Supporting Online Material for The PROFOUND database for evaluating vegetation models and simulating climate impacts on forests

Christopher P.O. Reyer¹, Ramiro Silveyra Gonzalez¹, Klara Dolos³, Florian Hartig⁴, Ylva Hauf¹, Matthias Noack⁵, Petra Lasch-Born¹, Thomas Rötzer⁶, Hans Pretzsch⁶, Henning Meesenburg⁷, Stefan Fleck⁷, Markus Wagner⁷, Andreas Bolte⁸, Tanja GM Sanders⁸, Pasi Kolari⁹, Annikki Mäkelä⁹, Timo Vesala⁹, Ivan Mammarella⁹, Jukka Pumpanen¹⁰, Alessio Collalti¹¹, ¹², Carlo Trotta¹², Giorgio Matteucci¹³, Ettore D'Andrea¹³, Lenka Foltýnová¹⁴, Jan Krejza¹⁴, Andreas Ibrom¹⁵, Kim Pilegaard¹⁵, Denis Loustau¹⁶, Jean-Marc Bonnefond¹⁶, Paul Berbigier¹⁶, Delphine Picart¹⁶, Sébastien Lafont¹⁶, Michael Dietze¹⁷, David Cameron¹⁸, Massimo Vieno¹⁹, Hanqin Tian²⁰, Alicia Palacios-Orueta²¹, Victor Cicuendez²¹, Laura Recuero²¹, Klaus Wiese²¹, Matthias Büchner¹, Stefan Lange¹, Jan Volkholz¹, Hyungjun Kim²², Graham P. Weedon²⁷, Justin Sheffield²⁸, Iliusi Vega del Valle¹, Felicitas Suckow¹, Joanna A. Horemans²³, Simon Martel¹⁶, Friedrich Bohn²⁴, Jörg Steinkamp²⁵, Alexander Chikalanov²⁶, Mats Mahnken¹, Martin Gutsch¹, Katja Frieler¹

¹Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, P.O. Box 601203, D-14412 Potsdam, Germany

²University of Freiburg, Freiburg, Germany

³Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

⁴University of Regensburg, Regensburg, Germany

⁵Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gülzow-Prüzen, Germany

⁶Technical University of Munich, Munich, Germany

⁷Northwest German Forest Research Institute, Göttingen, Germany

⁸Thünen Institute of Forest Ecosystems, 16225 Eberswalde, Germany

⁹University of Helsinki, Helsinki, Finland

¹⁰University of Eastern Finland, Kuopio, Finland

¹¹National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean, Rende (CS), Italy

¹²Department of Innovation in Biological, Agro-food and Forest System, University of Tuscia, 01100 Viterbo, Italy

¹³National Research Council of Italy, Institute for Agriculture and Forestry System in the Mediterranean, Ercolano (NA), Italy

¹⁴Global Change Research Institute, Brno, Czech Republic

¹⁵Technical University of Denmark, Lyngby, Denmark

¹⁶French National Institute for Agricultural Research, Bordeaux, France

¹⁷Boston University, Boston, USA

¹⁸Centre for Ecology and Hydrology, Lancaster, United Kingdom

¹⁹Centre for Ecology and Hydrology, Edinburgh, United Kingdom

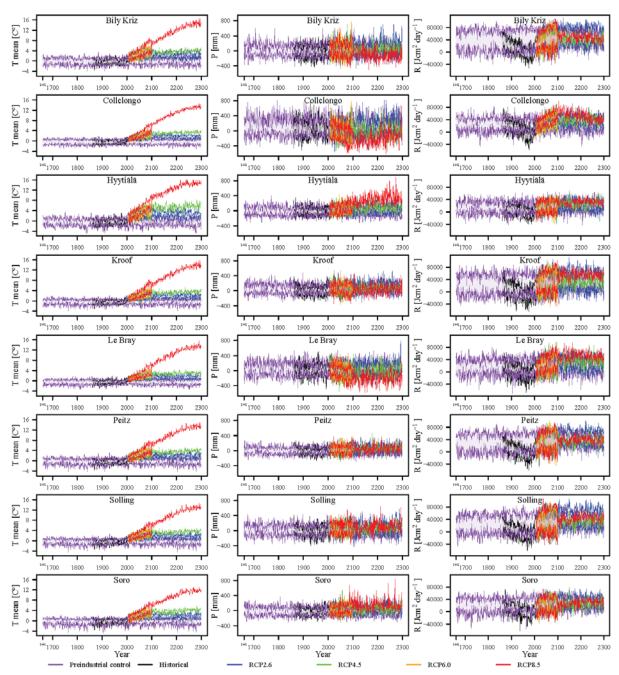
²⁰Auburn University, Auburn, United States

