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Abstract 
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. 

Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and 

reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to 

calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this 5 

database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental 

driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, 

climate, CO2, nitrogen deposition, tree and forest stand-level, as well as remote sensing data for nine contrasting forest stands 

distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction, and 

soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a 10 

wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, 

RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the 

contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a ‘SQLite’ 

relational database or ‘ASCII’ flat file version (at http://doi.org/10.5880/PIK.2020.006/, Reyer et al., 2020). The data policies 

of the individual, contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be 15 

accessed via the ProfoundData R-package (https://CRAN.R-project.org/package=ProfoundData, Silveyra Gonzalez et al., 

2020), which provides basic functions to explore, plot, and extract the data for model set-up, calibration and evaluation. 
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2. Introduction 

Process-based models are key tools for understanding systems and forecasting climate change impacts in ecology and Earth 

system science (Schellnhuber, 1999). Vegetation is a crucial component of the Earth system, and forests are particularly 

relevant through their influence on hydrological and biogeochemical cycles, biodiversity and ecosystem services. Process-

based vegetation models are used as diagnostic tools to disentangle the influence of different environmental and human drivers 5 

on biogeochemical cycling as well as vegetation structure from local, plot-level (Eastaugh et al., 2011; Fontes et al., 2010; 

Pretzsch et al., 2015; Tiktak and van Grinsven, 1995) to global scales (Chang et al., 2017; Ito et al., 2017). At the same time 

these models are also the main tools to project climate change impacts on vegetation under changing environmental conditions, 

again from local (Reyer 2015; Rötzer et al., 2013) to global levels (Zhu et al., 2016). 

With increasing model complexity, the inclusion of more and more processes and models being increasingly used to as tools 10 

for making quantitative projections for policy and management, there is a strong need to install some quality control on their 

performance. A basic requirement would be that models are actually able to match observed data. Moreover, while informal 

methods for calibration and model comparisons were often used in the past, the community has shifted in recent years towards 

more formal statistical methods for such tasks (Dietze et al., 2013; Hartig et al., 2012), which creates a need for systematic 

benchmarking data. For all these tasks, the availability of a wide range of data types crossing different spatial-temporal scales 15 

is generally viewed as beneficial (Grimm and Railsback, 2012). 

The process of formal calibration, comparison and evaluation of complex vegetation models is often hindered by the 

availability and the harmonization of suitable data. The data necessary to drive a vegetation model is often complex, and needs 

to be compiled from different data sources (e.g. Bagnara et al., 2019). In particular for model comparisons, besides data for 

the evaluation of individual models, common input and driving data for process-based vegetation models are needed to ensure 20 

fair comparisons between the participating models. Although model comparisons have a long tradition in vegetation modeling 

(Cramer et al., 1999, 2001; Bugmann et al., 1996, Morales et al., 2005), they have often been limited by overall data availability 

and comparability. Common databases that are ready-to-use for thorough model evaluation would allow the community to 

gain a better appreciation of model differences, explore structural uncertainties, and provide a basis for more systematic 

ensemble projections of climate impacts. 25 

Recently, several initiatives have started compiling model evaluation, input or driving data for a wide range of applications of 

process-based vegetation models (Huntzinger et al., 2013; Kelley et al., 2013; Warszawski et al., 2014; Sitch et al., 2015; 

Collier et al., 2018). Although these initiatives have leveraged important scientific progress, many of them have focussed on 

the global scale, mostly providing evaluation, input and driving data from global products. Such global products generally lack 

the breadth and depth of process-level detail required to rigorously assess model performance at smaller scales as for example 30 

they lack long-term and detailed measurements of forest stand structure. The database for the project “Towards robust 

PROjections of european FOrests UNDer climate change” (hereafter PROFOUND DB) described here, aims to bring together 
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data from a wide range of data sources to evaluate vegetation models and simulate climate impacts at the forest stand scale. It 

has been designed to fulfil two objectives: 

• To allow for a thorough evaluation of complex, process-based vegetation models using multiple data streams covering a 

range of processes at different temporal scales 

• To allow for climate impact assessments by providing the latest climate scenario data. 5 

The PROFOUND DB only provides data for individual forest stands but contains a number of elements that are designed to 

foster comparison of both global/regional models and local models. The climate data, for example, are provided locally (or 

bias-corrected using local data) in the same way that stand-scale vegetation models would need them and also extracted from 

global gridded datasets that global vegetation models would use. The PROFOUND DB is also designed to allow for 

disentangling of uncertainties that affect quantitative model predictions in ecology (cf. Lindner et al., 2014; Dietze, 2017 for 10 

an explanation of different uncertainty types), for example by facilitating standardized evaluations of structural or process 

uncertainties via model comparisons. Model input and driver uncertainty are addressed through a wide range of climate data 

from different sources, covering the full range of Representative Concentration Pathways (RCPs). Collalti et al. (2018, 2019) 

for example, have used the PROFOUND DB to study the effects of thinning on carbon use efficiency across a combination of 

all four RCPs and five Global Climate Models. Finally, parametric uncertainty can be assessed through the wide range of data 15 

that can be used for inverse calibration. In the following we describe the main components of the PROFOUND DB (Reyer et 

al., 2020) and an R-Package (Silveyra Gonzalez et al., 2020) developed to explore the database and allow rapid and easy access 

for modellers. 
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3. The PROFOUND database 

3.1. Forest Site Selection and Concept 

The forest sites featured in the PROFOUND DB were selected to provide a wide array of data sources across a European 

gradient. We focussed in particular on providing long time series of tree- and stand-level growth and yield as well as carbon 

cycle data available from eddy-flux measurements because these variables are most commonly in calibrating and evaluating 5 

process-based vegetation models. The selected sites spread along a wide climatic gradient across Europe (Figure 1, Table 3) 

and cover some of the most common European forest types, as well as the main central European forest management history 

of favouring mono-specific, even-aged forests or mixtures of two tree species.  

We compiled the data from existing data sources and collected the definitions of variables, their units and information about 

the main measurement methods from the site principal investigators (PIs) and from official descriptions of the data to 10 

harmonize the variables as much as possible. The overall guiding principle for the compilation of the data was to provide data 

that can be easily used by modellers for setting up and evaluating their models. In order to allow for data uncertainty to be 

reflected in model calibration studies, we also included uncertainty estimates for the measured data, such as those available 

for carbon flux measurements (cf. Sect.3.2.9), wherever possible. 

