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Abstract. Arctic and boreal peatlands play a major role in the global carbon (C) cycle. They are particularly efficient at

sequestering carbon due to their high-water content which makes primary productivity exceed decomposition rates . Though,

their
::::::
because

:::::
their

::::
high

:::::
water

::::::
content

:::::
limits

::::::::::::
decomposition

:::::
rates

::
to

:::::
levels

:::::
below

::::
their

:::
net

:::::::
primary

:::::::::::
productivity.

::::
Their

:
future in

a climate-change context is quite uncertain in terms of carbon emissions and carbon sequestration.

Nuuk-fen site is a well-instrumented greenlandic site of particular interest for testing and validating land-surface models with5

monitoring of soil physical variables and greenhouse gas fluxes (CH4 and CO2)
:::
and

::
is
:::
of

::::::::
particular

::::::
interest

:::
for

::::::
testing

::::
and

::::::::
validating

::::::::::
land-surface

:::::::
models. But knowledge of soil carbon stocks and profiles is missing. This is a crucial shortcoming for a

complete evaluation of models, as soil carbon is one of the primary drivers of CH4 and CO2 soil emissions. To tackle
::::::
address

this issue, we measured for the first time soil carbon and nitrogen density, profiles and stocks in the Nuuk peatland , at the exact

location of fluxes monitoring
::::::::::
(64°07,51"N

:
,
::::::::::::
51°23’10"W),

::::::::
colocated

:::::
with

:::
the

:::::::::
greenhouse

::::
gas

::::::::::::
measurements. Measurements10

were made along two transects. Measurements horizontal resolution is
:
,
::
60

::::
and

::
90

::
m

::::
long

::::
and

::::
with

:
a
:::::::::
horizontal

:::::::::
resolution

::
of

5 meter , vertical resolution ranges from
:::
and

:
a
:::::::
vertical

::::::::
resolution

::
of

:
5 to 10 cm. Mean soil carbon density is 50.2 kgC.

:
,
:::::
using

:
a
::
4

:::
cm

:::::::
diameter

::::::
gouge

:::::
auger.

::::
135

::::
soil

:::::::
samples

::::
were

:::::::::
analyzed.

::::
Soil

::::::
carbon

::::::
density

::::::
varied

:::::::
between

:::
6.2

:::
kg

::
C

::::
m�3

:::
to

:::::
160.2

::::
with

:
a
:::::
mean

:::::
value

::
of

::::
50.2

:::
kg

::
C

::::
m�3.

::::::
Mean

:::
soil

:::::::
nitrogen

:::::::
density

:::
was

::::
2.37

:::
kg

::
N

:
m�3.

:::::
Mean

:::
soil

::::::
carbon

::::
and

:::::::
nitrogen

::::::
stocks

::
are

:::::
36.3

::
kg

::
C
::::
m�2

::::
and

:::
1.7

:::
kg

::
N

:::::
m�2. These new data are in the range of those encountered in other arctic peatlands. This15

new dataset
:
,
:::
one

::
of

::::
very

::::
few

::
in

:::::::::
Greenland,

:
can contribute to further develop joint modelisation

::::::::::
development

:::
of

::::
joint

::::::::
modeling

of greenhouse gas emissions and soil carbon
:::
and

:::::::
nitrogen

:
in land-surface models. The dataset is open-access and available at

https://doi.org/10.1594/PANGAEA.909899.

Copyright statement. TEXT
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1 Introduction

The terrestrial biosphere plays an important role in regulating atmospheric
:::::::::
greenhouse

:::
gas composition and climate by greenhouse

::::::
through

:
gas exchanges and its capacity to act as a carbon sink

:::
(C)

::::
sink

::::::::::::::::::::::
(Friedlingstein et al., 2019). For instance, northern

latitudes
::::::
latitude

:
wetlands account for one third to

:::
one half of the methane emissions from natural wetlands (Schlesinger and

Bernhardt, 2013). Of all these
::::::
Among

::
all

:
terrestrial ecosystems, peatlands are arguably the most efficient at sequestering carbon5

(C )
:
C
:
over long time scales (Loisel et al., 2014; Leifeld and Menichetti, 2018). Peatlands are a particular type of wetlands,

permanently saturated , and occur for
::::::::::
permanently

::::::::
saturated

::::::::
wetlands,

:::
and

:::::
cover

:
3 % of terrestrial surface

:::
the

::::::
global

::::
land

::::::
surface

:::::::::::::
(Xu et al., 2018). In these ecosystems, the anaerobic conditions due to the

::::::
created

:::
by high water content lead to slow

carbon decomposition. The
:::::::
Because

:::
the accumulation rate of organic matter is hence higher

:::::
greater

:
than its decomposition rate.

Due to their high productivity and/or slow decomposition, peatlands are consequently an important
:::::::
important

::::::::
longterm

:
soil10

carbon reservoir : their estimated carbon storage ranges between 550 and 694 GtC (Yu et al., 2010; Yu, 2012)
:::::::::::::
(Gorham, 1991).

When undisturbed, these ecosystems are a net sink for atmospheric CO2 attributed to (Jungkunst et al., 2012).

Thus, peatlands
:::::::::::::::::::
(Jungkunst et al., 2012).

::::::::
Peatlands

::::
have

::::::::::
consistently

:::::::::::
sequestering

:
C
::::::::
although

::
at

:::::::
variable

::::
rates

:::::::::
throughout

:::
the

:::::
entire

:::::::
Holocen

:::::
period

::::::::::::::
(Yu et al., 2011).

::::::::
Globally

::::
they

:::
are

::::::::
estimated

::
to

::::
store

::::::::
between

:::
550

::::
and

:::
694

::::
GtC,

:::::
about

::
a
::::
third

::
of

::::::
global

:::
soil

::::::
organic

::::::
carbon

:::::
stocks

:::::::::::::::::::::::
(Yu et al., 2010; Yu, 2012).

::::::::
Peatlands play a major role in the global carbon cycle (Harenda et al., 2018).During15

the Holocene, as peatland C sequestration is strongly correlated with atmospheric CO2 concentration (Yu et al., 2011). As for

the terrestrial carbon cycle, recent evidences suggest a significant shift of originally permafrost-stored carbon onto peatlands

(Lindgren et al., 2018) during the same period. But their
::::::::::::::::::::::::::::::::::::
(Harenda et al., 2018; Limpens et al., 2008).

::::
Their

:
future in a climate-change context

::::::::
changing

::::::
climate

:
is quite uncertain, in terms of carbon emissions magnitude and20

carbon
::
the

:::::::::
magnitude

::
of
::::::
carbon

:::::::::
emissions

:::
and

:
sequestration (Yu et al., 2011).

Recent studies
::::::
Recent

:::::::::
projections suggest that peatlands will

:::
may

:
remain a carbon sink in the future, although their response

to global warming will switch from a negative to a positive feedback (Gallego-Sala et al., 2018). As natural carbon fluxes

from and to terrestrial reservoirs are annually an order of magnitude larger than perturbation from land-use change and fossil

emissions (Schuur et al., 2008), large positive feedback from land biomass and soils on the atmospheric carbon pool may be25

triggered by a temperature increase. As peatlands organic matter accumulation rate depends not only on soil moisture but also

on other a
:::::::

weaker
:::
one

:::::::::::::::::::::::
(Gallego-Sala et al., 2018).

:::::::
Primary

::::::::::
productivity

::::
and

::::
soil

::::::
carbon

::::::::::::
decomposition

:::::::
depend

::
on

::::::::
multiple

factors such as soil temperature, net primary production (NPP), soil
::::
solar

:::::::::
irradiance,

:::
air

:::::::::::
temperature, vegetation type, etc,

many complex feedbacks may occur in the future. A direct feedback of climate warming on microbiological activity and,

therefore, enhanced organic matter decomposition and greenhouse gas emissions from soil is indeed highly probable. On the30

other hand, higher temperature leads to higher evapotranspiration which eventually leads to dryer conditions that may hamper

decomposition despite the better temperature condition. Changes in soil moisture is also known to alter the
:::
soil

::::::::
moisture,

::::
soil

::::::::::
temperature,

:::
soil

::::::
carbon

::::
and

:::
soil

:::::::
nutrient

:::::::
content,

:::
all

::
of

:::::
which

::::::
depend

:::
on

:::::::
climate.