²¹Technical University of Madrid, Madrid, Spain

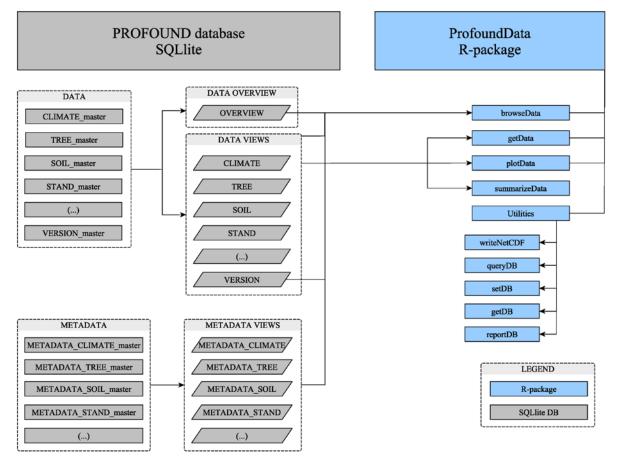
²²University of Tokyo, Tokyo, Japan

²³Centre of Excellence PLECO, University of Antwerpen, Antwerpen, Belgium

²⁴Helmholz Center for Environmental Research, Leipzig, Germany


²⁵Senckenberg Biodiversity and Climate Research Centre, Senckenberg, Germany

²⁶University of Library Study and Information Technology, Sofia, Bulgaria


²⁷Met Office, Wallingford, UK

²⁸Princeton University, Dept. Civil & Environ. Eng., Princeton, NJ 08544, USA

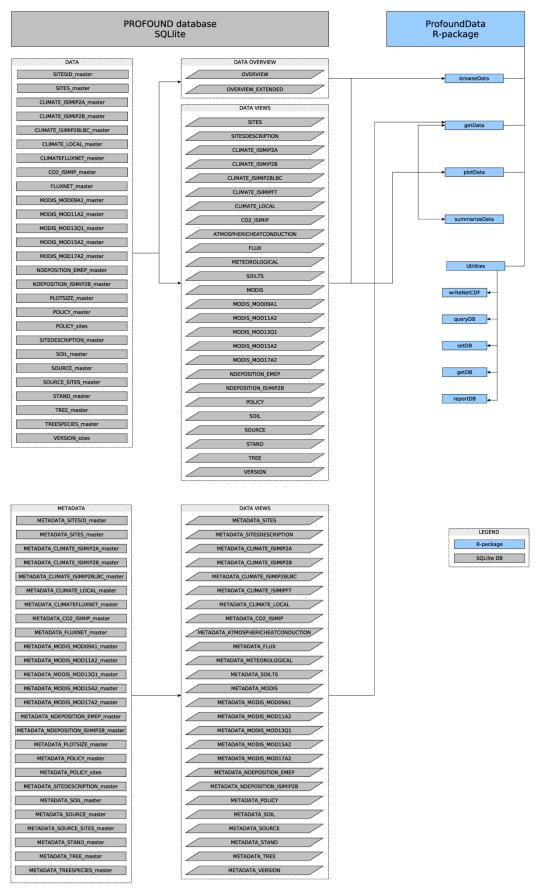

Correspondence to: Christopher P.O. Reyer (reyer@pik-potsdam.de)

Figure SOM1: Change in mean annual temperature (T mean), annual precipitation sum (P) and annual sum of global radiation (R) over the time period 1661-2299 relative to the 1980-2005 average for the ISIMIP2b scenarios. Please note that the two Solling sites have the same climate.

Figure SOM2: The main structure and links between the PROFOUND DB (grey) and the PROFOUNDData R-package (blue).

Figure SOM3: The full structure and links between the PROFOUND DB (grey) and the PROFOUNDData R-package (blue).

Table SOM1: Description of SITES variables included in the database.

variable	type	units	description
site	TEXT	adimensional	Site name
site_id	INTEGE R	adimensional	Site code as decimal number (01-99)
aspect_deg	REAL	degree	Direction of slope inclination. Degrees against North. No Value indicates no exposition.
country	TEXT	adimensional	Country
elevation_masl	REAL	m	Elevation above sea level as recorded by PI
epsg	INTEGE R	adimensional	EPSG Coordinate System
lat	REAL	degree decimal	Latitude
Ion	REAL	degree decimal	Longitude
natVegetation_code1	TEXT	adimensional	Code of the vegetation mapping unit group in the\"Map of the Natural Vegetation of Europe". BOHN, U.; GOLLUB, G. & HETTWER, C. (2000) Karte der natuerlichen Vegetation Europas. Massstab 1:2.500.000 Karten und Legende. Teil 1-3 Bundesamt fuer Naturschutz, Bonn, Germany.
natVegetation_code2	TEXT	adimensional	Code of the vegetation mapping unit in the "Map of the Natural Vegetation of Europe". BOHN, U.; GOLLUB, G. & HETTWER, C. (2000) Karte der natuerlichen Vegetation Europas. Massstab 1:2.500.000 Karten und Legende. Teil 1-3 Bundesamt fuer Naturschutz, Bonn, Germany.
natVegetation_descriptio	TEXT	adimensional	Description of natVegetation_code2. BOHN, U.; GOLLUB, G. & HETTWER, C. (2000) Karte der natuerlichen Vegetation Europas. Massstab 1:2.500.000 Karten und Legende. Teil 1-3 Bundesamt fuer Naturschutz, Bonn, Germany.
slope_percent	REAL	percent	Mean slope within the plot

 Table SOM2:
 Description of SOIL variables included in the database.

variable	type	units	description	
record_id	INTEGE R	adimensional	Record ID as decimal number	
site	TEXT	adimensional	Site name	
site_id	INTEGE R	adimensional	Site code as decimal number (1-99)	
date	TEXT	adimensional	Unformatted date of inventory as provided for the inventory. See site specific metadata for further information on date.	
bs_percent	REAL	percent	Percentage of alkaline and earth alkaline metals at CEC	
cMax_percent	REAL	percent	Maximum soil carbon content	
cMin_percent	REAL	percent	Minimum soil carbon content	
cOrgSigma_percent	REAL	percent	Soil organic carbon content error estimate as standard deviation	
cOrg_gcm3	REAL	g cm-3	Soil organic carbon content	
cOrg_percent	REAL	percent	Soil organic carbon content	
cSigma_kgm2	REAL	kg m-2	Soil carbon content error estimate as standard deviation	
c_kgm2	REAL	kg m-2	Soil carbon content	
c_percent	REAL	percent	Soil carbon content	
cec_µeqg	REAL	µeq g-1	Soil cation exchange capacity	
claySigma_percent	REAL	percent	Soil clay particle content error estimate as standard deviation	
clay_percent	REAL	percent	Soil clay particle content	
cn	REAL	adimensional	Soil C:N ratio	
densitySigma_gcm3	REAL	g cm-3	Soil bulk density content error estimate as standard deviation	

