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Abstract. TS1Palaeoclimate data hold the unique promise of providing a long-term perspective on climate
change and as such can serve as an important benchmark for climate models. However, palaeoclimate data
have generally been archived with insufficient standardisation and metadata to allow for transparent and consis-
tent uncertainty assessment in an automated way. Thanks to improved computation capacity, transient palaeo-
climate simulations are now possible, calling for data products containing multi-parameter time series rather
than information on a single parameter for a single time slice. Efforts are underway to simulate a complete
glacial–interglacial cycle using general circulation models (https://www.palmod.de/TS2 ), and to confront these
simulations with palaeoclimate data, we have compiled a multi-parameter marine palaeoclimate data synthe-
sis that contains time series spanning 0 to 130 000 years ago. We present the first version of the data product
that focuses exclusively on time series for which a robust chronology based on benthic foraminifera δ18O and
radiocarbon dating is available. The product contains 896 time series of eight palaeoclimate parameters from
143 individual sites, each associated with rich metadata, age–depth model ensembles, and information to refine
and update the chronologies. This version contains 205 time series of benthic foraminifera δ18O; 169 of benthic
foraminifera δ13C; 131 of seawater temperature; 174 and 119 of planktonic foraminifera δ18O and δ13C; and 44,
38 and 16 of carbonate, organic carbon and biogenic silica content, respectively. The data product is available in
three formats (R, LiPD and netCDF) facilitating use across different software and operating systems and can be
downloaded at https://doi.org/10.1594/PANGAEA.908831 (Jonkers et al., 2019). This data descriptor presents
our data synthesis strategy and describes the contents and format of the data product in detail. It ends with a set
of recommendations for data archiving.
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1 Introduction

Global climate has varied dramatically over the last glacial–
interglacial cycle. Since the previous interglacial (approxi-
mately 130 000 years ago) the Earth had slowly been cool-
ing until the Last Glacial Maximum (LGM; approximately5

21 000 years ago). This cooling was associated with the
growth of massive ice sheets in North America and Eura-
sia, leading to a sea level drop of about 120 m (Waelbroeck
et al., 2002) and pronounced climate variability on millen-
nial timescales (Voelker and workshop participants, 2002).10

From the LGM, the Earth warmed rapidly until the onset
of the current relatively stable warm period, the Holocene
(Shakun et al., 2012). The ultimate cause of the large-scale
variations in the Earth’s climate is changes in the orbit of
the Earth around the Sun (Hays et al., 1976). However, com-15

plex feedback and non-linear mechanisms, involving ocean
(atmosphere, cryosphere) circulation and biogeochemical cy-
cles, are required to explain how slow changes in the orbital
configuration led to the observed evolution of global climate
and how these processes led to the manifestation of abrupt20

climate change.
For these reasons the last glacial–interglacial cycle has

been a key target for palaeoclimate modelling. Initially this
only involved equilibrium simulations for key time slices,
such as the LGM, or transient simulations for short peri-25

ods, such as the last millennium. The motivation to simulate
past climate states is given by the possibility of palaeocli-
mate data serving as a benchmark for the models. Indeed, this
possibility contributed to the development of large palaeo-
data syntheses (CLIMAP project members, 1981; MARGO30

project, 2009). The time-slice modelling approach is still be-
ing pursued; for example in phase 4 of the Paleoclimate Mod-
elling Intercomparison Project (PMIP), four of the five tar-
get intervals fall into the time frame of the last glacial cycle
(Kageyama et al., 2018). However, with increasing comput-35

ing power, the focus is now shifting towards transient climate
simulations (Liu et al., 2009; Latif et al., 2016), and the sim-
ulation of the last deglaciation is now also considered in the
PMIP protocol (Ivanovic et al., 2016).

This development calls for a different type of palaeodata40

synthesis, with its focus on time series rather than on time
slices. Time series of climate data are needed to evaluate as-
pects of transient simulations that are not available in equilib-
rium simulations, such as rates of change, phase relationships
and spectral properties of climate variability. It is also clear45

that an evaluation in multi-parameter space using different
aspects of the climate system and multiple proxies will be
more powerful and diagnostic (Kurahashi-Nakamura et al.,
2017), calling for multi-parameter synthesis products.

Observations of the evolution of past climate are based on50

proxies (measurable approximations of climate-related vari-
ables) and hence are, by definition, indirect. Comparison of
proxy-based reconstructions with climate model simulations
is therefore far from straightforward, as discrepancies may

arise from both model and proxy uncertainty. Proxy uncer- 55

tainty derives from reconstruction uncertainty (related to cal-
ibration, recording bias, archive specifics and instrumental
approach) and chronological uncertainty. The latter is partic-
ularly relevant to the comparison of transient climate change,
and chronological uncertainty thus requires a comprehensive 60

treatment in data syntheses of palaeoclimate time series.
Accounting for proxy uncertainties in a comprehensive

and transparent manner requires not only expert knowledge
but also the availability of extensive metadata in addition
to the proxy data. However, due to a lack of standardis- 65

ation and inconsistent archiving of metadata, synthesising
palaeoclimate data in a way that allows for robust uncer-
tainty assessment remains challenging and time consum-
ing. Efforts are underway to alleviate these challenges. The
largest palaeoclimate data repositories (World Data Service 70

for Paleoclimatology, operated by the national centres for
environmental information (NCEIs) at NOAA, and PAN-
GAEA) are both striving for more standardisation and to
store data in (more) machine-readable formats. In addition,
standardisation is progressing through the use of existing 75

data formats from other communities (netCDF; Langner and
Mulitza, 2019) as well as the implementation of new data for-
mats specifically targeted to palaeodata (Linked Paleo Data
(LiPD); McKay and Emile-Geay, 2016). At the same time
there is ongoing discussion on data and metadata require- 80

ments and standards (Khider et al., 2019). Traceability of
datasets is also improved through data citations, not only en-
suring that data producers receive proper credit for their work
but also allowing for better linking of different datasets. Nev-
ertheless, these initiatives have only recently been emerging 85

and the majority of the palaeoclimate data remains inconsis-
tently formatted, non-standardised and scattered over various
data repositories. The need for synthesis products and docu-
mentation of potential synthesis approaches is therefore as
large as ever. 90

