Response to RC1

The authors used GLASS CDRs data and Google Earth Engine platform and produced the long-
term continuous land cover dataset from 1982 to 2015. This is a very valuable dataset for further
applications in the analyses of energy and carbon dynamics and the global land surface modelling.
However, | have some concerns about the data processing in the classification, accuracy assessment
and the interpretation of the land cover change results. | think these problems must be solved /
addressed before publication.

We thank the reviewer for the comments and thoughtful review. Please find our detailed response
along with the suggested changes to our manuscript below.

1. Differences between forest and tree cover

The authors used vegetation cover fraction (VCF) data from Song et al. 2018. However, in their
paper, they specified “tree cover” increase. This is not equal to forest increase. Usually, the forest is
defined by canopy closure (e.g. tree cover fraction >10% in FAO, >25% in Hansen et al. 2013), tree
height and minimum area. The authors showed that a lot of forest increase occurred in Siberia (Fig.
10) and was from grassland (Fig. 11). This could be artificial considering the coarse resolution (5
km) and poor ability of land cover mapping for mosaic pixels (see below) in the methods used in
this study. For example, there is 5 ha forest with tree cover fraction of 35%, and the tree cover
fraction increased to 45% because of better growth (e.g. longer growing season, CO2) in the same
5 ha forest. In this case, we cannot say the forest area increased 5 ha x 10% = 0.5 ha because it is
the same 5 ha forest but with denser tree cover. Therefore, I doubt that there is confusion of these
concepts in this manuscript and maybe in the classification system. The authors briefly mentioned
this issue on L450-454, but this really needs to be clarified, assessed and solved.

Response 1:

Thank you for your advice. It should be pointed out that our classification target is land cover class,
not vegetation cover percentage information. Our land cover products belong to the hard
classification and give each mapping unit a single land cover class. VCF is only used as features
that assist in the land cover classification, which is introduced as prior probability, and only one of
many factors that affect the final classification result. Although based on VCF information, our

results are not the same.

The classification system we used is from FROM-GLC v2 (Li et al., 2017). Considering the quality
of the data and the separability of classes, our products include 7 land cover classes, cropland, forest,
grassland, shrubland, tundra, barren land, and snow and ice (Table 1). Among them, the forest is
also defined and distinguished by canopy closure. The forest is defined under the condition that tree
cover>10% and height> 5m. We have updated the description of the classification system in our

manuscript.



Table 1: Classification system, with 7 Level 1 classes and 21 Level 2 classes.

Level 1 class Level 2 class Description
Rice paddy
Greenhouse
Cropland Other farmland
Orchard
Bare farmland
Broadleaf, leaf-on
Tree cover>10%;
Broadleaf, leaf-off )
Height>5m;
Needle-leaf, leaf-on . .
Forest For mixed leaf, neither
Needle-leaf, leaf-off )
. coniferous nor broadleaf types
Mixed leaf type, leaf-on
) exceed 60%
Mixed leaf type, leaf-off
Pasture, leaf-on
Grassland Natural grassland, leaf-on Canopy cover>20%
Grassland, leaf-off
Shrub cover, leaf-on Canopy cover>20%;
Shrubland )
Shrub cover, leaf-off Height<Sm
Shrub and brush tundra
Tundra
Herbaceous tundra
Barren land Barren land Vegetation cover<10%
Snow
Snow/Ice
Ice

We agree with you that forest increase may exist under the condition that you described. This is an
inevitable problem in hard classification. What we call forest increase is the change of land cover
class in our classification results under our Skm coarse resolution classification system. Limited to
a spatial resolution of 5km, there are many mixed mapping units. For these mixed units, the
estimation of hard classification will cause a large deviation. This is a common problem in hard
classification. Similar problems also exist in land cover data prediction with higher spatial resolution.
At coarse resolution, accurate estimates may be better with cover percentage data.

Change in manuscript:

We have updated the description to our used classification system in Table 1.

2. The majority land cover in a 0.05 deg pixel

The majority method in a coarse resolution (5 km) may work for some pure pixels but is expected
to work poorly for the mosaic pixels with high heterogeneity or similar fraction of different
vegetation types. For example, in a 5 km pixel with 43% tree cover, 44% grass and 13% others in
the first year, it became 45% tree cover, 44% grass and 11% of others in the second year simply
because of the good climate. If | understood correctly, this pixel would be classified as grassland in



the first year and forest in the second year, and thus there is a 25 km2 land cover change from
grassland to forest. This may also partly explain the strong forest increase in Siberia, high variations
in the temporal land cover dynamics in Fig. 8 and the high uncertainties in the intensive LCC regions
(e.g. savanna in Africa).

Response 2:

Thanks for your comment. For mosaic pixels, especially mosaic pixels of vegetation, hard
classification does have such disadvantages. The classification system used in the MODIS-based
land cover product has included some mosaic classes, such as the Forest / Cropland Mosaics, Natural
Herbaceous / Croplands Mosaics and Herbaceous Croplands defined in the FAO-Land Cover
Classification System land use (LCCS2) system, which also reflects the difficulty and disadvantage
of hard classification in coarse resolution to a certain extent. However, for these mosaic classes in
the MODIS-based land cover product, hard classification is still used. Although at individual pixel
level this is unavoidable when land cover data are aggregated over large areas the extreme cases as
raised by the reviewer would usually be averaged out.

Despite of the disadvantage, the way that hard classification presents information is more direct. In
many applications, researchers prefer to use the results of hard classification.

Besides, the scheme we used to aggregate and extract coarse-resolution samples from fine-
resolution data is one of the common used schemes (DeFries et al., 1998;Wang et al., 2016). Under
the framework of hard classification, there does not seem to be a better solution.

As for the LCC area reflected in the product, there are some places, as you said, that may be affected
by the hard classification method. However, there are also many areas where the LCC is correctly
reflected, such as the forest area of the Amazon region cut back. It should be pointed out that the
LCC information in our results has uncertainty, especially the regions with high variability in LCC.

Change in manuscript:

We have added a reminder to data users about the uncertainty of our products.

3. Accuracy of change detection

The authors only assessed the accuracy for year 2015, not mentioning that the uncertainty of FROM-
GLC_v2 was not propagated. First, the same product was used for training the classification system
and for the accuracy assessment. Although the samples in the same product may be not overlapped,
we cannot exclude the coherence since both are from FROM-GLC_v2. So, some independent
evaluation dataset would be helpful. Second, an important feature of this continuous land cover
maps is the temporal dynamics. So, the change detection needs to be further validated / evaluated
in addition to the one-year classification accuracy assessment. This part is currently lacking in this
work.



Response 3:

Thank you for your useful comment. In this revision, we collected a new independent test sample
and performed the accuracy assessment. To prove the impact of change detection, we further
compared the accuracies with and without change detection.

Specifically, we collected 2431 randomly distributed 5km sample points in different years around
the world. According to the majority principle, we manually interpreted the land cover class of each
sample as an independent test sample. Besides, to verify the accuracy of the change detection
method, we also compared the classification accuracy before and after the change detection. The
temporal distribution of the newly collected test samples is shown in Fig. 1, and the geographical
distribution is shown in Fig. 2.
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Figure 1: The temporal distribution of the newly collected test sample.
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Figure 2: The geographical distribution of random test sample.

The new assessment result is shown in Table 3 and Table 4. It shows that OA of GLASS-GLC
without change detection is 81.28%, and OA with change detection is 82.81%. This reflects the
reliability of GLASS-GLC since the test samples are randomly distributed along the spatial and
temporal dimensions, and also confirm the significance and effectiveness of the change detection
method.



Table 3: Classification accuracy of GLASS-GLC without change detection under 2431 independent
test samples. (Overall accuracy = 81.28 %, UA = User’s Accuracy and PA = Producer’s Accuracy)

Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snowl/ice

d d land number
Cropland 257 21 34 15 0 31 0 358 71.79%
Forest 35 620 45 27 22 1 1 751 82.56%
Grassland 17 26 248 12 3 19 4 329 75.38%
Shrubland 7 6 10 154 9 12 0 198 77.78%
Tundra 0 9 11 12 250 3 0 285 87.72%
Barren land 4 1 13 14 5 355 6 398 89.20%
Snow/ice 0 4 3 0 0 13 92 112 82.14%
Total 320 687 364 234 289 434 103 2431
number
PA 80.31%  90.25%  68.13% 65.81% 86.51%  81.80%  89.32% 81.28%

Table 4: Classification accuracy of GLASS-GLC with change detection under 2431 independent
test samples. (Overall accuracy =82.81 %, UA = User’s Accuracy and PA = Producer’s Accuracy)

Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snowl/ice UA

d d land number
Cropland 262 19 32 20 0 25 0 358 73.18%
Forest 33 637 29 28 24 0 751 84.82%
Grassland 24 24 254 6 13 0 329 77.20%
Shrubland 12 3 11 159 6 0 198 80.30%
Tundra 0 12 9 4 250 10 0 285 87.72%
Barrenland 5 1 17 8 7 357 3 398 89.70%
Snow/ice 0 5 6 0 0 7 94 112 83.93%
Total 336 701 358 225 300 414 97 2431
number
PA 77.98%  90.87%  70.95% 70.67% 83.33%  86.23%  96.91% 82.81%

Change in manuscript:

We have added the new accuracy assessment result in the manuscript.

4. Comparison with other datasets

A suggestion for the evaluation may be to compare the total area, spatial and temporal changes with
other datasets e.g. ESA-CCI 300 m, Hansen forest, FAO and some cropland datasets. This would
help to verify the mapping results in this study and to understand their differences. It would also
help to define the possible applications of this dataset (e.g. whether it can be used for carbon
accounting, land modeling).



Response 4:

Thank you for your advice. Comparison with other land cover products is a very good way to reflect
product quality and accuracy. For this reason, in addition to the classification accuracy obtained by
several evaluation methods, we compared other available land cover products with our products.
Although there are some differences in the classification system of different products, it can still
reflect the reliability of our products in general.

We inter-compared GLASS-GLC with other available global land cover products with a relatively
long time series. Land cover products from MODIS and the ESA-CCI were used. The MODIS-
based global land cover products come from Collection 6 (C6) MODIS Land Cover Type (MLCT)
products (Sulla-Menashe et al., 2019), and are supervised classification results from 2001 to 2016.
Considering the comparability to our classification system, the FAO-Land Cover Classification
System land use (LCCS2) layer was used. The corresponding relationships of classes are listed as
follows, and the class names we used are the latter: barren - barren land, permanent snow and ice —
snow/ice, all kinds of forest — forest, forest/cropland mosaics and natural herbaceous/cropland
mosaic — cropland, natural herbaceous and herbaceous cropland — grassland, shrubland - shrubland.
The ESA-CCI global land cover products (Bontemps et al., 2013) are 300m resolution yearly
products ranging from 1992 to 2015. The products were developed using the GlobCover
unsupervised classification chain and merging multiple available Earth observation products based
on the GlobCover products of the ESA (Liu et al., 2018). Referring to the class relationships in (Liu
et al., 2018), we cross-walked classes including cropland, forest, grassland, shrubland, barren land

and snow/ice.

Apart from land cover products, we also compared GLASS-GLC with the Food and Agricultural
Organization of the United Nations statistical data (FAOSTAT) on cropland and forest (forest land)
classes, which are the main sources of country-level land cover data for many applications. The
annual FAOSTAT data set on cropland we used ranged from 1982 to 2015, and that on forest we
used ranged from 1990 to 2015.

We made an inter-comparison between classes including cropland, forest, grassland, shrubland,
barren land and snow/ice. The main inter-comparison is the area corresponding to the top 50
countries in each class. Besides, to compare the accuracy of different products, test samples from
FLUXNET site data in 2015 are given for independent accuracy assessment.

The assessment results of MODIS-based land cover products and ESA-CCI land cover products
based on test samples from FLUXNET site data are shown in Table 6 and Table 7, respectively. The
overall accuracies of ESA-CCI products and MODIS-based products are 73.90% and 80.38% in
2015, respectively. Compared to these, The overall accuracy of GLASS-GLC (82.10%, Table 5) is
superior. Although the cross-walk of the different classification systems may be slightly different,
It can still reflect the high accuracy of our GLASS-GLC products.

Table 5: Classification accuracy of GLASS-GLC in 2015 based on FLUXNET test sample. (Overall
accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy)



Croplan

Shrublan

Barren

Total

Class Forest Grassland Tundra Snowl/ice
d d land number
Cropland 63 5 17 1 0 0 0 86 73.26 %
Forest 13 243 9 2 0 0 0 267 91.01 %
Grassland 8 21 91 2 0 2 0 124 73.39 %
Shrubland 7 3 0 19 0 0 0 29 65.52 %
Tundra 0 3 0 0 14 0 0 17 82.35%
Barrenland 0 1 0 0 0 1 0 2 50.00 %
Snowl/ice 0 0 0 0 0 0 0 0 -
Total
91 276 117 24 14 3 0 525
number
100.00 82.10
PA 69.23% 88.04% 77.78%  79.17% 3333% -
% %
Table 6: Classification accuracy of the MODIS-based land cover product in 2015 based on
FLUXNET test sample. (Overall accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s
Accuracy)
Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snow/ice UA
d d land number
Cropland 7 5 73 0 0 0 0 85 8.24%
Forest 1 261 5 0 0 0 0 267 97.75%
Grassland 1 15 108 1 0 0 0 125 86.40%
Shrubland 0 9 9 11 0 0 0 29 37.93%
Tundra 0 3 6 8 0 0 0 17 -
Barren land 0 0 1 0 0 1 0 2 50.00%
Snowl/ice 0 0 0 0 0 0 0 0 -
Total
9 293 202 20 0 1 0 525
number
PA 77.78%  89.08%  53.47% 55.00% - 100.00% - 73.90%
Table 7: Classification accuracy of the ESA-CCI land cover product in 2015 based on FLUXNET
test sample. (Overall accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy)
Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snowl/ice UA
d d land number
Cropland 81 1 4 0 0 0 0 86 94.19%
Forest 11 246 4 5 0 1 0 267 92.13%
Grassland 28 7 76 5 0 8 0 124 61.29%
Shrubland 2 7 1 19 0 0 0 29 65.52%
Tundra 0 3 9 0 0 5 0 17 -
Barrenland 0 0 2 0 0 0 0 2 0.00%
Snow/ice 0 0 0 0 0 0 0 0 -
Total
122 264 96 29 0 14 0 525
number
PA 66.39%  93.18%  79.17% 65.52% - 0.00% - 80.38%




Figure 3 shows an inter-comparison with MODIS-based products, Figure 4 with ESA-CCI products
and Figure 5 with FAOSTAT. The scatter plots and the linear fit lines reflect the results in 2015, and
the box plots represent the distribution of R? of the annual linear fit lines for each class. It can be
seen that various classes in several different products are relatively equivalent although they are
under different classification systems. In comparison with MODIS-based products, the results of
2001-2015 for cropland, forest and snow/ice have high R2. In comparison with ESA-CCI products,
the mean R? of the linear fit lines of forest, grassland and snow/ice from 1992 to 2015 reach 0.99,
0.82, and 0.98, respectively, while the R? for shrubland is low. The inter-comparison of some other
classes is poor, which may be caused by differences in the class definition in various classification
systems. For instance, our classification system incorporates tundra, while the other two did not.
Compared with FAOSTAT, the mean R? of the linear fit lines of cropland and forest is 0.82, and
0.87, respectively. In general, our GLASS-GLC products have a reasonable consistency with other
products and statistics and the difference are not significant.