density_gcm3	REAL	g cm-3	Soil bulk density	
fcapv_percent I	REAL	percent	Soil field capacity	
fineRoot_percent	REAL	percent	Distribution of fine roots accross soil horizons	
gravel_percent	REAL	percent	Soil gravel particle content	
horizon	TEXT	adimensional	Name of soil horizon	
humus_tCha	REAL	tC ha-1	Humus carbon content	
hydCondSat_cmd1	REAL	cm d-1	Soil hydraulic conductivity at saturation	
llaver id	INTEGE R	adimensional	Layer code as decimal number (1-99)	
lowerDepth_cm	REAL	cm	Lower soil horizon limit	
mbCSigma_mgg	KFAI I	mg C g-1 dry soil	Soil microbial biomass carbon error estimate as standard deviation	
mbC_mgg	KFAI I	mg C g-1 dry soil	Soil microbial biomass carbon	
mbNSigma_mgNg	RFAI I	mg N g-1 dry soil	Soil microbial biomass nitrogen error estimate as standard deviation	
mbN_mgNg	KFAI I	mg N g-1 dry soil	Soil microbial biomass nitrogen	
minRSigma_mgkgh	REAL	mg N kg-1 h-1	Soil mineralisation rate error estimate as standard deviation	
minR_mgkgh	REAL	mg N kg-1 h-1	Soil mineralisation rate	
nMax_percent	REAL	percent	Maximum soil nitrogen content	
nMin_percent	REAL	percent	Minimum soil nitrogen content	
nOrgSigma_percent	REAL	percent	Soil organic nitrogen content error estimate as standard deviation	
nOrg_percent	REAL	percent	Soil organic nitrogen content	

n_kgm2	REAL	kg m-2	Soil nitrogen content	
n_percent	REAL	percent	Soil nitrogen content	
ofhC_percent	REAL	percent	The organic fermentative-humic (Ofh) subhorizon consists of forest litter (leaves, bark, twigs etc) showing considerable decay.	
ofhN_percent	REAL	percent	Carbon content in a gram of OFH sample	
ofh_gDWm2	REAL	g DW m-2	Litter layer (leaves not decomposed)	
ol_gDWm2	REAL	g DW m-2	Nitrogen content in a gram of OFH sample	
phSigma_h2o	REAL	adimensional	Soil pH determined with H2O error estimate as standard deviation	
phSigma_kcl	REAL	adimensional	Soil pH determined by KCl error estimate as standard deviation	
ph_cacl2	REAL	adimensional	Soil pH determined with CaCl2	
ph_h2o	REAL	adimensional	Soil pH determined with H2O	
ph_kcl	REAL	adimensional	Soil pH deterimed with KCl	
porosity_percent	REAL	percent	Soil water content at saturation in the bulk soil	
rainGroundWater	REAL	adimensional	Whether the soil is mostly influenced by rain or ground water	
sandSigma_percent	REAL	percent	Soil sand particle content error estimate as standard deviation	
sand_percent	REAL	percent	Soil sand particle content	
siltSigma_percent	REAL	percent	Soil silt particle content error estimate as standard deviation	
silt_percent	REAL	percent	Soil silt particle content	
table_id	INTEGE R	adimensional	Table code as decimal number (1-99)	
texture	TEXT	adimensional	Soil texture	
thicknesSigma_cm	REAL	cm	Soil thickness error estimate	
thickness_cm	REAL	cm	Soil thickness	

type_fao	TEXT	ladimensional	Soil type after ISSS-ISRIC-FAO (1998) World reference basis for soil resources. World Soil Resources Reports 84. FAO, Rome. 92 p.
type_ka5	TEXT	adimensional	Soil type after AG Boden (2005) Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
upperDepth_cm	REAL	cm	Upper soil horizon limit
whcSigma_mm	REAL	mm	Soil water holding capacity error estimate
whc_mm	REAL	mm	Soil water holding capacity
whcp_percent	REAL	percent	Water holding capacity for plant available water
wiltp_percent	REAL	percent	Soil wilting point

 Table SOM3:
 Description of CLIMATE variables included in the database.

variable	type	units	description
record_id	INTEGER	adimensional	Record ID as decimal number
site	TEXT	adimensional	Site name
site_id	INTEGER	adimensional	Site code as decimal number (01-99)
date	TEXT	adimensional	Date in format YYYY-MM-DD
year	INTEGER	YYYY	Year with century as decimal number (0000-9999)
mo	INTEGER	MM	Month as decimal number (01-12)
day	INTEGER	DD	Day of the month as decimal number (01-31)
airpress_hPa	REAL	hPa	Mean daily air pressure
p_mm	REAL	mm	Total daily precipitation
rad_Jcm2day	REAL	J cm-2	Total daily global radiation
relhum_percent	REAL	percent	Mean daily relative humidity
tmax_degC	REAL	degree Celsius	Maximum daily temperature
tmean_degC	REAL	degree Celsius	Mean daily temperature
tmin_degC	REAL	degree Celsius	Minimum daily temperature
wind_ms	REAL	m s-1	Mean daily wind speed

Table SOM4: Description of CLIMATE_ISIMIP additional variables included in the database.

variable	type	units	description
		adimensional	Site name
forcingCondition s	TEXT	adimensional	This category refers to the conditions underlying the climatic forcing, e.g. following historical CO2 time series, preindustrial picontrol runs or representative concentration pathways (rcp).
forcingDataset	TEXT	adimensional	This category refers to data taken from bias-corrected general circulation models (e.g. hadgem) or historical global meteorological forcing data based on bias-corrected reanalysis data (e.g. watch)

Table SOM5: Description of CO2_ISIMIP variables included in the database.

variable	type	units	description	
record_id	INTEGE R	adimensional	Record ID as decimal number	
site	TEXT	adimensional	Site name	
site_id	INTEGE R	adimensional	Site code as decimal number (01-99)	
forcingCondition s	TEXT	adimensional	This category refers to the conditions underlying the climatic forcing, e.g. following historical CO2 time series or representative concentration pathways (rcp).	
year	INTEGE R	YYYY	Year with century as decimal number (0000-9999)	
co2_ppm	REAL	ppm	CO2 mean global concentrations for the different different forcing conditions: RCP and historical values (2013)	

