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Abstract. The recent availability of freely and openly available satellite remote sensing products has 
enabled the implementation of global surface water monitoring to a level not previously possible. Here 
we present a global set of satellite-derived time series of surface water storage variations for lakes and 
reservoirs for a period that covers the satellite altimetry era. Our goal is to promote the use of satellite-
derived products for the study of large inland water bodies, and to set the stage for the expected 15 
availability of products from the Surface Water and Ocean Topography (SWOT) mission, which will 
vastly expand the spatial coverage of such products, expected from 2021 on. Our general strategy is to 
estimate global surface water storage changes (ΔV) in large lakes and reservoirs using a combination of 
paired water surface elevation (WSE) and water surface area (WSA) extent products. Specifically, we 
use data produced by multiple satellite altimetry missions (TOPEX-Poseidon, Jason-1, Jason-2, Jason-3, 20 
and ENVISAT) from 1992 on, with surface extent estimated from Terra/Aqua Moderate Resolution 
Imaging Spectroradiometer (MODIS) from 2000 on. We leverage from relationships between elevation 
and surface area (i.e., hypsometry) to produce estimates of ΔV even during periods when either of the 
variables was not available. This approach is successful provided that there are strong relationships 
between the two variables during an overlapping period. Our target is to produce time series of ΔV as 25 
well as WSE and WSA for a set of 347 lakes and reservoirs globally for the 1992-2018 period. The data 
sets presented and their respective Algorithm Theoretical Basis Documents are publicly available and 
distributed via NASA’s Jet Propulsion Laboratory’s Physical Oceanography Distributed Active Archive 
Center (PO DAAC; https://podaac.jpl.nasa.gov/). Specifically, the WSE data set is available at 
https://doi.org/10.5067/UCLRS-GREV2 (Birkett et al., 2019), the WSA data set is available at 30 
https://doi.org/10.5067/UCLRS-AREV2 (Khandelwal and Kumar, 2019), and the ΔV data set is 
available at https://doi.org/10.5067/UCLRS-STOV2 (Tortini et al., 2019). The records we describe 
represent the most complete global surface water time series available from the launch of TOPEX-
Poseidon in 1992 (beginning of the satellite altimetry era) to near-present. The production of long-term, 
consistent, and calibrated records of surface water cycle variables such as the data set presented here is 35 
of fundamental importance to baseline future SWOT products. 
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1 Introduction 