Here we present the first version of a new multi-proxy
marine palaeoclimate data synthesis that covers the past
130 000 years developed within the German climate mod-
elling initiative PalMod (Latif et al., 2016). We focus on the
ocean as it is a large reservoir of heat and CO2 and allows 95

for global coverage with consistent chronological control.
This synthesis goes beyond the time frame of many existing
multi-proxy and parameter data syntheses (PAGES2k Con-
sortium et al., 2017; Routson et al., 2019), expands exist-
ing data products that provide long palaeoclimate time se- 100

ries to multiple parameters (Shakun et al., 2012; Marcott et
al., 2013; Peterson and Lisiecki, 2018; Snyder, 2016), and is
based on a strategy of semi-automated data harvesting (Car-
tapanis et al., 2016). This version of the synthesis contains
data on nine climate-sensitive parameters: benthic and plank- 105

tonic foraminifera stable oxygen and carbon isotopes, seawa-
ter temperature, radiocarbon and bulk sediment carbonate,
organic carbon, and biogenic silica content.
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In this paper we describe our synthesis approach, the con-
tents and structure of version 1.0.0 of the data product, sug-
gestions for the product’s use, plans for future updates, and
recommendations for archiving new data and retrieving dark
data in a way that allows for optimal future reuse. The data5

product is intended to be used to investigate spatio-temporal
changes in a multi-parameter domain. Thanks to rich meta-
data that allow for us to rigorously quantify reconstruction
uncertainties, we also envision that this data product will
provide the building blocks for intelligent palaeoclimate data10

model comparison (Weitzel et al., 2019), for instance through
proxy system modelling (Dolman and Laepple, 2018) or data
assimilation (Breitkreuz et al., 2019).

The structure of this data descriptor is as follows. Section 2
describes the synthesis strategy, including the data discovery15

approach, standardisation and age modelling. In Sect. 3 we
provide general information on palaeoclimate proxies from
marine-sediment archives that isCE2 used to guide the meta-
data selection. Section 4 details the structure of the database,
and the contents of version 1.0.0 are outlined in Sect. 5. The20

formats of the data product and where it can be accessed are
described in Sect. 6, and we discuss future plans, versioning
and intended use in Sect. 7. In the last section, Sect. 8, we
reflect on the data synthesis effort and provide recommenda-
tions for data archiving and data rescue.25

2 Data synthesis strategy

Our data product focuses on time series from marine-
sediment archives. A single marine-sediment archive (sed-
iment core) can be used for measurements of different pa-
rameters, each providing information on different aspects of30

the environmental conditions at the time of deposition. How-
ever, for the purpose of analysis, the various proxy time se-
ries must refer to a single age–depth model for the sediment
core they are derived from. For this reason, the basis of our
synthesis is formed by a collection of sediment cores, each35

associated with its own age–depth model.
Marine sediments are dated using absolute age controls,

where specific layers are dated using, for instance, radiocar-
bon, tephra or palaeomagnetic properties, and/or relative age
controls, where time series are aligned based on the hypoth-40

esised synchronicity of the changes recorded by some prop-
erties of the sediment. A well-established hypothesis-based
age modelling approach with a solid theoretical basis is the
alignment of benthic foraminifera stable-oxygen-isotope ra-
tio (δ18O) time series (Lisiecki and Raymo, 2005). We thus45

base our chronological framework on a combination of ra-
diocarbon dates and benthic foraminifera δ18O and have se-
lected time series where both parameters are available as the
foundation of this data product. This approach of blending
absolute and relative age controls is required to provide age–50

depth models for sediment cores that extend beyond the ra-
diocarbon dating range (∼ 40 000 years). If available, further

Table 1. Palaeoclimate parameters in the PalMod 130k marine data
synthesis.

Parameter

Benthic foraminifera δ18O and δ13C
Planktonic foraminifera δ18O and δ13C
Seawater temperature∗

Radiocarbon
Carbonate content
Total organic carbon content
Biogenic silica content

∗ Inferred from various proxies (foraminifera Mg/Ca,
alkenones, microfossil assemblages).

proxy time series were then added, thus ensuring a com-
mon chronology among all proxy time series measured on
the same sediment core. 55

We selected palaeoclimate parameters to synthesise the
following discussion with climate modellers within the
PalMod project. The high-priority selection includes both
physically and biogeochemically relevant parameters, of
which some are based on measurements that can be com- 60

pared with climate model output using (forward proxy) mod-
els (e.g. benthic δ18O) and others represent inferred param-
eters that can be compared with model output more directly
but for which proxy models are still in their infancy (e.g. tem-
perature based on foraminifera Mg/Ca). Also considered in 65

parameter selection was the expected spatial and temporal
coverage of data availability as well as the existence of pre-
vious data products. The high-priority parameters for which
data are presented here are listed in Table 1. If available, raw
data were synthesised and in cases where raw data were not 70

available and it was possible to derive the raw data from the
inferred palaeoclimate data, raw data were back-calculated.
Raw data time series obtained in this way are flagged with a
note describing the calculation.

We note that our approach of first building the strati- 75

graphic framework based on radiocarbon dates and benthic
foraminifera δ18O means that the synthesis is not necessarily
comprehensive as it does not include time series where one
of the parameters of interest has been measured but where the
components of the stratigraphic framework are not available. 80

However, at this stage, we opted to include only sediment
cores where an age modelling strategy that is consistent and
comparable across the entire data product could be achieved.

