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Abstract. The Pleistocene Sand Sea on the Arctic Coastal Plain (ACP) of northern Alaska is underlain by an ancient 

sand dune field, a geological feature that affects regional lake characteristics. Many of these lakes, which cover 

approximately 20% of the Pleistocene Sand Sea, are relatively deep (up to 25 m). In addition to the natural 

importance of ACP Sand Sea lakes for water storage, energy balance, and ecological habitat, the need for winter 20 

water for industrial development and exploration activities makes lakes in this region a valuable resource. However, 

ACP Sand Sea lakes have received little prior study. Here, we use in situ bathymetric data to test 12 model variants 

for predicting Sand Sea lake depth based on analysis of Landast-8 Operational Land Imager (OLI) images. Lake 

depth gradients were measured at 17 lakes in mid-summer 2017 using a HumminBird 798ci HD SI Combo 

automatic sonar system. The field measured data points were compared to Red-Green-Blue (RGB) bands of a 25 

Landsat-8 OLI image acquired on 8 August 2016 to select and calibrate the most accurate spectral-depth model for 

each study lake and estimate bathymetry. Exponential functions using a simple band ratio (with bands selected based 

on lake turbidity and bed substrate) yielded the most successful model variants. For each lake, the most accurate 

model explained 81.8% of the variation in depth, on average. Modeled lake bathymetries were integrated with 

remotely sensed lake surface area to quantify lake water storage volumes, which ranged from 1.056 ×10-3 to 57.416 30 

×10-3 km3. Due to variation in depth maxima, substrate, and turbidity between lakes, a regional model is currently 

infeasible, rendering necessary the acquisition of additional in situ data with which to develop a regional model 

solution. Estimating lake water volumes using remote sensing will facilitate better management of expanding 

development activities and serve as a baseline by which to evaluate future responses to ongoing and rapid climate 

change in the Arctic. All sonar depth data and modeled lake bathymetry rasters can be freely accessed at 35 

https://doi.org/10.18739/A2SN01440 (Simpson and Arp, 2018) and https://doi.org/10.18739/A2TQ5RD83 

(Simpson, 2019), respectively. 

 

1 Introduction 

The Arctic Coastal Plain (ACP) of Alaska is distinguished by the presence of thousands of lakes, many of 40 

which are the product of thermokarst processes (Hopkins, 1949). Thermokarst is the melting of ice in permafrost, 

resulting in thaw settlement and land surface subsidence (van Everdingen, 1998); such activity may lead to the 

development of thermokarst lakes (Hopkins, 1949; Jorgenson and Shur, 2007). While thermokarst lakes on the ACP 
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typically reach maximum depths between 1 to 3 m (Hinkel et al., 2012), an anomalous group of lakes on the ACP 

approach depths up to approximately 25 m. 45 

Deep lakes that are the focus of this study are located on the Pleistocene Sand Sea (Fig. 1), a distinctive 

region of the ACP named for its foundational Pleistocene-aged sand sheet and sand dunes (Carter, 1981; Williams, 

1983; Williams et al., 1978). Located west of the Colville River, this region spans approximately 15,000 km2 and 

contains over 16,000 lakes (Jorgenson et al., 2014). The underlying dune field impacts the regional lithology and 

lake morphology. Lakes here are nestled between the crests of sand dunes and display a form distinct from that of 50 

lakes across the rest of Alaska’s North Slope (Hinkel et al., 2005; Jorgenson and Shur, 2007). Deep central basins 

and wide, shallow littoral shelves surrounded by bluffs distinguish Sand Sea lakes from lakes that have formed in 

ice-rich permafrost terrain. Studies by Livingstone (1954), Rex (1961), Carson and Hussey, (1962), and Carson 

(1968) assert that the bluffs around lakes erode by winds, which carry sand from the bluff faces into the lakes, 

forming characteristic sandy littoral shelves. These shelves only reach depths of up to three m, whereas the central 55 

basins of such lakes can reach depths over eight times that. Due to this striking depth contrast, the distinction 

between littoral shelves and central basins is apparent in satellite imagery of most lakes in the area (given low-wind 

and ice-free conditions). Understanding the geological context and morphology of Sand Sea lakes is important when 

interpreting their spectral signatures in remotely sensed imagery. 

In this study, we (1) present a dataset to help fill the gap concerning lake depth - particularly deep lake 60 

depth - measurements in Arctic regions, (2) leverage the dataset to tune linear spectral-depth models at individual 

lakes for the purpose of lake-wide bathymetry mapping, and (3) integrate the modeled depths across each lake to 

quantify water volumes. Finally, we assess spectral-depth similarity in lakes across the Sand Sea to evaluate the 

prospects of regional water volume modeling. The ultimate goal of this research - individual estimates of water 

volume stored in Sand Sea lakes - is important when evaluating aquatic habitats, conducting industrial activities that 65 

require local freshwater supplies (i.e. ice road construction), and understanding regional water and energy balance. 