Information about surface water dynamics is required to support monitoring and reporting programs 
associated with water management as well as scientific objectives such as understanding the space-time 
variability of water stored at or near the land surface (Lettenmaier and Famiglietti, 2006). However, 
surface water storage data are scarce and often inaccessible in many regions of the world due to 5 
geographic remoteness and/or closed data policies, in addition to the costs associated with maintaining 
extensive water monitoring programs. This is especially the case in areas with sparse populations and in 
the developing world, limiting our ability to understand the surface water balance at the global scale, 
and therefore its effect on water management planning, global weather forecasting, ecosystem 
sustainability, and earth system modeling in general (Gao, 2015). The synoptic nature of satellite-based 10 
remote sensing platforms makes them ideally suited to quantitatively capture and portray conditions 
over large areas at a given point in time, and to characterize how these conditions change through time 
over long periods (Lettenmaier et al., 2015; Crétaux et al., 2016; Zhang et al., 2017). With the recent 
availability of free and open access satellite remote sensing products, users now have access to high-
quality, analysis-ready imagery at spatial resolutions that are informative at the relevant scales of 15 
variation of WSE and WSA, and ultimately storage, at least for relatively large inland water bodies. As 
a result, in recent years the hydrology community has been active in developing approaches to enable 
the implementation of global surface water monitoring strategies (McCabe et al., 2017). Global water 
dynamics studies that previously would have only been approachable with relatively low spatial 
resolution data sets or gravimetric remote sensing such as GRACE (e.g., Humphrey et al., 2016) are 20 
now implemented using high resolution imagery such as Landsat. For example, the European 
Commission Joint Research Center’s Global Surface Water Explorer quantifies changes in global 
surface water at 30 m resolution for a 32-year period (Pekel et al., 2016). In addition, despite being 
primarily designed to measure water levels over the open ocean, current generation satellite altimetry 
missions have demonstrated their suitability for hydrological studies for large inland water bodies, both 25 
for specific targets such as Lake Chad (Coe and Birkett, 2005), the Aral Sea (Aladin et al., 2005; Singh 
et al., 2012), and at the regional scale, for example the African Great Rift Valley Lakes (Birkett et al., 
1999), and the Tibetan Plateau (Lee et al., 2011; Zhang et al., 2011; Kleinherenbrink et al., 2015; Cai et 
al., 2016; Crétaux et al., 2016; Zhang et al., 2019). Extensive efforts have been made to measure surface 
height for large lakes and reservoirs globally; examples include the French Space Agency - Laboratoire 30 
d’Etudes en Géophysique et Océanographie Spatiales hydroweb database (LEGOS; Crétaux et al., 
2011), the Database for Hydrological Time Series of Inland Waters (DAHITI; Schwatke et al., 2015), 
and the U.S. Department of Agriculture (USDA) Global Reservoir And Lake Monitoring (G-REALM) 
data sets. Further examples of global data sets are the University of Stuttgart’s HydroSat 
(http://hydrosat.gis.uni-stuttgart.de/; accessed February 27th, 2020), and, despite being no longer 35 
actively maintained, the European Space Agency’s River Lake Altimetry products 
(http://altimetry.esa.int/riverlake; accessed February 27th, 2020). However, surface water storage 
estimation at the global scale remains challenging and still largely unexplored (Gao et al., 2012; Gao, 
2015). NASA’s upcoming Surface Water and Ocean Topography (SWOT) mission (scheduled launch 
2021) will fill a major void in the global observational capabilities of the hydrology community. SWOT 40 
is expected to produce accurate WSE and WSA estimates on average every 10.5 days (depending on 
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specific location) with the ability to estimate surface water storage variations for lakes and reservoirs as 
small as about 1 km2 with a height accuracy of around 10 cm (Biancamaria et al., 2010). However, until 
SWOT data are available, the development of satellite-based long-term hydrologic records for the study 
of variability and changes in the terrestrial water cycle will demand accurate data homogenization and 
harmonization from existing sensors, with transparent and reproducible methods playing a pivotal role 5 
to obtain consistent and defensible results (McCabe et al., 2017). Moreover, given that the current 
generation of altimeters are nadir-pointing, i.e., provide information along tracks rather than swaths 
(typically with track separation order of 100 km or so), long-term records can be obtained exclusively 
by merging data sets from a constellation of sensors with a range of (often overlapping) data records. 
For example, Crétaux et al. (2016) estimated that the constellation of Jason-2, Jason-3, France-India 10 
SARAL/AltiKa (Verron et al., 2015), and European Space Agency’s Sentinel-3A/3B tandem (Donlon et 
al., 2012) has the potential to capture water surface elevation (WSE) for nearly the entirety of 3,720 
global lakes with areas larger than 50 km2 and 71% of the 14,411 lakes larger than 10 km2, for a total of 
approximately 40% of the global water storage of lakes on Earth. However, this merging of records 
from heterogeneous satellite sources has practical drawbacks such as discontinuities in the derived 15 
water storage estimates, and the harmonization of these sources is fundamental to achieving more 
effective data assimilation for use in, for example, hydrological models, with the direct consequence of 
triggering a better understanding of any underlying physical process (McCabe et al., 2017). Here we 
summarize results of the integration of long-term satellite remote sensing data collected by optical and 
microwave sensors to produce global surface water storage records for large lakes and reservoirs, 20 
beginning with the launch of TOPEX/Poseidon (T/P) in 1992. We use data produced by multiple 
satellite altimetry missions, including but not limited to T/P, Jason-1, Jason-2, and Jason-3, with surface 
extent estimated from MODIS from 2000 on. We leverage from the relationship between WSE and 
WSA (i.e., hypsometry) to produce estimates of storage changes (ΔV) even during periods when either 
of the variables are not available, as long as there are strong relationships between the two during an 25 
overlapping period. If the correlation coefficient between the two variables was smaller than 0.85 and 
the variance of either variable was smaller than 2%, we simplified the model into a single variable (i.e., 
noninvariant) function. Our intent is to produce the most complete possible satellite-derived records of 
water ΔV over the period from the T/P launch up to the launch of the SWOT mission, with the goal of 
providing long-term, consistent, and calibrated records of baseline surface water cycle variables up to 30 
the time of SWOT launch and beyond. 