:::
To

::
be

::::
able

::
to

:::::::
estimate

::::
how

:::::
much

::::
litter

::::
and

:::
soil

::::::
carbon

:::::
might

:::
be

:::::::::::
decomposed,

::
it

::
is

::::::::
necessary

::
to
:::::

know
::::

the
::::::
carbon

:::::
stock

::
at

::::::
present

:::::
time.

::
It

::
is

:::
also

:::::::::
important

::
to

:::::
know

:::
its
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::::::
vertical

::::::
profile

::
in

:::
the

::::
soil

:::::::
because

:::
the

::::::::::::
decomposition

::::
rate

:::
and

:::::
ratio

::
of

:
CH4 /

::
to CO2 ratio production

:::::::::
production

::::::
depend

:::
on

::::
depth

:::::::
through

::::
soil

::::::::::
temperature

:::
and

:::
soil

::::::::
moisture

::::::
vertical

:::::::
profiles.

In these regions, knowledge of carbon
::::::::
Nitrogen

:::
(N)

::
is

:
a
:::::::
limiting

:::::
factor

:::
for

:::::
plant

::::::
growth

:::
and

:::::::::
microbial

::::::
activity

::
in
::::::::
northern

::::
soils

::::::::::::::::::::::::::::
(Vitousek and Howarth, 1991) and

:::::
could

:::
play

:::
an

::::::::
important

:::
role

::
in

:::::
future

:::::::
northern

::::
land

::::::
carbon

::::::
storage

::::::::::::::::::::::::
(Kicklighter et al., 2019) and5

:::::::::
greenhouse

:::
gas

:::::::::
emissions

::::::::::::::::
(Luan et al., 2019).

::::::::
Increased

::::::
nitrous

:::::
oxide

::::::
release

:::::
from

:::::::
northern

:::::
soils

::::
with

:::::::::
permafrost

::::
thaw

:::::
have

::::
been

:::::::
reported

::::::::::::::::::::::::::::::::::
(Elberling et al., 2010; Voigt et al., 2017).

::::::::
However,

::::
very

::::
little

::
is

::::::
known

::
on

::::::::
nitrogen

:::::
stocks

::
in

:::::
these

::::
soils.

:::::::::
Knowledge

:::
of

::::::
carbon

::::
and

:::::::
nitrogen

:
stocks and profiles is hence particularly important. In the last decades, a growing

number of sites in the arctic and boreal regions were instrumented in order to measure the greenhouse gas emissions of10

these ecosystems.
:
,
::::
such

:::
as

::::::
Abisko

:::
in

:::::::
Sweden

::::::::
(Jammet

::
et

:::
al,

::::::
2017),

::::::::
Samoylov

:::
in

::::::
Russia

:::::::
(Siewert

:::
et

::
al,

::::::
2015,

:::::
2016)

:::
or

:::::::::
Zackenberg

::
in
:::::::::
Greenland

:::::
(Pirk

::
et

::
al.

:::::
2016,

:::::
2017)

::::
(see

:::::
Table

:::
1). Similarly, more and more measurements of soil carbon stocks

and profiles are conducted every year. Unfortunately, although large scale soil carbon databases already exist (e.g HWSD

(FAO et al., 2012) or NCSCD (Hugelius et al., 2013))
::
the

:::::::::::
Harmonized

:::::
World

::::
Soil

::::::::
Database

:::::::::::::::::
(FAO et al., 2012) or

:::
the

::::::::
Northern

::::::::::
Circumpolar

::::
Soil

:::::::
Carbon

::::::::
Database

::::::::::::::::::
(Hugelius et al., 2013), very few sites measure both the greenhouse gas fluxes together15

with
::::
have

::::
both

:::::::::
greenhouse

::::
gas

:::
flux

::::
and soil carbon content

:::::::::::
measurements

:
(see Table 1). This is a substantial shortcoming that

needs to be adressed
::::::::
addressed, as carbon profiles are one of the primary drivers for

:
of

:
CO2 and CH4 production and emission

::::::::::::::::::::::::
(Raich and Schlesinger, 1992). Moreover, for the few sites where soil carbon

::
for

::::::
which

:::
soil

::::::
carbon

::::::
stocks and greenhouse gas

fluxes are available, both are quite often not measured at the same location (sometimes more than a few kilometers apart). Due

to fine-scale heterogeneity (vegetation, microtopography, etc...), they may reflect completely different functioning
:::::::::
conditions20

(e.g. first datasets from Zackenberg site (Sigsgaard et al., 2007; Palmtag et al., 2015)). For
:::::
From a site-scale modeling point-

of-view, it is then important to get fluxes
::::::::
therefore

::::::::
important

::
to

::::
have

::::::::::
greenhouse

:::
gas

::::
flux data (e.g. CH4 and CO2) and state

variable data (C stocks and profiles) as close as possible
:::::::
available

::
at

:::
the

:::::
same

:::::::
locations.

There are many challenges accompanying the joint modelisation of greenhouse gas emission
::
to

:::::::::::::
simultaneously

::::::::
modeling25

:::::::::
greenhouse

::::
gas

::::::::
emissions

:
and soil carbon in land-surface models. For instance, Chadburn et al. (2017) noted that models

that currently get
::::::
simulate

:
realistic soil temperature and soil carbon

:::::::
currently

:
produce unrealistically low methane fluxes. It

appears then
:::::::
therefore

:
necessary to improve the coupling of biogeochemical and physical processes of land-surface models.

An example of recent attempt in this direction
::::::
attempts

::
at
::::

this
:
is the biogeochemical carbon and greenhouse gas emissions

model presented in Morel et al. (2019a) and embedded in the land surface model Interaction Soil-Biospheree-Atmosphèere30

::::::::::::::::::::::
Soil-Biosphere-Atmosphere

:
(ISBA; Noilhan and Planton (1989)). Although the biogeochemical and physical part of this model

has been validated on three distinct boreal and arctic sites, the lack of soil carbon data did not allow a complete evaluation of

this model. Hence, we conducted field experiments
:
a
::::
field

::::::::::
experiment in a well-instrumented greenlandic peatland, Nuuk-fen,

to collect soil carbon stocks and profiles data . Carbon sampling localisations are in the same spot as
:
at

:::
the

:::::::
location

:::
of

:::
the
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automatic chambers measuring CH4 and CO2 fluxes
:::
and

:::::
along

:::
two

::::::::
transects.

:::::
There

::
is

::::
very

::::
little

::::
data

::::::::
available

:::
on

::::::::
wetlands

::
in

:::::::::
Greenland

::
in

:::::::
general

:::
and

::::
fens

::
in
:::::::::

particular
:::
due

:::
to

::::::::
logistical

:::::::::
difficulties

::
to

:::::
reach

:::::
them.

::::
Fen

::::::
extent

::
in

:::::::::
Greenland

::::
was

:::::::
recently

:::::::::
estimated

:::::
using

::
a
:::::::::::
combination

::
of

::::::
remote

:::::::
sensing

::::
data

::::
and

:::::::
ground

:::::::::::
measurements

::::::::::::::::::
(Karami et al., 2018).

:::::
They

::::
find

:::
the

::::::
extent

::
of

::::
fen

::
to

:::
be

::::
4461

:::::
km2,

:::::
about

:::::
1.4%

:::
of

:::
the

:::::::
ice-free

::::
area

:::
and

::::
5%5

::
of

:::
the

::::::::
vegetated

:::
area

:::
of

:::::::::
Greenland.

::
In

:::::
terms

::
of

::::::
in-situ

::::
data,

::::::::::::::::::::::::::::::
(Palmtag et al., 2015, 2018) sampled

:
a
::::
few

:::
fens

:::
for

:::
soil

::::::
carbon

::::
and

:::::::
nitrogen

::
in

:::
the

::::::::::
Zackenberg

:::::
valley.

::::::::::::::::::::::
Barthelmes et al. (2015) in

::::
their

::::::
review

::::
only

:::
list

:
a
::::::
dozen

::::::::
published

::::::
in-situ

::::::::::::
measurements

::
of

:::
peat

:::::::
deposits

:::::
(both

:::::
active

:::
and

::::::::
inactive),

:::::
fairly

:::::::
shallow

::::
(less

::::
than

:
1
:::
m)

::
for

:::
the

:::::
active

:::::
ones.

:::::::
Among

:::::
those,

::::
only

:
2
::::
deal

::::
with

::::::
carbon

:::::
fluxes

::
or

::::::
stocks

:::::::::::::::::::::::::::::::::::::::::::::::::::
(MacDonald et al., 2006; Horwath Burnham and Sletten, 2010),

:::
the

::::::
others

:::::
being

::::::
mostly

:::::::::::::
paleoecological

::::
and

:::::::::::
archeological

:::::::
studies.