Table SOM6: Description of NDEPOSITION and NDEPOSITION_ISIMIP2B variables included in the database.

variable	type	units	description	
record_id	INTEGER	adimensional	Record ID as decimal number	
site	TEXT	adimensional	Name of the site	
site_id	INTEGER	adimensional	Site code as decimal number (01-99)	
year	INTEGER	YYYY	Year with century as decimal number (0000-9999)	
nhx_gm2	REAL	g m-2	Total deposition of reduced nitrogen (Dry+Wet RdN)	
noy_gm2	REAL	g m-2	Total deposition of oxidized nitrogen (Dry+Wet oxN)	
forcingCondition s	TEXT	adimensional	This category refers to the conditions underlying the climatic forcing, e.g. following historical CO2 time series, preindustrial picontrol runs or representative concentration pathways (rcp).	

Table SOM7: Description of TREE variables included in the database.

variable	type	units	description		
record_id	INTEGER	adimensional	Record ID as decimal number		
site	TEXT	adimensional	Site name		
site_id	INTEGER	adimensional	Site code as decimal number (01-99)		
species	TEXT	adimensional	Species name		
species_id	TEXT	adimensional	Species text code		
year	INTEGER	YYYY	ear with century as decimal number (0000-9999)		
dbh1_cm	REAL	cm	Diameter at breast height		
height1_m	REAL	m	ree height		
size_m2	REAL	m2	ot size		

 Table SOM8:
 Description of STAND variables included in the database.

variable	type	units	description
record_id	INTEGE R	adimensional	Record ID as decimal number
site	TEXT	adimensional	Site name
site_id	INTEGE R	adimensional	Site code as decimal number (01-99)
species	TEXT	adimensional	Species name
species_id	TEXT	adimensional	Species text code
year	INTEGE R	YYYY	Year with century as decimal number (0000-9999)
aboveGroundBiomass_kgha	REAL	kg ha-1	Above ground biomass
age	INTEGE R	years	Mean stand age
ba_m2ha	REAL	m2 ha-1	Basal area per hectare
branchesBiomass_kgha	REAL	kg ha-1	Branches biomass
dbhArith_cm	REAL	cm	Arithmetic mean diameter
dbhBA_cm	REAL	cm	Average diameter weighted by basal area calculated as dbhBA = $(ba1*dbh1 + ba2*dbh2 + + bak*dbhk) / (ba1 + ba2+ + bak)$, where bai and dbhi are the basal area and dbh, respectively, of the tree i, and i = 1, 2,, k
dbhDQ_cm	REAL	cm	Mean squared diameter or quadratic mean diameter calculated as dbhDQ = sqrt((dbh1^2 + dbh2^2+ + dbhk^2) / N), where dbhi is the diameter at breat height of tree i, i = 1, 2,, k, N is the total number of trees, and sqrt is the square root
density_treeha	REAL	tree ha-1	Number of tree per ha
foliageBiomass_kgha	REAL	kg ha-1	Foliage biomass

heightArith_m	REAL	m	Arithmetic mean height
heightBA_m	REAL	m	Average height weighted by basal area or Loreys height calculated as heightBA = $(ba1*h1 + ba2*h2 + + bak*hk)$ / $(ba1 + ba2+ + bak)$, where bai and hi are the basal area and height, respectively, of the tree i, and i = 1, 2,, k
lai	REAL	adimensional	Leaf Area Index
rootBiomass_kgha	REAL	kg ha-1	Root biomass
stemBiomass_kgha		kg ha-1	Stem biomass
stumpCoarseRootBiomass_kgh a	REAL	kg ha-1	Stump and coarse roots biomass

Table SOM9: Description of FLUX variables included in the database.

variable	type	units	description	
record_id	INTEGER	adimensional	Record ID as decimal number	
site_id INTEGER adimensional Site code as decimal number (01-99)		Site code as decimal number (01-99)		
date	TEXT	adimensional	Date in format YYYY-MM-DD hh:mm:ss. Derived from TIMESTAMP_START	
year	INTEGER	YYYY	Year with century as decimal number (0000-9999). Derived from TIMESTAMP_START	
mo	INTEGER	ММ	Month as decimal number (01-12). Derived from TIMESTAMP_START	
day	INTEGER	DD	Day of the month as decimal number (01-31). Derived from TIMESTAMP_START	
gppDtCutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Gross Primary Production, from Daytime partitioning method, reference selected from GPP versions using a model efficiency approach. Based on corresponding NEE_CUT_XX version	
gppDtCutSe_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Standard Error for Gross Primary Production, calculated as stdev(gppDtCut_XX) / sqrt(40). SE from 40 half-hourly gppDtCut_XX	
gppDtVutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Gross Primary Production, from Daytime partitioning method, reference version selected from GPP versions using a model efficiency approach. Based on corresponding neeVut_XX version	
gppDtVutSe_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Standard Error for Gross Primary Production, calculated as stdev(gppDtVut_XX) / sqrt(40. SE from 40 half-hourly gppDtVut_XX	
gppNtCutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Gross Primary Production, from Nighttime partitioning method, reference selected from GPP versions using a model efficiency approach. Based on corresponding NEE_CUT_XX version	
gppNtCutSe_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Standard Error for Gross Primary Production, calculated as stdev(gppNtCut_XX) / sqrt(40). SE from 40 half-hourly gppNtCut_XX	
gppNtVutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Gross Primary Production, from Nighttime partitioning method, reference version selected from GPP versions using a model efficiency approach. Based on corresponding neeVut_XX version	