2 Data and methods 

In this section, we describe the remote sensing data sources and the methods we used to estimate WSE, 
WSA, and ΔV. Given the technological limitations of the currently operational satellite platforms we 
used, we targeted water bodies globally with (i) WSE time series overlapping with WSA time series so 35 
that a hypsometric curve could be established for the 2000-2016 period; (ii) reference WSAs larger than 
30 km2 (approximately 120 MODIS pixels with 500 m resolution); and (iii) lakes or reservoirs that were 
clearly distinguishable from other nearby water bodies (improved accuracy of both WSE and WSA 
estimates). As an example of the records we analyzed and their capabilities, we perform a detailed 
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analysis of Lake Sakakawea (47.50°N; 101.41°W), a large reservoir located in the Missouri River Basin 
in the Fort Berthold Indian Reservation in central North Dakota (USA) and impounded by the Garrison 
Dam. Figure 1 shows the location of the lakes and reservoirs selected for this work, with a close up of 
Lake Sakakawea. 
 5 

 
Figure 1: Location of the global targets (blue bubbles, by average lake size) and Lake Sakakawea (approximate coordinates: 47.50°N; 
101.41°W) within the Mississippi River Basin (shaded). 

 

2.1 Water surface elevation 10 

G-REALM10 merges T/P, Jason-1, Jason-2, and Jason-3 time series of relative WSE variations with 
respect to a given Jason-2 reference cycle at 10-day intervals (Birkett, 1995; Birkett and Beckley, 2010; 
Birkett et al., 2011), whereas, whenever 10-day measurements are not available, G-REALM35 is 
created using the ENVISAT time series of relative water level variations, for which the mean level of 
ENVISAT retrievals at 35-day intervals is the reference. ΔV monitoring of inland water bodies at the 15 
global scale has proved a challenging task (Gao et al., 2015; Crétaux et al., 2016), and the use of a 
single WSE data source significantly limits the creation of global ΔV data set. For these reasons, we 
used G-REALM10 as our primary elevation source for the creation of our global ΔV data set, and, 
whenever G-REALM10 was not available for a specific target, supplemented it with LEGOS, DAHITI, 
and G-REALM35 (in this order) based on factors such as density and trend of the available 20 
measurements. Full details of the processing to create the G-REALM10 and G-REALM35 products can 
be found in the Algorithm Theoretical Basis Document (ATBD; Birkett et al., 2019). This includes the 
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descriptions of the atmospheric corrections applied in the height reconstructions, the inter-mission 
height bias application, and the inherent differences between mission data set versions. 
Figure 2 shows the radar altimeter ground tracks over Lake Sakakawea, where we merged multiple data 
sources to create the G-REALM10 and G-REALM35 records. We extracted WSE data for the portions 
of the ground tracks over the water body and used them to construct a time series of WSE variations. 5 
We used 10-day records from the TOPEX/Poseidon and Jason instrument series (1992-2002, and 2008-
2017) with 35-day ENVISAT mission data used during the 2002-2008 period. A more detailed 
description of the methods we used can be found in Birkett (1995), Birkett and Beckley (2010), and 
Birkett et al. (2011). Ricko et al. (2012) performed both absolute and relative validations between the 
various G-REALM, DAHITI and LEGOS available product types and for the majority found an 10 
acceptable level of accuracy between them. 
WSE accuracy is highly affected by the presence of ice, and for practical purposes, reliable ΔV 
estimates can only be produced during ice free conditions. We assessed ice-on conditions (i.e., presence 
of snow-covered ice on the surface of a water body) using the MODIS/Terra Snow Cover Daily Global 
product (Collection 5 MOD10A1). For each elevation record, we estimated lake ice phenology (i.e., ice-15 
on and ice-off dates, defined as the beginning and end of the freezing period) as the proportion of frozen 
pixels identified in the NDSI-based 500 m spatial resolution “Snow_Cover_Daily_Tile” band (Hall et 
al., 2007), and we determined a threshold for each water body as half of the maximum observed WSA. 
This algorithm uses the basic assumption that a water body, when deep and clear, absorbs the solar 
radiation incident upon it in almost its entirety. Whenever ice was identified, we created a flag that is 20 
provided as part of the ΔV records. Water bodies with high turbidity, algal blooms, or other conditions 
of relatively high reflectance from the water (e.g., salt crust) may be erroneously detected as snow 
and/or ice covered; in these cases we manually removed the ice flag. We classified data gaps within the 
freezing period as ice-on for continuity purposes. Additionally, we excluded observations during polar 
darkness for lack of complete data and likely ice-on. 25 
 