::::::
Except

:::
for

:::::::::::::::::::
(Palmtag et al., 2018),

::::
none

:::::::
include

::::::::
nitrogen

::::
data.

:::::::
Hence,

:
a
:::::

new
::::::
dataset

:::
on

::::::
carbon

::::
and10

:::::::
nitrogen

::::::
content

::
of

::
a

::::::::
Greenland

:::
fen

::
is
:::::::::
important.

The aim of this paper is to present and validate a
::
this

:
new dataset of soil carbon and nitrogen stocks and profiles from an

instrumented greenlandic fen
::::::::
Nuuk-fen. In Section 2 we present the Kobbefjord site, in particular the fen

:
’s

:
physical character-

istics and specificities. We present in Section 3 the experimental protocol and the methods of the field and laboratory studies.15

Section 4 presents collected data of soil bulk density, water content, soil carbon content, profiles and stocks, as well as nitrogen

and carbon/nitrogen (C/N) ratios. Finally, we discuss the dataset robustness and interests in Section ??
:::::::
possible

::::
uses.

:::::
These

::::
soil

:::::
carbon

::::
and

:::::::
nitrogen

::::
data

::::
will

::::::::::
complement

:::
the

:::::::
existing

:::::::
dataset

::
of

::::::::::
greenhouse

:::
gas

:::::
fluxes

:::::
from

:::
the

:::
fen.

::::
The

:::::::::
combined

::::::
dataset

:::
will

:::::
allow

::
to

:::::::
evaluate

:::
the

::::::
fluxes

:::
and

::::::
stocks

::::::::
simulated

:::
by

::::::::::
land-surface

::::::
models

::
in
::
a
:::::::::
completely

:::::::::
consistent

::::::
manner. The dataset

is open-access and available at https://doi.org/10.1594/PANGAEA.909899 (Morel et al., 2019b).20

2 Site presentation
:::::
Study

:::::
Area

Nuuk Research Station
:::
The

:::::::
studied

:::
fen

:::::::::
(Nuuk-fen)

::
is
:::::::
located

:::::
within

:::
the

:::::
Nuuk

:::::::::
Ecological

::::::::
Research

::::::
Station

::::
and is part of the

Greenland Ecosystem Monitoring program, which provides detailed reports on an annual basis, dating back to 2007 for Nuuk

(Nuuk Ecological Resaerch
::::::::
Research Operations - NERO - Annual reports ; Tamstorf et al. (2008)). The site

::::::::
Research

::::::
Station

is well-instrumented and participates to
:
in

:
several research programs, ranging from studying the dynamics of organisms and25

biological processes, the physical characteristics of marine, coastal and terrestrial environments, and climate and hydrological

:::::::::
performing

::::::
climate

::::
and

:::::::::
hydrology monitoring as well. Related data are public and open access on the Greenland Ecosystem

Monitoring database repository
:
,
::
to

::
be

:::::
found

::
at

:
http://data.g-e-m.dk/.

Located in the sub-Arctic
:::::
Nuuk

:::::::
Research

::::::
station

::
is
:::::::
located

::
in

:::
the south west of Greenland, Nuuk research station does not30

have any permafrost (Geng et al., 2019). It is situated in Kobbefjord (64°07’N ; 51°21’W), approximately 20 km from Nuuk.

The study area
:
It
::
is

:::
not

::
in

:::
the

:::::::::
permafrost

:::::
region

::::::::::::::::
(Geng et al., 2019).

:::::::::
According

::
to

:::
the

::::::::::
classification

::
of

::::::::::::::::::::::::
Glooschenko et al. (1993) of

:::::
Arctic

:::
and

:::::::::
Subarctic

::::::::
wetlands,

:::::
Nuuk

:::
fen

::
is

::
in

:::
the

::::
Low

::::::::
Subarctic

:::::::
Wetland

:::::::
Region.

::::
The

:::::::
research

::::::
station consists of a drainage
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basin of 32 square kilometers
::::
km2 situated at the head of a fjord. The local climate is low arctic

::::::::
sub-Arctic with mean annual

temperature of �1.4°C and mean annual precipitation of 752 mm (1961-90). Despite cold winter temperature
::::::::::
temperatures,

the fen never freezes at depth below 10� 15 cm. NERO annual reports (Tamstorf et al., 2008; Raundrup et al., 2010) show a

significant variability in soil texture, soil moisture, vegetation and microtopography. The studied zone, the only fen of the fjord,

is surrounded by high rocks (left-top panel of Figure 1). The fen is located between the fjord and the Bade So lake. Datations5

::::::
Datings

:
of the sedimentary layer of Bade So (Larsen et al., 2017) show

::::::
showed that the lake was under sea level until 8500 BP.

Hence, the fen can not be older.
:::
The

::::::::::
underlying

:::::::
geology

::
of

:::
the

:::::
parent

:::::::
material

::
is
:::::::
bedrock

:::::::::
composed

::
of

::::::::
Archaean

::::::::
tonalitic

::
to

::::::::::
granodioritic

::::::
gneiss,

::::
and

::::::
Qorqût

::::::
granite

:::::::::::::::::
(Larsen et al., 2017).

:

The fen is instrumented with automatic chambersand ,
:
an eddy flux tower , both of partiular use

:::
and

::
a

::::::
regular

:::::::::
automated10

::::::
weather

:::::::
station,

::::::::::
particularly

:::::
useful

:
for land-surface models. Soil temperatures are also monitored at different depths in the

fen. There are no continuous water-measurements devices, but some isolated water table depth measurements are occasionally

made throughout the year (Raundrup et al., 2010).

Due to its topographical specificity,
::::
Nuuk

:::::
CO2:::

and
:::::
CH4:::::::::

automatic
:::::::
chamber

::::
flux

::::::::::::
measurements

::::::
started

::
in
:::::

2007
::::
and

:::
are

:::
still

::::::::
ongoing.

:::
The

:::::::::
chambers

::::::
usually

::::::
operate

:::::
from

::::::::
mid-May

::
to

:::::::::::
mid-October.

:::::
Each

::::
year,

:
the main input of water on this site is15

not from the local precipitation, but
::::
CH4

::::
flux

:::::
peaks

::
in

::::::::::
July/August

::::
with

::::::
values

::::::
around

::
6
:::
mg

:::::::::::::
CH4.m�2.h�1,

:::
and

::::::::
declines

::
to

::::
about

::::
half

::
of
::::

the
::::::::
maximum

:::
in

::::
early

::::::::::
September.

::::
Peak

:::::
CO2:::::

fluxes
:::::::
happen

:::
end

::
of
::::

July
::

-
::::
early

:::::::
August,

:::::
reach

:::::
about

::::::
�300

:::
mg

::::::::::::
CO2.m�2.h�1,

::::
and

:::::
occur

::
at

:::
the

::::
peak

:::
of

:::
the

:::::::
growing

::::::
season

:::::
when

::::::::::::
photosynthesis

::
is

::
a

:::::
much

:::::
larger

::::
flux

::::
than

:::
soil

::::::::::
respiration.

:::::
These

:::::
fluxes

:::
are

::::::::
described

::
in

::::::::::::::::::::::::::::::::
Pirk et al. (2017); Morel et al. (2019a).

20

:::
The

:::::
main

:::::
water

:::::
inputs

::
to

:::
the

:::
fen

:::
are from snowmelt and runoff from adjacent hills and inflow from a nearby stream located

at the southern border of the fen (bottom panel of Figure 1). One key factor of this site appears to be the snowmelt date, as

snowmelt water runs through the fen, leading to saturated moisture conditions during the growing season. We show that the

darker areas in the center roughly correspond to the wetter areas. In these zones, the vegetation is adapted to the saturated

conditions:
::::::::
saturated

:::::::::
conditions.

::::
This

:::::::::
vegetation

:
for instance, the albedo is lower at the center

:::
has

::
a

:::::
lower

::::::
albedo than in the25

fenfronters,
:
’s
:::::
outer

::::
area,

:::::::
thereby absorbing more solar radiations to compensate

:::::::::::
compensating the colder conditions. Figure

2 shows the different vegetation types encountered throughout the fen, going from green herbaceous
:::
fen

:
:
:::::
green

::::::::::
herbaceous

::::::
species and mosses in the outer part to aquatic plants doted

:::
and

::::::
aquatic

::::::
plants with aerenchymas and Sphagnum in the center

of the fen. Section 3.1 explains more precisely these
:::
the differences in vegetation.