 15 
Figure 1: Location of forest sites and main tree species. Background shows the European forest cover after Brus et al. (2012). 
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3.2. Data sources 

The PROFOUND DB provides information on the site, soil, and forest stand as well as data for climate, atmospheric CO2 

concentration, nitrogen deposition, carbon fluxes, atmospheric heat conduction, and remote sensing at a range of different 

temporal resolutions (i.e., from 30 minutes to decadal measurements). Table 1 provides an overview of the different data types 

and their temporal resolution available in the PROFOUND DB. All variables available are listed in the SOM tables 1-13. In 5 

the following we describe how the individual subdatasets of the PROFOUND DB have been brought together and describe the 

key variables and characteristics of each dataset. 
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Table 1: Overview of the data available in the PROFOUND DB. The years indicate the first and the last year for which data is 
available except for once-off measurements. The superscript letters indicate the temporal resolution of the data: O = one-off 
measurement(s), M = 30-min measurements; D = daily measurements; C = 8-day or 16-day composite, A = annual measurements. 
 Bily Kriz Collelongo Hyytiälä KROOF Le Bray Peitz Solling Sorø 

Soil 2011O 1995/2008O 1995/1996O 2003/2004O 
1995/2003/ 
2004/2005O 2011O 2010O 

1997/2004/ 
2006O 

Local climate 2000-2008D 1996-2014D 1996-2014D 
1998- 
2010D 1996-2008D 1901-2010D 1960-2013D 

1996-
2012D 

Reanalysis 
climate 1901-2012D 1901-2012D 1901-2012D 1901-2012D 1901-2012D 1901-2012D 1901-2012D 

1901-
2012D 

Climate 
scenarios 
(ISIMIP2b) 1661-2299D 1661-2299D 1661-2299D 1661-2299D 1661-2299D 1661-2299D 1661-2299D 

1661-
2299D 

Climate 
scenarios 
(ISIMIPFT) 1950-2099D 1950-2099D 1950-2099D 1950-2099D 1950-2099D 1950-2099D 1950-2099D 

1950-
2099D 

Atmospheric 
CO2 1765-2500A 1765-2500A 1765-2500A 1765-2500A 1765-2500A 1765-2500A 1765-2500A 

1765-
2500A 

Nitrogen 
deposition 
(ISIMIP2b) 1861-2100A 1861-2100A 1861-2100A 1861-2100A 1861-2100A 1861-2100A 1861-2100A 

1861-
2100A 

Nitrogen 
deposition 
(EMEP) 1980-2014A 1980-2014A 1980-2014A 1980-2014A 1980-2014A 1980-2014A 1980-2014A 

1980-
2014A 

Forest tree 
data 1997-2015A 1992-2012A 2001-2008A 1997-2010A - 1948-2011A 1967-2014A 

1994-
2017A 

Forest stand 
data 1997-2015A 1992-2012A 1995-2011A 1997-2010A 1986-2009A 1937-2011A 1967-2014A 

1994-
2017A 

MODIS 2000-2014C 2000-2014C 2000-2014C 2000-2014C 2000-2014C 2000-2014C 2000-2014C 2000-2014C 

Flux 2000-2008M 1996-2014M 
1996-
2014M - 

1996-
2008M - - 

1996-
2012M 

Meteorologic
al 2000-2008M 1996-2014M 

1996-
2014M - 

1996-
2008M - - 

1996-
2012M 

Atmospheric 
heat 
conduction 2000-2008M 1996-2014M 

1996-
2014M - 

1996-
2008M - - 

1996-
2012M 

Soil flux 
series 2000-2008M 1996-2014M 

1996-
2014M - 

1996-
2008M - - 

1996-
2012M 
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3.2.1. Site information 

For each forest site, the PROFOUND DB contains information on general site characteristics such as coordinates, elevation 

and forest type (Table 2). There is also information on the potential natural vegetation and main tree species belonging to the 

regional flora (not shown). 

Table 2: Overview of the main site characteristics provided for each forest site in the PROFOUND DB.  5 
Name 

 

Lat 

 

Lon 

 

Country 

 

Aspect 

(°) 

Elevation  

(m.a.s.l.) 

Slope 

(%) 

FAO Soil type* 

 

Main tree species 

 

Bily Kriz 49.30 18.32 CZ 180 875 12.5 Haplic Podzol Picea abies 

Collelongo 41.85 13.59 IT 252 1560 10 Dystric Luvisol Fagus sylvatica 

Hyytiälä 61.85 24.29 FI 180 185 2 Haplic Podzol 

Pinus sylvestris, Picea 

abies 

KROOF 48.25 11.40 DE 1.8 502 2.1 Luvisol 

Picea abies, Fagus 

sylvatica 

Le Bray 44.72 -0.77 FR - 61 0 Arenosol Pinus pinaster 

Peitz 51.92 14.35 DE - 50 0 Dystric Cambisol Pinus sylvestris 

Solling (beech) 51.77 9.57 DE 225 504 1 Haplic Cambisol Fagus sylvatica 

Solling (spruce) 51.76 9.58 DE 90 508 1 

Haplic Cambisol 

(dystric, densic) Picea abies 

Sorø 55.49 11.64 DK - 40 0 Alfisols/Molisols** Fagus sylvatica 

*according to ISSS-ISRIC-FAO (1998). 

**depending on base saturation under or over 50% with a 10-40 cm deep organic layer (cf. Pilegaard et al. 2003) 

3.2.2. Soil data 

The description of the soil profiles contains information about physical and chemical properties of each soil horizon including 

the organic layer. Unfortunately the soil data are very heterogeneous for the sites and considerable amounts of data are missing. 10 

In order not to lose the data that is available for only a subset of sites, we did not harmonize the individual variables but for 

each site provide the soil data in a consistent format. Despite these limitations, for most sites important soil data such as the 
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depth of horizons, soil texture, bulk density, field capacity, wilting point, carbon and nitrogen content and pH of the soil 

solution are available (cf. SOM Table 2). 

3.2.3. Local climate 

For every site we compiled the locally observed daily meteorological data, either from measurement towers or from nearby 

meteorological stations. These time series cover the main climatic variables required by vegetation models and different time 5 

periods for each site (Table 3). They represent the best possible climate information for each site and are most suitable for 

model simulations comparing simulation output to observations. 

3.2.4. Reanalysis products 

In order to cover longer historical time periods and to assess uncertainties due to the choice of different climate inputs, the 

PROFOUND DB also provides long historical daily climate time series for each of the sites extracted from four different 10 

global reanalysis/observational products: 

● Princeton's Global Meteorological Forcing Dataset (PGMFD v.2, hereafter Princeton) from 1901-2012 by 
Sheffield et al. (2006) 

● Global Soil Wetness Project Phase 3 (GSWP3) from 1901-2010 by Kim (Personal Communication, 
http://hydro.iis.u-tokyo.ac.jp/GSWP3/) 15 

● Water and Global Change programme (WATCH) from 1901-2001 by Weedon et al. (2011) 
● WATCH-Forcing-Data-ERA-Interim (WFDEI) from 1901-2010 by Weedon et al. (2014) 

Climate variables for the forest stands were extracted from the 0.5° x 0.5° grid cell of the global reanalysis/observational 

product in which the forest stand is located. The data is then kept at the original 0.5° x 0.5° resolution to allow for comparing 

the effects of choosing climate inputs for a vegetation model from a global reanalysis product as opposed to the local data 20 

presented in Sect. 3.2.3. The difference between the local data and the reanalysis data is most obvious for those sites located 

in complex, hilly terrain such as Collelongo or KROOF (Table 2). In these hilly locations the grid box average heights of the 

reanalysis products differ substantially from the heights of the site measurements. 
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Table 3. Averages of the daily maximum temperature (Tmax), daily minimum temperature (Tmin), daily mean temperature 
(Tmean), annual precipitation sum (P), daily mean relative humidity (RH), daily mean air pressure (AP), annual sum of global 
radiation (R, direct + diffuse shortwave radiation), and daily mean wind speed (W) for each of the sites in the PROFOUND DB from 
5 different sources: a locally observed climate and four different global reanalysis/observational products (GSWP3, Princeton, 
WATCH, WFDEI). The column “Year” indicates the years for which the mean climates have been calculated for the different 5 
sources. Please note that the two Solling sites have the same climate. 
Site 

 

Source 

 

Years 

 