6 
 

 
Figure 2: Radar altimeter ground tracks over Lake Sakakawea (blue) overlaid to the SRTM 1-arc digital terrain model. Purple: 10-
day resolution instrument series and satellite pass 204; red: 35-day resolution series and satellite pass 323. 

 

2.2 Surface water area 5 

The Global Optical Lake Area (GOLA) determination process estimates WSA of lakes and reservoirs 
from Terra/Aqua MODIS satellite optical imagery with a 500 m spatial resolution and an 8-day 
temporal resolution for the 2000-2016 period. In order to estimate the WSA of the target, a static spatial 
extent is required as one of the inputs (Khandelwal et al., 2017). We defined the initial spatial extents of 
water bodies using the vector polygons available as part of the Global Reservoir and Dam Database 10 
(GRanD; Lehner et al., 2011) and Global Lakes and Wetlands Database (GLWD; Lehner and Döll, 
2004), with quality checks ensured by visual comparison with high resolution satellite imagery (i.e., 
Google Earth, ESRI World Map). Whenever we identified a mismatch (i.e., polygon spatial extent not 
overlapping properly with the satellite imagery due to inaccurate georeferencing), the polygon was 
edited to match the expected location. In case a water body was not available as part of either database, 15 
a polygon was drawn by hand using high resolution imagery from various sources (e.g., Global Surface 
Water Explorer, Google Earth, ESRI World Map). Once correctly identified, these locations were used 
to construct a mask for MODIS data extraction. We then used the mask to extract all of the data from 
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three MODIS products whose nominal footprint overlapped the polygon of the corresponding lake. 
Specifically, we used: (i) two multispectral reflectance data products from the MODIS instruments 
onboard NASA's Terra and Aqua satellites as an input to the water/land classification algorithm 
(Collection 5 MCD43A4 and MOD0911), and (ii) static water and land classification labels to train the 
classification model (MODIS MOD44W). The primary reflectance product was the bidirectional 5 
reflectance distribution function (BRDF) adjusted MCD43A4 16-day composite product. The 
MCD43A4 product is generated by the U.S. Geological Survey (USGS) using data from both the Terra 
and Aqua satellites to assure that the combined data product is of the highest possible quality. However, 
by ignoring poor data quality pixels, the MCD43A4 product suffers from a high degree of missing 
values, especially before Aqua data became available in 2002. This can introduce a high degree of 10 
incompleteness in classification maps. To alleviate this issue, we also used the MOD09A1 8-day 
composite product collected solely from the Terra satellite. Since the MOD09A1 product is generally 
less reliable than MCD43A4 as it is not BRDF-adjusted, we combined these two products to 
compensate for the primary limitations of each, in addition to noise and missing values following 
methods outlined by Khandelwal et al. (2017). We also used quality flags to filter out pixels with snow, 15 
ice, or clouds. For the MOD10A1 product, information about the data quality is available along with the 
multispectral values in the 16-bit quality assessment state flags, whereas the quality flags for the 
MCD43A4 product are available as a separate product (MCD43A2 BRDF/Albedo Quality Product). In 
order to distinguish between land and water bodies, we used static water extent masks derived from the 
MODIS MOD44W product (Carroll et al., 2009) to train the supervised classification models. This 20 
product, distributed publicly by the USGS, combines MODIS 250 m reflectance data with the SRTM 
Water Body Dataset from 60°N to 60°S, with reflectance data used solely poleward of 60°N. We 
aggregated the MOD44W product from 250 m to 500 m to match the resolution of the other MODIS 
products. In particular, if the 500 m pixel had all of its four pixels at 250 m labeled as water or land in 
the MOD44W product, then we considered the pixel as a water or land pixel. We excluded partial pixels 25 
from the training set pool. Figure 3 shows an example of the classification results for Lake Sakakawea 
under a dry and a wet scenario. A more detailed description of the classification algorithm and its 
validation can be found in Khandelwal et al. (2017). All MODIS data used to create the GOLA records 
are publicly available via the USGS Land Processes Distributed Active Archive Center (LP DAAC; 
http://lpdaac.usgs.gov). 30 
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Figure 3: Examples of the GOLA WSA classification results for Lake Sakakawea: (a) dry scenario (November 1st, 2008); (b) wet 
scenario (April 25th, 2011). Differences in WSA estimates are noticeable in the northwestern and southwestern branches of the 
reservoir, the farthermost from the Garrison Dam. 