30
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3 Methods
:::::::
Material

:
and material

:::::::
Methods

All the measurements were made in July 2017 alongside
:::::
along two transects, shown in the bottom panel of Figure 1. Each

transect was sampled every 5 meters, thus defining the plots T1� 0, T1� 5, T1� 10 and so on.

The first transect (T1) roughly follows a N-S axis. The automatic chambers are situated on either side of the transect between5

plots T1�0 and T1�20. The second transect (T2) starts at the last automatic chamber, at the 20 meter plot of the first transect,

in the middle of the fen and goes through the fen in its larger axis. The soil temperature probes can be seen between plots

T2� 30 and T2� 45.

3.1 Physical site measurement
:::
Fen

::::::::
physical

:::::::::::::
characteristics

First, we investigated
::::::::
measured

:
the topography of the fen and the depth of the sediment layer that delimits organic and mineral10

soil horizons at every plot for both transects. The elevation is
:::
was

:
measured with a topographer rod. The depth of the organic-

mineral interface (OMI) is
:::
was measured with a rigid metallic probe. The probe is

:::
was lowered into the ground until a strong

resistance, characteristic of mineral soils, is
:::
was

:
encountered.

The first transect clearly indicates
::::::
revealed

:
an accumulation basin at the center of the fen: while the ground elevetation15

remains
::::::::
remained approximately constant, the OMI depth strongly increases

:::::::
increased

:
between plots T1� 0 and T1� 30

:::::::
T1� 25 (Figure 3). This depression is characteristic of

:::
for peatlands formation, and contributes to organic material accumula-

tion and burial in these ecosystems. Its maximal depth, of approximately 1 meter, is situated at T1� 30
::::
was

::::::
situated

::
at
::::::
T1-25

, and roughly corresponds to the darker part of the fen surface (Figure 1) and standing water (Figures 3.a and 2.b). The OMI

depth sharply increases in less than 10 metersthen stays
:::::::
increased

::
in
:::
15

::::::
meters,

::::
then

::::::
stayed relatively stable. The plot T1� 4020

seems
::::::
seemed

:
to mark the end of the fen. In this intermediate area

::::
from

:::::::
T1� 40

::
to

:::::::
T1� 60, surface moisture conditions are

much dryer
::::
were

::::
much

:::::
drier (Figure 2.d) and the vegetation does

:::
did not consist of aquatic plants such as Sphagnum anymore.

Green herbaceous and mosses became then predominant. After the exctinction of the fen, hummocky topography appears

(relief characterized by
::::::
T1� 40

::
to
::::::::
T1� 60

:::
are

:::::::::::
characterized

:::
by

::
a

:::::::::
hummocky

::::::::::
topography

:::::
(little

:
mounds and depressions).

The
:::
that

:::::
cannot

:::
be

:::::
picked

:::
up

::
by

:
5 meters resolution of measurement does not allow to distinguish these reliefs

::::
meter

:::::::::
resolution25

:::::::::::
measurements. The plot T1� 65 is

:::
was

::::::
located

::
at the shore of the nearby water stream.

The second transect starts
:::::
started

:
at the 20 meter plot of the first transect (T2� 0 = T1� 20), in the middle of the fen. Until

plot T2� 30, the soil elevation and the OMI depth does
:::
did not vary much. There is

:::
was

:
a peak in the OMI

::::
depth

:
at T2� 45,

surrounded by 2
:::
two

:
small depressions, while the soil elevation lowers

::::::::
decreased. The end of the transect matches with the30

limit
:::::::
matched

::::
with

:::
the

::::::::
boundary

:
of the fen, and

:
.
:::::::::::
Approaching

:::
this

:::::::::
boundary, the soil elevation as

::
and

:
the mineral layer both

rises
:::
rose.
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3.2 Soil carbon sampling along the stransects
:::::::
transects

Soil samples were taken every 5 meter
:
m
:
along the first transect between

::::
from the plots T1� 0 and

::
to T1� 35, as we focus

::::::
focused

:
solely on the peat deposit. As the second transect fully lays

:::
lay in the peat deposit, we sampled its full length with a

:::
soil

:::::::
samples

::::
were

:::::
taken

:::::
every 10 meter distance between

::
m

:::
for

::
the

::::::
whole

:::::::
transect,

:::
i.e.

:::::::
between

:::
the

:::::
plots T2� 0 and T2� 80.

Samplings were made using a manual gouge auger, with double spade grip and a cylindrical semi-open low
::::
lower

:
part of 1 m5

depth long and 4 cm
:
in

:
diameter. The general target depth of sampling was to reach below the peat/mineral transition. Samples

were then extracted along the full soil core at regular intervals : every 5 cm in the top 15 centimeters, every 10 cm below.
::::
Soil

::::::
samples

:::::
were

::::::::::
individually

:::::
stored

:::
in

::::
small

::::::
sealed

::::::
plastic

::::
bags

:::
just

:::::
after

::::::::
extraction

::
in

:::::
order

::
to

::::
limit

:::::::
oxygen

:::::::::
exchanges

:::
and

::::
halt

::::::::::::
decomposition.

10

Ideally, soil samples should be stored at a 4°C temperature before being transferred to the lab. With no fridge on the site, we

used an insulated cooler in order to control at best the samples’
:
temperature. The maximum elapsed time between sample col-

lection and their deposit at the laboratory was 3 days. Hence,
::::
three

:::::
days.

::::::::
Although the temperature control of the samples may

have not been optimal
:::
not

::::
have

::::
been

:::::::
optimal,

::::
this

::::
short

:::::
delay

:::::::
between

::::::
sample

:::::::::
collection

:::
and

:::::::
handling

:::::::::
prevented

:::
any

:::::::::
significant

::::::::::::
decomposition.15

3.3 Soil samples
::::::
sample handling and analysis

Soil samples (n= 135) were first analyzed in the Greenland Institue
:
at

:::
the

:::::::::
Greenland

:::::::
Institute

:
of Natural Resources, located

in Nuuk. For each sample, volume and mass were carefully measured following Chambers et al. (2010) method in
::
the

:::::::
method

::
of

:::::::::::::::::::::
Chambers et al. (2010) by

::::::::
removing

::
a

::::::::::::
known-volume

::::::
sample

::
of

::::
peat

:::::
using

::
a

:::::::::
volumetric

:::::::
sampler,

:::::::::
measuring

:
it
:::::
again

::::
with

::
a20

:::
0.1

:::
mm

::::::::
precision

:::::::
vernier,

:::
and

::::::::
weighing

::
it

::
in

:
a
:::::::
crucible

::
in
:
order to determine the density of the gross sample density

:::::::
samples

::::::
density ⇢sample (g.m�3).

Despite a careful measurement and a method designed to limit sample compaction, we recognize that some uncertainties on

the samples densities are difficult to quantify :25

1. The act of measurement and the soil core extraction can compress the samples within the manual gouge auger, hence

modifying their structure.

2. Extracting the samples from the water-saturated soil layers without loss of water is obviously challenging, hence modi-

fying the sample total mass. This potential loss of water can also change the available space within the soil pores, making

the sample potentially more sensitive to any compaction.30
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3. The almost-liquid
:::::
almost

::::::
liquid texture of the water-saturated samples makes difficult

:::::
made

:
it
:::::::
difficult

::
to
::::::::

measure the

sample volumemeasurement
:
.
:::
For

::::
these

:::::::::::::
water-saturated

:::::::
samples,

:::
we

::::
used

::::::
known

:::::::
volumes

::::
vials

:::
for

::::::
volume

::::::::::::
measurements

::::::
instead

::
of

:::
the

:::
0.1

:::
mm

::::::::
precision

:::::::
vernier.

Peat samples are
::::
were

:
then oven-dried at 80 °C during

::
for

:
48 hours to ensure

::::
until

:
a
:
constant weight was reached

::::::::::::::::
(Djukic et al., 2018).