2.1 Data discovery

In principle, data synthesis can proceed by expansion or re- 85

duction (Fig. 1). The first, more traditional, approach relies
on expert knowledge of what data are available and/or on
asystematic literature search. In this approach the synthesis
grows by including more data until sufficient data that meet
inclusion criteria are compiled. In this way, a lot of time is 90
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Figure 1. Data synthesis approaches. In the expansion approach the
database size increases slowly as records are added. The database
size follows an opposite pathway using the reduction approach and
reaches a stable size more quickly, with less effort. Since the expan-
sion approach is not restricted to data that are available in the public
domain, this approach may lead to a database that includes data that
are not publicly available (dark data). The reduction approach on
the other hand is arguably more objective, can be automated and is
therefore more efficient. This approach also encourages good data
stewardship.

spent on discovering and retrieving datasets, and it is possi-
ble that valuable, but less exposed, data are missed. On the
other hand, this approach has a chance of uncovering dark
data that are not publicly available (Fig. 1).

The second approach starts from a large and crude synthe-5

sis of data from public sources and proceeds by weeding out
data that do not meet criteria for inclusion in the data prod-
uct. This approach faces different challenges: making sure
that the initial bulk database is comprehensive (efficient data
mining) and assuring that the data filtering is efficient (fast10

and accurate). In contrast to the expansion approach, this re-
duction approach cannot discover dark data. However, it is
more objective (less reliant on expert knowledge), can be au-
tomated more easily and focuses on data that are already in
the public domain so that no time is lost to finding data that15

ultimately prove unavailable. This second approach also re-
wards and encourages good data stewardship.

In theory, both approaches can lead to a similarly sized and
exhaustive synthesis, but they differ in the allocation of effort
(Fig. 1). In practice both approaches are often combined, es-20

pecially towards the end of a synthesis project, when the data
product is benchmarked against existing syntheses.

2.2 Synthesis

2.2.1 Initial synthesis

We followed the reduction approach and used a semi-25

automated pipeline to compile data from public sources.
Keywords (Supplement) were used to make lists of URLs
of potentially relevant data on https://pangaea.deTS3 , and the

linked files were then downloaded in bulk (n= 108 239).
A slightly different approach was followed for the NCEI 30

archive. Here, all files that were machine-readable at the
time of download (September 2016, n= 1925) were ob-
tained from the FTPCE3 server (ftp://ftp.ncdc.noaa.gov/pub/
data/paleo/paleocean//sediment_files/completeTS4 ). Custom
scripts in R were used to put all data in a common format 35

and merge time series that could be unambiguously assigned
to the same core (based on name and x, y, z position). This
resulted in a mixture of records that were merged to the same
core and those that could not be, either because there was
only one data file for the core or because of ambiguous la- 40

belling. We refer to the locations of these records as “sites”.
In order to facilitate the analysis (filtering) of the sites, a uni-
form attribution of the various parameter names had to be
developed. Because no standardised names exist for palaeo-
climate parameters, the uniform attribution required the de- 45

velopment of attribution libraries for each desired palaeocli-
mate parameter. The initial synthesis contained time series
from 38 511 sites.

2.2.2 Data reduction and standardisation of ontologies

The initial synthesis was reduced by removing non-marine 50

sites (using elevation flag) and further constrained by only
considering sites where at least one data point of any of the
parameters measured in that core fell within the target time
frame (disambiguating age units in the synonym library of
the category “age”) and the site had benthic oxygen isotope 55

data. This resulted in 781 sites. At this stage, no criteria for
length or resolution were applied but we prioritised process-
ing time series that we estimated to contain at least 50 data
points within the 130 000-year timeframe. Further data pro-
cessing started with dereplication of the selected sites. This 60

was necessary because no standards exist for the naming of
cores and the repositories store data with different renditions
of the same core name, sometimes even associated with er-
roneous geographic coordinates. This process was carried
out manually and proceeded by constructing a list of dis- 65

ambiguated sites through sequential one-by-one comparison.
Where a strict synonym was found (different labels for the
same core but the same data), only unique data were retained.
At this stage, disambiguation of site names was only per-
formed for sites that had at least benthic δ18O, so time series 70

of other parameters, which were associated with inconsistent
core labels, could have been missed in the synthesis. How-
ever, those sites are contained in the initial bulk synthesis
and are hence not lost but will be salvaged in updates of the
data product (see Sect. 7). 75

Further steps required a manual standardisation of the
names of the parameters and their attributes (such as the
species name that was analysed for oxygen isotopes). This
was accomplished by deciding on a final, uniform list of pa-
rameters and associated metadata and their possible values. 80

Original parameter names were preserved to allow for cross-
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checking. By metadata, we refer to aspects of the individual
parameters that were deemed essential to facilitate a mean-
ingful analysis in a palaeoclimatic context, considering po-
tential sources of uncertainty, such as species of foraminifera
analysed or the calibration equation used for palaeotemper-5

ature estimates. The list of metadata is provided in Table 2.
The standardisation was accompanied by further dereplica-
tion of individual time series that were already associated
with the same site name but archived more than once.

2.2.3 Metadata and chronology10

Subsequently, as far as possible, metadata values were added
manually when missing, often by scraping the information
from the original publication. Next, all time series from a
single site (core) were put on a common depth scale to allow
for age modelling. Data that could not be put on a depth scale15

were excluded from the synthesis. This was the case where
parameter values were recorded only against age and where
no other data file was available that allowed unambiguous
reassignment to depth. Ambiguity also resulted from the use
of multiple (composite) depth scales for the same archive.20

Finally, chronological data (all absolute markers, including
radiocarbon dates and associated metadata) were manually
added, where necessary also by consulting the original pub-
lications. Throughout the process, publication information
(digital object identifier (DOI) or, if not available, full biblio-25

graphic details) and the data source (URL and/or DOI) were
preserved in order to trace the source of the data. This applies
both to the source of the individual data files from reposi-
tories and to the sources of the metadata and chronological
data.30

2.3 Age modelling

Whereas the initial steps of data discovery and synthesis
could rely on published chronology, analysis of the complete
dataset will require the development of a common chrono-
logical framework. This framework must be constructed in35

a way that not only allows for a consistent method of as-
signment of ages to depths within each core but also allows
for the consistent and quantitative assessment of age uncer-
tainty. To this end, we follow an approach that combines
absolute ages (radiocarbon ages, tephra layers and palaeo-40

magnetic events) with δ18O stratigraphy. As a result, our age
models may differ from those reported in the original publi-
cation(s). This is not to state that the updated age models are
better (constrained), but they are constructed in a way that
allows for applicability and consistency across the synthesis.45

The consistent approach allows for an assessment of age un-
certainty jointly for all records by a Bayesian approach, gen-
erating ensembles of sedimentation histories consistent with
the available age control points for each core, allowing for
uncertainty estimates at each depth by considering the distri-50

bution of ages given by the ensemble.