gppNtVutSe_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Standard Error for Gross Primary Production, calculated as (stdev(gppNtVut_XX) / sqrt(40)). SE from 40 half-hourly gppNtVut_XX
neeCutRefJointunc_umolCO2m2s	REAL	umolCO2 m-2 s-1	Joint uncertainty estimation for neeCutRef, including random uncertainty and USTAR filtering uncertainty [sqrt(neeCutRef_RANDUNC^2 + ((NEE_CUT_84 - NEE_CUT_16) / 2)^2)] for each half-hour
neeCutRef_qc	INTEGER	adimensional	Quality flag for neeCutRef. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
neeCutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Net Ecosystem Exchange, using Constant Ustar Threshold (CUT) across years, reference selected on the basis of the model efficiency
neeVutRefJointunc_umolCO2m2s	REAL	umolCO2 m-2 s-1	Joint uncertainty estimation for neeVutRef, including random uncertainty and USTAR filtering uncertainty [sqrt(neeVutRef_RANDUNC^2 + ((neeVut_84 - neeVut_16) / 2)^2)] for each half-hour
neeVutRef_qc	INTEGER	adimensional	Quality flag for neeVutRef. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
neeVutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Net Ecosystem Exchange, using Variable Ustar Threshold (VUT) for each year, reference selected on the basis of the model efficiency
recoDtCutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Ecosystem Respiration, from Daytime partitioning method, reference selected from RECO versions using a model efficiency approach. Based on corresponding NEE_CUT_XX version
recoDtCutSe_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Standard Error for Ecosystem Respiration, calculated as stdev(recoDtCut_XX) / sqrt(40). SE from 40 half-hourly recoDtCut_XX
recoDtVutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Ecosystem Respiration, from Daytime partitioning method, reference selected from RECO versions using a model efficiency approach. Based on corresponding neeVut_XX version
recoDtVutSe_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Standard Error for Ecosystem Respiration, calculated as stdev(recoDtVut_XX) / sqrt(40). SE from 40 half-hourly recoDtCut_XX
recoNtCutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Ecosystem Respiration, from Nighttime partitioning method, reference selected from RECO versions using a model efficiency approach. Based on corresponding NEE_CUT_XX version
recoNtCutSe_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Standard Error for Ecosystem Respiration, calculated as stdev(recoNtCut_XX) / sqrt(40. SE from 40 half-hourly recoNtCut_XX

recoNtVutRef_umolCO2m2s1	REAL	umolCO2 m-2 s-1	Ecosystem Respiration, from Nighttime partitioning method, reference selected from RECO versions using a model efficiency approach. Based on corresponding neeVut_XX version
recoNtVutSe_umolCO2m2s1	REAL	$\lim_{n\to\infty} \alpha(x) = 0$	Standard Error for Ecosystem Respiration, calculated as stdev(recoNtVut_XX) / sqrt(40. SE from 40 half-hourly recoNtCut_XX
timestampEnd	TEXT	YYYYMMDDHHMM	ISO timestamp end of averaging period - short format
timestampStart	TEXT	YYYYMMDDHHMM	ISO timestamp start of averaging period - short format

Table SOM10: Description of MODIS variables included in the database.

variable	type	units	description	comments	source
record_id	INTEGER	adimensional	Record ID as decimal number		
site	TEXT	adimensional	Site name		
site_id	INTEGER	adimensional	Site code as decimal number (01-99)		
date	TEXT	adimensional	Date in format YYYY-MM-DD		
year	INTEGER	YYYY	Year with century as decimal number (0000-9999)		
mo	INTEGER	MM	Month as decimal number (01-12)		
day	INTEGER	DD	Day of the month as decimal number (01-31)		
aB01_rad	REAL	radian	Angle in red. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.	Calculated from MOD09A1 after Khanna, S., A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. R. no, and J. Litago, 2007. Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment 109:154 – 165. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation) in a window size of 5 observations have been filtered and substituted with the average value of the window.	MOD09A1
aB02_rad	REAL	radian	Angle in near infrared. Calculated with MOD09A1. Spatial resolution 0.5 km	Calculated from MOD09A1 after Palacios- Orueta, A., M. Huesca, M. L. Whiting, J. Litago, S. Khanna, M. Garcia, and S. L. Ustin, 2012. Derivation of phenological metrics by function fitting to time-series of spectral shape indexes AS1 and AS2: Mapping cotton phenological stages using modis time series.	MOD09A1

				Remote Sensing of Environment 12:148–159. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation) in a window size of 5 observations have been filtered and substituted with the average value of the window.	
aB05_rad	REAL	radian	Angle in SWIR 1.Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.	Calculated from MOD09A1 after Palacios-Orueta, A., M. Huesca, M. L. Whiting, J. Litago, S. Khanna, M. Garcia, and S. L. Ustin, 2012. Derivation of phenological metrics by function fitting to time-series of spectral shape indexes AS1 and AS2: Mapping cotton phenological stages using modis time series. Remote Sensing of Environment 12:148–159. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation) in a window size of 5 observations have been filtered and substituted with the average value of the window.	MOD09A1
aB06_rad	REAL	radian	Angle in SWIR 2. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.	Calculated from MOD09A1 after Palacios-Orueta, A., M. Huesca, M. L. Whiting, J. Litago, S. Khanna, M. Garcia, and S. L. Ustin, 2012. Derivation of phenological metrics by function fitting to time-series of spectral shape indexes AS1 and AS2: Mapping cotton phenological stages using modis time series. Remote Sensing of Environment 12:148–159. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation)	MOD09A1