Figure 4 shows samples at different depths for the soil cores T1� 10 and T1� 25 after drying. The samples of the T1� 105

soil core present a well-marked color gradient indicating the different soil horizons. For example, the colour and texture of

sample 10�60/65 (taken at 60�65 cm depth) of plot T1�10 is characteristic of a mineral soil and corresponds indeed to the

OMI (Figure 3). On the contrary, the T1� 25 soil core (in the center of the fen) does
:::
did

:
not have any significative

:::::::::
significant

gradient of color and texture, except a mixed-appearence sample
:::
for

:
a
:::::::::::::::
mixed-appearance

:::::
zone at 60� 65 cm depth. We show

later on that these differences in color are
::::
could

::
be

:
mainly explained by soil carbon content.10

After drying, we determine
:::::::::
determined the mass fraction of water of each sample, noted fwet(%). In order to estimate the

carbon density within the soilfrom the mass percentage per sample dry mass, we need to know the soil bulk density, noted

⇢bulk, defined by
:
as

:
the dry mass per unit of total volume (Boelter, 1969; Hossain et al., 2015). The observed bulk density

⇢obsbulk is
:::
was computed as :15

⇢obsbulk = ⇢sample(1� fwet) (1)

Dried peat samples were then sent to the Center for Permafrost
::::::::::
(CENPERM

::
-
:::::::::
University

::
of

:::::::::::
Copenhagen

:
-
:::::::::
Denmark) for

further C and N analysis. Briefly, 10 mg portions of thoroughly mixed and finely ground sample materials was
::::::
material

:::::
were

weighed into tin combustion cops
::::
cups for Dumas combustion ( 1700 °C) on an elemental analyser (CE 1110, Thermo Electron,

Milan). Peat standards (Elemental Microanalysis, Okehampton, UK) were included for elemental analyser mass calibration in20

order to obtain percentage of C and N content, noted fC and fN (%) respectively.

Soil carbon density ⇢C (gC.m�3
soil) was then computed as :

⇢C = ⇢samplefC(1� fwet) = ⇢bulkfC (2)

Similarly, soil nitrogen density ⇢N (gN.m�3
soil) was computed as :25

⇢N = ⇢samplefN (1� fwet) = ⇢bulkfN (3)
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4 Results

A total of n= 135 samples were collected along both transects (n1 = 65 and n2 = 70). For each of these samples, values of

mass, volume, density, dry mass, bulk density, carbon and nitrogen content (%) and density (kg.m�3), and carbon-nitrogen

(C/N) ratios were measured and/or calculated. Figure 5 shows distribution histograms for all data, and descriptive statistics

(mean, median, upper and lower deciles) are presented in Table 2.5

Figure 6 presents mean soil profiles of bulk density, water mass fraction, carbon and nitrogen content and density along both

transects .

These soil profiles (n= 17) were averaged over depth for both transects , and are presented in Figure 7
::::::
(Figure

::
7). As the10

fen depth has
::::::
showed

:
a substantial variability along the transects, resulting averaged profiles are noisy. For instance, sam-

ples extracted at 50 cm depth may be in a very
:::::
purely organic soil horizon or a quasi-mineral one depending on the fen area it

was extracted from. Hence, mean soil profiles do not necessarily reflect the vertical distribution of data with respect to the OMI.

To reduce the noise due to the OMI heterogenoity
:::::::::::
heterogeneity, we renormalized all the data with respect to the OMI. For15

a sample extracted at a depth z from a peat core with a
:
an

:
OMI depth zOMI ; ,

:
we define its normalized distance from OMI

dOMI (%) as :

dOMI =
z

zOMI
⇥ 100 (4)

These normalized profiles are shown in the figure 8.
:::::
Figure

::
8.

20

:::
For

::::
each

::::
peat

::::
core,

::::
total

::::::
carbon

:::::
stocks

:::
CT::::::::::

(kgC.m�2)
:::::
were

::::::::
calculated

::
by

::::::::
vertically

:::::::::
integrating

::::::
carbon

:::::::
density

::::::
profiles

:::::
using

::
the

::::::::::
trapezoidal

:::
rule

:
:
:

CT =
X

j

(zj+1 � zj)
⇢C,j+1 + ⇢Cj

2
:::::::::::::::::::::::::::::

(5)

::::
with

::
zj :::

the
::::::
sample

:::::
depth

:::
and

::::
⇢Cj :::

the
:::
soil

::::::
carbon

:::::::
density,

::::::::
computed

:::::
using

:::::::
equation

::::
(2).

25

::::::::
Similarly,

::::
total

:::::::
nitrogen

::::::
stocks

:::
NT :::::::::

(kgN.m�2)
:::::
were

::::::::
computed

::
as

:
:
:

NT =
X

j

(zj+1 � zj)
⇢N,j+1 + ⇢Nj

2
:::::::::::::::::::::::::::::

(6)

::::
with

:::
⇢Nj:::

the
::::
soil

:::::
carbon

:::::::
density,

:::::::::
computed

::::
using

::::::::
equation

:::
(3).

::::
Note

:::
that

:::::::
because

:::
of

:::
the

:::::::::
difficulties

::::::
setting

:::
the

::::::
manual

::::::
gouge

:::::
auger

:::::::::::
substantially

:::::
below

:::
the

:::::
OMI,

:::
the

:::::::::
maximum

::::::::
sampling30

::::
depth

::::::
varied

:::::::
between

:::
the

:::::::
different

::::
peat

:::::
cores.

::::::
Hence,

:::
the

:::::::::
integration

:::::
depth

::::
also

:::::
varied

:::::::
between

::::
peat

:::::
cores.

::::::::
However,

:::
the

::::::
carbon

9



::::::
content

:::::
below

::::
this

:::::::
interface

:::
did

:::
not

::::::
exceed

::
7

::
%

:::::
except

:::
for

::::
two

::::::
unusual

:::::::
samples

:::::::
(Figure

::
9)

:::
and

:::
we

:::
can

::::::::
consider

:::
that

:::
not

::::::
taking

:::
into

:::::::
account

:::
the

::::
soil

:::::::
horizons

::::::
below

:::
the

::::
OMI

::::
did

:::
not

::::::::::::
underestimate

:::::
much

:::
the

:::::::::
computed

::::
total

::
C

::::::
stocks.

::::::::
Similarly,

::::::::
nitrogen

::::::
content

:::::
below

::::
the

::::
OMI

:::
are

::::::
much

:::::
lower

::::
than

::
in

:::
the

:::::::
organic

::::::::
horizons

::::::
(Figure

:::
8),

::::
and

:::
not

::::::
taking

::::
them

::::
into

:::::::
account

:::
did

::::
not

:::::::::::
underestimate

:::::
much

:::
the

::::::::
computed

:::::
total

:
N
::::::
stocks.

5

3.1
:::::::::
Calculation

:::
of

::::
95%

::::::::::
confidence

:::::::
interval

:::
soil

::::::
profile

:::
The

::::::::
sampling

:::::
mean

:::::
most

:::::
likely

::::::
follows

::
a
::::::
normal

::::::::::
distribution.

::::::
Under

:::
this

::::::::::
hypothesis,

:::
for

::
a

:::::::
variable

::
X ,

::::
the

:::::::
standard

::::
error

:::
of

::
the

:::::
mean

::::
can

::
be

::::::::
calculated

:::
as

:::::::::::::
�X(z) = �(z)p

N(z)::::
with

:::::
N(z)

:::
the

::::::
number

::
of

:::::::
samples

::::::::
collected

::
at

:
a
:::::
depth

:::
(z)

:::
and

:::::
�(z)

::
the

::::::::
standard

:::::::
deviation

::::
over

:::::
those

::::::::
samples.

:::
The

:::::::::
confidence

:::::::
interval

::
at

::::
95%

::
is

::::::
defined

::
as

:::::::::::::::::::::::::
I(z) =X(z)± 1.96⇥�X(z).

:

4
::::::
Results

::::
and

:::::::::
discussion10

4.1 Bulk Density

Variation in bulk density is attributable to the relative proportion of organic and inorganic soil particles, and is a reliable indica-

tor of the mineral or organic nature of a soil. More than 50% of the samples have a bulk density below 0.187 g.m�3 (Figure 5),

characteristic of organic-rich material. Samples with bulk density between 0.5 and 1 g.cm�3 corresponds
::::::
g.cm�3

::::::::::
correspond

to mixed organic-mineral material ((Loisel et al., 2014). The higher the bulk density, the higher the mineral content. Finally,15

the 10% remaining samples with bulk densities higher than 0.978 g.cm�3 (Table 2) correspond to the most mineral part of the

soil
::::
with

:::
the

::::::
highest

:::::::
mineral

:::::::
fraction, near or below the OMI, as most mineral soils have bulk densities between 1.0 and 2.0

g.cm�3 (Rezanezhad et al., 2016).

Strong vertical gradients in bulk density can
::::
could

:
be seen throughout both transects (Figure 6.a). The measured OMI depth20

delimits
::::::::
delimited well the transition between organic and mineral material, as it should be

:::::::
expected.