With respect to the reporting of the chronology, we fol-
low a transparent approach, preserving the initial age model
and providing the new age models as well as all informa-
tion needed to revise or update the new age models. In the 55

final step, the age information from absolute ages and δ18O
tie points was combined and the age model and its uncer-
tainty was assessed in a Bayesian framework using “bacon”
(Blaauw and Christen, 2011). The entire age modelling rou-
tine was carried out in PaleoDataView (PDV; Langner and 60

Mulitza, 2019).
To ensure a common chronological framework for all time

series in the synthesis, radiocarbon ages were recalibrated us-
ing the IntCal13 curve (Reimer et al., 2013). Since reservoir
ages vary in space as well as in time, we used reservoir age 65

estimates based on a comprehensive ocean general circula-
tion model (Butzin et al., 2017) to account for this variability
in a physically plausible way. To derive the reservoir age and
uncertainty for a measured radiocarbon age, PDV (i) extracts
all modelled radiocarbon ages from the nearest grid cell in 70

the modelled dataset, (ii) finds all modelled radiocarbon ages
that are possible within the error of the measured radiocar-
bon age, and (iii) takes the mean and the standard deviation
of all corresponding reservoir ages to correct for the mea-
sured radiocarbon age. By definition, this approach cannot 75

account for processes affecting the reservoir ages on subgrid
spatial scales. Given the relatively coarse resolution of the
model, this means that processes such as upwelling are not
fully accounted for. In addition, no modelled reservoir age
data are available for the Mediterranean and Red seas; we 80

use the reservoir ages reported by the authors of the origi-
nal publication and an assumed uncertainty of 100 years for
these basins (five sites). Absolute ages based on North At-
lantic tephra layers and palaeomagnetic events were updated
and harmonised using Svensson et al. (2008). 85

In addition, and beyond the 14C dating realm (∼
40 000 years), the age models rely on manual tuning of the
benthic foraminifera δ18O time series from each core to re-
gional benthic foraminifera δ18O stacks (Lisiecki and Stern,
2016). Stable-isotope stratigraphy in theory provides a range 90

of events to correlate; however, in order to not inflate confi-
dence in the tuned age models and to ensure comparability
between different cores, in our approach, the tuning was car-
ried out as far as possible by only matching the position of
marine isotope stage boundaries. We updated the age–depth 95

models only for the 0–130 000 years time frame of this syn-
thesis, but data and original age models extending beyond
130 000 years are preserved in the data product. To obtain un-
certainty for the age control points obtained by δ18O tuning,
we used the chronological uncertainty in the δ18O stacks, as 100

reported by Lisiecki and Stern (2016). Additional uncertainty
associated with the identification of the control points in the
individual records or with the assumption on synchronicity
was ignored, as these are difficult, if not impossible, to quan-
tify. 105
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Table 2. Metadata terms.

Name Description

ParameterOriginal∗ TS5 Original parameter name as in data repository
Parameter∗ Standardised parameter name (see Table 4)
ParameterType∗ Parameter type, measured or inferred
ParameterUnit∗

ParameterAnalyticalError Error based on repeat measurements of standards
ParameterReproducibility Error based on repeat measurements of samples
Instrument
Laboratory
SampleThickness_cm
Material∗ Measurement material or parameter on which inferred parameter is based
Species
Nshells
SizeFraction_microm
Notes
RecordingSeason
RecordingDepth
EquilibriumOffset
CalibrationEquation
CalibrationUncertainty
CalibrationDOI
TransferFunctionTrainingSet
TransferFunctionUncertainty
TransferFunctionDOI
PublicationDOI∗

Authors
PublicationTitle
Journal
Year
Volume
Issue
Pages
ReportNumber
DataDOI
DataLink∗

RetrievalNumber For internal use only

3 Notes on palaeoclimate proxies in
marine-sediment archives and metadata

This synthesis contains climate-sensitive proxy data based on
measurements using various biological sensors. It is not the
intention here to provide a full overview of marine palaeocli-5

mate proxies and their uncertainties (for this, see for example
Hillaire-Marcel and De Vernal, 2007; Moffa-Sánchez et al.,
2019), but the fact that the proxies are based on biological
sensors means that they are affected by different ecological
bias in addition to observational noise. Basic knowledge of10

the recording system is therefore essential for the interpre-
tation of the data and may aid in explaining differences be-
tween proxies for the same climate parameter. These consid-
erations were also essential to choosing the range of meta-
data to be recorded alongside each palaeoclimatic parameter15

to allow for a proxy-specific assessment of uncertainty.