 5 

2.3 Global storage change 

During time periods when both WSEs from G-REALM (supplemented with DAHITI and LEGOS) and 
WSAs from GOLA were available, we derived the elevation-surface area relationships (i.e., 
hypsometry) for each target. We then used these relationships to estimate reservoir ΔV using an 
approach similar to Gao et al. (2012). Specifically, for overlapping G-REALM and GOLA periods, we 10 
calculated increments of volume for the corresponding changes in WSE and WSA as: 
 
ΔV = (WSAt+1 + WSAt)(WSEt+1 - WSEt)/2,        (1) 
 
where WSAt and WSEt are surface area and elevation at the smallest step t, and At+1 and ht+1 are surface 15 
area and elevation at the next incremental step t+1. 

We used linear regression to approximate the relationship between elevation (WSE) and surface area 
(WSA), WSA = f(WSE). We then applied this relationship to estimate WSA from WSE for periods when 
WSA is unavailable (1992-1999), and the inverse function WSE = f-1(WSA) to estimate WSE from 
WSA for periods when WSE is unavailable during the MODIS era (2017-2018). Finally, the ΔV 20 
equation can be simplified into a single variable function, either as a function of WSE or GOLA WSA, 
by substituting WSA = f(WSE) or WSE = f-1(WSA) into it. If the correlation coefficient between the two 
variables was smaller than 0.85 (i.e., weak to moderate correlation between WSE and WSA) and the 
variance of either variable was smaller than 2% (i.e., near-invariant variable), then we parameterized the 
invariant variable using its mean value. 25 
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3 Results 

We created water storage records for 347 global lakes and reservoirs, distributed via NASA’s Jet 
Propulsion Laboratory’s Physical Oceanography Distributed Active Archive Center (PO DAAC; 
https://podaac.jpl.nasa.gov/). Table 1 summarizes WSE, WSA, and ΔV per continent of the water bodies 
with records in the period of this work (i.e., 1992-2018). The majority of the water bodies (223, 64.26% 5 
of the total) are located in Asia (110, of which 30 in the Tibetan Plateau) and North America (113), with 
Australasia represented by just eight targets. Globally, approximately 22% of the WSE measurements 
overlap with WSA records enabling hypsometric curves to be constructed, with no significant regional 
exception. Africa and North America lead in terms of average WSA, with an average of ~4864 km2 (39 
water bodies) and ~4100 km2 (113 water bodies), respectively. In fact, the dynamics of the water bodies 10 
in Africa are dominated by the Great Rift Valley Lakes, whereas the size range of the water bodies in 
North America is more varied. South American water bodies instead show the highest variability (i.e., 
standard deviation) per average area (118.47 km2 and 1072.33 km2, respectively), compatible with the 
generally modest topographic relief and frequent flooding of the major rivers and reservoirs. However, 
Africa also has the largest observed mean decrease in both ΔV (-377.74 km3) and standard deviation 15 
(3.77 km3), suggesting shallow topography and highly dynamic variations. 
 
Table 1: Summary by continent of the observed characteristics of the 347 water bodies. 
 
