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Abstract. Surface solar radiation drives the water cycle and energy exchange on the earth's surface, being an indispensable 

parameter for many numerical models to estimate soil moisture, evapotranspiration and plant photosynthesis, and its diffuse 

component can promote carbon uptake in ecosystems as a result of improvements of plant productivity by enhancing canopy 

light use efficiency. To reproduce the spatial distribution and spatiotemporal variations of solar radiation over China, we 15 

generate the high-accuracy radiation datasets, including global solar radiation (GSR) and the diffuse radiation (DIF) with 

spatial resolution of 1/20 degree, based on the observations from the China Meteorology Administration (CMA) and Multi-

functional Transport Satellite (MTSAT) satellite data, after tackling the integration of spatial pattern and the simulation of 

complex radiation transfer that the existing algorithms puzzle about by means of the combination of convolutional neural 

network (CNN) and multi-layer perceptron (MLP). All data cover a period from 2007 to 2018 in hourly, daily total and 20 

monthly total scales. The validation in 2008 shows that the root mean square error (RMSE) between our datasets and in-situ 

measurements approximates 73.79 W/m2 (0.27 MJ/m2) and 58.22 W/m2 (0.21 MJ/m2) for GSR and DIF, respectively. 

Besides, the spatially continuous hourly estimates properly reflect the regional differences and restore the diurnal cycles of 

solar radiation in fine scales. Such accurate knowledge is useful for the prediction of agricultural yield, carbon dynamics of 

terrestrial ecosystems, research on regional climate changes, and site selection of solar power plants etc. The datasets are 25 

freely available from Pangaea at https://doi.org/10.1594/PANGAEA.904135 (Jiang and Lu, 2019).  

1 Introduction 

Solar radiation is the main energy source for life on Earth (Wild, 2009), the major driving forces of the climate system 

(Mueller et al. 2009) and a key factor affecting surface-radiation budget (Liang et al., 2010). In recent decades, research on 

quantitative estimation of global solar radiation (GSR) and the proportion of diffuse components has attracted growing 30 
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interest in view of its great scientific value and socioeconomic benefits (Greuell et al., 2013). GSR is a prerequisite for 

modelling terrestrial ecosystem productivity (Jacovides et al., 2007), and an essential element for estimating heat fluxes, soil 

moisture and evapotranspiration etc. (Zhang et al., 2004). The distribution and intensity of GSR are indispensable for site 

selection of solar photovoltaic power and further estimation of its production (Pravalie et al., 2019). Previous studies reveal 

that the diffuse solar radiation (DIF) contributes to the ecosystem carbon uptake as it can reduce photosynthetic saturation 5 

and increase the canopy light use efficiency (Kanniah et al., 2012; Mercado et al., 2009). To simulate the carbon dynamics of 

terrestrial ecosystems, the explicit knowledge on DIF is urgently required by the ecological models (Alton et al., 2007). The 

effects of diffuse radiation on plant productivity have also become a popular issue in the field of ecology and environmental 

sciences (Gu et al., 2002; Mercado et al., 2009; Zhang et al., 2011; Zhang et al., 2017). 

      Interpolation/extrapolation of direct measurements from radiation stations is a traditional way to obtain continuous 10 

surface solar radiation data. Although great efforts have made to establish globally covered surface-radiation measurement 

networks, such as NOAA's Surface Radiation budget network (SURFRAD), the Baseline Surface Radiation Network 

(BSRN), the World Radiation Data Centre (WRDC) and the Global Energy Balance Archive (GEBA), it remains insufficient 

to derive the high-precision radiation distribution from surface observations alone because of the sparsity and heterogeneity 

of stations (Liang et al., 2006). Due to the intrinsic limitation that interpolation/extrapolation is unable to reproduce 15 

variability smaller than twice the average distance between stations, large inaccuracies usually appear because GSR and DIF 

are largely variable in both time and space (Beckers, 2012). Since meteorological variables are commonly available and 

easily accessible, empirical models such as temperature-based models, sunshine duration-based models, and relative 

humidity- and cloud-based models are developed to reproduce the spatial distribution of surface radiation (Besharat et al., 

2013; Jacovides et al., 2007), but their accuracies are strongly affected by the deficient stations under neglected maintenance 20 

and/or insufficient calibration schedule (Dumas et al., 2015). Retrieval from satellite observations is another reliable 

approach to gain spatially continuous estimates of surface radiation as the digital signals received by sensors carry massive 

information about the atmospheric state and underlying land surface (Qin et al., 2015). These algorithms mainly include two 

categories: constructing empirical mathematical relationships between top of atmosphere (TOA) and surface radiative fluxes 

(Linares-Rodriguez et al., 2013; Lu et al., 2011) and driving complex radiative transfer models utilizing satellite-derived 25 

atmospheric parameters (Greuell et al., 2013; Huang et al., 2011). However, the above methods depend on an independent 

pixel approximation which takes no consideration of spatial collocation of surface radiation (Oreopoulos et al., 2000). Large 

biases and uncertainties are likely to occur in situations under complex broken clouds when comparing to quality-controlled 

ground observations (Wyser et al., 2005). Besides, due to the complexity of integrating spatial pattern and simulating 

radiation transfer processes, significant inaccuracies persist in the parameterization of clouds and their interaction with other 30 

processes (Rasp et al., 2018).  