Foraminifera are among the most widely used proxy sen-
sors in palaeoceanography. They are unicellular marine zoo-
plankton. The species used here all build a calcite skeleton
that is preserved in the sediment. Foraminifera can be di- 20

vided into two main groups: benthic foraminifera living at
the seafloor level or at shallow depth in the sediment and
planktonic foraminifera living in the upper hundreds of me-
tres of the ocean. In the data product, proxies measured on
these two groups are clearly distinguished by a benthic or 25

planktonic prefix. The chemical composition of foraminifera
reflects environmental conditions of the seawater that the or-
ganisms calcified in. For the purpose of this data product,
the parameters of interest are stable-oxygen-isotope, stable-
carbon-isotope and Mg/Ca ratios. Stable-oxygen-isotope ra- 30

tios in foraminifera calcite reflect a combination of tempera-
ture and δ18O of seawater (Urey, 1948), which is in turn re-
lated to ice volume and salinity. Species-specific calibrations

Earth Syst. Sci. Data, 12, 1–25, 2020 www.earth-syst-sci-data.net/12/1/2020/
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exist to quantitatively link δ18Oforaminifera and δ18Oseawater
to temperature (e.g. Marchitto et al., 2014; Bemis et al.,
1998). Stable-carbon-isotope ratios (δ13C) reflect the δ13C
of the dissolved inorganic carbon in seawater. In particular
the benthic foraminifera species Cibicidoides wuellerstorfi5

generally incorporates δ13CDIC without a biological offset
and can serve as a tracer of bottom-water δ13CDIC which is
commonly used as non-passive circulation tracer (Curry and
Oppo, 2005). The δ13C of other benthic foraminifera species
is generally not indicative of bottom-water δ13CDIC, and the10

δ13C of planktonic foraminifera is also influenced by temper-
ature and carbonate ion concentration, rendering interpreta-
tion complicated (Spero et al., 1997).

The Mg/Ca ratio in foraminifera calcite can be used
to infer calcification temperature and, in combination with15

δ18Oforaminifera, the δ18Oseawater (Elderfield and Ganssen,
2000). Similar to stable oxygen isotopes, species-specific
calibrations exist to quantitatively reconstruct past temper-
ature from Mg/Ca ratios (Anand et al., 2003; Lear et al.,
2002), and whenever indicated in the original publication, the20

calibration is included in the metadata. Carbonate system pa-
rameters and salinity have a secondary influence on Mg/Ca
ratios in foraminifera calcite (Gray et al., 2018). Whereas
benthic foraminifera live in a generally stable environment,
the near-sea-surface habitat of planktonic foraminifera shows25

large seasonal and vertical gradients. Species-specific sea-
sonal and/or depth habitat preferences may therefore leave
a considerable imprint on the proxy signal contained in their
shells (Jonkers and Kučera, 2017; Mix, 1987). For all prox-
ies based on foraminifera, it is relevant to record the species30

as well as the number of individuals that were pooled for
geochemical analysis. The latter is because the short lifespan
and variable habitat of foraminifera species cause large vari-
ability among individuals. Planktonic foraminifera shell size
may for several reasons also affect their chemistry (Jonkers35

et al., 2013; Friedrich et al., 2012) as well as their assem-
blage composition (Al-Sabouni et al., 2007). Therefore, the
size fraction of the analysed shells was included in the meta-
data whenever this information was available.

Besides planktonic foraminifera Mg/Ca ratios, the UK′3740

unsaturation index can provide information about near-sea-
surface temperature. The UK′37 index is based on the relative
degree of unsaturation of C37 alkenones, which is linearly re-
lated to temperature (Prahl et al., 1988). Alkenones are pro-
duced by coccolithophores, marine phytoplankton living in45

the photic zone. The production of alkenones is in many re-
gions not constant during the year, thus potentially causing
a seasonal recording bias in the UK′37 temperature proxy
(Rosell-Melé and Prahl, 2013). Several calibrations exist that
relate the index to sea surface temperature, and if the calibra-50

tion was mentioned in the original publication, it was pre-
served in the metadata.

A large proportion of the temperature estimates in this data
product are based on microfossil (planktonic foraminifera,
diatoms, Radiolaria, dinoflagellate cysts) assemblages. These55

reconstructions are based on a statistical relationship be-
tween species assemblages and temperature (Imbrie and
Kipp, 1971). In theory, microfossil assemblages can be used
to reconstruct temperatures of different seasons or differ-
ent environmental parameters from the same assemblage. 60

However, it is not always clear that such reconstructions are
truly independent (Telford and Birks, 2011). Several differ-
ent methods exist to relate fossil assemblages to temperature,
and researchers often apply more than a single method in
their reconstructions to increase confidence (Kucera et al., 65

2005). When available, these different reconstructions are in-
cluded in the data product.

The bulk sediment data (CaCO3, TOC and BSi) form a
category of their own. They are not proxies in the strict sense
but properties of the sediment that reflect a combination of 70

export productivity, sedimentation and preservation. How-
ever, they can provide crucial information about the ocean–
climate system, in particular about biogeochemical cycles
(Cartapanis et al., 2016). With the advent of explicit sediment
modules in climate models (Heinze et al., 1999; Kurahashi- 75

Nakamura et al., 2020), sediment composition can also be
directly compared with model output and potentially provide
additional constraints on the simulations.

4 Structure of the database

Following the data synthesis strategy outlined above, we gen- 80

erated a first data product for time series of eight parameters
in sediment cores with radiocarbon and benthic δ18O stratig-
raphy. Following the logic of our approach, the synthesis is
organised by the physical object from which the records were
extracted (cores), here called site, to account for the inclusion 85

of records from spliced cores.
Each site in the data product has information on seven dif-

ferent themes (Fig. 2):

1. Geographic data contain the site name, latitude and lon-
gitude (in decimal degrees N and E), elevation or water 90

depth (in metres), and possible notes that are relevant to
the site or core as a whole. All fields except notes are
essential and always included.

2. Metadata include the original parameter name as given
in the online data file, a standardised parameter name, 95

parameter type (measured or inferred), unit, an estimate
of analytical error as determined from repeat measure-
ments of a standard and an estimate of reproducibil-
ity as determined by repeat measurements on samples.
For measured parameters, information on the instru- 100

ment and laboratory is given. All metadata terms are
listed in Table 2, and an overview of the standardised
parameter names is provided in Table 3.

3. Chronology data contain raw data on absolute age con-
trol points used for age modelling. This includes not 105

www.earth-syst-sci-data.net/12/1/2020/ Earth Syst. Sci. Data, 12, 1–25, 2020
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only depth, radiocarbon ages including their uncer-
tainty, dated material and laboratory codes but also cal-
endar ages of tephra layers and palaeomagnetic events.
Age control points not used in the age model by the au-
thors of the original publication(s) are indicated, and if5

available, the source (DOI or URL) of the data is shown
in addition to the original publication DOI. A complete
list of chronology data terms is given in Table 4.