  Average per target WSE [m] WSA [km2] ΔV [km3] 
Continent Water 

bodies 
Water level 

records 
Hypsometric 

records 
Mean Standard 

deviation 
Mean Standard 

deviation 
Total Standard 

deviation 
Africa 39 378.87 237.61 -0.62 1.87 4864.36 100.12 -377.74 3.77 
Asia 110 361.84 187.63 -1.22 3.61 1736.74 114.45 -171.86 2.40 
Australasia 8 231.00 179.62 -0.98 3.97 385.85 43.34 -159.76 0.60 
Europe 28 554.11 236.07 +0.06 0.59 2665.49 98.91 -116.67 1.35 
North Am. 113 458.44 169.85 -0.34 1.67 4099.97 65.34 -115.01 1.92 
South Am. 49 291.84 178.08 -0.43 2.60 1072.33 118.47 -120.73 1.91 
Global 347 379.35 198.14 -0.59 2.38 2470.79 90.10 -176.96 1.99 

 20 
 
Figure 4 shows the monthly frequency of the observations used to create the hypsometric curve for the 
347 targets we analyzed. The total number of hypsometric observations was 65,872 (average 
observations per target: 189.83, or ~11 per overlapping year). With the majority of the targets located in 
the Northern Hemisphere (272 targets, 78.4% of the total), 55.86% of the total hypsometric records are 25 
observed in the Boreal late spring and summer months (May-September) and only 26.76% in the Boreal 
late fall and winter (November-March), due to a combination of factors such as fewer optical images 
with cloud cover, absence of ice cover, and in general more accurate WSE estimates. 
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Figure 4: Monthly frequency of the observations used to create the hypsometric curve for the 347 targets analyzed in this study, 
with total number of observations for each month. 

 
Figure 5 shows the temporal trends of the observed G-REALM elevation and GOLA surface area 5 
records for Lake Sakakawea. Both data sets show consistent trends and seasonal variations for the 
overlapping period (2000-2016). The smoother seasonality associated with the GOLA records may be a 
direct consequence of the spectral heterogeneity associated with the low spatial resolution (i.e., 500 m) 
of the pixels along the target boundary. In addition, the sparser G-REALM35 records only partially 
compensate for the unavailability of G-REALM10 records from 2003 to 2008 (Figure 5a). However, the 10 
denser GOLA time series in the same period (Figure 5b) offers the potential to supplement further ΔV 
records based on the observed relationship with elevation records. This is especially relevant because 
the drainage area to Lake Sakakawea suffered a significant drought in the early 2000s. In fact, by May 
2005 Lake Sakakawea had fallen to a documented all-time low of 1,805.8 ft msl (~550.4 m; US Army 
Corps of Engineers, 2007). However, thanks to a wet early summer in 2008 and the spring runoff of 15 
2009, by 2010 Lake Sakakawea was nearly at full capacity. These dynamics are reflected in both the G-
REALM and GOLA records (Figure 5) and are consistent with the results obtained by Gao et al. (2012). 
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Figure 5: Time series of (a) water elevation variation by mission (1144 records) and (b) MODIS-estimated surface area (578 records) 
for Lake Sakakawea. Presence of surface ice is indicated by a light blue cross. 

 
Figure 6 shows the hypsometric curve for Lake Sakakawea (R2 = 0.908). Such a high correlation 5 
usually indicates good quality for both data sets; conversely, low correlations can result from many 
conditions. These include systematic errors in either water elevation or surface area records (or both), 
and/or geomorphic properties of the target, with the possibility that, within the range of variation of 
either variable, the hypsometry is more or less independent of surface area (i.e., in the extreme vertical 
walls) or elevation (i.e., shallow lakes). Whenever direct observations of WSE were unavailable, we 10 
used the hypsometric curve to derive two associated products: inferred water elevation records and 
inferred surface area records. 
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Figure 6: Water elevation and surface area relationship for Lake Sakakawea (277 records). Presence of surface ice is indicated by 
a light blue cross. 
 
For the overlapping period (2000-2016) when both WSE and WSA were available, G-REALM was 5 
used in the final product to compute the relative storage because of its more relevant role played in 
modelling of ΔV (cfr. Eq. (1)). Figure 7 shows the estimated relative storage time series for Lake 
Sakakawea. 
 