What’s more, the duration of GLASS-GLC is much longer than MODIS-based and ESA-CC land
cover products (as shown in Fig. 6). The comparison with other data illustrates the reliability and
superiority of GLASS-GLC.
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Figure 3: Inter-comparison with the MODIS-based land cover product, (a) cropland circa 2015, (b)
forest circa 2015, (c) grassland circa 2015, (d) shrubland circa 2015, (e) barren land circa 2015 and
(f) snow/ice circa 2015; (g) mean R2 of the annual linear fit lines for all years (2001-2015).
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Figure 4: Inter-comparison with the ESA-CCI land cover product, (a) cropland circa 2015, (b) forest
circa 2015, (c) grassland circa 2015, (d) shrubland circa 2015, (e) barren land circa 2015 and (f)
snow/ice circa 2015; (g) mean R2 of the annual linear fit lines for all years (1992-2015).
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Figure 5: Inter-comparison with the FAOSTAT data set, (a) cropland circa 2015, (b) forest circa
2015, (c) mean R2 of the annual linear fit lines of cropland for years 1982-2015 and forest for years
1990-2015.
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Figure 6: The duration of different land cover products, including GLASS-GLC, MODIS-based
land cover products and ESA-CCI land cover products.

Change in manuscript:

We have included comparison results with other land cover data in the manuscript to help show the

reliability and effectiveness of our products.

5. Superficial and fragmented interpretations of reasons for LCC

The authors made a lot of figures and tables to show the spatial and temporal changes and also
reasons for such changes. These sections are not well organized and lack some internal logics. What
I learned is only some fragmented information. The reasons for the LCC are not very solid (see my
detailed comments below). Just taking one example, the author mentioned several times of
“greening” and its effects on LCC. However, greening is very far away from LCC. It may only be
caused by more leaves and extended growing season. We don’t know whether this increased
productivity was converted to carbon stock or leaded to a land cover transition from grass to forest.
The increased carbon uptake by greening may just release back to the atmosphere through the
enhanced respiration due to increased temperature. So, | would suggest being cautious when
interpreting the reasons for the LCC. In fact, I don’t think these sections are necessary for this
manuscript. Adding comparisons with other datasets and discussing the differences between various
data and the reasons (e.g. data sources, classification methods) would be enough for a nice data



paper. The reasons for LCC can be separated to another paper after adding more analyses. Putting
it here only attenuate the main objective of this manuscript.

Response 5:

Thank you for your comment. The interpretations of reasons for LCC are just some examples of our
attempts to apply our product for further analysis, not the main focus of this paper. The focus of this
article is on the presentation and quality assessment of our produced GLASS-GLC data products.
To this end, we have added more content on accuracy assessment and product inter-comparison, to
better demonstrate the reliability and uncertainty of our products. As for the reasons for LCC, we
will analyze and discuss in more detail in a subsequent paper.

Change in manuscript:

We have supplemented the sections of accuracy assessment and data inter-comparison.

6. Writing
Language needs further improvements. A lot of sentences are difficult to understand, and some
sentences are broken in the context. Please polish the language during revision.

Response 6:

Thanks for your suggestion.

Change in manuscript:

We have polished our language with a native English consultant.

Specific comments:
L19: report how many classes

Response s1:

The classification system consists of 7 classes, including cropland, forest, grassland, shrubland,

tundra, barren land, snow/ice, as shown in Table 1 in the manuscript.

Change in manuscript:

We have added the information in the corresponding place as you suggested.

L20: 85% accuracy based on what?



Response s2:

It was based on 23459 test samples in 2015. And the overall accuracy of the produced GLASS-GLC
CDR in 2015 is 86.51 %. The test samples come from the 30 m resolution FROM-GLC_v2 test
sample set (Li et al., 2017).

To give a more effective assessment, we also performed an accuracy assessment using FLUXNET
site data and the newly collected independent test samples, and we supplemented this part of the

results.

Change in manuscript:

We have updated the detail in the corresponding place.

L22: how can you separate afforestation and forest expansion?

Response s3:

The data products we produce can only provide information at the observation level. For example,
the information we can obtain here is only forest gain. While the specific causes of these LCCs
should be analyzed and investigated separately, we cannot distinguish afforestation and natural
expansion of forests.

Change in manuscript:

We have modified our description according to our study.

L23: land degradation? did you mean grassland loss? if it is degradation, it may still be grassland.

Response s4:

Yes, we do mean by grassland loss. At the individual mapping unit level, we cannot detect land
degradation.

Change in manuscript:

We have changed the word “land degradation” to “grassland loss”.

L25: greening is not directly related to LCC. very complex processes behind.



Response s5:
Greening is indeed a very complex process. Here, we mainly refer to vegetation gain such as forest
gain in our results, which can only be used as evidence from the perspective of remote sensing and

mapping. Thanks for pointing it out.

Change in manuscript:

We have corrected our expression.

L37: What is “surface attributes”?

Response s6:

It refers to the characteristics and properties of the Earth surface. The change of land cover would
change the status of the Earth surface.

Change in manuscript:

We have changed the word “attributes” to “characteristics”.

L44: too strong statement

Response s7:

Thank you for your reminding.

Change in manuscript:

We have modified our expression.

L70: “which will...” useless half sentence

Response s8:

Many thanks.

Change in manuscript:

We have rechecked the sentence and deleted it.



L75: not clear “more prone to consistency and data volume”, rephrase

Response s9:
What we mean here was that Landsat data has a higher spatial resolution, but it also meets some
problems including obvious cloud contamination, data inconsistency caused by multiple generations

of sensors and relatively larger data volume because of the high resolution.

Change in manuscript:

We have changed it to detailed description.

L87: “Because of...” duplicate

Response s10:

Thanks for your comment.

Change in manuscript:

We have changed the used “Because of” to “Due to”.

L91: analyses

Response s11:

Thank you for correcting us.

Change in manuscript:

We have changed the word.

L136: explain if you have level 2 class and how they were derived

Response s12:

There are no Level 2 classes in our results. Considering the resolution and separability of GLASS
data, only Level 1 classes are included. The description of Level 2 classes comes from the original
design in the FROM-GLC classification system (Gong et al., 2013). It was listed in Table 1 to better
show the meaning of each Level 1 class. In the future, we will try to produce land cover products



with a more detailed classification system.

L142: “2013-2015” is it a one-year map or three maps each for a year?

Response s13:

It was a one-year map, not three maps. Due to the problem of data quality, the Landsat data in one
year usually cannot meet the need for land cover mapping on a global scale. The production of the
FROM-GLC_v2 map took advantage of data from 2013 to 2015. And it can roughly be called circa
2015 (Lietal., 2017).

L145: “with a limited ...” not clear what it is.

Response s14:
When generating random points in ArcGIS with the “create random points” tool, we limited the

spatial interval among points greater than 0.1 by setting the parameter “minimum allowed distance”
as 0.1.

Change in manuscript:

We changed our description.

L147: “class distribution” do you mean “percentage of each class™?

Response s15:

Yes. It means the percentage of each class.

Change in manuscript:

We have changed the description.

L158: what is end-number? end of what?

Response s16:

It is called end-member. Due to the complexity of ground objects and the limited spatial resolution
of various sensors, the information contained in a pixel of remote sensing images is the mixture of
information of many ground objects, hence resulting in mixed pixels (Zhang et al., 2011). It is



assumed that there are pure land cover types known as basic mixing elements (known as end-
member) that cannot be further decomposed in the imaged area, and the process of finding these
end-members is referred to endmember extraction (Plaza et al., 2002). Here, to reduce the systematic
deviation of AVHRR products, we correct the GLASS data with MODIS products based on end-
members (Song et al., 2018).

L162: Is the smaller fluctuation the truth? Something you expected?

Response s17:

It is a trade-off. The purpose of data correction was to correct the original remotely sensed data to a
higher consistency, especially in the temporal dimension. Remotely sensed data is easy to be
affected by many random and systematic factors such as the atmospheric environment and sensor
situation. The values it reflects were usually not those of the real and direct surface conditions.
What’s more, many fake inter-annual variations exist in remotely sensed data (Friedl et al., 2010).
This will cause much trouble and disturbance especially in the use of time-series remotely sensed
data. Though the variations may be caused by phenological changes, other interfering factors exist,
and the trade-off is more beneficial in general.

The correction process carried out belongs to one of the data pre-processing processes in time-series

land cover mapping (Géamez et al., 2016), which was to mitigate and deal with these aspects and to
produce more consistent data for use.

L172: How is the performance of you trained random forest classifier? OOB R2 or independent
evaluation dataset?

Response s18:

The OOB accuracy of our random forest classifier reached to 87.12%.

Change in manuscript:

We have added this information in the manuscript.

L174: what are the other parameters and the default values?

Response s19:

The specific parameters are listed as follows. The number of trees was 200, the out-of-bag mode is
on. The number of variables per split was set to 0, as the square root of the number of variables. The
minimum size of a terminal node was 1, the fraction of input to bag per tree was 0.5, and the random



seed was 0.

Table 8 Specific parameters of the random forest classifier

Parameter Value
Number of trees 200
Number of variables per split 0
Minimum size of a terminal node 1
Fraction of input to bag per tree 0.5
Whether the classifier should run in out-of-bag mode True
Random seed 0

Change in manuscript:

We have listed the above parameter values in the manuscript.

L179: “the mode of...” not clear

Response s20:
The mode here refers to the class label that has the highest frequency in the segmented period with
the calculated breakpoints. To improve the time consistency in the classification results, we use the

mode class label to replace all the class labels in the period.

Change in manuscript:

We have updated our expression.

L186: How about the heterogeneous pixels? Not assessed at all?

Response s21:

Thanks for your question. In the newly collected independent test sample set, we use random points,
with no difference between homogeneous and heterogeneous pixels. Therefore, the new assessment
results include heterogeneous pixels.

L190: “class distribution”

Response s22:

Thanks for your reminding.



Change in manuscript:

We have changed the description.

L206: It is OK to fit a linear trend, but you cannot say to remove ... because it may be caused by
the actual LCC

Response s23:

Thanks for your advice. Our purpose was to fit a linear trend for better extraction of the land cover
change trend in the long time-series land cover data. The fluctuations in the land cover were
generally seen as an abnormal condition caused by climate conditions and phenological changes
since the land cover is stable in most areas in the world across years, but they can be caused by the
actual land cover change as you said.

Change in manuscript:

We have changed the description.

L212: why is summed?

Response s24:

Because we wanted to ensure the significance of the land cover change trend. For each pixel in the
land cover map of each class, the original 0.05 “pixel is labeled with 0 or 1 (belonging to the class
or not), and such categorical data (not continuous data) cannot be statistically hypothesized. In order
to carry out the hypothesis test, some studies used downscaling (Wang et al., 2016). By downscaling,
the categorical label data can be summed up as the area ratio of the class (numerical data) in a greater
statistical area, thus a statistical hypothesis test can be performed to verify the significance of land
cover change.

L213: what is “annual change in slope of area ration?

Response s25:

We are sorry for making a slip in writing. It is in fact “annual change slope of area ratio” estimated
from a Theil-Sen estimator. More specifically, it represents the speed of land cover change.

Change in manuscript:

We have corrected it.



L219: why only statistically significant change was included? It is still area change even the trend
is not significant. The way you process data exaggerate the changes.

Response s26:

Yes, there are certain shortcomings in doing so. But relatively speaking, this is a better strategy.
Because it usually exists fake inter-annual land cover change in time-series land cover mapping
studies (Sulla-Menashe et al., 2019) caused by many kinds of factors as explained in the above.
Although there may be some real land cover change, to ensure the significance and reduce the
uncertainty we did not include those into the statistics.

L223-224: Again, why only change mask?

Response s27:

Because we want to ensure the statistical significance and reduce the uncertainty caused by
classification noises to detect more robust long-term land cover change trends.

L225: “direct” duplicate

Response s28:

Thank you for your comment.

Change in manuscript:

We have deleted the word.

L242: Need to explain UA and PA for non-remote-sensing readers; explain what the column and
row names refer to.

Response s29:

Thanks for reminding. UA and PA represent user’s accuracy and producer’s accuracy respectively.
They are two metrics reflecting the accuracy of classification. UA = corrected classified sample
number / total sample number in the classification, PA = corrected classified sample number / total
sample number in test sample.

Change in manuscript:




We explained the abbreviations in the titles of the corresponding tables.

L245: “Grassland is ...” , from Table 3, they are shrubland and forest

Response s30:

It was concluded from the row dimension with the user’s accuracy. But as for the producer’s
accuracy, it is as what you said.

L248: samples

Response s31:

Many thanks.

Change in manuscript:

We have corrected the word.

L255: these are regions with intensive LCC

Response s32:

Some regions such as Africa show relatively intensive LCC. There may be more mosaic pixels in
these places in Africa, which may also lead to high uncertainty

For other regions with relatively high uncertainty, their locations are close to the continent edge
which may be one of the reasons. The uncertainty map was reported based on the interpolation of

test samples, the uncertainty values near the edges where test samples are rarely distributed would
be affected to some degree.

L259: “variation curves” temporal changes

Response s33:

Thank you very much for your kindness.

Change in manuscript:




We have changed the phrase.

L260: Why so strong forest increase from 2006-2008? is it real?

Response s34:

We think it should be carefully treated. Since we do not have sufficient reference data, we cannot
be sure if this is real or artifacts. The fluctuations in the curves can be seen as one of the
representations of the uncertainty using coarse-resolution remotely sensed data.

L262: what about cropland? why so high variations, especially in 1994, 1999?