4. The actual time series data are provided on a common
depth scale. Original age models are preserved along-10

side the data time series as they may differ for differ-
ent time series from the same site. The data also con-
tain information on the sample number or label (mainly
for DSDP, ODP and IODPCE4 cores) for spliced records
and sample-specific notes.15

5. The revised age model contains ages for depths brack-
eted by age control points (absolute and relative). Mean
and median ages are given as well as an uncertainty
range (2.5th and 97.5th percentiles) based on the full
suite of age model ensembles. No attempts were made20

to extrapolate the age models beyond the tie points in
the 130 000-year time frame, so original age models
may extend to either side.

6. The bacon data contain all information to reproduce the
revised age model. Besides the 14C and absolute age25

control points, this includes the tie points for the align-
ment, the alignment target and all parameters used to
construct the age–depth model.

7. Age ensembles are provided for further assessment of
chronological uncertainty. In order to keep file sizes30

manageable, 1000 randomly selected age model ensem-
bles are preserved.

5 PalMod 130k marine palaeoclimate data synthesis
v1.0.0 contents

The data product contains 896 time series of the palaeocli-35

mate parameters listed in Table 1 from 143 sites (Table 5).
By design all sites have both benthic stable-oxygen-isotope
and radiocarbon data. The majority of the sites are close to
the continents and in the Northern Hemisphere, with a con-
centration in the North Atlantic Ocean (Fig. 3). This reflects40

both research attention as well as the challenges of obtain-
ing sediment cores with high accumulation rates and well-
preserved foraminifera. The effect of research focus is also
visible in the temporal coverage of the time series, where
every parameter is characterised by a clear maximum around45

the last glacial termination ca. 15 ka (Fig. 4). The median res-
olution of the time series varies by 2 orders of magnitude but
is generally better than one sample per 1000 years and fairly
similar among the different parameters (Fig. 5). The updated

Figure 2. Structure of the PalMod 130k marine palaeoclimate data
synthesis. Each file in the database contains information on seven
different themes on a single site (sediment core). Links between
different themes are indicated.

age models are based on chronological control points (tie 50

points) from radiocarbon dating and absolutely dated layers
(using tephra and/or palaeomagnetic event stratigraphy) as
well as alignment to the regional benthic δ18O stacks. The
majority of the time series has a chronological control point
at least every 5000 years (Fig. 6). Taken together, the cov- 55

erage in space, time and across parameters indicates that the
PalMod marine palaeoclimate data product allows for analy-
sis of palaeoclimate on a supra-regional scale over the entire
130 000-year time frame.

This data product builds upon previous syntheses. Virtu- 60

ally all of the sites are also part of the benthic foraminifera
δ18O and δ13C compilations of Lisiecki and Stern (2016) and
Peterson and Lisiecki (2018). Our synthesis, however, also
includes data on other palaeoclimate parameters and contains
more metadata and information on the age–depth models. 65

Some of the planktonic foraminifera δ18O and Mg/Ca time
series in the PalMod 130k data product are also included in
the Iso2k synthesis effort (Konecky et al., 2018), and a num-
ber of sea surface temperature time series are also part of
the forthcoming Temperature12k synthesis (Kaufman et al., 70

2020).

6 Data formats and access

We provide the data products in three different formats in or-
der to facilitate access and analysis using different software
and across operating systems. Given the structure of the for- 75

mats, each representation is slightly different in its level of
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Table 3. Standardised parameter names.

Name Description

benthic.d18O Benthic foraminifera δ18O
benthic.d13C Benthic foraminifera δ13C
planktonic.d18O Planktonic foraminifera δ18O
planktonic.d13C Planktonic foraminifera δ13C
surface.temp Inferred (near-)sea-surface temperature (based on microfossils, planktonic foraminifera Mg/Ca, UK′37)
deep.temp Inferred bottom-water temperature (based on benthic foraminifera Mg/Ca)
CaCO3 Calcium carbonate content
TOC Total organic carbon content
BSi Biogenic silica content
DBD Dry bulk density
IRD Ice-rafted detritus
planktonic.MgCa Planktonic foraminifera Mg/Ca ratio
benthic.MgCa Benthic foraminifera Mg/Ca ratio
UK37 UK37 ratio (rare cases where this is not UK′37 mentioned in notes)
C37.concentration Alkenone concentration

Table 4. Chronology terms.

Name Description

ChronType∗ Type of absolute chronology tie point (14C, tephra, palaeomag)
ChronDepthTop_cm
ChronDepthBottom_cm
ChronDepthMid_cm∗

ChronSampleThickness_cm
ChronAge_kaBP∗CE5 Age of non-14C tie point (tephra, palaeomag)
ChronAgeError_ka∗ Age error of non-14C tie point (tephra, palaeomag)
ChronDatedMaterial
ChronDatedSpecies
ChronNshellsDated
Chron14CLabcode
ChronAge14C_kaBP∗

ChronAge14CError_ka∗

ChronAge14CErrorUp_ka
ChronAge14CErrorDown_ka
ChronReservoirAge_ka∗

ChronReservoirAgeError_ka∗

ChronCalibCurve
ChronCalibAge14C_kaBP Calibrated 14C age
ChronCalibAge14C1sigLo_ka
ChronCalibAge14C1sigUp_ka
ChronAgemodelMethod
ChronAgeRejected
ChronNotes
ChronSource
ChronDOI∗

∗ Essential terms.

www.earth-syst-sci-data.net/12/1/2020/ Earth Syst. Sci. Data, 12, 1–25, 2020
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Figure 3. Spatial distribution of sites in version 1.0.0 of the PalMod 130k marine palaeoclimate data synthesis. The distribution of the sites
reflects research effort and the possibility of obtaining sediment cores containing well-preserved foraminifera and is hence skewed towards
the Northern Hemisphere (Atlantic) and the continental margins. Since no explicit search was carried out for parameters other than benthic
foraminifera δ18O, the distribution of the other parameters is restricted to sites that have benthic foraminifera δ18O. For benthic foraminifera
δ13C, only sites with data based on the genus Cibicidoides are shown.

metadata detail and the way metadata and data are stored.
The differences are described below.