Tmax 

[°C] 

Tmean 

[°C] 

Tmin 

[°C] 

P 

[mm] 

RH  

[%] 

AP 

[hPa] 

R 

[J cm-2] 

W 

[m s-1] 

Bily Kriz 

 

local 2000-2008 11.50 7.36 3.80 1434.56 81.99 913.19 378774.86 2.19 

GSWP3 2000-2008 12.65 7.66 3.03 1034.22 76.77 957.64 395464.73 3.71 

Princeton 2000-2008 12.47 7.67 2.85 914.89 78.77 960.22 402658.93 3.12 

WATCH 2000-2001 12.72 8.25 3.43 1124.52 75.08 948.34 322865.69 2.05 

WFDEI 2000-2008 12.43 7.66 2.81 1034.40 76.22 950.08 438978.13 3.25 

Collelongo 

local 1996-2014 11.46 7.24 3.46 1178.62 74.03 849.59 541888.38 1.73 

GSWP3 1996-2010 20.64 15.12 10.46 977.40 68.42 903.78 530247.74 3.83 

Princeton 1996-2012 20.28 15.17 10.09 757.99 73.76 944.66 539045.09 4.55 

WATCH 1996-2001 20.57 15.21 9.99 962.33 69.66 897.07 465115.41 2.11 

WFDEI 1996-2010 20.40 15.12 10.22 972.10 75.02 903.20 549826.57 2.40 

Hyytiälä 

local 1996-2014 7.40 4.36 1.13 604.01 77.95 991.08 309628.86 3.42 

GSWP3 1996-2010 8.03 4.00 -0.20 689.08 83.96 998.01 350511.52 3.42 

Princeton 1996-2012 7.88 4.06 -0.37 574.87 83.41 1007.97 330041.85 3.52 

WATCH 1996-2001 7.93 3.88 -0.17 690.02 81.29 993.85 280668.38 2.44 

WFDEI 1996-2010 7.97 4.00 -0.26 668.75 79.23 993.60 328551.11 2.12 

KROOF 

local 1998-2010 12.99 8.15 3.91 849.46 80.73 NA 391563.62 1.08 

GSWP3 1998-2010 14.43 9.65 5.23 1014.37 80.55 954.55 423260.65 3.04 

Princeton 1998-2010 14.15 9.66 4.95 772.08 82.05 935.11 433277.37 3.18 

WATCH 1998-2001 14.48 9.83 5.39 1061.27 76.35 959.58 337605.56 2.78 

WFDEI 1998-2010 14.41 9.65 5.22 976.78 76.67 954.13 431629.74 2.58 

Le Bray 

local 1996-2008 17.76 13.37 9.39 920.18 76.11 1005.81 472940.36 3.02 

GSWP3 1996-2008 19.06 14.23 9.63 918.76 73.90 1014.64 490253.28 4.90 

Princeton 1996-2008 18.62 14.24 9.19 951.01 80.41 989.70 484739.73 4.01 
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Site 

 

Source 

 

Years 

 

Tmax 

[°C] 

Tmean 

[°C] 

Tmin 

[°C] 

P 

[mm] 

RH  

[%] 

AP 

[hPa] 

R 

[J cm-2] 

W 

[m s-1] 

WATCH 1996-2001 18.60 13.98 9.34 1095.65 74.66 1021.76 398738.50 4.28 

WFDEI 1996-2008 19.20 14.23 9.78 988.57 74.37 1011.63 512514.20 2.77 

Peitz 

local 1901-2010 13.50 9.02 4.93 533.10 76.37 1008.29 369794.74 2.35 

GSWP3 1901-2010 13.48 9.22 5.34 654.19 75.73 1007.39 365709.48 3.74 

Princeton 1901-2010 13.20 9.23 5.07 557.89 85.43 999.16 374370.83 3.51 

WATCH 1901-2001 13.36 9.06 5.20 601.44 76.93 1007.07 309797.89 2.79 

WFDEI 1901-2010 13.47 9.18 5.23 607.58 76.54 1006.45 335821.69 3.02 

Solling 

local 1960-2013 10.54 6.75 3.39 1113.06 85.56 NA 285026.90 1.01 

GSWP3 1960-2010 11.99 8.15 4.67 933.37 79.82 988.95 355905.60 3.95 

Princeton 1960-2012 11.76 8.20 4.42 734.76 85.55 995.05 364950.89 3.75 

WATCH 1960-2001 11.65 7.79 4.38 962.00 79.38 985.97 300414.77 2.74 

WFDEI 1960-2010 11.89 8.14 4.58 963.98 79.21 985.95 353096.37 3.36 

Sorø 

local 1996-2012 10.66 8.26 5.91 760.52 82.95 1007.71 360687.83 5.13 

GSWP3 1996-2010 11.56 9.00 6.58 773.57 78.73 1012.59 376613.02 5.86 

Princeton 1996-2012 11.45 9.03 6.44 584.58 81.19 1005.25 363852.90 4.98 

WATCH 1996-2001 11.08 8.46 6.26 560.00 82.54 1009.39 343133.71 5.66 

WFDEI 1996-2010 11.52 9.01 6.55 640.02 83.06 1009.50 408098.02 4.81 
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3.2.5. Climate scenarios 

The PROFOUND DB provides climate scenarios based on simulations performed for CMIP5 (https://cmip.llnl.gov/cmip5/) 

that were bias-corrected and interpolated to a common grid resolution of 0.5° x 0.5° according to Hempel et al. (2013). The 

climate variables for each site available were extracted from the grid cell of the downscaled climate forcing dataset in which 

the forest plot is located. The data can be used in very different ways by the vegetation modelling community: 5 

• The ‘ISIMIP Fast Track’ scenarios (ISIMIPFT) consist of daily climate data available from five different Global 

Climate Models (GCMs) (HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M and NorESM1-

M.) for all four RCPs (Warszawski et al. 2014). The historical period lasts from 1950-2005 and then splits up into the 

four RCPs from 2006-2099 for each model. The RCPs cover future warming ranges of about 0-9°C in the late 21st 

century compared to the 1980-2005 average (Figure 2). These ISIMIPFT data are best suited for scenario studies that 10 

require a large ensemble of GCMs and RCPs. 

• The ‘ISIMIP2b’ scenarios (ISIMIP2b) consist of daily climate data available from four different GCMs (IPSL-

CM5A-LR, GFDL-ESM2M, MIROC5, HadGEM2-ES) for the RCP2.6 and RCP6.0 (Frieler et al. 2017, Lange 2018) 

as well as RCP4.5 and RCP8.5. The historical period lasts from 1861-2005 and then splits up into the four RCPs for 

each GCM from 2006-2099. The RCPs cover future warming ranges of about 1-9°C in the late 21st century compared 15 

to the 1980-2005 average (Figure SOM 1). For RCP2.6, RCP4.5 and RCP8.5 from IPSL-CM5A-LR, HadGEM2-ES 

and MIROC5, additional data are also available for the period 2100-2299. These long-term climatic pathways stabilise 

at around 1-2°C in the end of the 23rd century compared to 1980-2005 for RCP2.6, around 3-5°C for RCP4.5 and 

rise up to 16°C for RCP8.5. For all four GCMs, there are also time series of pre-industrial climatic conditions available 

from 1661-2299 (or 1661-2099 for GFDL-ESM2M), the so-called pre-industrial control run. The pre-industrial 20 

climates from each GCM for the time period 1661-1860 can be combined with the historical climates from 1861-

2005 and any future time periods from the corresponding GCM to create a long-term time series of climate data from 

1661-2299 (or 2099 depending on the GCM/RCP combinations) without almost any resampling (Frieler et al. 2017). 