Compared with lakes in surrounding regions of the ACP, Sand Sea lakes tend to be deeper and thus less likely to 

freeze to the bottom during the winter. Their notable depth means that Sand Sea lakes tend to have lower 

evaporative losses and are more likely to have basins characterized by floating (rather than bedfast) ice in the winter 

(Arp et al. 2015; Engram et al., 2018). These unfrozen lake basins provide crucial overwintering habitat for fish and 70 

other aquatic life (Jones et al., 2009; Sibley et al., 2008). Furthermore, liquid water is essential for industry during 

winter, primarily for ice road construction, but also for ice airstrip and ice pad construction, exploratory oil-well 

drilling, and withdrawal of water for drillers’ and researchers’ in-camp use (Jones et al., 2009). Unfrozen winter 

lakes can also store more heat, affecting the regional energy balance (Jeffries et al., 1999). Therefore, depth and 

volume quantifications of deep Sand Sea lakes can help monitor fish habitat and direct locations of water extraction 75 

for wintertime infrastructure and consumption for other purposes.  

Previous studies have evaluated water depth and bathymetry of lakes in nearby regions using various 

methods, but are limited either to shallow lakes or by coarse depth resolution (e.g. Hinkel et al., 2012; Jeffries et al., 

1996; Jones et al., 2017; Kozlenko and Jeffries, 2000; Sellman et al., 1975). Such limitations make deep lake depth 

and volumetric estimation unfeasible. For example, Jeffries et al. (1996) used satellite imagery and radar data to 80 
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determine which lakes in regions near Utqiaġvik (Barrow) and Atqasuk, Alaska (including lakes in this paper’s 

study area) froze to the bottom during the winter, extrapolating from their results a classification of lakes as being 

less than or greater than 2.2 m deep. When used in concert with an ice-growth model, this provided a proxy for 

coarse lake volume estimation, but was limited to shallow lakes. Hinkel et al. (2012) measured in situ bathymetry 

for 28 lakes. However, the maximum lake depth of this study on the inner ACP was 2.3 - 5.2 m. Thus, our dataset 85 

and study is unique in its consideration of deep lakes. Furthermore, while one of the model variants we test was 

successfully used to extrapolate bathymetry in tropical and sub-tropical coastal marine environments (Jagalingam et 

al., 2015; Stumpf et al., 2003), to our best knowledge, the model has never been applied to high Arctic lakes. 

Volumetric estimates with the resolution provided here (30 m horizontal; 0.03 m vertical) have never been attempted 

for Pleistocene Sand Sea lakes and the method of depth derivation used in this paper has not been employed in the 90 

Arctic. 

 

2 Data and Methods 

2.1 Field methods 

         Depth points were sampled across 19 lakes during a field expedition between 22 July 2017 and 27 July 95 

2017. The method of data collection required landing on each target lake in a float plane. A HumminBird 798ci HD 

SI Combo automatic sonar unit was attached to the back of a float and sampled depth as the plane taxied or drifted 

across the lake. Depth points were each measured discretely as part of a depth-gradient transect and were sampled at 

a frequency of one point per second with an accuracy of 0.03 m (due to intrinsic machine error). The number of 

points collected per lake is specified in Table 1.  100 

Lakes were targeted that were large enough for a float plane to land on in windy conditions (i.e. > ~1 km2 lake 

surface area), and showed the presence of a distinct littoral shelf and a deep basin on 2.5-m color-infrared aerial 

photography (U.S. Geological Survey Digital Orthophoto Quadrangles [DOQs]). A single straight transect line was 

mapped across each target lake prior to field visits to encompass a wide depth range, however due to windy 

conditions, such lines were not always followed (Fig. 2). Nevertheless, in all but two lakes, a depth range from the 105 

littoral shelf to the deep central basin was captured (Table 1). It should be noted that, as transects were comprised of 

individual points whose relationship to one another was unimportant to the modeling, the direction, angle, and other 

qualities of the transect are significantly less important than the range of depths captured.  

2.2 Depth data processing 

         Depth data points from 17 of the 19 sampled lakes were compiled into a single file to facilitate initial 110 

processing, with the lake IDs maintained in the database for lake-specific analysis. Two lakes at which sampling 

occurred contained an insufficient number of measurements to justify modeling their bathymetry (models produced 

for these two lakes would have been strongly overfitted). Top-of-Atmosphere (TOA) reflectance values from the 

blue band (band 2; 452 - 512 nm), green band (band 3; 533 - 590 nm), and red band (band 4; 636 - 673 nm) of the 

Landsat image (described in the section below) were extracted to each point. Although Surface Reflectance (SR) 115 

imagery was available, we elected to use TOA reflectance initially because SR algorithms are often suboptimal 

when looking at water bodies due to the low level water leaving radiance and furthermore, we are working at high 
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altitudes, where SR corrections are unreliable. Upon comparison, the SR and TOA reflectance values in our selected 

RGB imagery (discussed below) were very similar (R2 > 0.99) at our sample locations. The coastal band (band 1; 

435 - 451 nm) was not included here as there was no basis for its examination in prior similar studies (e.g. 120 

Jagalingam et al., 2015) at the time this analysis was conducted and unexpectedly, preliminary results were not 

greatly improved by the inclusion of the coastal band. 