– Since the data product was built using R, the data prod-
uct is presented in R-readable RDS files that contain for
each site a list with data for each theme (Sect. 4). This5

is the format that is most complete, yet in the interest of
memory space it preserves a random selection of 1000
age models from the larger ensemble produced using
bacon. In this format, all data and metadata for each
site are contained within a single file. Sample scripts10

(https://github.com/lukasjonkers/PALMODutilsTS6 ) al-
low the user to extract a quick overview of the contents

of the data product similar to Table 5 but with additional
information on the temporal range, resolution and age
control of the time series. Additional code is available 15

to query the data product by parameter, parameter de-
tail, sensor species, temporal range, resolution and age
control.

– The data product is also provided in the LiPD format,
which is built around JSON-LD and CSV formats and 20

is widely readable across different platforms. As with
RDS, all data for each site are presented in a single file.
Utilities to interact with LiPD files in R, Matlab and
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Figure 4. Temporal distribution of time series in version 1.0.0 of
the PalMod 130k marine palaeoclimate data synthesis. The number
of time series (y axis) is counted per 1000-year bin. The tempo-
ral availability of all parameters shows a clear maximum around
15 ka, reflecting the research focus on the last glacial termination.
For benthic foraminifera δ13C, only time series with data based on
the genus Cibicidoides are shown.

Python are available at https://github.com/nickmckay/
LiPD-utilitiesTS7 .

– Finally, the data are also provided in netCDF format in
a way that allows reading in PDV format. This means
that a single site has separate files for each individual5

palaeoclimate parameter as well as for the age model.
In this format, some metadata are stored as concate-
nated strings rather than easily searchable attributes.
The netCDF format allows however for the storage of
the full suite of age model ensembles without exces-10

sive file sizes. The PDV software to read and process
the data can be downloaded at https://www.marum.de/
en/Stefan-Mulitza/PaleoDataView.htmlTS8 .

The data product is available for download at
https://doi.org/10.1594/PANGAEA.908831 (Jonkers et15

al., 2019). We encourage users of the data product to also
cite the primary source of the data when using (individual
time series of) this product.

7 Future plans and versioning

To increase the spatio-temporal coverage over the entire20

130 000-year time frame of the database, updates of this data
product will first aim for quantitative growth of the database

Figure 5. Median resolution of the time series in version 1.0.0 of
the PalMod 130k marine palaeoclimate data synthesis. Box-and-
whisker plots show the spread of resolution per parameter. For ben-
thic foraminifera δ13C the resolution data are restricted to time se-
ries containing data measured on shells of the genus Cibicidoides.
For all parameters the median resolution is more than one data point
per 1000 years.

by adding more time series with chronological control based
on benthic foraminifera δ18O and absolute age control points
other than 14C. If available, these updates will also include 25

the parameters listed in Table 1. They will be named using
the counter following the first decimal separator. The struc-
ture of the data product is designed to be flexible, allowing
for the addition of different metadata fields and parameters.
Further updates that include new parameters and/or require 30

a new age modelling approach (i.e. no benthic δ18O align-
ment) will be named using the counter before the first deci-
mal separator. Any updates to add or correct (meta)data to an
existing version that do not increase the number of sites will
be indicated using a counter following the second decimal 35

separator.

8 Data availability

An overview of all datasets used in this synthesis,
including URLs to the data, can be found in Ta-
ble 5 (https://doi.org/10.5281/zenodo.3739019TS9 ). The 40

PalMod 130k marine palaeoclimate data product can
be downloaded in R, LiPD and netCDF format at
https://doi.org/10.1594/PANGAEA.908831 (Jonkers et al.,
2019). The data can also be visualised and downloaded
in LiPD and CSV formats at http://lipdverse.org/PalMod/ 45

current_version/.

9 Lessons learned: recommendations for data
archiving

Data reuse and sharing are both made easier when data are
archived in a standardised manner. Even though a large num- 50
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Figure 6. Average temporal spacing between chronology tie points
(avgPoints). Tie points are also split into 14C, absolute (tephra or
palaeomagnetics) and tuned. The majority of the time series in
the synthesis has a spacing of chronology tie points that is below
5000 years.

ber of palaeoceanographic data are publicly available, meta-
data to facilitate interpretation of the raw or inferred palaeo-
data are often not, or only partially, made available and need
to be obtained from the original publication. Synthesis efforts
therefore still require a lot of time and effort to find, com-5

pile and standardise data and metadata. Only recently has the
palaeoclimate community started to discuss data-archiving
standards (Khider et al., 2019). However, implementation of
the proposed Paleoclimate Community reporTing Standard
(PaCTS 1.0) will only affect new uploads to public repos-10

itories, and data already available (legacy data) are likely
only going to be made compliant with the PaCTS through
dedicated synthesis efforts. Below we list some of the main
issues that we encountered during data synthesis. Our aims
with mentioning these are to raise awareness of how the lack15

of standardisation affects data synthesis and thereby to en-
courage best practice in data reporting. We encourage re-
searchers and also reviewers to treat data handling not as
an afterthought but as an integral part of their study. After
all, compared to generating the data, data handling is not20

a time-consuming task. Time spent on proper documenting
and archiving is not wasted as it facilitates reuse of data and
enables scientific progress in our field.