				in a window size of 5 observations have been filtered and substituted with the average value of the window.	
evi16	REAL	adimensional	Enhanced Vegetation Index. Valid range: -0.2 - 1. Fill value: NA. Spatial resolution: 250 meters. Temporal resolution: 16-day composite.	Data are provided every 16 days at 250-meter spatial resolution. Each value corresponds to the best observation during a 16 day period.	MOD13Q1
evi16_qc	REAL	adimensional	Indicates the level of the product quality that is classified as follows: 0 = good quality, index produced; 2 = other quality, index produced, but check other qc and index produced, but most probably cloudy; 3 = index not produced due to other reasons than cloud, thus fill values were substituted by an interpolated values when the previous and the following values were available index = (indext-1 + indext+1)/2.		MOD13Q1
evi8	REAL	adimensional	Enhance Vegetation Index. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite		MOD09A1
fpar	REAL	adimensional	Proportion of available radiation in the photosynthetically active wavelengths. Valid range: 0 - 1. Fill value: NA. Spatial resolution: 1 km. Temporal resolution: 8-day composite.		MOD15A2
fpar_qc	INTEGER	adimensional	Indicates the level of the product quality that is classified as follows: 0 = Good quality (main algorithm with or without saturation); 2 = Other quality (back-up algorithm or fill values)		MOD15A2
gpp_gCm2d	REAL	gC m-2 d-1	Gross Primary Production. Valid range: -375 – 375. Fill value: NA. Spatial resolution 1 km. Temporal resolution: 8-day accumulation.	This has been calculated by dividing each 8-day values by 8 for the first 45 values/year and by 5 or 6 for the final period.	MOD17A2
gpp_qc	INTEGER	adimensional	Indicates the level of the product quality that is classified as follows: 0 = good quality, the estimates were done using the main algorithm		MOD17A2

			with or without saturation; 2 = other quality, the estimates were done using back-up algorithm.		
lai	REAL	adimensional	Leaf area index. Valid range: 0 - 10. Fill value: NA. Spatial resolution: 1 km. Temporal resolution: 8-day composite.		MOD15A2
lai_qc	INTEGER	adimensional	Indicates the level of the product quality that is classified as follows: 0 = Good quality (main algorithm with or without saturation); 2 = Other quality (back-up algorithm or fill values)		MOD15A2
lstDay_degK	REAL	degree Kelvin	Daytime land surface temperature. Valid range: 150 – 1310.7. Fill value: NA. Spatial resolution: 1 km. Temporal resolution: 8-day composite.	The level-3 MODIS global Land Surface Temperature (LST) and Emissivity 8-day data are composed from the daily 1-kilometer LST product (MOD11A1) the average values of clear-sky LSTs during an 8-day period. In this data set the daytime and nighttime LSTs, are provided. Products are validated to Stage 2, which means that their accuracy has been assessed over a widely distributed set of locations and time periods via several ground-truth and validation efforts.	MOD11A2
lstDay_qc	INTEGER	adimensional	Indicates the level of quality of the product that is classified as follows: 0 = good quality; 2 = other quality; 3 = interpolated, 4 = pixel not produced (NA)		MOD11A2
lstNight_degK	REAL	degree Kelvin	Nighttime land surface temperature. Valid range: 150 – 1310.7. Fill value: NA. Spatial resolution: 1 km. Temporal resolution: 8-day composite.	The level-3 MODIS global Land Surface Temperature (LST) and Emissivity 8-day data are composed from the daily 1-kilometer LST product (MOD11A1) the average values of clear-sky LSTs during an 8-day period. In this data set the daytime and nighttime LSTs, are provided. Products are validated to Stage 2,	MOD11A2

				which means that their accuracy has been assessed over a widely distributed set of locations and time periods via several ground-truth and validation efforts.	
lstNight_qc	INTEGER	adimensional	Indicates the level of quality of the product that is classified as follows: 0 = good quality; 2 = other quality; 3 = interpolated, 4 = pixel not produced (NA)		MOD11A2
ndvi16	REAL	adimensional	Normalized Difference Vegetation Index. Valid range: -0.2 - 1. Fill value: NA. Spatial resolution: 250 meters. Temporal resolution: 16-day composite.	Data are provided every 16 days at 250-meter spatial resolution. Each value corresponds to the best observation during a 16 day period.	MOD13Q1
ndvi16_qc	REAL	adimensional	Indicates the level of the product quality that is classified as follows: 0 = good quality, index produced; 2 = other quality, index produced, but check other qc and index produced, but most probably cloudy; 3 = index not produced due to other reasons than cloud, thus fill values were substituted by an interpolated values when the previous and the following values were available index = (indext-1 + indext+1)/2.		MOD13Q1
ndvi8	REAL	adimensional	Normalized Difference Vegetation Index. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite	Calculated from MOD09A1 after Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment. 8, 127–150. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation) in a window size of 5 observations have been filtered and substituted with the average value of the window.	MOD09A1

ndwi	REAL	adimensional	Normalized Difference Water Index. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite	Calculated from MOD09A1 after Gao, B., 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment. 58, 257–266. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation) in a window size of 5 observations have been filtered and substituted with the average value of the window.	MOD09A1
psNet_gCm2d	REAL	gC m-2 d-1	Net Photosynthesis (GPP – maintenance respiration). Valid range: -375 – 375. Fill value: NA. Spatial resolution 1 km. Temporal resolution: 8-day accumulation.	This has been calculated by dividing each 8-day values by 8 for the first 45 values/year and by 5 or 6 for the final period.	MOD17A2
psNet_qc	INTEGER	adimensional	Indicates the level of the product quality that is classified as follows: 0 = good quality, the estimates were done using the main algorithm with or without saturation; 2 = other quality, the estimates were done using back-up algorithm.		MOD17A2
refl_qc	INTEGER	adimensional	Indicates the level of quality correction of the product (the seven bands) that is classified as follows: 0 = Highest quality, corrected product produced at ideal quality all bands; 2 = corrected product produced at less than ideal quality some or all bands, some bands could not be completely correct; 3 = interpolated, when corrected product has not been produced in one or some bands and they have been interpolated with the value Rt = (Rt-1 + Rt+1)/2; 4 = corrected product not produced, when product has not been completely corrected in one or some bands		MOD09A1