The dataset was filtered to 13,735 depth points: for each transect collected with the HumminBird sonar, 

discrete points were evaluated relative to the depths of their neighbors and anomalous and zero depth points were 

manually removed from the dataset. This step mitigated sonar errors and improved the smoothness of the 125 

bathymetric profiles that were generated from each transect. Subsequently, depths collected at the margins of two 

lakes at the Pik Dunes (70.234 °N, 153.183 °W) were removed from the dataset after manual inspection due to their 

anomalous spectral signatures. The unique, white color of the sandy substrate at this group of lakes and the extreme 

shallow nature of the littoral shelves (~ 0.5 m deep) produces a spectral signature near the margins of lakes in the 

Pik Dunes area that is easily confused with that of the surrounding land and thus should not be used to analyze lake 130 

depth. These Pik Dunes depth points represent outliers and had they been included, our models would have had to 

reconcile associating strikingly different spectral values with similar depth values. This likely would have decreased 

overall model performance with the only potential benefit of modeling a limited number of marginal pixels more 

accurately.  

To further minimize error caused by associating a single pixel’s spectral signature with multiple depth 135 

points (i.e. to reduce compatibility issues between the spatial resolution of the sonar transects and Landsat imagery 

to which the depth points were compared), the dataset was resampled to include only one depth per pixel. This depth 

was calculated by averaging the sonar depths of all measurements within the pixel, removing depths greater than one 

standard deviation from this average, and re-calculating the depth mean of the pixel. Aggregating per-pixel 

measurements allowed us to identify the dominant depth represented by the pixel’s lake color and improve the 140 

precision of training data (i.e. reduce the range of input depths associated with a given band ratio). This pixel-

representative depth point provides the final depth value used in analysis. All data visualization and manual data 

editing was undertaken using ArcMap; automated data editing was done with the aid of ArcGIS and python. 

 

2.3 Landsat image selection, processing, and analysis 145 

         Landsat-8 Operational Land Imager (OLI) imagery was chosen for comparison with measured depth data 

due to its large swath, 30-m spatial resolution, and quality (as assured by U.S. Geological Survey pre-processing). A 

cloud-free Landsat image (LC08_L1TP_077011_20160805_20170222_01_TI) was selected that both covered the 

study area and was acquired on 5 August 2016, that is, at a similar time of year to that of field data collection from 

the following year (suitable imagery was not available for 2017). The late summer was chosen to provide data for a 150 

time when lakes are at an intermediate level, that is, lakes are free of ice, but have not yet reached their lake level 

minimums (determined when evaporation exceeds precipitation; Jones et al., 2009). It should be noted that water 

volume varies seasonally and interannually in accordance with precipitation of the preceding twelve months, and 

therefore the estimated depth data may not be representative of the lake levels year round or from year-to-year. 
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Nevertheless, these variations in lake level are relatively small, with surface area changes often around 0.6% of total 155 

surface area (Jones et al., 2009). Furthermore, of these area changes, the majority of change occurs at the shallow 

littoral shelves and therefore results in little volume change (Jones et al., 2009).  

As no ice-free, cloud-free Landsat images exist that cover all study lakes for late summer 2017, we selected 

a Landsat image from 2016 in order to maximize the number of lakes included at which field data exists, i.e. the 

number of lakes at which we could model volume. One potentially promising Landsat image exists that covers our 160 

study area, however (a) it was acquired at the end of June, just after ice out, when the lake levels are at a seasonal 

high, and (b) slight cloudiness over some study lakes produced models that predicted depths up to 48% less 

accurately. The use of 2016 imagery is further justified as the interannual depth and volume changes are smaller 

than our error metrics. When considering one representative lake (located at 70.147 °N, 151.765 °W),  a continuous 

depth logger recorded a depth difference of 0.03 m (or 1% of the annual average depth at that point) between the 165 

imagery acquisition date (5 August 2016) and the time of data collection (26 July 2017). This represents a smaller 

depth difference than the 0.05 m difference measured between 30 June 2017 and 26 July 2017. The maximum 

observed depth change at this location between 1 January 2016 and 26 July 2017 was on the order of 1 m. 

Observation of an imagery timeseries of a different group of lakes that are typically highly responsive to water level 

changes (located at 70.539 °N, 152.733 °W) similarly revealed lake level conditions to be more comparable between 170 

5 August 2016 and 21–27 July 2017 than between these latter dates and 1 July 2017. Overlaying lake surface area 

changes on an airborne LiDAR-derived digital surface model showed a change in water level of ~ 0.10 m between 5 

August 2016 and 1 July 2017, indicating a depth change well within our error margins (Alaska North Slope LiDAR 

Data - Project Code ALCC2012-05). The chosen Landsat image was clipped to the study area and a Normalized 

Difference Water Index (NDWI) water mask was created using ArcGIS tools to subset our study lakes from the 175 

surrounding land pixels (McFeeters, 1996).   