The ISIMIP2b data are best suited to test the implications of long-term stabilization pathways and different degrees 

of warming relative to pre-industrial conditions in vegetation models. 25 

• The ‘ISIMIP2b locally bias-corrected’ scenarios (ISIMIP2bLBC) have the same structure as the ISIMIP2b data but 

have been bias-corrected using an improvement of the method of Hempel et al. (2013) as described in Frieler et al. 

(2017) and Lange (2017) and the local observed climatologies presented in Sect. 3.2.3. The ISIMIP2bLBC data are 

hence best suited for scenario studies that require climatic data to be as consistent as possible with the observational 

data (Figure 3). 30 
 

 

 

https://cmip.llnl.gov/cmip5/9


15 
 

 
Figure 2. Change in mean annual temperature (T mean), annual precipitation sum (P) and annual sum of global radiation (R) over 

the time period 1950-2099 relative to the 1980-2005 average for the ISIMIPFT scenarios. Please note that the two Solling sites have 

the same climate. 
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Figure 3. Change in mean annual temperature (T mean), annual precipitation sum (P) and annual sum of global radiation (R) over 
the time period 1661-2299 relative to the 1980-2005 average for the ISIMIP2b locally bias-corrected (ISIMIP2bLBC) scenarios. 5 
Please note that the two Solling sites have the same climate. 
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3.2.6. Atmospheric CO2 concentrations 

Time series of atmospheric CO2 concentrations are provided as annual, global data, hence as one time series for all sites of the 

PROFOUND DB assuming a well-mixed atmosphere. The historical time series of atmospheric CO2 are based on global 

atmospheric CO2 concentrations from Meinshausen et al. (2011) from 1765-2005 and have been extended for the period 2006-

2015 with data from Dlugokencky & Tan (2014). The future annual atmospheric CO2 concentrations follow the four different 5 

Representative Concentration Pathways (RCPs, RCP2.6, RCP4.5, RCP6.0 and RCP8.5) from 2016-2500 from Meinshausen 

et al. (2011). Figure 4 shows the historical increase in CO2 concentrations since 1765 and the projected future emissions 

according to the different RCPs. From RCP2.6 till RCP8.5 the total level of CO2 increases strongly and also the date of 

stabilizing emissions is reached much later in RCP8.5. RCP2.6 is the only RCP that projects declining CO2 levels in the long 

run. 10 

 
Figure 4: Global atmospheric CO2 concentrations provided for all sites in the PROFOUND DB. The historical time period extends 
from 1765-2015 and the scenarios from 2005-2500 for each RCP. 

3.2.7. Nitrogen deposition 

The nitrogen deposition data, reported as total deposition of reduced and oxidized wet and dry nitrogen deposition, 15 

respectively, have been extracted for each site of the PROFOUND DB from two different datasets which serve different 

purposes. 

• EMEP data: For detailed model evaluation studies that require the best possible estimates of local nitrogen deposition, 

we extracted data from the ‘Co-operative programme for monitoring and evaluation of long-range transmission of air 
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pollutants in Europe’ (EMEP) for the time period 1980-2014 (EMEP/CEIP 2014). Sea-salt corrected data are available 

from 1980-1995 in five years steps and from 1986-2014 at annual time step and are derived by atmospheric transport 

modelling (Simpson et al., 2012). 

• ISIMIP data: For model simulation studies, we also provide nitrogen deposition estimates based on atmospheric 

chemistry modelling for a historical time period (1861-2005) and four future scenarios, where nitrogen deposition 5 

follow the four RCPs respectively. The data are further described in Lamarque et al. (2013a, 2013b), sea-salt corrected 

and consistent with the global nitrogen deposition data provided within ISIMIP (Frieler et al. 2017). The data are 

taken from the global dataset without further corrections and hence are not intended to represent realistic, local 

forecasts but rather rough estimates of future nitrogen projections. 

For the 1980-2014 time period, the ISIMIP data are typically lower and less dynamic than the EMEP estimates (Figure 5). 10 

However, while they do not seem suitable for historical model evaluations, they cover a much longer time period and are 

clearly interesting for scenario studies because they feature different nitrogen deposition pathways consistent with RCP 

climates and CO2 pathways. It is also important to note that measured throughfall of NO3 and NH4 is on average lower than 

modelled total deposition, due to canopy uptake (Marchetto et al in prep.). Moreover, for the two Solling sites the data 

presented here are identical while in reality total N deposition rates in the spruce stand should be higher because of higher dry 15 

depositions. Actually, the ratio between Solling spruce and Solling beech is 1.4 for NH4 throughfall fluxes, 1.6 for NO3 

throughfall fluxes, 1.4 for NH4 total deposition, and 1.4 for NO3 total deposition, both using a canopy budget model (Ulrich 

1994) for the period 1980-2014. However, these ratios are not constant and are showing an increasing trend over time. 

 



19 
 

Figure 5: Total deposition of reduced (NHx) and oxidized (NOy) nitrogen (N) at each of the sites of the PROFOUND DB. The 

historical period for the EMEP data extends from 1980-2014 and for the historical ISIMIP data from 1861-2005. The future 

scenarios are available from 2006-2100 and follow the RCP2.6 and RCP6.0 scenarios. Please note that the two Solling sites have the 

same N depositions (see text for further explanations). 5 
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3.2.8. Forest inventory data 

For each site, the PROFOUND DB provides information about the forest stand at tree and stand level. The data are available 

for different time periods and have different measurement intervals, but generally cover mostly the second half of the 20th 

century and the first decade of the 21st century (Table 1). The data also cover a wide array of height-age and DBH-age 

relationships (Figure 6-7). For 7 out of 9 sites individual tree diameter at breast height (DBH) and height measurements are 5 

available. The time series length ranges between 15 and 65 years within the time period 1948-2015. For the Sorø site, the DBH 

and heights have been reconstructed from tree-ring data (Babst et al., 2014) and the full stand reconstruction is available from 

1996-2010 at annual resolution (cf Text SOM 1). Individual tree data allow analysis and comparison of model simulations 

with data on single tree growth. From the tree data, we calculated a range of widely used stand variables (cf SOM8). Additional 

stand-level data are available for some of the sites, such as leaf litter production or leaf area index, and have been included (cf 10 

SOM8). 

 
Figure 6: Time series of tree diameter at breast height (DBH) versus age of the forest stands in the PROFOUND DB. The basal area-
weighted mean DBH is shown for all stands with the exception of Le Bray for which the arithmetic mean DBH is shown (marked by 
*). For Sorø, the DBHs have been reconstructed (see text in Sect. 4.9 and Text SOM 1). 15 
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Figure 7: Time series of tree height versus age of the forest stands in the PROFOUND DB. The basal area-weighted mean height is 
shown for all stands with the exception of Le Bray for which the arithmetic mean height is shown (marked by *). For Sorø, the 
heights have been reconstructed (see text in Sect. 4.9 and Text SOM 1). 