			and could not be interpolated. Data may be wrong or filled with NA; 5 = Missing data, indicates that the product was not available for that date. Some of them correspond to specific continuous periods. All the columns filled with NA.		
reflB01_percent	REAL	percent reflectance	Surface Reflectance Band 1 (620–670 nm) Red. Fill value: NA. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.		MOD09A1
reflB02_percent	REAL	percent reflectance	Surface Reflectance Band 2 (841–876 nm) NIR. Fill value: NA. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.		MOD09A1
reflB03_percent	REAL	percent reflectance	Surface Reflectance Band 3 (459–479 nm) Blue. Fill value: NA. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.		MOD09A1
reflB04_percent	REAL	percent reflectance	Surface Reflectance Band 4 (545–565 nm) Green. Fill value: NA. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.		MOD09A1
reflB05_percent	REAL	percent reflectance	Surface Reflectance Band 5 (1230–1250 nm) SWIR1. Fill value: NA. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.		MOD09A1
reflB06_percent	REAL	percent reflectance	Surface Reflectance Band 6 (1628–1652 nm) SWIR2. Fill value: NA. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.		MOD09A1
reflB07_percent	REAL	percent reflectance	Surface Reflectance Band 7 (2105–2155 nm) SWIR3. Fill value: NA. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.		MOD09A1
sani_rad	REAL	radian	Shortwave Angle Normalized Index. Valid range: -3.14 - 3.14. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite.	Calculated from MOD09A1 after Palacios- Orueta, A., Khanna, S., Litago, J., Whiting, M.L., Ustin, S.L., 2006. Assessment of NDVI	MOD09A1

sasi_rad	REAL	radian	Shortwave Angle Slope Index. Spatial resolution: 0.5 km. Temporal resolution: 8-day composite	substituted with the average value of the window. Calculated from MOD09A1 after Khanna, S., A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. R. no, and J. Litago, 2007. Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment 109:154 – 165. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation) in a window size of 5 observations have been filtered and substituted with the average value of the	MOD09A1
				and NDWI spectral indices using MODIS time series analysis and development of a new spectral index based on MODIS shortwave infrared bands. 1st International Conference on Remote Sensing and Geoinformation Processing in the Assessment and Monitoring of Land Degradation and Desertification, Trier, Germany, pp. 207–209. Note: The observations with values larger than (average + 1standard deviation) or smaller than (average – 1standard deviation) in a window size of 5 observations have been filtered and	

Table SOM11: Description of CLIMATE_LOCAL quality variables from FLUXNET included in the database.

variable	type	units	description
site	TEXT	adimensional	Site name
airpress_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value
p_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value
rad_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value
relhum_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value
tmax_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value
tmean_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value
tmin_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value
wind_qc	REAL	adimensional	fraction between 0-1; indicating percentage of measured and good quality gapfill half-hourly data used to create the daily value

 Table SOM12: Description of ATMOSPHERIC_HEAT_CONDUCTANCE variables included in the database.

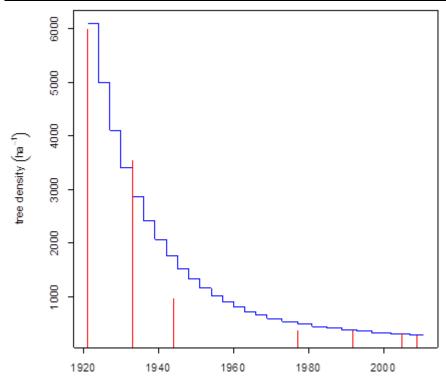
variable	type	units	description	
record_id	INTEGE R	adimensional	Record ID as decimal number	
site_id	INTEGE R	adimensional	Site code as decimal number (01-99)	
date	TEXT	adimensional	Date in format YYYY-MM-DD hh:mm:ss. Derived from TIMESTAMP_START	
year	INTEGE R	YYYY	Year with century as decimal number (0000-9999). Derived from TIMESTAMP_START	
mo	INTEGE R	ММ	Month as decimal number (01-12). Derived from TIMESTAMP_START	
day	INTEGE R	DD	Day of the month as decimal number (01-31). Derived from TIMESTAMP_START	
hCORRJOINTUNC_Wm 2	REAL	W m-2	Joint uncertainty estimation for h as sqrt(hRANDUNC^2 + ((hCORR75 - hCORR25) / 1.349)^2)	
hCORR_Wm2	REAL	W m-2	Sensible heat flux, corrected hFMDS by energy balance closure correction factor	
hFMDS_Wm2	REAL	W m-2	Sensible heat flux, gapfilled using MDS method	
hFMDS_qc	INTEGE R	adimensional	Quality flag for hCORR. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.	
leCORRJOINTUNC_Wm 2	REAL	W m-2	Joint uncertainty estimation for le	
leCORR_Wm2	REAL	W m-2	Latent heat flux, corrected le_FMDS by energy balance closure correction factor	
leFMDS_Wm2	REAL	W m-2	Latent heat flux, gapfilled using MDS method	
leFMDS_qc	INTEGE R	adimensional	Quality flag for leCORR. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.	
timestampEnd	TEXT	YYYYMMDDHHMM	ISO timestamp end of averaging period - short format	

timestampStart	TEXT	YYYYMMDDHHMM	ISO timestamp start of averaging period - short format
----------------	------	--------------	--

 Table SOM13: Description of SOILTS variables included in the database.