 Study lakes were then visually assessed in ArcGIS to provide a Boolean turbidity rating for the purpose of 

analyzing the success of different models. Lake clarity was determined by comparing the selected Landsat image (as 

an RGB true color composite) with a Landsat image acquired 13 July 2016 (23 days prior to the acquisition date of 

the selected Landsat image), as well as color-infrared aerial photographs (DOQs) with a 2.5-m horizontal resolution 180 

(Fig. 3). Lakes that showed presence of sediment plumes or water cloudiness near the site of in situ data collection 

on the selected Landsat image were designated as turbid. Lakes which displayed minimal suspended sediment 

distant from the area at which depths were recorded were designated as turbid as well, however they were analyzed 

as if they were clear, as the impacts of sediment would not be seen in the depth point-derived spectral signatures. 

Lakes that did not have sediment plumes were designated as clear. We validated our visual assessment using the 185 

Total Suspended Matter (TSM) algorithm created by Nechad et al. (2010).  

 

2.4 Model application and volume estimation 

 Twelve variations of a spectral-depth algorithm were examined, each characterized by a specific band ratio, 

adjustment factor, and growth factor (Table 2). More specifically, the blue to green, blue to red, and green to red 190 
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band ratios were considered. Such ratios were either simple (e.g. blue band/green band) or transformed according to 

Stumpf et al. (2003): 

          (1) 

 where Ri and Rj represent the TOA reflectances for bands i and j, respectively. A constant n is included to 

effect a positive output (Stumpf et al., 2003). We set n to 500, as it ensured that the logarithm would be positive 195 

given any feasible band value input, R, from our image. 

The band ratio and the depth measurement of the point at which the spectral signature was extracted were 

correlated using either a linear regression or an exponential function (Fig. 4a-c). The constants obtained from each 

of these models became the parameters with which to tune the linear or exponential equations for the validation data. 

The root mean squared error (RMSE) of each regression between input depths and input band ratios provided error 200 

statistics for modeled depths. In summary, the twelve model variations were each characterized by (1) one of three 

band ratios, (2) one of two transformation methods, and (3) one of two growth relationships (Table 2).  

 For each lake, half of the data was semi-randomly selected as input data while the remaining data was used 

for validation purposes. To ensure that the model was trained and validated with data spanning the full range of 

input depths, however, the maximum and minimum depths were assigned to the group of data to input into the 205 

model, while the second deepest and second shallowest depth points were retained in the list of validation data. To 

obtain the best regional model, this same process was undertaken (i.e. selection of half of the data to train the 

models; application of each of the 12 models), however a sufficient number of depth points exist in the full dataset 

such that the explicit assignment of extreme depths values to input and validation data was unnecessary (i.e. the 

selection was fully random).  210 

Each of the 12 models was tested at each of the 17 lakes and on a regional scale. To account for the slight 

variations in each model’s capacity for depth prediction given different random sets of training data, 1,000 trials 

were performed. This allowed us to assert that the model designated as the most accurate model for a given lake (as 

determined from one trial) was the same model that most frequently produced the best results for that lake. The best 

model for each lake, as evaluated by the coefficient of determination between target and predicted data, was used to 215 

calculate depths at each pixel in that lake. Depths were multiplied by 900 m2 (the area of one Landsat pixel) and 

integrated to quantify the lake’s water volume.   

 

3 Results 

 The best model variants for individual lakes at which depth data were collected were able to account for 220 

58.5% - 97.6% of depth variability (median R2 = 0.86, mean R2 = 0.82; Table 3). Regional-scale models, however, 

were able to accurately explain less than half of the regional depth variability. Median uncertainty of single lake 

depth models (based on RMSE) was 1.23 m, while the average RMSE of the models was 1.44 m. However error 

was not distributed equally across depths, and models tended to overestimate shallower depths and underestimate 

deep depths (Fig. 4d-f). When considering model-predicted depths at all study lakes, depth points less than 2.95 m 225 

were overestimated by an average of 0.21 m (or 17.2% of their true depth), with 61.3% of depths in this shallow-

water group experiencing some model over-prediction. Meanwhile, 66.9% of depths greater than 2.95 m were 
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underestimated, with an average difference between measured and modeled depths of 0.97 m. On average, points 

deeper than 2.95 m were underestimated by 5%. The threshold of 2.95 m represents the intersection between the 1:1 

line and the correlation between measured and predicted depths. Coincidentally, approximately half of the data 230 

points used for model validation fall below this threshold.  

 Lake volumes ranged from 1.056 ×10-3 km3 at the smallest lake (total surface area = 1.089 km2) to 57.416 

×10-3 km3 at the largest lake (total surface area = 18.998 km2), with a median volume of 7.20 ×10-3 km3 (Table 4). 