Response s35:

Cropland showed a slightly increasing trend, but not significantly. The high variations also reflect
some kind of uncertainty introduced by the input data.

L263: Fig. 9, explain the meaning of your boxplot, mean, median, IQR, 90%, max, min? Why use
the ratio, instead of total change area which is more straightforward?

Response s36:

The box extends from the first (lower) quartile (Q1) to third (upper) quartile (Q3) values of the data,
with a line indicating the median. The whiskers extend from the box to show the range of the data.
The upper whisker extends to the last datum less than Q3 + 1.5 * IQR, and the lower whisker
extends to the first datum greater than Q1 - 1.5 * IQR. Flier points are those past the end of the
whiskers. We wanted to use the change ratio to better reflect that how much percentage of global
land cover changed in one year exactly like other studies (Friedl et al., 2010;Sulla-Menashe et al.,
2019).

Change in manuscript:

We have added the corresponding introduction.

L263: “different time periods” the gross change each year or on the difference between the first and
the last year in each period?

Response s37:

The annual ratio of the global land cover change area to the global total terrestrial area is plotted in



Fig. 9, but in a form of boxplot organized in a 5-year interval (a) and 10-year interval (b).

Change in manuscript:

We have revised our description.

L267: It's interesting to see a very likely decreasing trend of total LCC area.

Response s38:

Yes, and it was what our results showed.

L270: Fig. 10: The text and subplots in the figure is too small to read. | would suggest to only show
the main land cover types and put the others to Sl

Response s39:

Thanks for your suggestion.

Change in manuscript:

We have moved the low percentage classes such as shrubland, tundra and snow/ice to the
supplementary information part.

L271: why only significant LCC? is it really necessary? why not just sum all?

Response s40:

In our opinion, the statistical test is necessary to lower the uncertainty in the long time-series land
cover mapping results, especially for 0.05<such coarse resolution data.

L287: Table 5-10: too detailed, may put into SI and merge these results in a plot with different
subplots

Response s41:

Thank you for the advice.

Change in manuscript:




We have reorganized the tables and put some into the supplementary information part.

L299: In In

Response s42:

Thanks for your correction.

Change in manuscript:

We have deleted the extra word.

L304-308: see my comments on greening above

Response s43:

Thanks again.

Change in manuscript:

We have deleted the corresponding part.

L309: need to note the high uncertainty from Fig. 7

Response s44:

Thank you for your valuable comment.

Change in manuscript:

We have added the note in the manuscript.

L310-311: greening again

Response s45:

Thanks again.

Change in manuscript:




We have deleted the corresponding part.

L313: Look at Fig. 10 and 11, significant grassland changed to forest in your dataset in the high
latitudes

Response s46:

Yes, it is.

L316-317: why barren land decrease implies the desertification effects?

Response s47:

We may not expressed it clearly. What we mean was the management efforts to the desertification.

Change in manuscript:

We have updated the description.

L321: what is a coupling effect? non-relevant sentence

Response s48:

Thank you for the comment. What we mean was that natural and human factors usually had a
significant joint effect on land cover change. Both aspects contribute to making a difference.

Change in manuscript:

We have revised the sentence.

L324 and all below: referring a or b when you report something. Why no explanations on the
transitions from grassland to forest, which is the most obvious pattern in your figure

Response s49:

Thanks for your suggestion. This may be related to the shortcomings of the hard classification we
adopted. As you pointed out above, the forest may become denser and the land cover class may
change. But the interpretations of these phenomena are not the main focus of this paper.



L338: too strong statement. surface greening is not something that you can directly interpreted from
LCC.

Response s50:

Thanks for your comment.

Change in manuscript:

We have changed the word.

L345: “natural vegetation” managed forest or pasture are not natural vegetation

Response s51:

Thank you for the comment. We used the wrong word.

Change in manuscript:

We have deleted the word “natural”.

L346: how about reforestation?

Response s52:

Yes, human activities also include reforestation. The focus of this paper is still on data product
introduction and evaluation, we will weaken this part of the introduction.

Change in manuscript:

We have revised our description to avoid the ambiguity.

L355: shy subtropical mountain system is also high?

Response s53:

Figure 6 shows the division of eco-regions from FAO, where regions in the orange color belong to
subtropical mountain system. Referring to Fig. 5, they overlaps some regions with a relatively high
human impact level, such as Spain, central China, east America and South Africa. These regions
may bias the overall results.



Figure 6 Subtropical mountain system eco-regions from FAO.

L363: Fig. 15 is very misleading with only >0 and <0. Why not give gradient of change?

Response s54:

Thank you very much for your suggestion. Here, we do so because we want to more intuitively
reflect the information about where gain or loss occurred.

L365 and below: again, give the subplot title when you describing the results.

Response s55:

Thanks again.

Change in manuscript:

We have added the information as you suggested.

L381: Do you have evidence that global warming will increase vegetation in tropics?!

Response s56:

This part of the analysis is not the focus of this paper.

L383-384: Oil palm plantations are forest or crop in your classification system? | am not sure
whether you can distinguish them!

Response s55:



We are sorry for it. In our classification system, oil palm plantations are forest.

Change in manuscript:

We have adjusted the sentence.

L399: Is that partly why you detected forest increase at the expense of grassland?

Response s57:

We are afraid not. Mongolia and Inner Mongolia of China mostly belong to semi-arid regions. The
land cover types there should be grassland or barren land. It should have nothing to do with the
forest.

L421-423: yes, this is the main defect of this product.

Response s58:

Yes. This is also one of the common problems of hard classification.

L435: This is definitely something that has to be done in this work.

Response s59:

Thank you for your advice. In order to specifically evaluate the magnitude of the errors introduced
by our training samples, we randomly selected 500 samples from the training samples for manual
interpretation and evaluation, and the assessment accuracy was 92.26%. It shows that the training
samples we generate this way are sufficient for our data production.

Change in manuscript:

L441: what about the heterogeneous pixels?

Response s60:

We have added new samples for comprehensive independent accuracy assessment, where
heterogeneous samples are also included.



L460: NDVI and LAI increase not equal to forest increase

Response s61:

Indeed it is. NDVI and LA are features that help forest classification, and we are not strict in saying
so here.

Change in manuscript:

We have updated our words.

L455-463: not helping but expose the weakness of the product

Response s62:

Thanks for your comment.

Change in manuscript:

We have deleted the corresponding part.

L464-465: This contradicts that you said forest loss in SE Asia is due to oil palm plantations

Response s63:

We are sorry for it. In our classification system, oil palm plantations are forests.

L466-467: need more explanations to justify the reasons for doing this.

Response s64:

As mentioned above, this is the result of our trade-off. There are too many uncertain factors in
remote sensing. In contrast, suppressing some real fluctuations in LCC, and performing post-
processing in the time dimension can make data products more reliable, less uncertain and less noisy.
And the accuracy improvement brought by change detection illustrates the effectiveness of doing
so.
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Response to RC2

We thank the reviewer for the comments and thoughtful review. Please find our detailed response
along with the suggested changes to our manuscript below.

General comment:

By fusing multiple existing geo-spatial datasets, the main work of this manuscript is to generate an
annual dynamic product (spatial resolution: 0.5 addressing seven kinds of land-covers (i.e.,
cropland, forest, grassland, shrub-land, tundra, barren land and snow/ice) from 1982 to 2015. With
eye on the current existing datasets (i.e., from the perspective of classification system, period of
time, and spatial/temporal resolution) the contribution is quite limited. In view of the rationality of
technique and accuracy assessment, current version calls for serious revision before publication. In
view of the analysis conducted on the dynamic map, rare novel findings can be captured.

Response 1:

Thanks for the comment. First of all, this is a paper describing a unique data product. It is not 0.5
degrees in resolution but 5 km. Since it is about land cover data product, it is not our attention to
make novel discoveries. The purpose here is mainly to present a data set that does not exist anywhere
before, for its annual frequency, 34 years long duration and high accuracy. The classification system
does cover more than 90% of the land area. We did not include water, wetland, and impervious areas
because wetland is extremely dynamic (more frequent than the yearly scale), water excluded from
the input data source, and impervious areas already processed using more accurate source of data
(e.g., annual Global Artificial Impervious Area maps, (Gong et al., 2020)). The accuracy assessment
has been further improved using additional collection of test samples. We also compared our results
with other data products and found that our results are superior.

Specific comments:

There are several global datasets with more rigorous production process have existed. 1) The 1992-
2018 annual 300m global land-cover data (https://www.esa-landcover-cci.org/?qg=node/197 ) with
more detailed classification scheme have been released. Since the proposed product has no accuracy
assessment on the annual maps from 1982-1991, it cannot be argued that the proposed work have
longer period of time.

Response 2:

Thanks for your comment. We agree that ESA-CCI products have higher spatial resolution and more
detailed classes. However, products with different resolution have different application purposes. In
many studies, it is only necessary to use coarse-resolution land cover data, such as our 0.05 ° data,
which can be used in Earth system modeling.



For Earth system modeling purposes, the 10 land cover classes mentioned in our response at the
beginning are sufficient. Among the ten classes, except for wetland, impervious area, and water that
occupy less than 10% of the entire land area on Earth. In the meantime, water and impervious areas
can be individually obtained. Wetland is highly dynamic requiring additional types of remotely
sensed data. Considering the separability and identifiability of the land cover classes under the 5 km
spatial resolution, we adopted a classification system of 7 classes.

In this revision, we collected new independent test samples and performed accuracy assessment for
the period of 1982-1991. In addition, we have compared our products with ESA-CCI and MODIS-
based land cover data products and FAOSTAT data. The results show that our products have good
reliability.

Specifically, we collected 2431 randomly distributed 5km sample points in different years around
the world. According to the majority principle, we manually interpreted the land cover class of each
sample as an independent test sample. Besides, in order to verify the accuracy of the change
detection method, we also compared the classification accuracy before and after the change
detection. The temporal distribution of the newly collected test samples is shown in Fig. 1, and the
geographical distribution is shown in Fig. 2.
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Figure 1: The temporal distribution of the newly collected test sample.

60°8

g 160°V 12090 BOOW 400w 3 ey SOOE 120°F 160°K



Figure 2: The geographical distribution of random test sample.

The new assessment result is shown in Table 1 and Table 2. It shows that OA of GLASS-GLC
without change detection is 81.28%, and OA with change detection is 82.81%. This reflects the
reliability of GLASS-GLC since the test samples are randomly distributed along the spatial and
temporal dimensions, and also confirm the significance and effectiveness of the change detection
method.

Table 1: Classification accuracy of GLASS-GLC without change detection under 2431 independent
test samples. (Overall accuracy = 81.28 %, UA = User’s Accuracy and PA = Producer’s Accuracy)

Croplan Shrublan Barren

Total

Class Forest Grassland Tundra Snow/ice UA

d d land number
Cropland 257 21 34 15 0 31 0 358 71.79%
Forest 35 620 45 27 22 1 1 751 82.56%
Grassland 17 26 248 12 3 19 4 329 75.38%
Shrubland 7 6 10 154 9 12 0 198 77.78%
Tundra 0 9 11 12 250 3 0 285 87.72%
Barren land 4 1 13 14 5 355 6 398 89.20%
Snow/ice 0 4 3 0 0 13 92 112 82.14%
Total 320 687 364 234 289 434 103 2431
number
PA 80.31%  90.25%  68.13% 65.81% 86.51%  81.80%  89.32% 81.28%

Table 2: Classification accuracy of GLASS-GLC with change detection under 2431 independent
test samples. (Overall accuracy =82.81 %, UA = User’s Accuracy and PA = Producer’s Accuracy)

Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snow/ice UA

d d land number
Cropland 262 19 32 20 0 25 0 358 73.18%
Forest 33 637 29 28 24 0 751 84.82%
Grassland 24 24 254 6 13 8 0 329 77.20%
Shrubland 12 3 11 159 6 7 0 198 80.30%
Tundra 0 12 9 4 250 10 0 285 87.72%
Barrenland 5 1 17 8 7 357 3 398 89.70%
Snow/ice 0 5 6 0 0 7 94 112 83.93%
Total 336 701 358 225 300 414 97 2431
number
PA 77.98%  90.87%  70.95% 70.67% 83.33%  86.23%  96.91% 82.81%

We inter-compared GLASS-GLC with other available global land cover products with a relatively
long time series. Land cover products from MODIS and the ESA-CCI were used. The MODIS-
based global land cover products come from Collection 6 (C6) MODIS Land Cover Type (MLCT)
products (Sulla-Menashe et al., 2019), and are supervised classification results from 2001 to 2016.
Considering the comparability to our classification system, the FAO-Land Cover Classification

System land use (LCCS2) layer was used. The corresponding relationships of classes are listed as



follows, and the class names we used are the latter: barren - barren land, permanent snow and ice —
snow/ice, all kinds of forest — forest, forest/cropland mosaics and natural herbaceous/cropland
mosaic — cropland, natural herbaceous and herbaceous cropland — grassland, shrubland - shrubland.
The ESA-CCI global land cover products (Bontemps et al., 2013) are 300m resolution yearly
products ranging from 1992 to 2015. The products were developed using the GlobCover
unsupervised classification chain and merging multiple available Earth observation products based
on the GlobCover products of the ESA (Liu et al., 2018). Referring to the class relationships in (Liu
et al., 2018), we cross-walked classes including cropland, forest, grassland, shrubland, barren land

and snow/ice.

Apart from land cover products, we also compared GLASS-GLC with the Food and Agricultural
Organization of the United Nations statistical data (FAOSTAT) on cropland and forest (forest land)
classes, which are the main sources of country-level land cover data for many applications. The
annual FAOSTAT data set on cropland we used ranged from 1982 to 2015, and that on forest we
used ranged from 1990 to 2015.

We made an inter-comparison between classes including cropland, forest, grassland, shrubland,
barren land and snow/ice. The main inter-comparison is the area corresponding to the top 50
countries in each class. Besides, to compare the accuracy of different products, test samples from

FLUXNET site data in 2015 are given for independent accuracy assessment.

The assessment results of MODIS-based land cover products and ESA-CCI land cover products
based on test samples from FLUXNET site data are shown in Table 6 and Table 7, respectively. The
overall accuracies of ESA-CCI products and MODIS-based products are 73.90% and 80.38% in
2015, respectively. Compared to these, The overall accuracy of GLASS-GLC (82.10%, Table 5) is
superior. Although the cross-walk of the different classification systems may be slightly different,
It can still reflect the high accuracy of our GLASS-GLC products.