 10 
Figure 7: Time series of relative storage for Lake Sakakawea. Observed records are in orange, modelled records are in blue. 
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4 Validation 

We evaluated the statistical accuracy of WSE and storage estimates at Lake Sakakawea based on 
monthly in situ water measurements made by the U.S. Army Corps of Engineers at Garrison Dam 
(http://www.nwd-mr.usace.army.mil/rcc/projdata/garr.pdf) and available from June 1967 to December 
2018 (Fig. 8a-b). Specifically, we utilized the “Average Daily Midnight Elevation (ft msl)” and “End-5 
of-Month Storage (1,000 AF)” products. After averaging the WSE records to the monthly scale, 233 
and 270 coincident observations were available for WSE and storage change, respectively. 
The RMSE of the WSE was ~0.68 m. The linear fit had an R2 = 0.95 (p < 0.001), suggesting very good 
consistency of the in situ water level measurements and the derived optical water levels (Figure 8c). The 
RMSE of the storage change was 0.87 km3. The linear fit had an R2 of 0.94 (p < 0.001), indicating very 10 
good consistency with the in situ storage estimates (Figure 8d). 
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Figure 8: Water levels and storage at Lake Sakakawea. (a) In situ monthly water levels (black) versus WSE records (red); (b) in situ 
monthly water storage (black) versus ΔV records (red); (c) linear regression of monthly average WSE records and concurrent in 
situ monthly water levels, with linear regression in red; (d) linear regression of monthly average ΔV records and concurrent in situ 
monthly water storage, with linear regression in red.  5 
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5 Discussion 

In the Lake Sakakawea example, both the G-REALM and GOLA records show consistent trends and 
seasonal variations for the overlapping period (2000-2016). Inaccuracy in the estimated relative storage 
can be attributed mainly to (i) WSE errors, (ii) WSA errors, and (iii) WSE-WSA relationship errors. 5 
The accuracy of the elevation records can be attributed to a number of factors, including satellite orbit, 
distance between antenna and target (i.e., altimetric range), geophysical range corrections, target size, 
and track location relative to the target boundary. Furthermore, each WSE record is calculated as the 
average value along the satellite ground track, with a large standard error implying higher uncertainty 
potentially from both measurement errors and/or natural variations (e.g., surface roughness). For 10 
example, satellite tracks over narrow water bodies in complicated terrain will result in larger errors. 
Finally, major wind and precipitation events, as well as tidal effects and the presence of ice also affect 
the quality of the records. The spectral heterogeneity associated with pixels along the target boundary 
plays a key role in the accuracy of the surface area classification. For example, Lake Sakakawea is a 
sinuous water body of 286 km length at capacity and average width of 3-5 km. As a result, a significant 15 
number of the MODIS 500 m pixels used to analyze the target are spectrally heterogeneous (i.e., 
partially covered by water and land) and therefore more prone to misclassification. This is especially 
true for droughts and/or periods of low water levels, as sinuous water bodies become even narrower due 
to drying. In addition, targets with limited or near-static water dynamics (defined as “dynamic region 
width” by Khandelwal et al., 2017) present land cover changes in the GOLA product primarily near the 20 
boundary of the static region used in the classification. Due to the moderate spatial resolution of the 
GOLA records, the effect of mixed pixels is even more prominent in water bodies with low dynamic 
region width, which can lead to low correlation values between elevation and surface area. Conversely, 
the classification of targets with high dynamic region width consistently performs better in the GOLA 
records. The quality of both elevation and surface area contribute to the accuracy of their relationship, 25 
but volume changes are mostly dominated by elevation changes. High correlations between elevation 
and area generally indicate reliable ΔV estimation. However, if either variable is systematically biased, 
the error associated with the relationship is carried to the estimated ΔV. For example, low correlation 
may arise when the target shows nearly constant WSA (vertical walls, in which case a variation in 
elevation reflects in a negligible change in WSA) or nearly constant elevation (i.e., shallow lakes, in 30 
which case a variation in surface area reflects in a negligible change in elevation). In these cases we 
proceeded in the modelling of ΔV with the parameterization of the invariant variable with its mean 
value. All the factors listed above introduce some degree of error in the WSE-WSA relationship; 
however, in most cases a linear approximation does not appear to be a major contributor (cfr. Gao et al., 
2012). At the global scale, the limited number of altimeter-based WSE products is a key constraint for 35 
satellite remote sensing observations. In fact, due to the technical limitations listed above, current 
generation spaceborne microwave altimeters can only monitor WSEs for a relatively small number of 
large reservoirs when used individually. In order to maximize the length and density of global ΔV 
records, in addition to integrating measurements from multiple altimeters, multiple MODIS daily 
overpasses played a crucial role in creating consistent 8-day GOLA and consequently ΔV records. 40 
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Despite GOLA’s moderate spatial resolution it can potentially affect the accuracy of ΔV estimates, 
higher resolution satellite missions have longer satellite revisit time (e.g., 16 days for Landsat, 10 days 
for Sentinel-2A starting in 2015 and 5 days for Sentinel-2A and -2B in tandem formation starting in 
2017). Because we leveraged the relationship between WSE and WSA to estimate ΔV, such satellite 
revisit times would produce sparser records, especially for water bodies located at high latitudes and/or 5 
altitudes as they are more affected by cloud cover. In fact, despite being highly desirable for monitoring 
of surface water dynamics, imagery from optical sensors is strongly affected by the presence of cloud 
cover, which can be extensive in late fall and winter, and in combination with low sun angle 
experienced at high latitudes may limit its usefulness at the global scale (Duguay et al., 2015). 
However, the integration of optical imagery (e.g., MODIS, Landsat, Sentinel-2) and radar altimetry data 10 
provides long-term continuity in the production of consistent and calibrated records, and we encourage 
to re-explore the lakes in our study using Landsat and/or Sentinel images with 20-30 m spatial 
resolution. 