variable	type	units	description	
record_id	INTEGER	adimensional	Record ID as decimal number	
site_id	INTEGER	adimensional	Site code as decimal number (01-99)	
date	TEXT	adimensional	Date in format YYYY-MM-DD hh:mm:ss. Derived from TIMESTAMP_START	
year	INTEGER	YYYY	Year with century as decimal number (0000-9999). Derived from TIMESTAMP_START	
mo	INTEGER	MM	Month as decimal number (01-12). Derived from TIMESTAMP_START	
day	INTEGER	DD	Day of the month as decimal number (01-31). Derived from TIMESTAMP_START	
timestampEnd	TEXT	YYYYMMDDHHMM	ISO timestamp end of averaging period - short format	
timestampStart	TEXT	YYYYMMDDHHMM	ISO timestamp start of averaging period - short format	
swcFMDS1_deg C	REAL	percent	Soil water content, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)	
swcFMDS1_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.	
swcFMDS2_deg C	REAL	percent	Soil water content, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)	
swcFMDS2_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.	
swcFMDS3_deg C	REAL	percent	Soil water content, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)	
swcFMDS3_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.	
swcFMDS4_deg C	REAL	percent	Soil water content, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)	
swcFMDS4_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.	
swcFMDS5_deg C	REAL	percent	Soil water content, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)	

swcFMDS5_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
tsFMDS1_degC	REAL	degree Celsius	Soil temperature, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)
tsFMDS1_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
tsFMDS2_degC	REAL	degree Celsius	Soil temperature, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)
tsFMDS2_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
tsFMDS3_degC	REAL	degree Celsius	Soil temperature, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)
tsFMDS3_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
tsFMDS4_degC	REAL	degree Celsius	Soil temperature, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)
tsFMDS4_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
tsFMDS5_degC	REAL	degree Celsius	Soil temperature, gapfilled with MDS (numeric index \"#\" increases with the depth, 1 is shallowest)
tsFMDS5_qc	INTEGER	adimensional	Quality flag for tsFMDS#. 0 = measured; 1 = good quality gapfill; 2 = medium; 3 = poor.
,			


Text SOM 1 Reconstruction of the stand development at Sorø (SOR-DK)

The objective of this section is to describe how we reconstructed the stand development from the available data (Table SOM14), where exact data on thinning were not available. Therefore we used the yield table to fill the missing information assuming that management at the site was following the general recommendations for this site (Møller 1933). Because of considerable differences in tree densities, we needed to scale the management cycle of Møller (1933) to the empirical data from our stand. We used mainly Møller's thinning schedule, i.e. at which age the stand was usually thinned. For this we reconstructed the stand backward, i.e. starting at 288 trees ha⁻¹ at age 90 yr in 2010 until 1921. This tree density (r), i.e. numbers of trees per ha, was increased in years when the schedule (S) is one, i.e. forcing a thinning event. The degree of thinning is described by the two right hand side terms as a root function depending on the tree density itself. This procedure forced the fitting procedure to stay closely to the measured data at the end of the stand development. The fitted values for the empirical parameters a and c were 0.04128 ± 0.01551 (p=0.044755 *) and -1.19594 ± 0.13255 (p=0.000279 ***), respectively. The results are displayed in Figure SOM2. Comparison with data after Møller's yield table shows that the reduction of tree density started earlier at Sorø than in the normal stand development. One probable reason for this is that the beech forest at Sorø was initiated underneath a canopy of a few remaining old beeches. This could have fostered more intensive self-thinning than under normal conditions. On the other hand the assumed initial number of beech trees of 6000 per ha is an overestimation. The tree density values in the first 20 years are very uncertain. On the other hand we are confident that the thinning scheme of Møller has been adopted by the Danish forestry management at least over a large part of the stand lifetime.

Table SOM14: New version on Management Information available

Year/Periods	Tree density [ha ⁻¹]	Source	Method
1921-1930	6000	Møller (1933) + Th Kaspersens notes (assumed)	from yield table + notes from forester
1933	3550	from Munds Målebog	assumed measured in 468 m ²
1944	968	Taksationsbog	From volume and average DBH and height
1977	384	Estimated by Sorø Akademi	from yield table
1992	369	Estimated by Sorø Akademi	from yield table

1995	361	Estimated by Sorø Akademi	from yield table
2005 (03. 2006)	326.3	DTU measurements (P87)	measured
2007	288	DTU measurements (P87)[ANIB1]	measured

Figure SOM2. Reconstruction of the tree density at Sorø, division 335. During the years from 1921 to, at least, 1944 there was a canopy of old trees. The blue step function is the reconstructed series using the thinning intervals as in Møller (1933) and thinning intensities that match the observations best (red bars, see Table SOM14).

Thinning

Unfortunately thinning of the trees is not anymore documented. Anders Grube, the current forest manager, explained the rule for thinning, which will be applied from now (= 2007 +) on, is thinning interval = tree age / 10 in years. This rule of thumb indicates a slight change from Møller's suggestion, i.e. thinning every 5 years at this stand age. Only a very few examples on how much wood volume was actually thinned can be found. In one example, 2007, thinning was performed in division 336 (planted in 1941, i.e. 66 years) the standing stock was 999 m³ and he removed 40 m³, which is 999/4.11 = 243 m³ ha⁻¹ and 40/4.11 = 10 m³ ha⁻¹ for standing stock and harvested wood, respectively. This means fro this particular site a relative extraction of 4 %. This is smaller than Møller's suggestion (ca. 11 %, for this age, Møller (1933)). Measurements of tree growth as part of contemporary forest planning (by Klaus Wunsch (KW-plan, c/o) are only performed on some divisions, none of them in the fetch of the tower. For this reason we decided to use the available data from the forest owner, Sorø Akademi (Table SOM14), and use yield table information and tree rings to reconstruct thinning events and the stand development. We concentrate on division 335 where the inventory, ecological and meteorological measurements have been taken. With this approach it is not possible to reconstruct the exact thinning activity in a certain year, but instead the general forest development is being reconstructed. The thinning events are only accurate within a 3-5 years period.

References

Møller, C. M. (1933). "Bonitetstabeller og bonitetsvise tilvækstoversigter for bog, eg og rødgran i Danmark." <u>Dansk Skovforenings Tidskrift</u> **18**: 457 - 513, 537 - 623.