Table 3: Classification accuracy of GLASS-GLC in 2015 based on FLUXNET test sample. (Overall
accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy)

Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snow/ice
d d land number
Cropland 63 5 17 1 0 0 0 86 73.26 %
Forest 13 243 9 2 0 0 0 267 91.01 %
Grassland 8 21 91 2 0 2 0 124 73.39 %
Shrubland 7 3 0 19 0 0 0 29 65.52 %
Tundra 0 3 0 0 14 0 0 17 82.35 %
Barrenland 0 1 0 0 0 1 0 2 50.00 %
Snowl/ice 0 0 0 0 0 0 0 0 -
Total
91 276 117 24 14 3 0 525
number
100.00 82.10
PA 69.23% 88.04% 77.78 % 79.17 % 3333% -
% %




Table 4: Classification accuracy of the MODIS-based land cover product in 2015 based on
FLUXNET test sample. (Overall accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s
Accuracy)

Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snowl/ice

d d land number
Cropland 7 5 73 0 0 0 0 85 8.24%
Forest 1 261 5 0 0 0 0 267 97.75%
Grassland 1 15 108 1 0 0 0 125 86.40%
Shrubland 0 9 9 11 0 0 0 29 37.93%
Tundra 0 3 6 8 0 0 0 17 -
Barrenland 0 0 1 0 0 1 0 50.00%
Snow/ice 0 0 0 0 0 0 0 0 -
Total

9 293 202 20 0 1 0 525
number
PA 77.78%  89.08%  53.47% 55.00% - 100.00% - 73.90%

Table 5: Classification accuracy of the ESA-CCI land cover product in 2015 based on FLUXNET
test sample. (Overall accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy)

Croplan Shrublan Barren . Total
Class Forest Grassland Tundra Snow/ice UA

d d land number
Cropland 81 1 4 0 0 0 0 86 94.19%
Forest 11 246 4 5 0 1 0 267 92.13%
Grassland 28 7 76 5 0 8 0 124 61.29%
Shrubland 2 7 1 19 0 0 0 29 65.52%
Tundra 0 3 9 0 0 5 0 17 -
Barren land 0 0 2 0 0 0 0 0.00%
Snowl/ice 0 0 0 0 0 0 0 0 -
Total

122 264 96 29 0 14 0 525
number
PA 66.39%  93.18%  79.17% 65.52% - 0.00% - 80.38%

Figure shows an inter-comparison with MODIS-based products, Figure with ESA-CCI products
and Figure with FAOSTAT. The scatter plots and the linear fit lines reflect the results in 2015, and
the box plots represent the distribution of R? of the annual linear fit lines for each class. It can be
seen that various classes in several different products are relatively equivalent although they are
under different classification systems. In comparison with MODIS-based products, the results of
2001-2015 for cropland, forest and snow/ice have high R2. In comparison with ESA-CCI products,
the mean R? of the linear fit lines of forest, grassland and snow/ice during 1992 to 2015 reach 0.99,
0.82, and 0.98, respectively, while the R? for shrubland is low. The inter-comparison of some other
classes is poor, which may be caused by differences in class definition in various classification
systems. For instance, our classification system incorporates tundra, while the other two did not.
Compared with FAOSTAT, the mean R? of the linear fit lines of cropland and forest is 0.82, and
0.87, respectively. In general, our GLASS-GLC products have a reasonable consistency with other
products and statistics and the difference are not significant.



What’s more, the duration of GLASS-GLC is much longer than MODIS-based and ESA-CC land
cover products (as shown in Fig. 6). The comparison with other data illustrates the reliability and

superiority of GLASS-GLC.
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Figure 3: Inter-comparison with the MODIS-based land cover product, (a) cropland circa 2015, (b)
forest circa 2015, (c) grassland circa 2015, (d) shrubland circa 2015, (e) barren land circa 2015 and
(f) snow/ice circa 2015; (g) mean R2 of the annual linear fit lines for all years (2001-2015).
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Figure 4: Inter-comparison with the ESA-CCI land cover product, (a) cropland circa 2015, (b) forest
circa 2015, (c) grassland circa 2015, (d) shrubland circa 2015, (e) barren land circa 2015 and (f)
snow/ice circa 2015; (g) mean R2 of the annual linear fit lines for all years (1992-2015).
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Figure 6: The duration of different land cover products, including GLASS-GLC, MODIS-based
land cover products and ESA-CCI land cover products.

Change in manuscript:

We have added the new accuracy assessment results and data inter-comparison results to help show
the reliability and effectiveness of GLASS-GLC.

2) The annual VCF products from 1982- 2016 have the same spatial resolution, and very similar
classification scheme with the proposed work (from 1982-2015). Although the VCF product is
missing in 1994 and 2000, the proposed work just directly use the data-source around the adjacent
year, which cannot be viewed as a noticeable contribution. Meanwhile, since the proposed work
also introduce VCF in the supervised classification, the analysis on the dynamic map is somewhat
similar to this existed study (Song et al 2018a) , but more superficial.

Response 3:

Thank you for your comment. VCF is a quantitative variable. VCF data products mainly reflect
vegetation cover information. Our land cover classes include multiple types of nominal variables.
Again VCF and land cover information have different purposes of applications.



Here, we introduce VCF as a priori information to assist in land cover classification. VCF data is
missing for two years, but this will not greatly affect the classification results. The auxiliary or
supplementary data for classification and interpretation do not need to be perfect. They do not need
to be in the same period or at the same resolution. As long as there is supplementary information, it

will work, such as in the four-dimensional variational data assimilation.

For the analysis part of the land cover classification, the results are similar to those obtained from
the analysis of VCF, which also confirm the objectivity and correctness of VCF analysis. But it is
worth pointing out that our products can analyze many more detailed classes, so we can also draw

some different conclusions.

Considering that the type of this paper is a data paper, our main focus is on the description of the
production methods and quality control of data products, and the comparison and analysis of data
quality and accuracy. More in-depth LCC analysis is out of the scope of this study.

Technical corrections

1. It is ridiculous to produce training and test set from a same product and in a same manner. In
addition, it is unacceptable to conclude the applicability of the long-time period product by assessing
the accuracy on only the 2015 land-cover mapping result.

Response 4:

Thank you for your comment. There may be some flaws in the way we evaluate accuracy.

Taking this into consideration, in addition to the accuracy assessment of samples taken from the
FROM-GLC_v2 product, samples from FLUXNET site data are also given for independent
accuracy assessment. The assessment results are shown in Table 3. The overall accuracy of GLASS-
GLC reached 82.10% in 2015.

In addition, as described in response 2 above, we conducted a new independent sample test
(OA=82.81%) and a comparison of multiple products (land cover products from MODIS and ESA-
CCI, and FAOSTAT data), which also proved the reliability of our products.

Change in manuscript:

We have added the new accuracy assessment results and data inter-comparison results to help show
the reliability and effectiveness of GLASS-GLC.

2. How to project the 30m FROM-GLC_v2 to mapping scale? How to deal with the mixed sample?

Response 5:



Thank you for your question. As the paper says, we projected the results of FROM-GLC_v2
according to the principle of majority. That is, the land cover class that accounts for the largest
proportion in each grid is used as the land cover class label under the 0.05 °© grid. Generating coarse-
resolution samples from high-resolution products as such is actually a common practice (Wang et
al., 2016;DeFries et al., 1998).

For mixed samples, we also use the majority principle to give labels. Although percentage
information is more suitable for dealing with mixed pixels, our goal here is hard classification, and
we cannot avoid only doing so. This is also a problem that arises in hard land classification studies.

Considering the cost constraints, we have adopted this method of generating new samples even
though it will bring some errors when producing coarse resolution samples from FROM-GLC v2.
However, the “stable classification with limited sample” theory (Gong et al., 2019) supports our
approach to some extent. The theory shows that under its experimental conditions, even if 20% of
the wrong samples are introduced, the classification accuracy is reduced by 1%, and it can still be
stable (Fig. 7).
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Figure 7: Sample robustness to size reduction and errors in sample. a. As sample size increases, the
accuracy quickly reaches a plateau. b. As the impurity percentage of sample increases the accuracy
decreases. In both cases, the 1000 times random drawing of sample points produced very stable
overall classification accuracies with most standard deviations much lower than 0.5%. (Gong et al.,
2019)

The newly added results of accuracy assessment have also confirmed that the samples produced in
this way can meet the production needs.

3. There is no sample accuracy assessment on the produced training sample set. Please note that the
accuracy of the FROM-GLC_v2 is not high enough to work as training sample.

Response 6:



Thank you for your point. The classification accuracy of FROM-GLC v2 will surely have some
impact on our results. However, FROM-GLC_v2 has been published, and it has a detailed accuracy
assessment, with an OA of 73.13%. There is some complicated relationship for the use of higher
resolution land cover data in producing lower-resolution land-cover products. Since there is a
scaling down which requires aggregation of high-resolution land cover results. This often acts as an
averaging effect that improves the accuracy in the area to some extent. Even if there is no accuracy
increase during the scaling down process, the 73% accuracy would not cause a large accuracy
decrease as can be seen from the figure in the right-hand side of Fig. 7.

To specifically evaluate the magnitude of the errors introduced by our training samples, we
randomly selected 500 samples from the training samples for manual interpretation and evaluation,
and the assessment accuracy was 92.26%. It shows that the training samples we generate this way
are sufficient for our data production.

Change in manuscript:

We have added the accuracy assessment results on training samples.

4. When mapping the land-covers decades year ago, the suitability of the samples collected (mainly
from 2013-2015) should be evaluated.

Response 7:

Thanks for your advice. We agree that, in the early years, the percent of land cover change may be
relatively large. However, global land cover will not change by more than a few percents for decades.
And these changes are primarily in urban and urban-rural fringe areas. The outdatedness of samples

will not affect much of our accuracy assessment.

Concerning the reliability of sample migration, the “stable classification with limited sample” theory
is specifically discussed (Gong et al., 2019).

In this study, the concept of a stable classification is defined. They use this concept to approximately
determine how much reduction in training sample and how much land cover change or image
interpretation error can be acceptable. If the mean accuracy of multiple runs of a classifier trained
with a random drawing of a certain percentage of sample points from the total sample is within 1%
of what can be achieved with the total sample set, we regard the obtained classification result
“stable”. The 1% threshold is empirically chosen based on the fact that a loss of overall accuracy in
1% shall not significantly impact the application of a global land cover map.

Tens of millions of experiments suggest that it is possible to use 60% fewer sample points and even
the land cover changed by 20% or the training sample contains 20% errors, we are still able to
achieve “stable” classification with the random forest classifier in global land cover mapping. This
conclusion well supports the effectiveness of our sample transfer method. Even for decades, it is



difficult for global land cover to change by more than 20%. Therefore, the proportion of error
samples we introduced in the early years will not exceed 20%, and the classification results are still
reliable and effective.

Another recent study (Huang et al., 2020) also devoted to migrating training samples to early years.
They developed an automatic training sample migration method, which can successfully migrate
training samples in 2015 to 2000. These studies prove the effectiveness of sample migration and
provide potential solutions to resolve the problem of lack of training samples for dynamic global
land cover mapping efforts.

Besides, to verify the temporal accuracy of our products, as mentioned above, we have
independently collected test samples from different years and tested the accuracy of our products,
with an accuracy of 82.81%. What’s more, the inter-comparison results with other data have also
confirmed the validity of our data using the 2015 sample for many years.
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1 Introduction

Land cover (LC) is the physical evidence on Earth. It is the result of both natural and human forces (Running, 2008;Sterling
et al., 2013;Tucker et al., 1985;Gong et al., 2013;Yang et al., 2013). It is an important source of information to understand the

complex interaction between human activities and global changes (Lambin et al., 2006). LC data is one of the most important

energy balance and biogeochemical cycles (DeFries et al., 1999;Claussen et al., 2001), further affecting climate change gnidj [&ET?&E&": FARE: ST 1

(Matthews et al., 2004). LC and LCC information is also valuable to resource management, biodiversity conservation, food
security, forest carbon, etc (Houghton et al., 2012;Achard et al., 2004;Andrew K et al., 2015). Therefore, more frequent land
cover information at the global scale is highly desirable.

However, LC is highly dynamic due to changes in natural phenology and human activities (Lambin et al., 2001). This

monitoring can be effectively carried out (Cihlar, 2000;Pal, 2005;Gallego, 2004;Chen et al., 2018). However, previous

monitoring mainly focuses on the mapping of a particular area (Liu et al., 2002;Brink and Eva, 2009;Yuan et al., 2005;Margono

et al., 2012;Feng et al., 2018) or in a single time period (Homer et al., 2004), and because of the differences in data sources

making it difficult to quantify the changes effectively (Friedl et al., 2010).

Automatic mapping methods depend highly on the sample dataset for its representativeness, quantity and quality due to the
considerable heterogeneity at the global level (Gong et al., 2013;Li et al., 2014). A combination of a comprehensive global
sample dataset, professional interpretation and support from mapping teams are needed (Li et al., 2017). In general, sample
LC data are mainly collected from field visits or manual interpretation (Li et al., 2016;Hansen et al., 2000). Generalization

from higher resolution LC map products can also be useful for coarser resolution mapping purposes (Song et al., 2018a). The
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feasible option and is more efficient but largely depending on the accuracy of the parent product.

A number of global LC products exists. Some examples include the 30 m Finer resolution observation and monitoring of global
land cover (FROM-GLC) (Gong et al, 2013), the 1992-2015 annual 300 m global land cover data
(http://maps.elie.ucl.ac.be/CCI/viewer/index.php), MODIS global land cover product (Friedl et al., 2010), 1 km International
Geosphere-Biosphere Programme Data and Information System Cover map (IGBP-DISCover) (Loveland et al., 2000), 1 km
University of Maryland (UMD) land-cover map (Hansen et al., 2000), 1 km Global Land Cover 2000 (GLC2000) map
(Bartholome and Belward, 2005). These mapping results tend to focus on a single or short period of time, and because of their
different classification systems and resolutions, they are difficult to compare (Ban et al., 2015;Grekousis et al., 2015). However,
high-resolution mapping results can be used as an effective reference for low-resolution mapping (Song et al., 2018a;DeFries

et al., 1998). Therefore, when performing lower-resolution global mapping, it is possible to consider directly generating

is poor. The requirements for pre-processing and consistency processing such as cloud removal and missing value filling are
high. The GLASS CDRs based on AVHRR data tend to have better data consistency due to the systematic data production
(Liang et al., 2013). Using such data for LC mapping can significantly improve the consistency and comparability of mapping
results, and thus can be effective in supporting change analysis. If the consistency of the original data source used is not good
enough, it may be necessary to collect annual samples for classification to ensure the reliability of change analysis (Xu et al.,
2018).