6 Data availability 

The data sets presented and their respective ATBDs are publicly available and distributed via NASA’s 15 
Jet Propulsion Laboratory’s Physical Oceanography Distributed Active Archive Center (PO DAAC; 
https://podaac.jpl.nasa.gov/). Specifically, the WSE data set is available at 
https://doi.org/10.5067/UCLRS-GREV2 (Birkett et al., 2019), the WSA data set is available at 
https://doi.org/10.5067/UCLRS-AREV2 (Khandelwal and Kumar, 2019), and the ΔV data set is 
available at https://doi.org/10.5067/UCLRS-STOV2 (Tortini et al., 2019). The links listed provide the 20 
location of the data repositories, and they are all active and publicly accessible. 

7 Summary 

We generated global water storage change (ΔV) estimates based exclusively on satellite remote sensing 
observations through the creation of elevation (i.e., G-REALM) and surface area (i.e., GOLA) 
associated products for 347 selected large water bodies, primarily based on the availability of water 25 
elevation products. G-REALM10 was derived from a constellation of satellite altimeters (i.e., 
TOPEX/Poseidon, Jason-1, Jason-2, Jason-3), whereas G-REALM35 was created using measurements 
from ENVISAT. We supplemented the G-REALM elevation records with DAHITI and LEGOS 
products. We utilized the algorithm developed by Khandelwal et al. (2017) to create 8-day 500 m 
surface area estimates from MODIS images. WSE and WSA were used to derive the hypsometric 30 
relationship for each reservoir, with either variable inferable from its counterpart when direct 
observations were unavailable. We computed ΔV using an adaptation of the method of Gao et al. 
(2012). As an example, we demonstrate application of the data set to Lake Sakakawea (North Dakota, 
USA), the second largest reservoir in the USA by area, and representative of the challenges encountered 
in the creation of global ΔV records. The records presented in this paper represent the most complete 35 
satellite-derived global surface water storage time series to date, spanning from 1992 (TOPEX-Poseidon 
launch) to present, with the potential to be extended up to the launch of the SWOT mission planned for 
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2021. The data set presented is dynamic and will continue to be extended both in terms of the number of 
water bodies (with ultimate potential total around 400), and historical time period. Despite the coarser 
spatial resolution of the pre-SWOT records presented, the production of long-term, consistent, and 
calibrated records of surface water cycle variables is of fundamental importance to establishing a 
baseline of what is known globally about surface water ΔV up to the time of SWOT launch. 5 
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