  5 
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Table 4. Summary of the main stand variables for the forest stands in the PROFOUND DB. The first number in each cell indicates 
the value at the first measurement and the second number at the last measurement. The basal area-weighted mean height and DBH 
are shown for all stands with the exception of Le Bray for which the arithmetic mean height and DBH are shown (marked by *). 
The numbers in brackets indicate different data availability for height than for the other variables. 
Name 

 

Main species 

 

# Obs 

 

Year 

 

DBH  

[cm] 

Height 

[m] 

BA  

[m2*ha-1] 

Age 

[year] 

Stem density 

[ha-1] 

Bily Kriz Picea abies 19 1997-2015 8.16-20.47 6.26-15.26 10.33-36.96 16-34 2408-1252 

Collelongo Fagus sylvatica 5 1992-2012 27.95-33.65 22.03-24.08 32.25-43.76 100-120 905-740 

Hyytiälä Picea abies 17 1995-2011 13.74-19.32 11.24-16.7 2.96-3.8 34-50 965-770 

Hyytiälä Pinus sylvestris 17 1995-2011 15.89-20.58 12.61-18.62 12.64-18.33 34-50 870-684 

KROOF Picea abies 

8 

(1) 

1997–2010 

(1997) 

30.96-37.49 

 (25.73) 

30.26-39.66 

 

47-60 

 

512-434 

 

KROOF Fagus sylvatica 

8 

(1) 

1997–2010 

(1997) 

26.5-31.64 

 (24.07) 

12.44-13.2 

 

54-67 

 

324-220 

 

Le Bray* Pinus pinaster 

24 

(18) 

1986-2009 

(1991-2009) 

18.76-35.01 

 (14.61- 22.44) 

23.3-19.19 

 

16-39 

 

819-195 

 

Peitz Pinus sylvestris 13 1948-2011 8.96-23.54 6.75-17.86 20.66-36.36 48-111 4150-886 

Solling (beech) Fagus sylvatica 16 1967-2014 40.19-53.4 25.45-30.78 26.99-25.52 120-168 245-130 

Solling 

(spruce) Picea abies 17 1967-2014 32.25-48.74 24.51-33.36 44-49.46 85-133 595-290 

Sorø Fagus sylvatica 24 1994-2017 28.99-48.25 24.23-31.15 18.50-29.76 62-87 407-199 

3.2.9. Flux data 5 

The carbon fluxes, i.e. net ecosystem exchange (NEE), ecosystem respiration (RECO) and gross primary production (GPP) 

are taken from the Tier One Fluxnet2015 dataset (http://fluxnet.fluxdata.org/). We provide estimates of fluxes calculated using 

different estimates for gap-filled/partitioned fluxes to give a rough estimate of the uncertainty added to the long-term budgets 

in the process. NEE data are filtered using two different methods to calculate UStar thresholds (Barr et al. 2013, and a modified 

version of Papale et al. 2006, see also Fluxnet2015 (2017)). Daytime (i.e. Lasslop et al. 2012) and nighttime (i.e. Reichstein et 10 

al. 2005) refer to whether ecosystem respiration parameters were estimated from only nighttime fluxes or using also daytime 
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data (zero intercept of GPP light response curve). In many cases the number of accepted nighttime fluxes is low and the 

temperature range is narrow, which leads to high uncertainty in the estimated respiration. This can be improved by using also 

daytime fluxes. On the other hand in the daytime method the uncertainties of photosynthetic light, temperature, and possible 

VPD responses may be attributed to respiration parameters. Further information about the daytime and nighttime methods is 

available in Lasslop et al. (2010) and Reichstein et al. (2005) and also Fluxnet2015 (2017). We also extracted different 5 

uncertainty estimates for each variable. Additionally, we provide time series of the sensible and latent heat flux, soil (soil water 

and soil temperature) and meteorological variables at a 30-min time resolution from the Fluxnet2015 database including 

measurement uncertainty estimates. Table 5 provides an overview of the main carbon fluxes at each of the sites featured in the 

PROFOUND DB. Table SOM9 and Table SOM11-13 provides the full list of available variables. 

Table 5: Summary of the observed carbon fluxes at the sites in the PROFOUND DB. Shown is the range (min & max) 10 
and the average (in brackets) of the annual sums in the observational period. All data are estimates based on the 
CUTRef method with daytime data included for RECO and GPP. GPP is expressed with negative values because it is 
considered a downward flux from the atmosphere. Likewise, negative NEE values indicate a carbon sink and positive 
a carbon source.  
Name 
 

Years 
 

NEE  
[t C ha-1] 

RECO  
[t C ha-1] 

GPP 
[t C ha-1] 

Bily Kriz 2000 - 2008 -9.117 - -3.277 (-6.52) 5.478 – 10.295 (7.918) -20.477 - -11.071 (-16.577) 

Collelongo 1996 - 2014 -25.129 - -3.36 (-8.152) 4.495 – 15.936 (8.079) -26.675 - -5.259 (-16.546) 

Hyytiälä 1996 - 2014 -8.167 - -1.22 (-2.49) 1.668 – 11.511 (8.943) -14.984 - -10.0 (-11.709)* 

Le Bray 1996 - 2008 -7.396 – 0.104 (-3.915) 8.236 – 21.609 (14.569) -23.651 - -12.648 (-19.455)* 

Sorø 1996 - 2012 -8.245 – 0.892 (-1.92) 15.147 – 22.345 (17.335) -23.832 - -15.873 (-19.163) 
*year 2007 is without data for Hyytiälä and year 2002 for Le Bray 15 

3.2.10. Remote sensing data 

The PROFOUND DB includes remote sensing information at different spatial scales and temporal frequencies, specific for 

each product. We included five MODIS products (ORNL DAAC 2008a-e) and several vegetation indices calculated from the 

surface reflectance data for each of the forest sites. The original MODIS scenes are available at the NASA Land Processes 

Distributed Archive Center (LP DAAC) (https://lpdaac.usgs.gov/). The specific time series included in the PROFOUND DB 20 

were downloaded from the Land Product Subset Web Service of the Oak Ridge National Laboratory Distributed Active 

Archive Center (ORNL DAAC) (https://daac.ornl.gov/MODIS/). The ORNL DAAC MODIS subsetting Web service is 

implemented to allow users access to massive amounts of remote sensing data (Santhana-Vannan et al., 2011). In addition, a 

second set of vegetation indexes were calculated from the reflectance values. A summary of this information is shown in table 

6. The full list of variables and how they were aggregated is provided in table SOM10. 25 
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Table 6. Summary of the remote sensing data included in the PROFOUND DB. VIS, NIR and SWIR are the visible, 
near infrared and shortwave infrared regions of the electromagnetic spectrum.  NDVI: Normalized Difference 
Vegetation Index, EVI: Enhanced Vegetation Index; FPAR: Fraction of Photosynthetically Absorbed Radiation; LAI: 
Leaf Area Index; GPP: Gross Primary productivity; NDWI: Normalized Difference Water Index; AR: Angle at Red; 
ANIR; Angle at NIR; AS1: Angle at Shortwave Infrared 1; AS2: Angle at Shortwave Infrared 2; SANI: Shortwave 5 
Angle Slope Index; SASI: Shortwave Angle Slope Index 

Variable MODIS Source Spatial 
Resolution 
[km] 

Temporal 
Frequency  
[d] 

Time period 

Reflectance (%) at 7 spectral bands 
in the optical domain 
VIS-NIR-SWIR 

MOD09A1 0.5 8 2000-2015 

Land surface temperature (night & 
day, Kelvin) 