Recently, some attempts have been made to map global LC over a long time series, but these have focused on a single class
(such as water bodies (Wood et al., 2011;Pekel et al., 2016;Ji et al., 2018), impervious surface (Schneider et al., 2010;Zhang
and Seto, 2011;Gong et al., 2020), cropland (Pittman et al., 2010), etc.) or a few classes (such as Vegetation Continuous Fields

(VCF) (Song et al., 2018a), mainly depicting vegetation changes). General purpose multi-class land cover mapping over a

et al., 2017), we produced the first CDR set of consistent and reliable LC products, GLASS-GLC, covering the period from

1982 to 2015. The data used was primarily the 0.05 ° AVHRR-based GLASS CDRs. The classification system is adjusted from
3
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the FROM-GLC according to the data characteristics. Below, we describe the methods used, results obtained with some

2 Data and methods

The framework for mapping GLASS-GLC is shown in Fig. 1. It includes annual feature collection and construction, training
sample generation, classification and time consistency adjustment, accuracy assessment and product inter-comparison. The
entire framework is implemented in the GEE. The GEE is a cloud-based platform for planetary-scale geospatial analysis that
brings Google's massive computational capabilities to bear on a variety of high-impact societal issues including deforestation,

drought, disaster, disease, food security, water management, climate monitoring and environmental protection (Gorelick et al.,

2.1 Data

The annual feature collection from 1982 to 2015 involves a variety of data products, the most important of which is the latest
version of GLASS CDRs. CDRs require data with a long time series, high consistency and high continuity, which is not the
same as the commonly-used remote sensing products (Hollmann et al., 2013;Cao et al., 2008). Derived from AVHRR data, the
product.bnu.edu.cn/). The products have a spatial resolution of 0.05 °, a temporal frequency of 8 days with a time span of
1982-2015. In our study, Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) (Xiao et al., 2016), Fraction

of Absorbed Photosynthetically Active Radiation (FAPAR) (Xiao et al., 2015), Evapotranspiration (ET) (Yao et al., 2014),

Visible band (ABD_WSA VIS), White-sky Albedo in Near Infrared band (ABD BSA NIR) and White-sky Albedo in

Shortwave band (ABD_WSA_shortwave) (Qu et al., 2014) are the variables used for subsequent classification.

[ R T : analysis
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g { BB T : for

HHI%T: 0a

To provide further reference, vegetation cover fraction (VCF) products are used to aid classification. The VCF products decribe - { BT : cxpress

the surface as a combination of vegetation proportions according to information from remotely sensed data. To match the
resolution of the GLASS CDRs, the VCF products used here (Song et al., 2018a) also have a spatial resolution of 0.05 °, and
are obtained from the Land Processes Distributed Active Archive Center (https://Ipdaac.usgs.gov/). These products are mainly
based on AVHRR, and the interannual consistency has been maintained. Based on the training samples from Landsat products
from around 2000 (Hansen et al., 2013;Ying et al., 2017), with a supervised regression tree model, the VCF products from
1982 to 2016 (data missing in 1994 and 2000) were generated, and were composed of the percentages of tree canopy (TC),
short vegetation (SV) and bare ground (BG) in each pixel.

iscriminating

In addition, in order to enhance the

Elevation Data of 2010 (GMTED2010). Based on the elevation data, the slope information can be further calculated to reflect
4

y { MIBR T : distinguishing
y

_capacity, we also used terrain data from Global Multi-resolution Terrain <f, - { BIR T : provided by

(T e
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from the GEE platform and contains 2010 Earth Elevation data collected from various sources. The primary source is the
Shuttle Radar Topography Mission (SRTM) Digital Terrain Elevation Data (DTED) (void-filled) 1-arc-second data. Other
sources are used for filling the gaps in areas outside the SRTM coverage. As the terrain is relatively stable over years, using
the data of one single year is plausible. The spatial resolution of the GMTED2010 data used is 7.5 arc seconds and it has been

upsampled to 5 km in subsequent analyses.

2.2 Classification system

The classification system in FROM-GLC Version 2 (FROM-GLC v2) defines eleven Level 1 classes that can be easily mapped
to the Food and Agricultural Organization of the United Nations (FAO) LC Classification System and the International
Geosphere-Biosphere Programme (IGBP) classification system (Wang et al., 2015). This classification system evolved from

the classification system of FROM-GLC Version 1 (Gong et al., 2013) with addition of leaf information.

We adjusted some classes of the original classification system according to the spatial resolution and situation of the data used { KT : used }
here. Our data are land surface products, where water surface has been masked out, the class of "water bodies" cannot be - { M T : Because the data used here }
extracted from the GLASS dataset. Wetland is a highly variable class and impervious surface whose patches are small in size. ) {jﬁaj%j’: the }

They are difficult to identify at the spatial resolution of 0.05 °(Wang et al., 2015). Thus, the water body, impervious surface,

and wetland classes were not included in this work, and they shall be derived with more specialized methods. While water and

2.3 Training samples

In order to obtain the training samples, we adopted the majority-class synthesis strategy. First, we projected the 30m FROM-
GLC_v2 results, that were created using Landsat data acquired mainly from 2013-2015 (Li et al., 2017), into a 0.05 ° coordinate
system. By calculating the area ratio of each class in each 0.05 ° pixel, the class with the greatest area ratio in each pixel was

used as the new class label in the aggregated 0.05 ° mapping results. Subsequently, sample points were randomly generated

BB T : (witha
MR : at

D ~

—

FROM-GLC_v2 0.05 ° mapping result (adjusted to be consistent with the new classification system). Finally, 10,000 training \\\ \ \‘

JHER T : an spatial limited interval }
BWE TR 744 (BA) Times New Roman, (413) Times }

sample units were obtained. The spatial distribution of training sample units is shown in Fig. 2 (a), and the percentage of

\

training sample, it New Roman

WERT ;) with t

IR T : class distribution of

\
\
\

MERT : s
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2.4 Feature collection

spectrum, and spectral index, etc. The annual percentiles (including 0, 10, 25, 50, 75, 90, 100) of all bands of the GLASS
CDRs and the mean and standard deviation of the NDVI between two adjacent percentiles are calculated, as an annual feature
collection from GLASS CDRs. Among them, the percentile that represents specific phenological information can provide
simplified time series information, reduce the noise of annual time series, and help improve the classification accuracy (Hansen
et al., 2013). By extracting the statistical information between adjacent percentiles, the time series information can be further
supplemented. Due to the systematic deviation of AVHRR products (Song et al., 2018b), in order to ensure the inter-annual

consistency of the GLASS features, we used the processing method developed for generating the VCF products, with the

2 X :el
corresponding MODIS products for end-member correction, where desert and intact forest are regarded as the endymember of - {M%T clement
I BIBRT : 3
each pixel (Song et al., 2018a). After the correction, the inter-annual inconsistency of feature collection from the GLASS CDRs %
| BB T :
is improved. Figure S1 shows the time series of the global median value of the GLASS ABD_WSA_VIS band, where the ,©
[ a0
orange one represents the curve before the correction and the grey one is the result after the correction. It can be seen that after — / / { I T : assisting th
/o R J @ assisting the
the correction, the fluctuations of the feature become smaller, and the individual abnormal values are also adjusted. ro “‘{ . and
Taking into account the time span of the GLASS CDR-based feature collection, the VCF products from 1982 to 2015 are used, ( BN TR |
. o . . ( C TR SO 1
with the missing 1994 and 2000 data supplemented by calculating the average of the adjacent years. There are three features [ it S 1
L FAHI: 0T
of the percentage of tree cover (TC), short vegetation (SV) and bare ground (BG) for each year. Based on the GMTED2010 / {
dataset, the slope information is calculated and finally jncluded to obtain an average slope value for each 0.05 ° pixel. In | [ R 10 B, TABIE: SO 1, SEECEE)
[ LR ST L
addition, the central latitude and longitude information of each 0.05 ° pixel is also recorded as part of the input features. Finally, {
an annual collection of 81 input features for the period of 1982 to 2015 was constructed, including the annual GLASS CDR [ JHIR T : and other parameters were set as default
percentile feature (7x9), the mean and standard deviation of the NDVI annual adjacent percentiles (6x2) and VCF features (3), / [ BETHER: Tk 10 B, PR 307 1, SEEEEE)
slope information (1), latitude (1), and longitude (1) information (Table2). . BT
{ W T: was0.5
2.5 Classification and time consistency { BIRT: as
i - : o [[RETHR: P
We used a random forest classifier for global LC mapping following the good performance of the random forest classifier in | [ R TIR: 1k 10 57, At 07 1, Jme)
MR i, RN 0 1, (R
BWE TR 744 (BiA) Times New Roman, (413) Times
| New Roman, “FARFih: 7 1

[ BETHR: FUHE: T |

BE TR g 1

| W7 008
L RETHR: R 10 B, P CF 1, SRR

BE TR P 10 B, FAEIT: SCF 1, FHEGLE)

U RETHR: FAmE
N

N

In order to further ensure the time consistency of the mapping results, we used the “LandTrendr” method (Kennedy et al.,

\\IWI%T:IO

2010;Cohen et al., 2018) and implemented a linear regression-based algorithm for the constructed annual feature collection to { BB TER: it 1
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find the breakpoints in the time series (Li et al., 2018). The class labels in the time series between adjacent breakpoints will be

updated to the mode values of the class label time series for the time period. Through this strategy, we can smooth the time

series of the mapping results, avoid noise interference as much as possible, and finally get the adjusted GLASS-GLC.

2.6 Accuracy assessment

To verify the reliability of GLASS-GLC CDR products from multiple perspectives, we performed accuracy assessments and

: testing sample

HN

uncertainty analyses. The fest sample, was extracted from the 30 m resolution FROM-GLC v2 (Li et al., 2017) to gvglgaﬁteﬁt}le;\ { M7
2015 LC mapping results. First, we dropped those sample units whose classes were not included in our classification system. ) TW%T
The remaining test sample, units were then overlapped with the abovementioned aggregated 0.05 ° FROM-GLC_v2 mapping . — { HRT
result, and only those whose class labels were consistent were kept. These were regarded as huge homogeneous sample units, { HRT

»

»

»

T

»

HN

)

: class distribution of the

HS)

HN

: points

(RETHR: e 0r |

o RETHRR: TG T

e o o o A ¢ G o o A A A JCL JU J L )

collected 2431 randomly distributed 5 km sample points in different years around the world. According to the

majority principle, we manually interpreted the land cover class of each sample as an independent test sample. To

prove the impact of change detection, we further compared the accuracies with and without change detection. The

geographical distribution of the independent test sample is shown in Fig Figure 2, (¢), and the temporal distribution _ - [ BETHRA: FEgi: w71

[ WETHR: P 07

is shown in the inner chart.

2.7 Data inter-comparison

To petter reflect the product quality, We inter-compared GLASS-GLC with other available global land cover products with _ — [ WETHR: 7k 10 5, 756 031

a relatively long time series. Land cover products from MODIS and the ESA-CCI were used. The MODIS-based global

[BETHR: 74 15, TR 71
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land cover products come from Collection 6 (C6) MODIS Land Cover Type (MLCT) products (Sulla-Menashe et al.,

system, the FAO-Land Cover Classification System land use (LCCS2) layer was used. The corresponding relationships

of classes are listed as follows, and the class names we used are the latter: barren - barren land, permanent snow and ice

snow/ice, all kinds of forest — forest, forest/cropland mosaics and natural herbaceous/cropland mosaic — cropland

natural herbaceous and herbaceous cropland — grassland, shrubland - shrubland. The ESA-CCI global land cover

roducts (Bontemps et al., 2013), are 300m resolution yearly products ranging from 1992 to 2015. The products were

developed using the GlobCover unsupervised classification chain and merging multiple available Earth observation ||

al., 2018), we cross-walked classes including cropland, forest, grassland, shrubland, barren land and snow/ice.

Apart from land cover products, we also compared GLASS-GLC with the Food and Agricultural Organization of the

United Nations statistical data (FAOSTAT) on cropland and forest (forest land) classes, which are the main sources of

country-level land, cover, data for many applications, The annual FAOSTAT, data set on cropland we used ranged from

J982,to 2015, and that on forest we used ranged from 1990, to 2015,

The main inter-comparison is the area corresponding to the top 50 countries in each class. Besides, to compare the /

1]

HETHR

.. [2]

-3

/

accuracy of different products, test samples from FLUXNET site data in 2015 are given for independent accuracy /

/
assessment. , /
28 Statistical amalysis - { WERT: 7
To extract the area of LCC, we estimated the trend of change through statistical analysis and avoided the influence of abnormal
fluctuations from the obtained time series, LC products. The annual area for each class on the scales of latitudinal zones, MR T : long ....ime series of global...LC products. The
continents are summarized. A time series of the annual area for each class was generated. The boundary data of countries and annual area of ... 4]
continents were obtained from the Bureau of Surveying and Mapping of China. Eco-region data were obtained from the FAO
global eco-region dataset (Simons et al., 2001) /{ MIERT : And t }

!

(http://www.fao.org/geonetwork/srv/en/metadata.show?CurrTab=simple&id=1255). // TR T : were removed by fitting....we fitted a linear trend

!

!
Although the inter-annual consistency has been ensured as much as possible in the above mapping framework, the effects of
/

/

the 95 % confidence interval of the slope is given. In addition, a Mann-Kendall test (Mann, 1945) was used to test the trend of

time series gvith a,p-value given. If p < 0.05, it is considered that the trend of change is significant.

(Theil-Sen estimator (Sen, 1968)) ...in area for each classto

estimate the long-term trend of change in area for each (‘1‘“‘{?

MER T : slope...and the 95 % confidence interval of the
slope is given. In addition, a Mann-Kendall test (Mann, 1945)
was used to test the trend of time series and ...ith athe...p-

... [6]

valueis ...

MIER T : got ...btained the change mask where all pixels

showed a significant change trend guaranteed by statistical

(171

hypothesis testing ...
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downscaled the grid from 0.05 ° to 0.25 °, and the time series of the area ratio of all classes in each 0.25 © grid was summed.

Using the Mann-Kendall test, those grids showing a significant change (p < 0.05) were obtained. Then the slope of annual

In order to quantify the magnitude of global LCC between 1982 and 2015 and reveal the global temporal LCC pattern, we
calculated the ratio of annual global LCC to the global total terrestrial LC area by different time periods. To ensure the
quantified LCC to be non-accidental, we limited the computation area within the change mask in which all grids show a
statistically significant loss or gain trend. We then summarized the annual LCC by 5-year and 10-year time intervals,
respectively.