Volume and surface area were strongly correlated (R2 = 0.90) for the 14 lakes at which complete volumes could be 

modeled (Fig. 5). Linear models predicted negative depths across much of the lakes’ shallow littoral shelves; thus, 235 

the modeled volumes of the three lakes at which linear models produced the most accurate results are an incomplete 

representation of the lake’s water storage. Pixels at which models predicted negative depths were eliminated and the 

water volume was instead calculated for the surface area with predicted depths greater than zero (Fig. 6). Ground 

truth lake volume data do not exist for the study lakes at a similar scale of analysis, rendering error metrics 

unfeasible (aside from those implicitly contained in the depth model error).  240 

The most accurate models (i.e. the models that were best able to determine lake depth for the greatest 

number of lakes) were models with an exponential growth factor with input band ratios blue/green or blue/red 

(Table 3). In all but three of the study lakes, an exponential relationship was found between spectral signature and 

depth. At only two lakes did the green to red band ratio provide the best results. The transform ratio provided the 

best results in 4 out of the 17 lakes, while the simple ratio was used to best model depths in the remainder of the 245 

lakes. The difference between the modeled results of the pure versus transform ratio was marginal however, with an 

average difference between R2 values generated by the respective models of 0.016.  

The ACOLITE (software developed at the Royal Belgian Institute of Natural Sciences for aquatic 

applications of Landsat and Sentinel-2) implementation of the TSM algorithm (Nechad et al., 2010) provided 

quantitative support for the qualitative turbidity assessment, agreeing with the visual assessment in 14 out of 17 250 

lakes. However this algorithm proved highly sensitive to depth (spearman rank order correlation = -0.774; p-value < 

0.001) and did not detect sediment in deeper waters to the same extent as shallow waters, effectively ignoring the 

sediment plumes identified visually. Furthermore, the majority of shallow waters were assigned high TSM values by 

the algorithm, making the differentiation by turbidity at the lake-wide level irrelevant. Considering the points in our 

transects, 91% of high-sediment (i.e. TSM values in or above the 75th percentile) points had measured depths < 2 m 255 

and only five outlier high-sediment values were detected in points with depths > 4.6 m. To directly address the 

sediment content in deeper waters, the mean TSM value was calculated at each lake from sample points with depths 

> 2m. Seven out of eight lakes with the highest average TSM values had been designated as turbid by our qualitative 

assessment (note that one of these lakes was designated as turbid away from the sampling site – this is counted as an 

error). In addition, all but one of the nine lakes with the lowest mean TSM values were designated as clear at the 260 

sampling site. 

Turbidity appears to partially explain band ratio success. All of the eight lakes at which the blue to green 

band ratio provided the best result were free of sediment where measurements were taken. Furthermore, all of the 

seven lakes designated as turbid at the data collection site required incorporation of the red band to achieve the best 
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depth prediction. One anomalous lake at which no sediment was detected required incorporation of the red band to 265 

predict depth most accurately. 

  

4 Discussion 

4.1 Modeled depth analysis 

 Depth was accurately derived from Landsat OLI imagery for individual lakes (the average R2 value of the 270 

selected models for each lake was 0.82). Our R2 values are consistent with those found in the literature (e.g. 

Jagalingam et al., 2015; Stumpf et al., 2003) and thus our selected models can be considered successful. The 

regional scale model, however, was unsuccessful and regional volume analysis was rejected.  This finding is 

consistent with Smith and Pavelsky (2009), who found surprisingly high variability in a collection of remotely 

sensed lake storage volumes on the Peace-Athabasca Delta, Canada, despite their having similar physiographic 275 

setting and morphology. 

 Unsurprisingly, the blue band proved to be the most useful in determining depth, and was used to tune 

depths at all but two lakes. Blue light has a shorter wavelength, and consequential higher energy, which allows it to 

be absorbed less in water than either green or red light. Thus, the reflectance of the blue band decreases less than 

either the green or red bands in proportion to increasing depth. In contrast, red light is able to penetrate only several 280 

meters into most types of water before it becomes absorbed. This band proved useful in distinguishing depths at both 

the sandy littoral shelves, where water is typically 0.5 - 3 m in depth, and where suspended sediment was present in 

the water. As sand reflects red light more than blue or green light, this is expected. Thus, applying the blue to red 

band ratio to predict depths at turbid lakes, where sediment reduces blue and green wavelength penetration into 

deeper waters, is recommended. Conversely, applying the blue to green ratio at clear lakes where blue and green 285 

light can effectively penetrate water to the expected deeper depths will likely provide the best depth predictions. 

However, it should be noted that the blue band is the most susceptible to contamination from atmospheric aerosols, 

which may contribute to the lack of model portability between lakes. 

