grassland Shrubland Tundra Barren land Snow/ice 

1982 

Cropland - 9.6 2.22 0.37 0 0.09 0 

Forest 0.9 - 6.26 3.24 0.19 0.01 0.01 

Grassland 9.22 24.27 - 7.73 0.6 1.6 0.06 

Shrubland 0.45 1.7 1.62 - 0 0.66 0 

Tundra 0 8.48 3.82 0 - 0.79 0.04 

Barren land 3.07 0.07 5.75 2.23 2.93 - 0.29 

Snow/ice 0 0.05 0.13 0 0.13 1.43 - 
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Figure 13: The mean human impact (HI) of regions with significant land cover change on the scale of (a) LCC, (b) continents, and 

(c) eco-regions.   
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Figure 14: Visualization of local hotspots of land cover change, (a) north Eurasia, forest, (b) Great Plains of Central North America, 

cropland, (c) South America, forest, (d) South America, cropland, (e) Africa, forest, (f) China, forest, (g) Mongolia and Inner 915 

Mongolia of China, grassland, (h) Qinghai-Tibet Plateau, grassland, (i) central Asia, grassland, (j) the former Soviet Union in 

Eastern Europe, cropland.  

 