To further identify the direct causes of LCC, we assessed the LC conversion from 1982 to 2015. Based on the 0.05 ° LC

To further explore the role of human impact in regions with significant LCC, the results are evaluated based on data from the
human impact campaign (Fritz et al., 2017), which can be downlpaded ~ from
https://doi.pangaea.de/10.1594/PANGAEA.869680. The original study area was generated in the 2011 campaign to evaluate a
map of land availability for biofuel production (Fritz et al., 2013), collected using a Geo-Wiki crowdsourcing platform. Pixels
with a resolution of 1 km were randomly provided to volunteers. For each pixel, volunteers needed to point out the overall
degree of human impact (HI, 0-100 %) which was visible from Google Earth's high-resolution satellite image and they were
required to provide confidence levels in four categories: unsure; less sure; quite sure; and sure. Here, HI refers to the degree
to which the landscape modified by humans visible from satellite images (Fritz et al., 2017). A total of 151942 point-records
are available. To get the global distribution map of HI, we performed Kriging interpolation on the point records that had
previously excluded the category of unsure confidence level. The search radius parameter of the Kriging interpolation was set

the global distribution of the intensity of human activity.

1

- { MR T : slope of
{
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IR T : for the
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[ W T : directly
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3 Results

3.1 Reliability of the products

.1.1 Accuracy assessment

(R b3, BEIBEELAT: B, BUS: 0 B

TR 10 B, RS BB BE

T 10 B, TARBIE: ABhBE

T 10 B, TSI AB)BE

TR 10 B, FRBUG: A3E

First of all, fo evaluate the magnitude of the errors introduced by our training samples, we randomly selected 500 samples - [ WETER:
from the training sample for manual interpretation and evaluation, and the assessment accuracy was 92.26 %. It shows that the _ - [ wWETHEA:
training sample we generate from 30m FROM-GLC_v2 i sufficient for our data production., - [ WETHR:

. A A - . . _ [ BETHER:
The global LC mapping result in 2015 is shown in Fig. 6. Its accuracy was tested with the H-homo sample in 2015 to obtaina { WETHR

(F30) (), (i) SR )

confusion matrix[Table 3). The overall accuracy for the year 2015 reached 86.51 %. As for each class, the accuracies for forest, - { MET:
< RT:

Ao
barren land and tundra are relatively high, where the user’s accuracies and producer’s accuracies are over 90 %. The accuracy . { JHER T : (Table 3
N

TJWJI%T:M

of cropland is also high, with the user’s accuracy and producer’s accuracy reaching 73.54 % and 78.62 %, respectively. The

user’s accuracy of shrubland reached 83.62 %, while that of grassland is 67.58 %. Grassland is mainly mixed with cropland

A 10 B, A S 1, SEEGRE)

respectively. The producer’s accuracy for cropland is 69.23 %, while its user’s accuracy is 73.26 %.

LRGSO L

Putting the test results from FROM-GLC_v2 and FLUXNET together, a spatial distribution map of the uncertainty of the 2015

TR 10 B, AT SO 1, JEECGEE)

DR S L

LC mapping result was generated. As can be seen from Fig. 7, most of the world is shown in a green color, which means that

DR 10 B, TR 30T 1, SEHECEE)

DR 10 05, TR 30T 1, SEHECEE)

the mapping result for most regions is most likely to be correct, and the result for 2015 is highly credible. There are still some

WRAM: B, £

regions showing a yellow or orange color, and a smaller number of regions showing red, representing those regions that may

DR SO L

have been misclassified. Since there are no test samples in Greenland., the interpolation results are ignored. In general, the

TR 10 B, AT SO 1, JEECGEE)

A 10 B, FATE: S 1, SEEGRE)

places with high uncertainty are Africa, East and South America, South Alaska, North and East Australia and Southwest

DT 10 05, TR 30T 1, SEECEE)

DT 10 05, TR 30T 1, SEECER)

Indonesia.

BN TR |

DR SO L

AR 10 B, AT SO 1, JEECGEE)

BN TR |

DR 10 B, TR 30T 1, SEECER)

TG SCF 1

TG S0 1

AR 10 T5, RBIE: S0 1
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TG S

TR 10 B, TG ST 1

ignifi i effecti f the change detecti hod ;0 (R TR
significance and effectiveness o e change detection method, , N
R SEEHEEEROGL (RETHR:
[ RETH#A:
3.1.2 Data inter-comparison, )’ [ BETHR:
C RETHRR:
: R Co BT
Jhe assessment results of MODIS-based land cover products and ESA-CCI land cover products based on test samples from / 1/ 7 —
o wETRR
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440 based products are 73.90 % and 80.38 % in 2015, respectively, Compared to these, The overall accuracy of GLASS-GLC HWETHER W

(82.10 %, Table 4) is superior, Although the cross-walk of the different classification systems may be slightly different, It can

still reflect the high accuracy of our GLASS-GLC products.

Figure 5 shows an inter-comparison with MODIS-based products, Figure 6 with ESA-CCI products and Figure 7 with FAOSTAT, /{ WHETHER Wﬂ
O BRBOER ]

[ BETHER (o)
BRELER

The scatter plots and the linear fit lines reflect the results in 2015, and the box plots represent the distribution of R? of the

U45 annual linear fit lines for each class. It can be seen that various classes in several different products are relatively equivalent

although they are under different classification systems. In comparison with MODIS-based products, the results of 2001-2015

for cropland, forest and snow/ice have high R?. In comparison with ESA-CCI products, the mean R? of the linear fit lines of /

forest, grassland and snow/ice from, 1992 to 2015 reach 0.99, 0.82, and 0.98, respectively, while the R? for shrubland is low.

The inter-comparison of some other classes is poor, which may be caused by differences in the class definition in various /

U50 classification systems. For instance, our classification system incorporates tundra, while the other two did not. Compared with _ { MET: In comparison }

O RETHR: vk (7 30) Times New Roman, 10 5, ‘74
it L5 1

JER T : ESA-CCI products... AOSTAT, the mean R? of the

linear fit lines of forest, grassland...ropland and

snow/ice...orest during 1992 to 2015 reach...s 0.99...2,
0.82, ...nd 0.98...7, respectively, while the R? for shrubland

is low...
455 3.2 Spatiotemporal patterns in LCC \\\\\‘ 5
\\\3\\\ BETHR (.20
3.2.1 Global temporal patterns \\\\\ MERT :

K60  barren land snow/ice significantly decreases with p =0.0000, p = 0.0019, p = 0.0000, and p = 0.0003. respectively. ||| extent, and the effectiveness of the change detection methods
\\ we use...
Figure 10 shows the annual ratio of the global LCC to the global total terrestrial area, shown and prganized in, different time o .. [14]
o[ RETHER . [15]
periods, where Fig. 10 (a) shows the results with a 5-year interval and Fig. 10(b) with a 10-year interval. Overall, the annual 1\ | { KT : s }
N
ratio ranges from 0.35 % to 0.70 %, with an average of 0.52 % between 1982 and 2015. 5-year interval ratios show a relatively \\ \ { M T : variation curves }
\
fluctuating trend. The average ratio reaches 0.63 % in 1991-1995, the highest among the seven intervals. The ratios have \\ {M%T: 9 }

465  relatively large fluctuations in 2006-2010. All in all, the ratios before 1995 are generally higher, and it gradually decreases MIER T : annual ....lobal LCC to the global total terrestrial

\ | LC ...rea, shown and calculated ...rganized inby [16]

since then. With 10-year interval, ratios after 2000 are generally lower with an average of only 0.40 % in 2011-2015.
IR T : 9 ...0 (a) shows the results with a 5-year interval and

Fig. 109 ... (7L

3.2.2 Patterns along latitudinal gradients

The global distribution of 0.25 ° grids with significant LCC from 1982 to 2015 is shown in Fig. |1 and Fig. S3 for the whole -~ ‘{MI‘%T: ;

o

world, where the color depth represents the estimated change in area ratio per year. The distribution of significant LCC along . {mqj BT:10

11
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latitudes is shown in the right, where the red curve represents a significant increase, green a significant decrease, and blue a
net change.

The distribution pattern of LCC along latitudes is different, especially for cropland and forest, where it can be seen that cropland

has increased significantly in the northern tropics and the southern hemisphere. It is confirmed that the significant increase in
cropland has occurred mainly in the tropics and southern hemisphere (Gibbs et al., 2010). Forest has decreased significantly
in the southern hemisphere and has increased significantly in the northern hemisphere, showing regional differences. In
particular, in the high latitudes of the north, forest has increased significantly with a decrease of tundra. However, the increase
in forest area in the northern hemisphere is significantly larger than that in the southern hemisphere, reflecting an overall

increase in total forest area.

decreasing, especially in the middle and high latitudes of the north, which further reflects the increase in vegetation coverage.

The area of snow/ice in the northern high latitudes has reduced.

3.2.3 Continental patterns

The statistical results for each class at the continental scale are shown in Table 9, Table 10, Table,l1, Table 2, Table S1, Table j

;7

2
¢

significantly by 315%10° km% Barren land in Asia also significantly decreased by 82x10° km?, The global snow/ice area has N

YN

=
N

{ MR T : degradation
{

i { MR T : , which may imply the management effects e

JER T : This phenomenon may reflect the degradation of

/| grassland. On the other hand, t
1| BT :

|
|
BT
{
|
|

MERT: 6
| MBT:7
| BIBRT:8
MERT: 9

(D U WD W/ WY/ W/ W/ U, |

BT 1

MBR T : There is significant geographical heterogeneity

'| among continents due to differences in latitude and longitude,
as well as economic and social development differences,
where significant causes of LCC are from both natural and

human influences (Lambin et al., 2001).

| BIBRY : Many developing countries in South America, Asia

' and Africa have relatively poor economic and social
development, rapid population growth and increasing demand
for food (Barbier, 2004). At the same time, the international
demand for food has increased, stimulating the export of crop
products and requiring access to new land, which ultimately

leads to the expansion of cropland. .

[ WBT:In

MER T : In addition to cropland expansion, the production of
fuelwood and charcoal is also an important driving factor for

deforestation (Hosonuma et al., 2012). .

MBR T : The increase of forest in Asia, Europe and North
America is related to afforestation projects and forest
restoration policies in some regions (Aide et al., 2013;Pan et

al., 2011). On the other hand, the increase of forest anm
BT e

{ BB T#R: #ff: (BI0) Times New Roman
T 7

MBR T : The main source of shrubland conversion is

THERT: .
{MI%T: The ar

MR T : , which may be due to drought (Dangal et al.

SIS =
D G ) S

I HRT:, reflecting the melting of ice and snow unde;
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3.3 Characteristics of LC conversion

/)

/

cropland was converted from forest (I'ig. 12 (b)), showing the process of forest destruction. Among land converted to forest, \

the proportion of cropland reached 21.74 % (Fig. 12 (b)), Barren land and grassland were respectively the large sources of

grassland and barren land (Fig. 12 (b)), reflecting the dynamic transformation between the two classes. Grassland accounted

for 35.00 % of the increasing source of barren land (Fig. 12 (b)), indicating the process of grassland loss (Bai et al., 2008).

\
time, forest was also the main cause of loss of grassland and shrubland (Fig. 12 (a)), The conversion of forest to grassland \‘\“]“

accounted for 59.04 % of all conversions from forest (Fig. 12 (2)). The main conversion direction of tundra was forest, reaching ||

64.60 % (Fig. 12 (a)), \\\

Overall, the increase of forest accounted for the highest proportion of all conversion processes, reaching 44.17 % (Table 13),

\
The increase of grassland and cropland were second and third highest, reaching 19.79 % and 13.64 %, respectively (Table 13), \\

\
\

In addition, the proportions of grassland to shrubland and barren land to grassland were 7.73 % and 5.75 %, respectively (Table

123). Cropland gain and vegetation gain were the main phenomena reflected by the changes in global LC from 1982 to 2015.

3.4 Human impact

with significant changes in all LC classes is 25.49 %, indicating that human activity has a great impact on LCC, The highest
HI level was found in those regions with significant increases in cropland, reaching an average value of 51.38 %. Meanwhile,

the HI level of cropland loss reached 48.02 % while the HI level for forest loss was 26.91 %. In addition, in any change of

humid forest regions reached 38.23 % and 43.90 %, indicating that the role of LC conversion caused by human activity in
subtropical climate areas is significant. In addition, in the temperate steppe regions, the HI level in the regions of significant

LCC is also high, reaching 39.87 %, In the tropics the average HI level in dry forest regions is highest among regions of
13

\

"\l | direction of tundra was forest, reaching 64.60 % (Fig. 11...

'\| | conversions from forest (Fig. 11... (a)). The main conversion

/ MBS T : Natural and human factors generally have a
significant couplingjoint effect to land cover change. Whether
LCC is caused by natural or human factors, there is often a
significant coupling effect. ...e attempted to find out some
high-frequency LC class conversions for the period 1982 to
2015 (Table 12...3). In addition, the conversion sources and

destinations of each LC class are computed separately, as

- [23]

7 JHER T : 1... (b)), accounting for 67.58 %, which indicated

shown in Fig. 11...

that a large amount of cropland came from reclamation (Liu
et al., 2005)... 6.61 % of cropland was converted from forest
(Fig. 11... (b)), showing the process of forest destruction.
Among land converted to forest, the proportion of cropland
reached 21.74 % (Fig. 11... (b)), partly due to the fact that
abandoned croplands were restored to forest... Barren land
and grassland were respectively the large sources of grassland
and barren land (Fig. 11... (b)), reflecting the dynamic

transformation between the two classes. Grassland accounted

‘ || for 35.00 % of the increasing source of barren land (Ff [24]

\

\\“‘[ B T : land degradation
| RETHR: P Fe )

IR T : 1... (a)), which reached 78.22 %, reflecting the

process of forest expansion... At the same time, forest was

the main cause of loss of grassland and shrubland (Fig. 11...
(a)), which also confirms the process of forest expansion...

conversion of forest to grassland accounted for 59.04 % of all

(a)), indicating an expansion of forest in the high latit 1351

MER T : 2...), reflecting the phenomenon of forest
|| expansion... The increase of grassland and cropland [26]

{Ml‘ﬁ??: surface greening

BT : 12...3 (a) shows different human impact (HI) levels
among different LCC areas. Overall, the average HI le[*“’-‘g

‘ 7
[ B T : natural

MIER T : , which indicates that human activity has a relatively

stronger destructive effect on natural vegetation, whil 58]

}
j\iW%Tn4 }
}
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MR T : , indicating that LCC in those regions may be more
related to natural factors like climate change (Buerma 1291




790

795

800

805

815

significant LCC, reaching 34.04 %,

MR T : Such HI level in this eco-region may be caused by

forest destruction, deforestation, and cropland expansion.