The two lakes at which the green/red band ratio best tuned the model were unique in terms of physical 

factors or sampling locations. One of these lakes showed the presence of an unusual purple-red patch on a shelf 290 

between the littoral shelf and deep zone. Underwater vegetation likely accounts for this unusual spectral signature 

and thus it is unsurprising that this lake required a unique band ratio to accurately tune the model. Measurements at 

the second lake accounted for the shallowest range of depths of any lake (0.2 m - 2.1 m), which may have led to 

stronger reflectance in the red band, as the sand was more prominent. 

In addition, an exponential relationship was able to better model depth ranges that include shallow depths 295 

of around 0.8 m, a finding that is likely the result of incomplete transect sampling rather than physical significance. 

Of the three lakes at which a linear function provided the best model, two were the lakes at which depths on the 

littoral shelf were not measured; the third lake contained only a single measurement of the littoral shelf. Therefore, 

the lakes best modeled with a linear growth relationship are associated with measured bathymetry profiles that do 

not contain sufficiently shallow littoral shelf depths. This is evidenced by the prediction of negative depths at littoral 300 

shelves when applying linear models, the product of the strongly negative y-intercepts that render low spectral 
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signature ratios negative. This leads us to conclude that the linear relationship between band ratios and depths at 

these lakes is more likely the product of the locations at which data was gathered rather than a result of physical 

significance. It is thus important to tune models to all regions (and all depths) of the lake.  

On the whole, applying an exponential function to compare depths to a simple band ratio provided the best 305 

accuracy, with model input bands dependent on physical factors specific to each lake. The simple band ratio is easier 

to calculate and the accuracy provided by each ratio type model variant is comparable, with slightly better overall 

results when using the simple ratio. However, to address the underestimation of deep depths and overestimation of 

shallow depths in our models, additional transformations must be made, a goal that is outside the scope of this 

project.  310 

 

4.2 Limitations 

The depth estimates are only tuned to the extrema of depths measured at each lake. Although gathering data 

across a lake’s full bathymetric profile was attempted, it is likely that the depth minima and maxima were not 

captured at all lakes. Collecting data with sonar attached to a float plane limited the measurement of depths 315 

approaching 0 m. Few pixels were sampled at the minimum depth that was able to be measured (0.2 m) and thus 

there is insufficient tuning to accurately model the littoral shelves of lakes. Furthermore, while we attempted to 

gather depths across the deep central basins, it is impossible at present to know whether we sampled the deepest 

point without measuring the entirety of the basin. Thus, modeled depths may not accurately depict a lake’s 

maximum depth.  320 

 The limited spatial resolution of Landsat imagery, in comparison with sonar depth data, constitutes the 

primary limitation to this work. As depths had to be averaged to conform to the assumption that each spectral 

signature corresponded to a discrete depth, the spatial resolution and depth precision of the sonar depths was greatly 

degraded, potentially accounting for some of the inaccuracies in the model variants. Modeling bathymetry with 

satellite imagery of a higher spatial resolution would allow for the use of more training points and thus likely 325 

improve the accuracy of depth and volume predictions. Furthermore, samples were taken at a small fraction (in 

terms of surface area) of the lake (i.e. the entire lake’s bathymetry was not mapped, rather, data points were 

collected along discrete and irregular transects). Thus, there exists a mismatch regarding the validation data and the 

natural phenomenon being modeled. Data at such a small spatial scale can never confirm with total accuracy the 

detailed nature of lake bed bathymetry. Constrained by cost and time however, collecting data at 17 remote lakes is 330 

an important step towards understanding Sand Sea lake bathymetries on Alaska’s Arctic Coastal Plain.  

 

4.3 Implications and future directions 

Lakes on the Pleistocene Sand Sea may be categorized based on depth, littoral substrate, and water clarity, 

as seen in the study lakes, with such categories providing candidates for different model variations. Future projects 335 

may use this work to semi-automatically derive depths across the region, first manually classifying target lakes, and 

then applying different model variations to each class. Furthermore, subregions of each lake (e.g. deep basins, 

shallow shelves) may be classified in future studies and a different model variant applied to each subregion (e.g. 
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variants that incorporate the red band applied to littoral shelves). Methods of lake subregion differentiation may 

include either (1) manual delineation based on spectral signatures or (2) automatic delineation with the aid of 340 

synthetic aperture radar (SAR) to determine regions of floating versus bedfast ice (which correspond with deep and 

shallow water, respectively; demonstrated by Engram et al., 2018; Jeffries et al., 1996). Additional future work may 

include validation of lake water volumes as additional bathymetric datasets become available.  

 

5 Conclusion  345 

This work represents one successful application of leveraging in situ data collection with satellite remote 

sensing to estimate lake water depth and volume. Lake volumes can be monitored using remote sensing, however at 

least one field visit must be made in order to select the best model for a given lake. As of yet, it is still challenging to 

universally model the bathymetry of lakes across northern Alaska. Instead, field data continues to be necessary to 

train and calibrate models on a per-lake basis.  350 

Furthermore, lake morphology may evolve in glaciated regions such as northern Alaska in response to 

hydroclimatic changes and permafrost degradation (Arp et al., 2011, Liljedahl et al., 2011, Nitze et al., 2017). This 

implies that individual field surveys and static modeling efforts such as this one may not accurately represent ground 

conditions ad infinitum, particularly in the presence of a rapidly warming Arctic climate (Nitze et al., 2017). In 

addition to the persistent need for field data to address modeling limitations to spatial scale, field data collection 355 

and/or dynamic models will be important components if we are to model bathymetry across a longer temporal scale.  