Disambiguate core names. An apparently trivial, but sur-
prisingly common, first-order issue is that core names are25

inconsistently archived. Different names for the same core
arise not only from differences in hyphenation; truncation of
(long) names; and minor variations in the same name that
can, with expert knowledge, be linked but also from the use
of altogether different names for the same core, e.g. reflect-30

ing differences in the labelling during an expedition and in
the repository. This naming confusion renders it difficult to
combine datasets from the same core, especially in an auto-
mated way, and to assess the uniqueness of time series from
the same core for dereplication. We recommend using the35

Figure 7. The problem of the absence of standardisation in param-
eter names. The cumulative frequency of synonyms for seawater
temperature in our initial database (Sect. 2.2.1), showing that there
are over 500 different names for the same parameter and that many
of these are unique.

full name as indicated in the cruise report where the core was
first described.

Standardise vocabularies. Even though a vast number of
palaeoclimate data are available in public repositories, the
lack of standardisation of parameter vocabularies hinders ef- 40

ficient data processing. This problem is clearly illustrated by
the fact that, for this synthesis, long synonym lists needed to
be generated in order to group parameters. Each parameter
in this synthesis had tens to hundreds of different names, of
which many were unique (Fig. 7). This issue can be partly ad- 45

dressed by a consistent separation of parameter and attribute
names (e.g. parameter δ18O, species G. bulloides, instead of a
single parameter “d18OGbul”), but even that calls for a stan-
dardisation of parameters and attributes.

Report sampling depth. All data reported here are based on 50

measurements of discrete samples from a specific depth in-
terval in a given core. Therefore, the synthesis requires infor-
mation on the position of each sample. Since ages of the sam-
ples are always estimates and may differ among studies of
the same archive, unambiguous information on sample depth 55

is essential to reproduce and update the time series. Despite
this, many studies fail to report sample depth and instead
report only age. This problem is worse for spliced records
that rely on a composite depth scale. Splicing approaches are
often opaque, and original sample depths, or sample codes 60

that identify unique samples, are not always available. We
recommend therefore that sample depth should be essential
for palaeodata time series from (marine) sediments and that
sample labels are archived for spliced records. This includes
(I)OPD or DSDP sample labels (in full) or IGSN (if avail- 65

able).
Publish raw data. To ensure the reproducibility of inferred

parameters (in this synthesis only temperature) and to en-
sure the harmonisation or updating of the calibration, the raw
measured data are needed. Provided that the calibration is 70
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known, measured data can in some cases be calculated from
the inferred data, but this is impossible for data based on mi-
crofossil transfer functions. Related to this is unclear infor-
mation about the calibration that was used, particularly if the
publication describing the calibration includes multiple dif-5

ferent equations.
Include metadata. To assess ecological imprints on proxy

signals (recording bias), temperature estimates as well
as oxygen and carbon isotope data based on planktonic
foraminifera also require that key metadata, such as species10

name, are archived in a standardised way. This is not uni-
versally carried out, and for example the species informa-
tion is often only available in the original publication. Ad-
ditional information to assess the uncertainty in proxy mea-
surements, such as foraminifera shell size, the sample size15

(e.g. number of shells, concentration of alkenones) or repro-
ducibility of repeat measurements, was often not available
from the paper or from the archived data, and we encour-
age the archiving of such data in a standardised way. A sim-
ilar issue applies to chronological data. Thanks to a longer20

history of reporting standards, radiocarbon (Stuiver and Po-
lach, 1977) (meta)data are often rather complete. However,
this information is often not included alongside the digitally
available data, and for this synthesis a large proportion of
the radiocarbon (meta)data had to be scraped from the liter-25

ature. In our age modelling approach, we took reservoir age
uncertainty into account, using data derived from the mod-
elled reservoir ages (see Sect. 2.3). Alternative approaches
are hindered by the fact that reservoir age uncertainty is al-
most never reported.30

Avoid redundancy. A considerable amount of time was
spent on the dereplication of time series of the same param-
eter from the same core that were archived multiple times.
Repeat archiving happens when data are reused or, less com-
monly, updated. The dereplication task is not made easier35

by (incomplete or inconsistent) metadata reporting and can
be avoided through better linking of existing datasets when,
instead of re-uploading the data, the DOI or URL of the orig-
inal data is provided.

Help rescue dark data. This synthesis is based on data40

that are publicly available, yet many or some palaeoceano-
graphic time series are not archived in public repositories.
Even though the proportion of this so-called dark data is
unknown, it likely affects every branch of palaeoceanogra-
phy, and as a result palaeoceanographical data syntheses can-45

not be exhaustive. This problem is clearly exacerbated for
syntheses relying on automated data mining. There are sev-
eral shades of dark data, each requiring their own approach
to retrieve them and make them available. Some data are
only partially available, for instance datasets that lack sample50

depths. Such data only require additional data to make them
reusable. These additional data can sometimes be calculated
or obtained from cross-referencing different data files but in
many cases will need to be retrieved from the data produc-
ers. Other datasets, in particular those from before the dig-55

ital age, are presented in tables in the original publications.
Progress has been made with digitising those datasets (espe-
cially in PANGAEA), but this work is not finished, and more
effort is needed to make this data available to the commu-
nity. There are also data that are used in publications but are 60

not made available in any way (print or digital). This third
shade of data can so far only be obtained from the original
data producers or authors of the original publication or, if this
proves impossible, needs to be digitised from graphs. Digiti-
sation inevitably leads to a loss of accuracy of the data, and 65

a dataset retrieved in this way should be flagged. A final cat-
egory of dark data consists of data that are not part of a pub-
lication. Such datasets can be made publicly available and
be associated with a DOI to ensure traceability. To reward
data sharing, the use of data citations needs to be encouraged 70

and data citations should be included in the evaluation of a
researcher’s impact.

Table 5 (online only at
https://doi.org/10.5281/zenodo.3739019TS10 : Palaeocli-
mate time series in the PalMod 130k marine palaeoclimate 75

data synthesis v1.0.1). This table lists the site names and
locations and parameters including additional information as
well as the source of the data and the original publications
where the data were presented.

Supplement. The supplement related to this article is available 80

online at: https://doi.org/10.5194/essd-12-1-2020-supplement.
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