3.5 Local hotspots of LCC

MR T : and investigate the causes of such change by area...

The main regions of LCC hotspots are shown in Fig. [30]

Regarding LC, more attention tends to be paid to global and regional LCC. At the local scale, we can further explore the hot

tundra regions, Jn northern North America, such as Alaska and the north of Canada, forest has also increased but the extent of | /

|
r

the increase is weaker than that in North Eurasia. In the Great Plains of Central North America, grassland has decreased and

cropland has increased (Fig. 14 (b)). In most countries of South America, croplands have expanded substantially (Fig. 14 (d))

and forests have decreased significantly (Fig. 14 (c)), especially in the southeastern part of the Amazon rainforest. In Southeast /

Asia, such as Cambodia, Vietnam, Indonesia and Malaysia, forest has also decreased significantly and cropland has increased.

While our LCC analysis shows these trends in the Asian tropics, higher resolution data and more specific land cover mapping ||/
|

are needed to explicitly determine the reasons for LCC in this region (Cheng et al., 2018).,In Africa, forest in the northern part

of the Congo Basin has expanded while forest in the southern Miombo forest belt has decreased (Fig. 14 (¢)), In China, forest

has increased (Fig. 14 (). Some grassland in Mongolia and Inner Mongolia of China showed a trend of decrease (Fig. 14 (2)). ‘J‘ !
-
There is an obvious increase jn grassland areas in the eastern part of the Qinghai-Tibet Plateau (Fig. 14 (h)) and a decrease of \‘. I

grassland in central Asia and parts of Western Asia (Fig. 14 (i)) In some parts of the former Soviet Union in Eastern Europe, a

decrease of cropland (Fig. 14 (j)) and an increase of forest can be observed. ,

4 Discussions

Based on the accuracy assessment and data inter-comparison results, it can be seen that the global LC mapping products of

1982-2015, GLASS-GLC are reliable with high accuracies, and the global long-term mapping framework we designed is

Wimberly, 2013). .

MR T : 5... (a)), and that in Siberia has moved northward to
the tundra regions, which is mainly the result of climate
warming. The increase in temperature and soil moisture
(thawing of the permafrost) has promoted plant growth
(Berner et al., 2013)...

In northern North America, such as Alaska and the north of
Canada, forest has also increased but the extent of the
increase is weaker than that in North Eurasia. Studies have
shown that this may be related to an insignificant temperature
rise in North America and even a slight cooling trend (Wang
et al., 2011). In addition, fire disturbance in northern North
America has interrupted forest succession (Alcaraz-Segura et
al., 2010) and drought disasters in parts of the United States
and Canada have increased tree mortality (Van Mantgem et
al., 2009;Peng et al., 2011). These could also be possible
reasons for the constant, or even decreasing, forest areas in
these regions. In addition to climate warming, the decrease of
cropland and increase of forest in the eastern part of the
United States are related to forest restoration and
management measures (Herrick et al., 2010). .

In the Great Plains of Central North America, grassland has
decreased and cropland has increased (Fig. 15... (b)). It has
been found that rising gasoline prices and the development of
biofuels have led to increasing planting areas of corn and

soybean in the United States (Lark et al., 2015;Wright and

In most countries of South America, croplands have expanded
substantially (Fig. 15... (d)) and forests have decrease[";

| . 31]
| . ML S 2
effective. Using GLASS-GLC CDRs in change analysis of LC can reflect a 34-year global landscape change pattern. Many [ WRAN: Gk HiTHE: 1S TR ]
{ MR T : degradation }
phenomena and patterns can be confirmed by existing research, In addition, we have assessed the impact of human effects {
MR T : sing }

within different LC classes, and have further explored Jocal LCC hotspots,

However, there are still deficiencies in the design of the mapping framework. First, the large grid size 0f 0.05 °, can only reflect

the average change state of LC in a large area, thus many small-area phenomena cannot be well reflected (Gomez et al., 2016).

\

MR T : 5... (2)). There is anStudies have shown overgrazing
to be the main cause of vegetation degradation in this region,
while drought and soil erosion have played a secondary role

(Yin et al., 2018). The...obvious increase of ...n grass 3]

those changes are large at the global scale, they can hardly be reflected with 0.05 ° pixels. Moreover, due to the synthesis

principle, the classification result of each pixel can only represent the class with the largest proportion in area, and the

\

JHBRT :, such as the expansion of tropical agricultural land,
greening in the northern region, deforestation in the southern
hemisphere and melting of snow and ice... In addition, we

assessed the impact of human effects within different B3]

information of remaining classes is ignored even though they can sometimes be more than 50 % in total. Such a neglect, due {

JER T : due to the coarse spatial resolution,

to the famous “Scale Effect” (Turner et al., 1989) can also cause great deviations in the final statistical summary of the LC [

B T : agricultural }

14
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area leading to uncertainties when compared with mapping results at finer resolutions.

Second, our sampling strategy for training has certain limitations. On one hand, since the training sample is generated from

year of circa 2015. Although we have implemented a time series correction for the original input features and performed a
time-consistent post processing on the classification results, the effects of inter-annual fluctuations of the features cannot be
completely avoided (Song et al., 2018a). On the other hand, according to the stable classification with limited sample theory,
use at the global scale. Therefore, a multi-year sample set may not be as critical for multiannual classification provided the
sample is better than 80 % accurate. In our case, although the source training data has an accuracy of /3.17 %, we are not

certain if the aggregated sample set exceeds an accuracy of 80 %. While this needs further assessment, the ex

JHER T : global mapping results

{WJI%T: 0a

B { BB T#HR: T4k (BRIL) Times New Roman

T

. [ B T : (Gong et al., submitted)

BT 77

: This

: s(Cheng et al., 2018)

. { MR T : actually

30m test sample,set to 5 km by maximum area synthesis, which contains unavoidable errors because of scale transformation. \ { MR T : 0a
Due to the difficulty of visual interpretation in coarse scale and field investigation (Gong et al., 2013), establishing a sample { MERT 2 s

pixels is inevitable and the cost of simplification in a traditional classification process. The development of LC ratio mapping \\
\

products (similar to VCF products), rather than hard classification, especially for the case of coarse resolution, should be

\
\
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .\

We have eliminated wetland and impervious surface in our classification system. This is a tradeoff when working at the 5 km
\
scale. Patches of wetland and impervious surface are usually small, and it is difficult to achieve a pixel size of 0.05 ° for many \
situations, so the classification of the two types is extremely difficult. However, both are important LC types. Wetland is a
transitional zone between terrestrial ecosystems and aquatic ecosystems (Davidson, 2014). The impervious surface can
represent the urban area. In recent years, urban expansion has been a relatively significant phenomenon in global environmental

change (Seto et al., 2011). Urban expansion reflects an important type of human activity, so the impervious surface is also one

of the essential components to reflect anthropogenic influence though the total area of its change is usually small.

15
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| IR T : The best way to verify the accuracy, of course, is to

\

\ \
\
ANERY

\

use a 0.05 ° test samples set directly derived at this resolution.

However, d...

THERT : 0a

JHER T : of aggregation of

MIBR T : to 5 km scale to generate samples

N

—

MER T : with techniques of soft classification

MERT : 0a

A

T T: Itis plausible to regard the selected test samples as
“H-homo samples” that can be used for coarse resolution
mapping. Although this method is feasible to a certain extent,

there are inevitably errors.

7 -
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unavoidable to include internal density change of various classes, which in turn will further affect the classification and change

area calculation of forest class.

some artificial features cannot be distinguished, such as plantations (rubber, oil palm, and various fruit trees) and natural forest,

which are uniformly included as forest in our classification system.

LC mapping results as much as possible, it is inevitable that there are still large fluctuations and interferences from various |

unknown factors unfavorable to the extraction of long-term trend of LCC. In order to ensure that the trend of the resulting time
series is significant, we have to scale up the classification result from 0.05 ° to 0.25 °, converting the original class label of
each 0.05 ° pixel to the class area ratio of 0.25 © grid. The long-term time series of the area ratios is tested for statistical
significance. However, in some cases this procedure will also be influenced by the “Scale Effect”.

In the analysis of anthropogenic influences, indirect effects of many human activities were ignored because the main objective
was to include the effects of directly visible human activities. For example, human activities increase the concentration of
carbon dioxide in the atmosphere, which in turn affects the global climate, leading to higher temperature, and thus increasing
vegetation coverage (Piao et al., 2006;Bonan, 2008). This pathway of action is indirect, but it is difficult to reflect in the human
impact data we use, which results in an underestimation of the assessment of anthropogenic influences.

GLASS-GLCs contain more detailed LC classes, longer temporal coverage (34 years), high consistency, which meet the
requirement for CDR. GLASS-GLC CDRs are the first collection of global LC dynamics of 5 km, and fill the existing gap for
high-reliability and consistency of long-term general purpose global LC products. In addition, our strategy of generating

samples from high-resolution classification products can greatly reduce the cost and investment of sample collection, and can

In the future, with the advancement of technology and the accumulation of remote sensing datasets, the use of remote sensing
products for LC mapping with higher resolution and longer time series will undoubtedly better reflect the global LC and its
of potential rapid change, and then use high-resolution data in these hotspots to accurately estimate the rate and mode of change.
Moreover, it is necessary to establish a multi-year sample library to assess the impact of inter-annual fluctuations in features
on the accuracy of change characterization and analysis. Wetland and impervious surface are LC classes that have extremely

high value. It would be useful to supplement the mapping and change analysis of these two classes when suitable data become

available. For the analysis of global LCC, systematic and in-depth attribution analysis and research can be further carried out. , _ — -

JBR T : The result of our statistical summary shows that the
global vegetated area increased significantly between 1982
and 2015, which is inconsistent with the results of FAO and
some other global mapping products. This inconsistency
originates from, on one hand, the above limitations of our
designed mapping framework, and on the other hand, the
statistics collected by FAO, and other census-based datasets,
which are also affected by errors from many aspects, and its
effectiveness is yet to be evaluated. Nevertheless, many
studies can also confirm our results, such as (Song and
Hansen, 2017;Song et al., 2018a;Piao et al., 2015;Pan et al.,
2018) who have proved that the global vegetation area has
increased with the increasing NDVI and LAI in time. To
some extent, the sum of the global change area of forest,
shrubland, and grassland is showing an increasing trend in

our results, which can be seen as the sign of global vegetation

!| growth.

[BETHR: St L5 1

MER T : In addition, the development of LC ratio mapping
products (similar to VCF products) with techniques of soft
classification, rather than hard classification, especially for

the case of coarse resolution, should be considered.
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5 Data availability

GLASS-GLC products at 5 km resolution from 1982 to 2015 are available to the public in the TIFF format at
https://doi.org/10.1594/PANGAEA.898096 (Liu et al., 2019).

GLASS CDRs were provided by Beijing Normal University Data Center (http://glass-product.bnu.edu.cn/, last access:
27 December 2018). VCF products were obtained from the Land Processes Distributed Active Archive Center
(https://lpdaac.usgs.gov/, last access: 20 December 2018). GMTED2010 were acquired from Google Earth Engine
(https://code.earthengine.google.com/, last access: 24 December 2018). Geo-Wiki points came from the human impact
campaign (https:/doi.pangaca.de/10.1594/PANGAEA.869680, last access: 30 November 2018). Eco-region data were
obtained from the FAO global eco-region dataset

(http://www.fao.org/geonetwork/srv/en/metadata.show?CurrTab=simple&id=1255, last access: 3 December 2018).

6 Conclusions

In order to better reflect the global land changes, continuous and dynamic monitoring of global LC is necessary. We built
GLASS-GLC, the first CDRs for global LC on the GEE platform. It can capture the global LCC information from 1982 to
2015. Compared to previous global LC products, GLASS-GLC products cover a longer time period and have higher
consistency and more detailed classes. Our entire mapping framework is based on FROM-GLC_v2, including the classification
system and high-quality H-homo sample generation.

Based on over ten thousand independent test samples units from both the FROM-GLC sample set and FLUXNET site data in

overall accuracy of GLASS-GLC is also over 80 %, at 82.81 %. Using inter-comparisons with other global LC products of

different resolutions from various data sources, we verified the effectiveness and reliability of GLASS-GLC from different
perspectives. Systematic uncertainty analysis was also performed on a global scale based on the results of the accuracy
assessment and its geographical distribution. This shows that GLASS-GLC CDR products have relatively low uncertainty in
most parts of the world. Our results also indicate that GLASS CDRs have potential for multi-class LC mapping and can provide
more than enough features and information to distinguish different LC classes, with relatively strong temporal and spatial
consistency, which can produce extremely reliable change information.

Comprehensive spatiotemporal pattern analysis based on GLASS-GLC reflected and revealed many significant global LCC

of the global LC conversion pattern from 1982 to 2015 revealed hot spots of LCC,

Since anthropogenic influence has become one of the most important driving forces for LCC, especially after the industrial

revolution, we quantified the level of human impact in areas of significant LCC. The results show that the average human
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impact level in areas of significant LCC are about 25.49 %,

could be conducted, enhancing our understanding of global environmental change, and even mitigating its negative impact to

some extent, which is also beneficial to the achievement of sustainable development goals.
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Table 1: Classification system, with 7 Level 1 classes and 21 Level 2 classes.

Levellelass | Level2¢lass | Description L BETHER: s 07
Rice paddy o
Greenhouse o
Cropland - __ _ ___| Otherfarmland _ __ _ _ _______ | ____________________________ - BETHR: FIE 0F
Orchard o
Bare farmland o
Broadleaf, leaf- DR
wadleallegfon__ __________ e cover= 0% {RETHR: 76 071
Broadleaf, leaf-off HetehoSm - { BETHR: P T
Needle-leaf, leaf-on o ‘m. . 8
Forest I For _mixed leaf. neither [ WETER: T 0
Needle-leaf, Teaf-off o R =
coniferous nor broadleaf types = { wE TR FaEgin: w1

e ) LU

Mixed leaf type. leaf-on
Mixed leaf type, leaf-off
Pasture, leaf-on

exceed 60%

Grassland | Natural grassland, leaf-on | Canopy cover=20%_ [ RETHR: e 071
Grassland, leaf-off

Shrabland Shrub cover, leaf-on Canopy cover=20%:; BE TR =

SR - Shiub coverleafoft ~—~ -~ Height=snT ~ -~~~ = T S

Shrub and brush tundra

Junda [ RETHR: e o 1

Barrenland Barren land | Vegetation cover<10% = { WE TR FiEgin: vl

Snowllee  ______ | - [ RETHR: Fhwit: cE 1
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Table 2: The explanatory table of the constructed feature collection, with a total 81 features each year.