Despite these limitations, the simplicity of the modeling approach has important benefits. The models can 

be tuned very rapidly and require relatively few data points for training in comparison to machine learning models 

(e.g., Sagawa et al., 2019), a useful feature when training data must be collected in a relatively inaccessible region 

such as northern Alaska. In addition, the comparative nature of the demonstrated modeling facilitates analysis of 360 

individual lake characteristics. Overall, this work provides an effective means for mapping bathymetry of individual 

lakes in a unique geologic setting on the ACP.  

 

6 Data Availability 

We present a dataset to greatly increase the number of in situ measurements of lake depth on the little-365 

studied Inner Arctic Coastal Plain of Alaska. The dataset contains 13,735 point measurements of bathymetric depth 

measured across 19 lakes, and is freely available through the National Science Foundation Arctic Data Center: 

https://doi.org/10.18739/A2SN01440 (Simpson and Arp, 2018). The second dataset created for this project is 

comprised of 17 bathymetry rasters, one for each lake at which a sufficient number of depth points was collected. 

These rasters represent the depth predictions of the best performing model for each individual lake and are also 370 

freely available through the National Science Foundation Arctic Data Center: https://doi.org/10.18739/A2TQ5RD83 

(Simpson, 2019). 
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Tables 

Table 1: Sampling specifications for each study lake. The number of sample points and measured depth range 560 

were calculated after the points were processed for quality assurance (e.g. anomalous depth pixels removed) but 

before resampling to the single point per pixel dataset. 

Lake ID 
Centroid 

latitude (dd) 

Centroid 

longitude (dd) 

Number of 

points sampled 

Measured depth 

range (m) 

2964 70.3616 -153.6750 703 1.5 - 11.8 

3442 70.3168 -153.8160 1065 0.8 - 2.4 

3839 70.2875 -153.8620 1401 1.6 - 6.1 

4199 70.2457  -154.4680 645 1.2 - 12.8 

4222 70.2484 -153.1460 1216 0.2 - 11.7 

4291 70.2386 -153.2030 479 0.2 - 6.2 

4365 70.2304 -153.2500 287 0.2 - 4.9 

4782 70.1983 -153.3150 870 0.2 - 2.6 

5211 70.1581 -153.9300 762 0.7 - 5.0 

5242 70.1585 -154.2260 745 1.9 - 8.3 

5326 70.1349 -154.1280 656 0.6 - 4.4 

5570 70.0948 -153.7480 392 0.8 - 10.4 

5893 70.0577 -153.5010 1113 0.3 - 21.3 

6058 70.0285 -153.3670 284 0.6 - 17.0 

6167 70.0122 -153.0930 1715 0.8 - 14.6 

6199 70.0110 -153.4720 991 2.1 - 10.7 

6274 69.9967 -153.0690 280 0.3 - 13.2 

 

 

 565 

Table 2: Modeled depth (Z) is calculated with each of four equations that are tuned with each of three input band 

pairs. Ri and Rj represent the Top-of-Atmosphere reflectances of bands i and j, respectively. Band pairs (band i/band 

j) include the blue and red bands, the blue and green bands, and the green and red bands. Tunable parameters m1 and 

m0 are derived by comparing spectral signatures with depth (as in Fig. 4a-c).  
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Table 3: The best spectral depth model for each lake (based on R2 ). A simple ratio exponential function 

provided the best model for the greatest number of lakes, while the blue/green and blue/red band ratios both 

provided good inputs for models at different lakes, accounting for the best spectral-depths models at 8 and 7 lakes, 

respectively. The average R2 of the best model at each lake is 0.818, with an average root mean squared error 

(RMSE) of 1.439 m. 1Some suspended sediment is visible, however it does not overlap the area at which depths 575 

were measured. 

 

Lake ID 
Modeled depth 

range (m) 
Turbid? 