Typical bulk density profiles in peatlands tend do
:
to
:
show a gradual increase with depth Quinton et al. (2000)

::::::::::::::::::
(Quinton et al., 2000) :

as peat decomposition reduces the proportion of large pores by breaking down plant debris into smaller fragments (Rezanezhad

et al., 2016), it increases the mass of dry material per volume of peat. Normalized mean profiles of bulk density (Figure 8.b)25

clearly shows this abrupt transition from mixed organic-mineral material to fully
:::
pure

:
mineral soil below the OMI.

4.2 Carbon mass percentage

Figure 6 shows mass
::::
Mass

:
percentage of carbon in the dry samples along the two transects. They can approach

::::::
reached

:
50 %

::::::
(Figure

:::
6.c), which is coherent with the proportions

:::
data

:
given in Yu (2012).

As expected, concentration of soil organic carbon in the organic layer is
:::
was much higher than in the mineral horizons. High30
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carbon content in the depth of the first transect seems
::::::
seemed to indicate a carbon burial in the natural accumulation basin. We

also note that the limit between the soil horizons with high carbon content and low carbon content also follows the OMI. In

particular, the drop of the sedimentary layer in the first transect is clearly visible, and the variations of the mineral layer of the

second transect between T2� 30 and T2� 60 meters as well. Normalized mean carbon content profiles (Figure 8.e) clearly

shows
:::::::
showed the abrupt decrease in carbon content near the OMI. Below the OMI, carbon contents value are

::::::
content

::::::
values5

::::
were below 10 %, which is coherent with the mineral characteristics of the soil horizons below.

4.3 Soil carbon density and soil carbon profiles

More than 70% of the soil samples have
::
had

:
soil carbon densities comprised between 20 and 80 kgC.m�3 (Figure 5.f). Those

values are coherent with those encountered in other arctic and boreal fen and peatlands (See
:::
see Chadburn et al. (2017), Fig.5).

Mean local maximum of soil carbon density can reach
::::::
reached

:::::
value

::
up

::
to

:
80kg.m�3

:
at
:::
80

:::
cm

:::::
depth (Figure 7.f). One sample10

has a particularly high carbon density of 160kg.m�3 (Figure 9.b). This high value may be due to a bad sample handling during

the extraction or manipulation, resulting in a sample compaction that artificially increased measured bulk density.

As expected, soil carbon density matches
:::::::
matched well the measured organic-mineral interface (Figure 6.e1). The alleged

:::::::
assumed carbon accumulation in the accumulation basin on

::
of the fen discussed in the previous section is confirmed, as a local

maximum of soil carbon density is
:::
was

:
clearly visible at the bottom of the soil plots T1� 25 and T2� 30 (Figure 6.a1).15

Mean soil carbon density profiles are
::::
were

:
non-monotonous. In the organic horizons, SOC density increases

::::::::
increased with

depth and reaches
::::::
reached

:
its local maximum between 60 and 80 % of the organic-mineral interface depth (Figure 8.f). Near

the OMI, coherently
:::::::
coherent with the abrupt decrease in carbon content and increase in bulk density discussed in the previous

sections, the soil carbon density decreases
::::::::
decreased. Soil carbon density profiles that first increases then decreases

::::::::
increased20

:::
and

::::
then

::::::::
decreased

:
with depth are characteristic of arctic and boreal fens (See

::
see

:
Chadburn et al. (2017), Fig.5).

4.4 Integrated soil carbon stocks

For each peat core, total carbon stocks CT (kgC.m�2) were calculated by vertically integrating carbon density profiles using

the trapezoïdal rule :

CT =
X

j

(zj+1 � zj)
⇢C,j+1 + ⇢Cj

2
25

with zj the sample depth and ⇢Cj the soil carbon density, calculated using equation (2).

Note that because of the difficulties setting the manual gouge auger much below the mineral-organic interface, the maximum

sampling depth varies between the different peat cores. Hence, the integration depth also varies between peat cores. However,

the carbon content below this interface does not exceed 7 % except for two unusual samples (Figure 9) and we can consider

that not taking into account the soil horizons below the mineral-organic interface does not underestimate much the calculated30

total carbon stocks.
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Tables 3 and 4 presents the carbon stocks and the maximum sampling depth for each peat core along both transects. Mean

carbon stocks over both transects is 35.5 kg
:::
was

::::
36.3

::::
kgC.m�2. The review of Yu (2012) on high-latitude fen and peatlands gives

:::
fens

::::
and

::::::::
peatlands

::::::
reports integrated soil carbon stocks values between 58.7 and 73.4 kgC.m�2, except one extra

:::::::::::
extraordinary

value of 113.6 kgC.m�2. Those values are higher than those encountered
:::::
found

:
in Nuuk. But they are

:::
were

:
computed by

considering a fen depth of 1m, which is
:::
was

:
not the case here. But

:
,
::
as the Nuuk fen is quite shallow: the mean sampling depth5

-which is
:::
was often deeper than the OMI- does

:::
did not exceed 76.3 cm in both transects (Tables 3 and 4). Our

:::::
Hence,

:::
the

::::::
results

::
of

:::
our soil carbon stocks measurements are

::::
were then coherent and consistent with current estimates from similar ecosystems.

::::::
Finally,

::
a

::::
basic

::::::::
estimate

::
of

::::
total

:::
soil

::::::
carbon

:::::::
content

::::
over

:::
the

::::::
whole

:::
fen

::::
area

::
is

:::::
given

::
by

::::::::::
multiplying

:::
the

:::::
mean

::::
soil

::::::
carbon

::::
mass

:::
per

::::
unit

::::::
surface

:::::
(36.3

::::::::
kgC.m�2)

:::
by

:
a
::::::
rough

:::::::
estimate

::
of

:::
the

:::
fen

::::
area

:::::::
(approx.

:::::
7500

:::
m2,

:::
see

::::::
figure

:::
S2).

:::::
This

::::
gives

::
a

::::
total

:::::
carbon

:::::::
storage

::
in

:::
the

:::
fen

::
of

:::
272

::::
250

::::
kgC.

:
10

4.5
:::
Soil

:::::::
nitrogen

:::::::
density

::::
and

:::
soil

::::::::
nitrogen

:::::::
profiles

::::
More

::::
than

:::::
70%

::
of

:::
the

:::
soil

:::::::
samples

::::
had

:::
soil

:::::::
nitrogen

::::::::
densities

:::::::
between

::
1

:::
and

::
4

:::::::::
kgN.m�3

::::::
(Figure

::::
5.h),

::::
with

::
a
:::::
mean

:::::
value

::
of

::::
2.37

::::::::
kgN.m�3.

::::
The

::::::
lowest

:::::
values

:::
of

::
N

::::
mass

:::::::
inicated

:::
the

:::::
OMI

::::::
(Figure

:::::
6.d).

::
A

::::
local

:::::::::
maximum

::
of

::::
soil

::
N

::::::
density

::::
was

::::::
clearly

:::::
visible

::
at

:::
the

::::::
bottom

::
of

:::
the

::::
soil

::::
plots

:::::::
T1� 25

:::
and

::::::::
T2� 20

::::::
(Figure

:::::
6.a1),

::::::::
indicating

::::
that

:::::::
nutrients

::::
tend

::
to

::::::::::
accumulate

::
in

:::
the

:::
fen

:::::
basin.15

:::
Soil

::
N

:::::::
profiles

:::::
follow

::::::
closely

:::
the

::::
soil

:
C
:::::::
profiles

::::::
(Figure

:::::
7.f,h),

:::::::::
indicating

:
a
:::::
quite

:::::::
uniform

:::
C/N

::::
ratio

:::::::
through

:::
the

:::
soil

::::::
profile

::::
(see

::::::
Section

::::
4.7).

:

4.6
::::::::
Integrated

::::
soil

::::::::
nitrogen

:::::
stocks

:::::::
Nitrogen

::::::
stocks

:::::
range

:::::
from

:::
0.8

::::::::
kgN.m�2

::::
and

:::
2.9

:::::::::
kgN.m�2,

::::
with

::
a

:::::
mean

:::::
value

::
of

:::
1.7

:::::::::
kgN.m�2

::::::
(Tables

::
3
::::
and

::
4).