Product Band Feature Number of features
GLASS CDR, 0.05°, 1982-2015  NDVI
LAI Percentiles [0, 10, 25, 50, 75,
FAPAR 90, 100] of all 10 bands
ET
GPP
BBE Mean, standard derivation of
ABD_WSA_VIS NDVI between adjacent two 12
ABD_BSA_NIR percentiles of NDVI
ABD_WSA shortwave
VCE, 0.05 °, 1982-2015 TC TC
SV NY% 3
BG BG
GMTED2010, 7.5 s, 2010 DEM Mean slope in each 0.05 ° pixel
Location Latitude, longitude Center latitude, longitude of 2
each 0.05 ° pixel
Total number of features 81
A e e e e WERT : G U
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Figure 4: The geographical distribution of different types of
huge homogeneous test samples (H-homo sample), where the
different colors represent the source of the sample units,

either FROM-GLC_v2 or FLUXNET. .

28



16w ow aew v e soE 0E 160k

16w 0w soew e

o

ey

[0 Cropland

z|  EEE Forest

- I Grassland

N shrubland N

N Tundra

[0 Barren land
Snowlice

i

01000 2000km

01000 2000 km

O HRT: T e e o
Figure 5: The geographical distribution of the spatial

' ' | interpolation results of human impact where the darker
' ' | color indicates a value closer to 100 and a higher human

* | impact.

ARSI e, f7HE: SR TR, IR

(WET:

29



Table 3: Classification accuracy of GLASS-GLC in 2015 based on FROM-GLC_v2 test samples. (Overall accuracy = 86.51 %, ,UA [ WETHR: it w1

= User’s Accuracy and PA = Producer’s Accuracy)

Class Cropland  Forest Grassland ~ Shrubland  Tundra Ei:en Snow/ice  Total UA
Cropland 1390 166 221 101 0 12 0 1890 73.54 %
Forest 115 7427 279 145 18 0 3 7987 92.99 %
Grassland 199 431 2820 534 45 141 3 4173 67.58 %
Shrubland 47 65 185 1986 0 92 0 2375 83.62 %
Tundra 0 32 36 0 1157 24 2 1251 92.49 %
Barren land 17 5 91 27 48 5336 20 5544 96.25 %
Snow/ice 0 2 10 0 7 41 179 239 74.90 %
Total 1768 8128 3642 2793 1275 5646 207 23459

PA 78.62% 9138% 7743 % 71.11 % 90.75%  9451%  86.47% 86.51 %

e MIERT :
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User’s Accuracy and PA = Producer’s Accuracy)

1 { JHER T : testing sample

Class Cropland  Forest Grassland ~ Shrubland  Tundra Barren Snow/ice Total UA

land number
Cropland 63 5 17 1 0 0 0 86 73.26 %
Forest 13 243 9 2 0 0 0 267 91.01 %
Grassland 8 21 91 2 0 2 0 124 73.39 %
Shrubland 7 3 0 19 0 0 0 29 65.52 %
Tundra 0 3 0 0 14 0 0 17 82.35%
Barren land 0 1 0 0 0 1 0 2 50.00 %
Snow/ice 0 0 0 0 0 0 0 0 -
Total number 91 276 117 24 14 3 0 525
PA 6923% 88.04% 77.78% 79.17 % 100.00 % 33.33% - 82.10 %

31

IPIAF




1540

Uncertainty
7 g eos
- ] 0608

g
PN e
S o2

s

60w

01000 2000 kan

0w

ERy

levels.

e E T60E B

32

160w

WERT: =

16w

W s

i, | Figure 4:

w | samples.

ST

: The geographical distribution of random test
Ly
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under 2431 independent testing samples. (Overall

accuracy = 81.28 %, UA = User’s Accuracy and PA =
Producer’s Accuracy) .

Table 4: Classification accuracy without change detection

Class ... [35]
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Table 5: Classification accuracy of GLASS-GLC without change detection under independent fest samples. (Overall accuracy = _
N -

81.28 %. UA = User’s Accuracy and PA = Producer’s Accuracy),
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TG ST 1

"\ ~
I {M%T testing sample
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O RETHR: e CF )

Bz Total BETHER: it S 1

Class Cropland  Forest Grassland  Shrubland Tundra Qen Snow/ice n:l:ber UA }&ET%?&: :ﬁgz iil

Cropland 257 21 34 5 0 _____ 3L 00358 TL79% - {RETHER: ThEiG 7
KForest 35 620, 45 21 __ 2 r 1 51 82.56% \\\ {&ET%ﬁ:?%:tﬂ*ﬁ,?%%ﬁ@:)ﬁ?l
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endentgest samples. (Overall accuracy =82.81 %, .- { MET:7
\\\\

\\ N {M%T testing sample

\“{&ET%ﬁ:?%ﬁ@&ﬁn
Class Cropland  Forest Grassland ~ Shrubland Tundra l}:z:% Snow/ice ::;li)er UA . \{&ETﬁﬁZ TG ST 1
e [BETHR: e oy
Lropland 262 19 32 20 0 _____ 25 0. ____ 2 358 ,,,Mji {ﬁﬁ?ﬁiﬁ:?%ﬁ@:ﬁ[?l
Eorest 33 63 29 ____ E A . QL———ﬁﬁgﬁQ\\{&ET%K:%Wﬁ@;iil
Grassland 24 24 284 ___ 6 _____ B3 8§ ____0_ _____ 329 ,,,w,\\\\{&ET%ﬁ:%W:ju*ﬂ’?w%ﬁéziil
Shrubland 12 3 11 _____ 159 5L 7_____0_ _____ 198 80.30% ;\\E\\{&ET%ﬁ:?%%é:j\C?l
Tundra 0 1 9 4 250 o ( 285 87.72% O (RETHER: S o 1
arren I 351, 89m%‘Np{&ET%ﬁ:%wmwm?wﬁ@yﬁn
VL EE TR R L
BETHR: Pt
BE TR Pk kL, AR S 1

34

SN TR |

SN TR |

AR, PRI S L

LRGSO L

DR ST L

DRI, FRBI L S L

SN TR |

SN TR |

(
(
o
€

i

e
;
g
£
€
€
K

TR IR, TRBIE: ST 1

L RG S S L

DR SO L

R IR, FRBI L S L

SN TR |

SN TR |

TG S 1

DRI, FRBI L S 1

SN TR |

R IR, FRBI R S L

i

5

[
“:“%
”[&ET%K:

i

L

L

i

L RGI S S L

o0 JC 0 A A JC G 0 U 0 JC 0 JC 0 )




Table i Classification accuracy of the MODIS-based land cover product in 2015 based on FLUXNET test samples. (Overall _ _ WBT:7

AN
accuracy = 82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy) \\\\\[iﬁE_Tﬁiﬁ: FARBIS: SCF 1
[ RETHRR: P 07 1
Barren Total
Class Cropland  Forest Grassland ~ Shrubland Tundra Snow/ice UA
land number
Cropland 7 5 73 _____ 0 0 _____ 0 0 8 824% [ WETHER: T T
Forest 1 ____ 261 5 (N 0o 0.0 2607 9775% - { RETHR: THHIG: 71
Grassland 1 15 18 1 _____ 0 _____ (U 125 8640% - | BETHER: it 0
Shrbland 09 9 u 0o 0. 0 29 37.93% - BRETHER: FHEIE: 0T
Junda 0 3 6 _____ 8 o (U 170 - RETHER T T
Barenland 0 0 ____1______ [ o | S 2 5000% - { RETHER: THLIG 71
Snowfice 0 0 0 (N 0 _____ 0. 0 __ 0 - BRETHER: i eE
Totalnumber 9 293 202 20 (U 1.0 - (BETHER TG T
PA  T7778%  89.08%  5347% _ 55.00% - 100.00% - ____ 73.90% - | RETHR: TG0 07

o0 JC 0 U U L
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Table 8: Classification accuracy of the ESA-CCI land cover product in 2015 based on FLUXNET test samples. (Overall accuracy =+ — — «[%jﬁﬁ&{]; e, 5 TFBFER

82.10 %, UA = User’s Accuracy and PA = Producer’s Accuracy)

Barren Total
Class Cropland  Forest Grassland ~ Shrubland Tundra Snow/ice UA
land number
Cropland 81 1 4 0 0 0 0 86 94.19%
Forest 11 246 4 5 0 1 0 267 92.13%
Grassland 28 7 76 5 0 8 0 124 61.29%
Shrubland 2 7 1 19 0 0 0 29 65.52%
Tundra 0 3 9 0 0 5 0 17 -
Barren land 0 0 2 0 0 0 0 2 0.00%
Snow/ice 0 0 0 0 0 0 0 0 -
Total number 122 264 96 29 0 14 0 525 -
PA 66.39% 93.18%  79.17% 65.52% - 0.00% - 80.38%
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‘igure 6; Inter-comparison with the ESA-CCI land cover product, (a) cropland circa 2015, (b) forest circa 2015, (c) grassland
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interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are

summarized results relating to the whole time series.

. Slope (10> Lower (10  Upper (103 Gain (10> Loss (103

Continent p Trend

km?/year)  km*year)  km?*year) km?) km?)
Africa 5.3 1.5 10.0 0.0099  increasing 23 -6
Asia -1.7 9.2 7.1 0.6999  no trend 67 -70
Europe -30.4 -43.6 -17.9 0.0005 decreasing 12 -99
North America -4.9 -10.9 2.8 0.1635  no trend 37 -54
South America 9.1 2.1 19.3 0.0108 increasing 35 -4
Oceania -0.5 -1.8 0.6 0.3580 no trend 1 -1
Global -27.5 -54.7 3.1 0.0968  no trend 175 -238

1620
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interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are

summarized results relating to the whole time series.

. Slope (10> Lower (10  Upper (103 Gain (10> Loss (103

Continent p Trend

km?/year)  km*year)  km?*year) km?) km?)
Africa -8.4 -18.6 2.6 0.1463  no trend 15 -29
Asia 128.6 86.8 165.0 0.0000 increasing 365 -12
Europe 53.1 34.9 67.4 0.0000 increasing 131 -1
North America 45.1 24.7 65.0 0.0000 increasing 132 -16
South America -10.8 -19.6 -1.4 0.0242  decreasing 23 -49
Oceania 1.4 -0.1 2.6 0.0802 no trend 6 -1
Global 201.3 120.9 278.1 0.0000 increasing 680 -109
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interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas are

1630 summarized results relating to the whole time series.

. Slope (10> Lower (10  Upper (103 Gain (10> Loss (103

Continent p Trend

km?/year)  km*year)  km?*year) km?) km?)
Africa -18.9 -36.4 3.0 0.0855  no trend 50 -108
Asia -52.7 -67.1 -38.1 0.0000 decreasing 85 -315
Europe -11.8 -21.7 -2.0 0.0207  decreasing 6 -59
North America -39.6 -48.4 -26.9 0.0000 decreasing 25 -114
South America -16.1 -29.0 -4.7 0.0070  decreasing 68 -54
Oceania -4.6 -9.5 0.7 0.1029  no trend 9 -11
Global -136.6 -172.9 -86.4 0.0000 decreasing 246 -663
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confidence interval are given by Thei-sen estimator, p-value and trend information from a Mann-Kendall test. Gain and Loss areas

are summarized results relating to the whole time series.

. Slope (10> Lower (10  Upper (103 Gain (10> Loss (103

Continent Trend

km?/year)  km*year)  km?*year) km?) km?)
Africa -26.1 -37.4 -17.7 0.0000 decreasing 2 -43
Asia -28.3 -40.6 -18.1 0.0000 decreasing 12 -82
Europe -2.8 -3.5 -1.8 0.0000 decreasing 0 -6
North America -8.8 -21.3 -1.0 0.0353  decreasing 26 -49
South America 1.6 =23 53 0.3737  no trend 4 -5
Oceania -16.8 =322 4.0 0.1161  no trend 0 -25
Global -78.5 -116.4 -48.8 0.0001  decreasing 48 =213

47

JHER T : Table 8: Statistical results of change analysis for
shrubland (on the scale of continents) . Annual change
slope and its 95 % confidence interval are given by Thei-
sen estimator, p-value and trend information from a
Mann-Kendall test. Gain and Loss areas are summarized

results relating to the whole time series. .
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percentages of different gross gain for each land cover, and the outer ring indicates which land cover the gross gain came from. The

inner pie in (b) shows the percentage of different gross loss for each land cover, and the outer ring in indicates which land cover the

gross loss went to.
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Cropland
Forest
Grassland
Shrubland
Tundra
Barren land
Snowlice

) JHEE T : Table 11: Statistical results of change analysis for

snow/ice (on the scale of continents) . Annual change slope
and its 95 % confidence interval are given by Thei-sen
estimator, p-value and trend information from a Mann-
Kendall test. Gain and Loss areas are summarized results

relating to the whole time series.
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represents a lower ratio.

2015
Class
Cropland Forest Grassland Shrubland ~ Tundra Barren land  Snow/ice
Cropland - 9.6 222 0.37
Forest 0.9 - 6.26
Grassland 9.22 - -
1982 Shrubland 0.45 1.7 1.62
Tundra - 8.48 3.82 0.79

Barren land

3.07 5.75 223 2.93 - 0.29

= R
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Figure 13: The mean human impact (HI) of regions with
significant land cover change (on the scale of continents).
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Figure 14; Visualization of local hotspots of land cover change, (a) north Eurasia, forest, (b) Great Plains of Central North America,

cropland, (c) South America, forest, (d) South America, cropland, (e) Africa, forest, (f) China, forest, (g) Mongolia and Inner
Mongolia of China, grassland, (h) Qinghai-Tibet Plateau, grassland, (i) central Asia, grassland, (j) the former Soviet Union in

Eastern Europe, cropland.
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Figure 16: Example visualization for the cropland expansion
and deforestion phenomenon in the southeastern part of the
Amazon rainforest from Google Earth images in (a) 1984, (b)
1994, (c) 2000, (d) 2015, where the phenomenon is

'| significant in area within red circles.
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