 
Best method 

 
R2 RMSE 

   Ratio type Band ratio Growth type   

2964 1.6 – 11.7 No Transform Blue/Green Linear 0.802 1.973 

3442 0.9 – 1.8 Yes Simple Green/Red Exponential 0.916 0.270 

3839 1.4 – 5.1 Yes Simple Blue/Red Exponential 0.871 0.600 

4199 0.6 – 8.2 No Simple Blue/Green Exponential 0.632 2.132 

4222 0.4 – 8.9 Yes Simple Blue/Red Exponential 0.689 2.307 

4291 0.8 – 4.5 Yes Simple Blue/Red Exponential 0.585 0.835 

4365 0.2 – 3.7 No Simple Blue/Green Linear 0.784 0.478 

4782 0.4 – 2.2 Yes Transform Green/Red Exponential 0.893 0.138 

5211 0.8 – 4.7 Yes Simple Blue/Red Exponential 0.804 0.563 

5242 2.1 – 7.2 Yes1 Simple Blue/Green Exponential 0.976 0.684 

5326 0.8 – 4.4 No Simple Blue/Red Exponential 0.862 0.425 

5570 1.1 – 6.4 No Simple Blue/Green Exponential 0.654 1.957 

5893 0.5 – 21.1 Yes1 Transform Blue/Green Exponential 0.954 1.931 

6058 0.6 – 9.9 No Simple Blue/Green Exponential 0.866 3.568 

6167 0.3 – 11.1 Yes1 Transform Blue/Green Exponential 0.848 2.604 

6199 1.0 – 9.5 Yes Simple Blue/Red Linear 0.907 1.227 

6274 0.3 – 8.8 Yes1 Simple Blue/Red Exponential 0.867 2.765 

 

 

 580 

 

 

 

 

 585 

 

 

 

 

 590 



17 

Table 4: Modeled Lake Volumes. Individual lake volumes were estimated by multiplying the modeled depth for 

each pixel by a constant factor of 900 m2 (Landsat spatial resolution). Depths were modeled by applying the best 

spectral-depth model for the lake (Table 3). Linear depth models predicted negative depths for some pixels; volume 

estimates derived from such models (namely the models applied at lakes 2964, 4365, and 6199) include only those 

pixels with modeled depths greater than zero. The percent of the surface area for which depth estimates at a lake 595 

were positive (in contrast to the total surface area of a given lake derived using the NDWI mask) is quantified.  

Lake 

ID 

Total 

surface area 

(km2) 

Surface area with 

depths modeled  

(% total area) 

Modeled 

volume  

(10-3 km3) 

2964 4.631 25.78 11.113 

3442 1.089 100 1.056 

3839 5.419 100 10.367 

4199 1.953 100 3.454 

4222 1.533 100 8.371 

4291 0.637 100 2.229 

4365 1.046 61.66 2.102 

4782 6.455 100 7.202 

5211 9.865 100 19.280 

5242 18.998 100 57.416 

5326 4.846 100 10.545 

5570 0.913 100 2.464 

5893 10.552 100 37.949 

6058 1.559 100 6.336 

6167 2.778 100 10.343 

6199 2.038 37.24 4.943 

6274 0.662 100 2.484 
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Figures

 615 

Figure 1. The lake-rich region of study is on Alaska’s Arctic Coastal Plain (ACP), southeast of Utqiaġvik (Barrow). The imagery 

used in our models is a Landsat-8 tile (Path 077, Row 011) acquired on 5 August 2016. The Pleistocene Sand Sea, a geologically-

unique region of the ACP, is delineated based on a classification of eolian sand by Jorgenson et al., 2014. Landsat-8 image 

courtesy of the U.S. Geological Survey.  
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Figure 2. Transects were measured across 17 study lakes. Although the transects follow irregular paths (due in part to wind 

conditions and sonar error), all but two of the transects capture a range of depths from the deep central basins to the shallow outer  625 

shelves. These are the full transects before resampling to a single point per pixel. Where the form of a transect is unclear, inset 

maps are provided. Landsat-8 image courtesy of the U.S. Geological Survey. 

 

Figure 3. Sediment is detected in RGB Landsat imagery (acquired 5 August 2016) of a representative study lake (a,b). This is 

confirmed as a temporary sediment plume by comparing the image of the lake used in modeling to 2.5-m color-infrared 630 

photography acquired 18 July 2002  (c) and a Landsat image acquired 13 July 2016 (d) in which no sediment plumes are visible. 

Landsat-8 images and Digital Orthophoto Quadrangles (DOQs) courtesy of the U.S. Geological Survey.  
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Figure 4. Coefficients of the trendlines between band ratios and measured depths (a-c) are used to tune the depth models for each 635 

lake. Different models (specified for each lake in Table 3) best predicted lake depth at each of these three lakes. Correlation 

between measured and modeled lake depths at three representative lakes (d-f) reveals underestimation of deeper depths and 

overestimation of shallow depths. Error bars represent root mean squared error (RMSE). 
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 640 

Figure 5. A strong correlation exists between surface area and modeled volume for the 17 lakes we analyzed. 
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Figure 6. Modeled lake bathymetry at three representative lakes reveals the tendency of linear depth models to drastically 

underestimate the depths of the littoral shelves when not calibrated to shallow depths (a) and the promising predictive power of 645 



26 

exponential depth models (b,c). The products of three different spectral-depth model variations are overlain on the Landsat 

imagery from which the products were derived. Adjacent to each depth product is the original Landsat imagery of the lake. Color 

bars indicate the depths predicted by the model variants at each lake, while the grey area (a) represents the pixels at which 

negative depths were modeled. Landsat-8 image courtesy of the U.S. Geological Survey.  
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