MOD11A2 
  

1 8 2000-2015 

NDVI, EVI MOD13Q1 0.25 16 2000-2015 

FPAR, LAI 
(Dimensionless -1,1) 

MOD15A2 1 8 2000-2015 

GPP & 
Net Photosynthesis (gC m-2 day-1) 

MOD17A2 1 8 2000-2014 

EVI, NDVI, NDWI 
(Dimensionless -1,1) 

Ratio Indexes 
calculated from 
MOD09A1 

0.5 8 2000-2015 

AR, ANIR, AS1, AS2 
(radians, 0-3.14) 

Angular indexes 
calculated from MOD09A1 

0.5 8 2000-2015 
  

SANI (-3.14 – 3.14) 
SASI  (-314-314)) 

Angular normalized indexes 
calculated from MOD09A1 

0.5 8 2000-2015 
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The main difference among the forest sites is the data quality, which is highly dependent on the presence of clouds. When 

possible, low quality observations have been substituted by interpolated values, otherwise the cell was left blank. In any case 

the alteration of the original data was minimal. It is also important to note that the size of the pixel is large compared to the 

plot size of the forest stands, which means the pixel data also contain other vegetation than the ones present at the sites. 

Three general types of data are included: (1) geophysical variables as measured from the MODIS sensor, i.e. reflectance and 5 

temperature, (2) spectral indexes derived directly from reflectance values at different wavelengths, and (3) vegetation 

properties (i.e. FPAR, LAI, GPP, and Net photosynthesis) as estimated from physical variables through a range of models. 

Although the MODIS sensor acquires daily information, the PROFOUND DB includes only composite data, that is, for each 

pixel the best value during a period of time (8 or 16 days) is selected as being representative of that specific period. Spatial 

resolution is also specific for each product and is dependent on the physical and technical limitations in the acquisition process 10 

of the variables involved in the product computation. 

The NDVI and EVI at 250 m spatial resolution coming from the MOD13Q1 product were calculated from the visible and near 

infrared spectral regions. A temporal frequency (16-day composite) was chosen to minimize the effect of clouds. The EVI 

Index was developed to correct for atmospheric and background effects so that it shows a larger dynamic range in areas with 

high vegetation density (Didan et al., 2015).  15 

The spectral profiles in the whole optical domain (i.e. 459-2155 nm) for each 8-day composite are represented by the surface 

spectral reflectance at seven wavelengths coming from the MOD09A1 product at 500 m spatial resolution. The criteria for the 

compositing process are low cloudiness, cloud shadows and low solar zenith angle; when several of these criteria are fulfilled 

the selection is based on the minimum value in the blue band (Vermote et al., 2015). 

The second set of spectral indexes was computed from the MOD09A1 product. The indices based on the spectral shape have 20 

the advantage of combining information on three bands instead of two, also when the bands used are located in the SWIR 

region relevant information related to water is captured (Palacios-Orueta et al., 2005; Khanna et al., 2007; Palacios-Orueta et 

al., 2012). 

LAI is defined as the one−sided green leaf area per unit ground area in broadleaf canopies and as one−half the total needle 

surface area per unit ground area in coniferous canopies. The FPAR is the fraction of photosynthetically active radiation (400-25 

700 nm) that is absorbed by the canopy (Myneni, 2015). Gross primary productivity and net photosynthesis estimations are 

based on the light use efficiency (LUE) concept (Monteith, 1972) using satellite-derived FPAR (from MOD15) and 

independent estimates of PAR, besides other types of ancillary data. These are highly aggregated variables that have gone 

through several modelling steps already. Detailed information on the model and information sources used can be found in 

Running and Zhao (2015). 30 
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4. Description of the forest sites 

The most northern site is Hyytiälä in Finland with a boreal climate, while the most southern sites are Le Bray in France and 

Collelongo in Italy with an oceanic and Mediterranean montane climate, respectively. All other sites represent temperate 

climatic conditions ranging however, from oceanic (Belgium, Denmark), temperate (France, Germany) to sub-continental 

(Czech Republic). Unfortunately, sites representing more continental and (east)-Mediterranean forests from southern and 5 

south-eastern Europe are missing. 

4.1. Bily Kriz (CZ) 

The Bily Kriz site belongs to the ICP Forests Level II network and is a Fluxnet site located in the Moravian-Silesian Beskydy 

Mts, Czech Republic, at an altitude of 875 m.a.s.l. The climate is temperate with an annual mean temperature of 7.4°C and an 

annual precipitation sum of 1434 mm over the 2000-2008 period. The soil is classified as a Haplic Podzol. The site is typical 10 

for mountain regions of temperate Europe such as the Black Forest, Bohemian Forest Sumava and forested Carpathians 

(Hercynian (spruce-)fir-beech forests) but also the higher mountain belts in the (sub-)Mediterranean. Stand forming tree 

species for such sites are Fagus sylvatica, Abies alba, and Picea abies. Currently, a large part of mixed mountain forests are 

strongly managed for timber production. The main tree species occurring in Bily Kriz are Picea abies rarely with small 

proportion of Fagus sylvatica. The stand data represent an (even-aged) Picea abies monoculture with a mean DBH of 19 cm 15 

(year 2015). The potential vegetation belongs to the Geobiocoene type groups: Abieti-fageta (5AB3) - Abies alba Mill. + 

Fagus sylvatica L. with understory: Calamagrostis arundinacea (L.) Roth, Oxalis acetosella L., Vaccinium myrtillus L., 

Deschampsia flexuosa (L.) Trin. More information about the site can be found in Kratochvílová et al. (1989) and 

Meteorological yearbook (2012). 

4.2. Collelongo (IT) 20 

The experimental site of Collelongo is located in Selva Piana, a pure Fagus sylvatica forest in Collelongo (AQ, central Italy) 

at 1560 m.a.s.l. Located 100 km from Rome, it is one of the first Italian sites of the ICP network and also part of the ILTER 

international network. The climate is Mediterranean montane, with a mean annual temperature of 7.2°C and a mean annual 

precipitation of 1179 mm in the period 1996-2014. Bedrock consists of cretaceous limestone. Soil depth exhibits high spatial 

variability ranging from 40 to 100 cm and is classified as a Humic Alisol (Chiti et al. 2010) or Dystric Luvisol according to 25 

the FAO classification. The stand is a typical Apennine beech forests dominated by Fagus sylvatica with sporadic trees of 

Taxus baccata. The phytosociological association is Polysticho – Fagetum (Feoli & Lagonegro 1982). Currently, Collelongo 

constitutes a managed Fagus sylvatica stand with mean DBH of 25 cm in 2012. In the area around the eddy-flux tower there 

are only Fagus sylvatica trees. Moreover the footprint of the tower is totally included in the Fagus sylvatica forest. More 

information about the site can be found in Chiti et al. (2010), Collalti et al. (2016) and D’Andrea et al. (2019).  30 
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4.3. Hyytiälä (FI) 

The most northern site included in the PROFOUND DB is the ICP Forests Level II site Hyytiälä, Finland. It is also a Fluxnet 

site and the coldest site with an annual temperature of 4.4°C and 604 mm annual precipitation during the 1996-2014 period 

and lies at 185 m.a.s.l. The soil is classified as a Haplic Podzol. Picea abies is the naturally dominant tree species building 

Fennoscandian moss-rich spruce forests with Pinus sylvestris. A Pinus sylvestris stand was sown in 1962, today with 5 

admixtures of Picea abies and hardwood species (Betula pendula, Betula pubescens and Populus tremula). Mean DBH were 

17 cm for P. sylvestris, 5 cm for P. abies and 7 cm for hardwood species in the year 2008. More information about the site can 

be found in Haataja & Vesala (1997), Rannik et al. (2004), Vesala et al. (2005), Ilvesniemi et al. (2009), Mammarella et al. 