:::::
This

::
is

::::
very

::::::
similar

::
to

:::
the

::::::::
1.9± 0.7

::::::::
kgN.m�2

:::::
value

::::::::
obtained

:::
by

:::::::::::::::::::::::
Palmtag et al. (2018) (Table

::
2)

:::
for

:::
the

::::
fens

:::
on

::::::
alluvial

::::
fans

:::
in

:::
the20

:::::::::
Zackenberg

::::::
valley,

::
to

:::
our

::::::::::
knowledge

::
the

:::::
only

:::::::
available

::::::
in-situ

::
N

::::
data

::
for

:::::::::
Greenland

:::::::::
peatlands.

:
A
:::::
basic

:::::::
estimate

::
of

::::
total

::::
soil

:::::::
nitrogen

::::::
storage

:::
for

:::
the

:::::
whole

:::
fen

::::
area

::
is

:::::
given

::
by

::::::::::
multiplying

:::
the

:::::
mean

:::
soil

:::::::
nitrogen

:::::
mass

:::
per

:::
unit

::::::
surface

::::
(1.7

:::::::::
kgN.m-2)

::
by

::
a
:::::
rough

:::::::
estimate

:::
of

:::
the

:::
fen

::::
area

:::::::
(approx.

:::::
7500

:::
m2,

::::
see

:::::
figure

::::
S2).

::::
This

:::::
gives

:
a
::::
total

::::::::
nitrogen

::::::
storage

::
in

:::
the

:::
fen

::
of

::
12

::::
882

::::
kgN.

:
25

4.7 C/N Ratios

Carbon/Nitrogen
:::::::
nitrogen (C/N) ratios can give useful information about the nutrient content and the quality and humification

degree of organic matter : a low C/N ratio is usually equivalent to a high humification level. With a mean value of 21.6, ob-

served C/N ratio are
::::
ratios

:::::
were in the range of those observed from a variety of field and laboratory studies (Bridgham et al.,

1998; Rezanezhad et al., 2016; Wang et al., 2015).30
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C/N ratios are
:::
were

:
higher in the first centimeters

:::
few

:::
cm

:
depth (approx. 25%), potentially indicating less microbial transfor-

mation of the peat in the upper layers (Kuhry and Vitt, 1996). In the
::
At

::::::
greater

:
depth of the fen, C/N ratio are

::::
ratios

:::::
were lower

because microorganisms slowly consume the carbon and recirculate the nitrogen, resulting in a gradual reduction of C/N values

(Rydin and Jeglum, 2013). In northern regions, due to colder temperatures, the decomposition activity is slow, explaining the

small difference between maximal and minimal C/N values. The C/N profiles stay
::::::::
remained

:
relatively stable throughout the5

depth (21.6%) and the OMI does
::
did

:
not seem to distinguish separate zones.

Although bulk density and C/N ratio
::::
ratios

:
are reliable indicator for peat degradation, the lack of ash content data and isotopic

measurements does
:::
did not allow a quantificiation of carbon accumuluation rate nor carbon loss in the peatland (Krüger et al.,

2015).

5 Discussions10

4.1
:::::::::

Discussion

Overall, this new dataset of soil bulk density, carbon and nitrgogen
::::::
nitrogen

:
content, profiles and stocks is

::::
were in the range of

previous estimates (Yu, 2012; Loisel et al., 2014; Chimner et al., 2014).

As noted by Loisel et al. (2014), the accuracy of this type of measurements
:::::::::::
measurement mostly depends on sample handling,15

in particular the care deployed
::::
taken

:
to avoid any peat compaction. Our sample density measurements may be

::::
have

:::::
been

uncertain. On the other hand, mass carbon percentage
:::::::::
percentages

:
are independent of any compression or any physical aleas.

And it
:::::::::::
uncertainties

::
or

::::::
hazards

::
in

::::::
sample

::::::::
handling.

::
It is known that soil carbon content and bulk density are strongly correlated.

For instance, (Hossain et al., 2015)
:::::::::::::::::
Hossain et al. (2015) noted that bulk density ⇢Hbulk and carbon content fC follows

:::::
follow

an exponential relationship :20

⇢Hbulk = ae�bfC (7)

with a= 1.5641 and b= 0.0631.

Figure
::
We

::::
find

::
a

::::::
similar

:::::::::
exponential

::::::::
behavior

::::::
(figure 9.ashows carbon content versus bulk density . The strong correlation

discussed in (Hossain et al., 2015) is present
:
)
:::::::
between

::::
bulk

::::::
density

::::
and

::::::
carbon

::::::
content

::::
with

::
a

:::::
strong

:::::::::
correlation

::::::::
between

:::
our25

::::::::
measured

::::
bulk

::::::
density

::::
and

::::::::
Hossein’s

::::::::::
exponential

:
(r2 = 0.801, Table 5). Different type

:::::
types of two-parameters regressions

can
:::::
could also be used to infer bulk densities from carbon content, as shown in Table 5. Soil carbon density profiles can hence

be computed with two different methods : a "direct" method, using bulk density data (see eq. 2), and an an "indirect" method

by computing bulk density using carbon content via one of these functional fits. This comparison shows that our measurements

of bulk densities are
::::
were

:
in the right order of magnitude. But these relationships can not capture the vertical variability of30

the observed soil carbon profiles. Indeed, mass
::::
Mass

:
percentage of carbon fC (%C) does not encapsulate all the causes of the

variability of ⇢bulk. Consequently, inferred carbon profiles from indirect methods are
::::
were deceptively flat and smooth (see

13



Figure S1). Hence, although checking that
:::::
testing

:::::::
whether bulk density and soil carbon content measurements follows indeed

this kind
:::::
follow

:::
this

::::
type

:
of relationship provides a good indicator of the dataset quality, it is not recommended to infer soil

carbon profiles from these empirical relationships.

Loisel et al. (2014) choose an arbitrary cutoff value of 0.5 g.cm�3 to distinguish peat and non-peat material. It also roughly5

corresponds to the seperation
::::::::
separation

:
between samples with mass carbon content exceeding 15 % and the others (Figures

9.a,b,c). Below this threshold (i.e. for fully organic samples), there is
:::
was

:
a linear relationship between bulk density ⇢bulk

and soil carbon density ⇢C (Figures 9.b), indicating a rather homogeneous soil carbon content fC for organic samples. For

mixed-material and mineral samples, such relationship is not true.

10

The well-known
:::
high

:
water-retention capacity of peat soils (e.g. (Boelter, 1969)) is also observed in

:::
was

::::
also

::::::::
observed

::::
here

:
(Figure 9.c,

:
) as the higher values of soil-water content are

::::
were

:
found in the samples with the highest carbon content and

lowest bulk densities
:::::
density.

Finally, when using these data for
:::::::::
performing

:
a
:::::::
detailed

::::::::::::
1-dimensional

::::::::
evaluation

:::
of

:::
the

::::
litter

:::
and

::::
soil

::::::
carbon

:::::::
together

::::
with15

::
the

::::
C02

::::
and

::::
CH4

:::::::::
emissions

::::::::
simulated

:::
by

:
a
:

land-surface modelvalidation, it is preferable to only
::::
best

::
to use the soil carbon

data corresponding to the automatic chambers area, that is the profiles from plots T1� 0 to T1� 20.

5 Code and data availability

All the data used to produce the tables and figures of the paper are freely available on the repository :

https://doi.org/10.1594/PANGAEA.909899 (Morel et al., 2019b)20

6
::::::::::
Conclusions

::::
and

:::::::::::
perspectives

In this paper, we have provided a complete description of a new dataset of
::
the

:
current distribution of soil organic carbon

:::
and

:::::::
nitrogen

:
storage at the Nuuk peatland.

::::
This

::::::
dataset

::
is
::::
one

::
of

:::
the

:::::
very

:::
few

:::
on

:::::::::
Greenland

::::
fens

::::
and

::::
will

::::
help

::
in
::::::

better

:::::::::::
understanding

:::::
these

:::::
poorly

:::::::::::
documented

::::::::::
ecosystems. All data are in the range of previous studies (Yu et al., 2011; Yu, 2012; Loisel et al., 2014; Hossain et al., 2015).

Moreover, automatic chambers fluxes measurement
:::
the

::::::
existing

:::::
arctic

::::
and

:::
low

:::::
arctic

::::
fen

::::::
studies.

:::
All

::::
data

:::
are

::
in
:::

the
:::::

range
:::

of25

:::::::
previous

::::::
studies.