(2009) and Ilvesniemi et al. (2010). 

4.4. KROOF (DE) 10 

The KROOF forest belongs to the "Kranzberg Forest Roof Experiment" of the Technical University Munich (TUM) and the 

Helmholtz-Zentrum Munich. The site is located close to Freising, Germany, in the Kranzberger Forst in 502 m.a.s.l (wc-alt.). 

Mean annual temperature is around 8.2°C, annual rainfall around 849 mm during the period 1998-2010. The soil type, Luvisol, 

is typical for the region. The potential natural vegetation is (sessile oak-) beech forest (Fagus sylvatica, Quercus petraea, 

Quercus robur). The establishment of the research plot dates back to 1992. The mixed stand comprises large groups of Fagus 15 

sylvatica surrounded by Picea abies with mean DBH of 26 cm and 33 cm in 2010, respectively. Other occurring species are 

Acer platanoides (20 cm), Pinus sylvestris (31 cm), Larix decidua (26 cm) and Quercus robur (29 cm). More information 

about the site can be found in Pretzsch et al. (1998; 2014) and Matyssek et al. (2014). 

4.5. Le Bray (FR) 

The ICP Forests site Le Bray is located 20 km south-west of Bordeaux, France, at an altitude of 61 m.a.s.l. Mean annual 20 

temperature is about 13.4°C and precipitation 920 mm during the 1996-2008 period, constituting a moderate oceanic climate. 

The soil type is Arenosol (sandy and hydromorphic podzol), which is one of the most common soils in the region. The natural 

vegetation is formed by deciduous broadleaf forests such as pedunculate oak forests (Quercus robur), partly with Quercus 

pyrenaica, Quercus suber and Pinus pinaster. First measurements were made in 1986 in the monospecific planted Pinus 

pinaster stand. The site experienced a storm in 1999 and lost a large amount of trees. In 2009, the mean DBH was 35 cm. The 25 

final clear cut of the site occurred at the beginning of 2009. More information about the site can be found in Porté & Loustau 

(1998), Bosc et al. (2003) and Berbigier et al. (2001). 
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4.6. Peitz (DE) 

Peitz is a long term research plot in eastern Brandenburg, Germany. The site lies at about 50 m.a.s.l. The annual rainfall 

amounts to more than 608 mm and annual mean temperature is around 9.2°C during the 1901-2010 period. The soil type is a 

Dystric Cambisol. The potential natural vegetation is a South Scandinavian-east Central European dwarf shrub- and lichen-

rich pine forests (Pinus sylvestris), partly with Quercus robur in the understorey, with Vaccinium vitis-idaea, Calluna vulgaris, 5 

Cladina spp., Dicranum polysetum on sandy soils and siliceous rocks. The forest is a pine forest (Pinus sylvestris) with a mean 

DBH of around 23 cm and a stand height of 17 m in 2011. The understorey consists partly of Quercus robur. Measurements 

were started in 1948. More information about this site can be found in Riek & Stähr (2004), Noack (2011; 2012) and about the 

climate data in Gerstengarbe et al. (2015). 

4.7. Solling beech (DE) 10 

Solling 304 is a long-term intensive forest monitoring plot (Level II) of the ICP Forests network in central Germany. The plot 

is also part of the LTER (site LTER_EU_DE_009) and of the permanent soil monitoring programme of the state of Lower 

Saxony. The site is situated in the center of the Solling plateau at an elevation of about 500 m a.s.l. The mean temperature was 

around 6.8°C and the mean annual rainfall amounted to 1113 mm during the period 1960-2013. The bedrock consist of Triassic 

sandstone covered with a 60 to 80 cm deep solifluction layer of loess material from which the soil, classified as an Haplic 15 

Cambisol, has developed. The humus type is a typical Moder. The tree layer consists only of European beech (Fagus sylvatica 

L.). Oxalis acetosella and Luzula luzuloides are the major species of the sparse ground vegetation. Actual vegetation was 

assigned to the Luzulo-Fagetum typicum and is close to the potential natural vegetation. The forest is a 168-year old stand 

with a mean DBH of 50 cm and a mean height of 30.7 m in 2016. More information about the site can be found in Meiwes et 

al. (2009), Meesenburg et al. (2009), Panferov et al. (2009), Le Mellec et al. (2010), Meesenburg et al. (2016) and Fleck et al. 20 

(2016).  

4.8. Solling spruce (DE) 

Solling 305 is also a long-term intensive forest monitoring plot of the ICP Forests Level II network in central Germany. As 

the Solling beech site it belongs to the LTER (site LTER_EU_DE_009) and is a permanent soil monitoring plot of the state of 

Lower Saxony. It is situated close to the Solling beech site at an elevation of about 508 m a.s.l and has similar site conditions 25 

as the Solling beech stand. Potential natural vegetation is a Luzulo luzuloido Fagetum. Dominant species of the actual ground 

vegetation are Vaccinium myrtillus, Polytrichum formosum and Dechampsia flexuosa (Bolte et al. 2004). The forest is a 133-

year old Norway spruce (Picea abies) stand with a mean DBH of 46.6 cm and a mean height of 33.1 m in 2016. More 

information about the site can be found in Le Mellec et al. (2010), Bonten et al. (2011), Meesenburg et al. (2016), Fleck et al. 

(2016) and Wegehenkel et al. (2017). 30 
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4.9. Sorø (DK) 

The ICOS site Sorø (DK-Sor in the FLUXNET and ICOS data bases) is located in Denmark at an elevation of 40 m.a.s.l.. The 

climate is warm temperate and fully humid with a mean annual temperature of 9°C and annual precipitation sum of 774 mm 

during the period 1996-2010. The soil has been classified as an Alfisols/Molisols. Potential natural vegetation is deciduous 

broad-leaved forest dominated by Fagus sylvatica. Other species occurring in the area are Fraxinus excelsior, Larix decidua, 5 

Picea abies, Quercus spp., Acer spp. However, the region is mostly used as cropland. Data on tree DBH are reconstructed 

from tree ring measurement (Babst et al. 2014) and historical management information for the time period from 1994 to 2017. 

Stand data is derived from this data for the time period from 1994 to 2017 (see Text SOM1). The mean DBH of this Fagus 

sylvatica stand was 41 cm in the year 2017. More information about the site can be found in Ladekarl (2001), Pilegaard et al. 

(2003, 2011), and Wu et al. (2013). More information about the site can be found in Ladekarl (2001), Pilegaard et al. (2003, 10 

2011), and Wu et al. (2013). 

5. Forest management of the sites 

The sites available in the PROFOUND DB are managed forests and the historic management can be derived from the tree and 

stand level data (in terms of reduction of stem numbers). However, for future scenario studies generic, simple management 

and planting guidelines are available (Table 7-8). This future management corresponds best to “intensive even-aged forestry” 15 

as defined by Duncker et al. 2012.  

Table 7 Generic future management scenarios for the main tree species featured in the PROFOUND DB.  

Species Thinning 
regime 

Intensity 
[% of basal area] 

Interval 
[yr] 

Stand age for 
final harvest 

References 

Pinus sylvestris below 20 15 140 Pukkala et al. 1998; Fürstenau et al. 2007; 
González et al. 2005; Lasch et al. 2005 

Picea abies below 30 15 120 Pape 1999; Pukkala et al. 1998; Hanewinkel and 
Pretzsch 2000; Sterba 1987; Lähde et al. 2010 

Fagus sylvatica above 30 15 140 Schütz 2006; Mund 2004; Hein and Dhôte 2006; 
Cescatti and Piutti 1998 

Quercus robur/ 
petraea 

above 15 15 200 Hein and Dhôte 2006; Fürstenau et al. 2007; 
Štefančík 2012; Kerr 1996; Gutsch et al. 2011 

Pinus pinaster below 20 10 45 Loustau et al. 2005, De Lary 2015, Banos et al. 
2016 
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Table 8 Planting information for the sites included in the PROFOUND DB. The numbers in brackets indicate plausible ranges (na 
= not available). 

Name Density 
 
[ha-1] 

Age 
 
[years] 

Height 
 
[m] 

age when DBH 
is reached 
[years] 

Remarks 

Bily Kriz 4500 4 0.5 9 Historical planting density was 5000/ha but current practices 
are 4500/ha only 

Collelongo 10000 4 1.3 4 Only a rough approximation, usually natural regeneration is 
the regeneration method. DBH = 0.1 cm at height 1.3m 

Hyytiälä 2250 (2000-
2500) 

2 0.25 (0.2-
0.3) 

6 (5-7) Regenerate as pure pine stand 

KROOF 
(beech) 

6000 (5000-
7000) 

2 0.6  
(0.5-0.7) 

5 The planting density is for single-species stands, hence when 
regenerating the 2-species-stand KROOF, the planting 
density of each species should be halved 

KROOF 
(spruce) 

2250 (2000-
2500) 

2 0.35 (0.3-
0.4) 

7 The planting density is for single-species stands, hence when 
regenerating the 2-species-stand KROOF, the planting 
density of each species should be halved 

Le Bray 1250 (1000-
14000) 

1 0.2  
(0.1-0.25) 

3 (2-5) These are the current practices (De Lary, 2015) and should be 
used for future regeneration. Historically, the site was seeded 
with 3000-5000 seedlings per ha and then cleared once or 
twice to reach a density of 1250 ha-1 at 7-year old when 
seedlings reach the size for DBH recruitment.  

Peitz 9000 (8000-
10000) 

2 0.175  
(0.1-0.25) 

5 The “age when DBH is reached = 5” is an estimate 

Solling 
(beech) 

6000 (5000-
7000) 

2 0.6  
(0.5-0.7) 

5 The actual stand was established in 1847 from natural 
regeneration. Until begin of measurements in 1966, the stand 
was regularly thinned. All figures in table are estimates. 
Natural regeneration is the recommended regeneration 
method of stand establishment; stem count in 2014: 130 

Solling 
(spruce) 

2250 (2000-
2500) 

2 0.35  
(0.3-0.4) 

7 The actual stand was planted in 1891 on a former meadow. 
Until begin of measurements in 1966, the stand was regularly 
thinned. All figures in table are estimates.; stem count in 
2014: 290 

Sorø 6000 4 0.82 6 Planted in 1921, stem count in 288 ha-1 in 2010, (Wu et al. 
2013) 
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6. The PROFOUND R-package (ProfoundData) 

The ProfoundData R-package provides functions to access the PROFOUND DB (Figure SOM2 and SOM3). The 

ProfoundData package plus a detailed vignette explaining the functionalities are available on CRAN (https://CRAN.R-

project.org/package=ProfoundData). The ProfoundData package serves as interface for users that want to access the 

PROFOUND DB as a relational database via the R statistical software (R Core Team 2016). The following main functions are 5 

included to achieve this goal: 

● “getData” to download data (data can be downloaded for one forest site and one underlying dataset at a time) 
● “browseData” to check the available forest sites, datasets, variables for a dataset, datasets for a forest site as well as 

the database version, metadata, data policy, original data source 
● “plotData” to quickly inspect any variable of the datasets visually. 10 
● “summarizeData” to summarize data from the database. 
● “queryDB” to pass self-defined queries 
● “writeSim2netCDF” to write netCDF-files, can be used to convert data (and other files such as model simulation 

output) into netCDF-files. 
While the ProfoundData R-package is meant to provide easy-access to the PROFOUND DB, the database is also fully 15 
functional without the R-package. 

7. Data availability 

The PROFOUND Database (http://doi.org/10.5880/PIK.2020.006/, Reyer et al. 2020) is available under the Creative 

Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0). The PROFOUND R-Package 

(ProfoundData, https://CRAN.R-project.org/package=ProfoundData, Silveyra Gonzalez et al., 2020) is available via a GLP3 20 

license. An earlier version of the database, including an outdated reconstruction of the Soro tree data has been published as 

Reyer et al. (2019). 

8. Conclusions 

A wide range of data are needed to properly evaluate complex process-based vegetation models. The PROFOUND database 

compiles data from soil, climate, stand and flux measurements with data from remote sensing, atmospheric nitrogen modelling 25 

and climate modelling. Moreover, by providing data at 0.5° x 0.5° grid level plus locally bias-corrected climate data, the 

datasets can be used to compare local forest models to global vegetation models. The PROFOUND database thus facilitates 

model evaluation, calibration, uncertainty analysis and model intercomparisons, highlighting the immense value of long-term 

environmental monitoring data for robust inferences about causal processes and future dynamics of forests. 
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9. Appendix: List of Fluxnet sites 

Table A1: List of Fluxnet sites used in PROFOUND DB. 
Flux sites FLUXNET-ID Data-years Publication Funding 

Bily Kriz CZ-BK1 2000-2008 Kratochvílová et al. (1989), 
Meteorological yearbook 
(2012) 

Ministry of Education, Youth and Sports of CR 
within the CzeCOS program, grant number 
LM2015061 

Collelongo IT-Col 1996-2014 Chiti et al. 2010 EUROFLUX, CARBOEUROFLUX, CARBO 
EUROPE, CARBO AGE, CARBO 
EXTREME 

Hyytiälä FI-Hyy 1996-2014 Haataja & Vesala (1997), 
Rannik et al. (2004), Vesala 
et al. (2005), Ilvesniemi et 
al. (2009), Mammarella et 
al. (2009) and Ilvesniemi et 
al. (2010) 

ICOS, EUROFLUX, CARBOEUROFLUX, 
CARBOEUROPE, CARBOEXTREME and 
by the Academy of Finland Centre of 
Excellence programme, projects 118615, 
141135 and 272041 

Le Bray FR-LBr 1996-2008 Porté & Loustau (1998), 
Bosc et al. (2003) and 
Berbigier et al. (2001) 

INRA, EUROFLUX, CARBOEUROFLUX, 
CARBO EUROPE, CARBO AGE, CARBO 
EXTREME 

Sorø DK-Sor 1996-2012 Ladekarl (2001), Pilegaard 
et al. (2003, 2011), and Wu 
et al. (2013) 

EUROFLUX, CARBO-EUROPE, CARBO-
EUROPE-IP, NITRO-EUROPE, CARBO-
EXTREME and Risø-National Laboratory 
(DK) and technical University of Denmark 
(DTU) 

10. Supplement Link 

To be added by Copernicus 
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