::::::::::
Automatic

:::::::
chamber

::::
flux

::::::::::::
measurements and carbon sampling localisations are in the same spot, making

:::
are

::::
being

::::::::
recorded

::
at

:::
the

::::
same

::::::::
location,

::::::
making

:::
the

:
Nuuk-fen dataset an ideal candidate for evaluating ability

::
the

::::::::
accuracy of land

surface models to reproduce
:::::
model

:::::::::
simulations

:::
of both soil carbon profiles and greenhouse gas emissionsat the scale of the

site. .
:

It will allow in the near future a complete evaluation of the biogeochemical model presented in Morel et al. (2019a). Com-30

pleting this evaluation could help eventually resolve issues raised by Chadburn et al. (2017). It could also be used
::
to further

14



validate recent devlopments in carbon and/or peatlands modules for larger scale studies, such as the specific peatland module

developed by Largeron et al. (2018) or the soil carbon representation specific to fen and peatlands of Qiu et al. (2018).

7 Calculation of 95% confidence interval soil profile

The sampling mean most likely follows a normal distribution. Under this hypothesis, the standard error of the mean (SEM)

can be calculated as �X(z) = �(z)p
N(z)

with N(z) the number of samples collected at a depth (z) and �(z) the standard deviation5

over those samples. The confidence interval at 95% is defined as I(z) =X(z)± 1.96⇥�X(z).
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Table 2. Data statistics and dispersion (mean, median, lower and upper decile)

mean median lower decile upper decile

soil sample density ⇢sample (g.cm�3) 0.940 0.898 0.445 1.528

soil bulk density ⇢obsbulk (g.cm�3) 0.345 0.187 0.065 0.978

soil water content fwet (%) 69.5 79.0 29.8 86.9

C/N Ratio (-) 21.6 21.0 17.1 25.9

soil carbon content fC (%) 27.0 31.5 3.1 44.1

soil carbon density ⇢C (kgC.m�3) 50.2 44.8 13.1 93.3

soil nitrogen content fN (%) 1.27 1.37 0.44 2.12

soil nitrogen density ⇢N (kgN.m�3) 2.37 2.25 0.59 4.17

Table 3. Carbon
:::
and

::::::
nitrogen

:
stocks from peat cores along the first transect

Peat core of transect 1 (m) 0 5 10 15 20 25 30 35 Mean Std

Maximum sampling depth (cm) 55 75 65 85 95 85 75 75 76.3 12.5

Number of samples (-) 7 8 7 9 10 8 8 7 8 -

CT (kgC.m�2
::
CT::::::::

(kgC.m�2) 31.8 52.1
:::
58.9 37.2 29.2 46.7 55.4 40.5 34.5 40.9

:::
41.8 9.6

::::
10.9

::
NT:::::::::

(kgN.m�2)
:::
1.7

:::
2.9

:::
1.6

:::
1.4

:::
2.2

:::
2.4

:::
1.9

:::
1.7

::
2.0

::
0.5

Table 4. Carbon
:::
and

::::::
nitrogen

:
stocks from peat cores along the second transect

Peat core of transect 2 (m) 0 10 20 30 40 50 60 70 80 Mean Std

Maximum sampling depth (cm) 85 85 85 95 65 65 65 45 70 73.3 15.4

Number of samples (-) 8 9 10 11 7 7 7 5 7 7.8 -

CT (kgC.m�2
::
CT::::::::

(kgC.m�2) 35.4 38.4 53.4 32.3
:::
39.1 22.2 21.6 27.3 16.6 28.6 30.7

:::
31.4 11.0

::::
11.3

::
NT:::::::::

(kgN.m�2)
:::
1.6

:::
1.8

:::
2.3

:::
2.0

:::
1.0

:::
1.0

:::
1.5

:::
0.8

:::
1.4

::
1.5

::
0.5

23



Table 5. Statistical scores for different regressions between bulk density ⇢bulk and carbon content fC

Regression type r2 (1) c-rmse(2) mae(3) bias(4)

Hossain et al. (2015) ⇢Hbulk = 1.5641⇥ e�0.0631fC 0.801 0.196 0.154 -0.10

Exponential ⇢exp
bulk

= 0.7276⇥ e�0.04583fC 0.760 0.222 0.147 0.07

Power ⇢pow
bulk

= 1.8975⇥ f�0.73794
C

0.817 0.164 0.117 0.032

Logarithmic ⇢log
bulk

=�0.3281⇥ ln(fC)+ 1.31736 0.832 0.152 0.114 - 10�4

(1) r2 =

 
Pn

i=1(xi�y)(f(xi)�f)qPn
i=1(xi�x)2

qPn
i=1(fi�f)2

!2

(2) c-rmse = 1
n

r
P⇣

xi � x� (f(xi)� f)
⌘2

(3) mae = 1
n

Pn
i=1 |xi � f(xi)|

(4) bias = 1
n

Pn
i=1 (xi � f(xi))
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T2-0
T2-10
T2-15
T2-20
T2-25
T2-30
T2-35
T2-40
T2-45
T2-50
T2-55
T2-60
T2-65
T2-70
T2-75
T2-80
T2-85
T2-90

50 m

200 m

64°07'52"N 51°23'03"W

64°07'49"N 51°23'16"W

Figure 1. Left-top panel : satelite image (Google Earth© - 2009) of Kobbefjord, centered on the point 64°7’51.5"N ; 51°23’10.5"W. The

black rectangle represents the sudied zone. Right-top panel : high-resolution photography (taken by a drone in 2015) of the studied zone
:::::
valley

:::
floor. The white rectangle represents

:::::::
surrounds

:
the fen. Bottom-panel : zoom of the fen, with the two studied transects : T1 (black circles)

and T2 (blue circles)
:
.
::::
Zones

:::::::::
highlighted

::
in

:::
red

:::::::
represent

:::
the

::::::
location

::
of

:::
the

:::::::
automatic

::::::::
chambers

:
;
::
in

:::::
green,

::
the

:::
soil

::::::::::
temperature

:::::
probes

:
;
::
in

:::::
yellow,

:::
the

::::
eddy

:::
flux

:::::
tower.
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a b

c d

Figure 2. Soil surface photographs along the first transect at several plots. (a) : T1-10 ; (b) : T1-30 ; (c) : T1-35 ; (d) : T1-40.
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Figure 3. Topographical measurements of soil surface (red) and manual measurements of water level (blue) and organic-mineral interface

(black) along both transects. Manual measurements of water level were made in July, 27th 2017.
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a

b

Figure 4. First transect soil samples after 48 hours of oven drying at 80 °C. Different samples depths are shown for plots (a) : T1� 10 ; (b)

: T1� 25.
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mean
median
deciles

Figure 5. Distribution histograms (nsamples = 135) of (a) soil sample density ⇢sample (g.cm�3) ; (b) soil bulk density ⇢obsbulk (g.cm�3) ; (c)

soil water content (%) ; (d) C/N Ratio (-) ; (e) soil carbon content fC (%) ; (f) soil carbon density ⇢C (kgC.m�3) ; (g) soil nitrogen content

fN (%) ; (h) soil nitrogen density ⇢N (kgN.m�3). Red lines represent mean values , blue lines median values , dashed green lines upper and

lower deciles.
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Figure 6. Soil profiles of (a) soil bulk density ⇢obsbulk (g.cm�3) ; (b) soil water content (%) ; (c) soil carbon content fC (%) ; (d) soil nitrogen

content fN (%) ; (e) soil carbon density ⇢C (kgC.m�3) ; (f) soil nitrogen density ⇢N (kgN.m�3) along both transects. Dashed black line

represents the measured organic-mineral interface. Grey zones indicates the absence of data (mineral soil).
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Figure 7. Mean soil profiles over both transects (nsamples = 135 ; nprofiles = 17) of (a) soil sample density ⇢sample (g.cm�3) ; (b) soil

bulk density ⇢obsbulk (g.cm�3) ; (c) soil water content (%) ; (d) C/N Ratio (-) ; (e) soil carbon content fC (%) ; (f) soil carbon density ⇢C

(kgC.m�3) ; (g) soil nitrogen content fN (%) ; (h) soil nitrogen density ⇢N (kgN.m�3). Shaded area represents the 95% confidence interval.
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Figure 8. Same than figure 7, except profiles depth are re-normalized from organic-mineral interface. Grey area represents the zone below

the OMI.
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%C > 15 %
%C < 15 %

Figure 9. Scatter plots of soil bulk density ⇢obsbulk versus (a) soil carbon content fC (%) ; (b) soil carbon density ⇢C (kgC.m�3) ; (c) soil water

content (%) for the 135 samples. Red circles represents samples with carbon content exceeding 15 %, blue crosses less than 15 %.
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