      To tackle the aforementioned shortcomings, especially the independent pixel approximation caused, we introduce a 

hybrid deep network to retrieve hourly GSR/DIF from geostationary satellite data (Jiang et al., 2019). The key idea is 
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utilizing convolutional neural network (CNN) to extract spatial pattern from satellite imagery and then linking the abstract 

patterns as well as time/location attributes to target hourly radiation values through multi-layer perceptron (MLP). The 

representative characteristic lies in its ability to characterize changeable cloud morphology and approximate arbitrary 

complicated non-linear functions. After complete learning and optimization, the trained network can easily be adapted to 

new surface patterns and provide fast predictions during inference time. Based on such a novel network, we generate the 5 

high-accuracy radiation datasets over China from 2008 to 2018, including GSR and DIF with a spatial resolution of 1/20 

degree, reproducing the spatial distribution and diurnal/seasonal variations of solar radiation in fine scales. All datasets have 

been published in Pangaea (https://www.pangaea.de/), to support radiation-related applications and scientific researches 

particularly on regional climate change and utilization of renewable energy. In this paper, we describe the structure of our 

deep network, workflow of the radiation data production as well as the validation accuracy of our products. Spatiotemporal 10 

deviations of hourly GSR and DIF at different stations are presented, and spatially continuous maps of our predictions are 

compared to other widely used products. Such analysis and comparison are very helpful for rational utilization of the 

products, in-depth understanding of error causes, and potential improvements of next generations.  

2 Data and methods 

 15 

Figure 1: The algorithm used for radiation data production. (a) The flowchart to generate high-resolution GSR and DIF; (b) The 

structure of the hybrid deep network. Conv represents convolution operation; MP means max-pooling operation; and GAP stands 

for global average-pooling operation. The size of 3D blocks are labelled below as channels × width × height. ×3 means that the 

sequential operations in the block are repeated three times. Numbers 1-8 correspond to the main procedures listed in section 2.3. 
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The schematic workflow of the radiation datasets production is shown in figure 1a, with a detailed structure of the initial 

network displayed in figure 1b. The deep network takes Multi-functional Transport Satellite (MTSAT) satellite image blocks 

as well as the local time (month, day, and hour) and location (longitude, latitude and altitude) attributes as inputs, and 

outputs GSR or DIF values. The entire process for data production consists of two main sections: training and estimation. 

The training section concentrates on learning the underlying non-linear relationships between inputs and target outputs, 5 

while the estimation section is responsible for predicting spatially continuous GSR and DIF maps using the optimized 

networks by feeding gridding inputs. The details are described in the following. 

2.1 Basic data 

The data used here include hourly GSR, hourly DIF, geostationary satellite images, as well as digital elevation model (DEM) 

data. The radiation measurements along with the time/location attributes of involved stations are from China Meteorological 10 

Administration (CMA) (http://data.cma.cn/ last accessed: 16 Oct., 2019), covering a period from 1 Jan., 2008 to 31 Jan., 

2008. Figure 2 shows the spatial distribution of all stations, of which 81 sites (red circles) only provide GSR while the rest 

(blue triangles) provide both GSR and DIF. The elevations of these stations vary from 2.5m to 4507m, with different 

climates and various land cover types including desert, semi-desert, wetlands, croplands, grasslands and forests etc., making 

it possible to collect enough representative samples for deep network training. Specially, five stations (the labelled triangles) 15 

with the same underlying surface but different climatic characteristics are picked out for independent validation of the spatial 

extendibility of our deep network. Further quality checks are made according to the physical threshold test (Roebeling et al., 

2004), i.e., an upper limit of 0.9 for the atmospheric clearness calculated as the hourly measured GSR relative to the hourly 

potential extra-terrestrial GSR on a horizontal surface. Such test eliminates most of the wrong samples with quite few 

escaped ones which makes no sense seeing that the robustness of deep network allows the existence of few errors. In total, 20 

0.49% of all records not passing the test are deleted, and 441547 samples for GSR and 55096 samples for DIF are retained.  
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Figure 2: Locations of radiation stations used in our study. DEM data from Shuttle Radar Topography Mission represents the 

surface elevation in meters. Sites with labels are used for model validation while others are for model training or fine-tuning. 

The used geostationary satellite images are Multi-functional Transport Satellites (MTSAT) data, provided by the Japan 

Meteorological Agency (JMA). The MTSAT-1R, launched in February 2005, is positioned at 104°E above the equator to 5 

monitor Asia-Pacific region (70°N - 20°S, 70°E - 160°E). The imager on board MTSAT scans the surface every 30 min and 

provides images in five channels: one visible channel (VIS, 0.55-0.80μm), two split-window channels (IR1, 10.3-11.3μm; 

IR2, 11.5-12.5μm), one water vapour channel (IR3, 6.5-7.0μm) and one shortwave infrared channel (IR4, 3.5-4.0μm). The 

spatial resolution of MTSAT images is 1 km for the visible channel, and 4 km for the other infrared channels. Our used 

MTSAT products are available at http://weather.is.kochi-u.ac.jp/ (last accessed: 16 Oct., 2019). DEM data are from Shuttle 10 

Radar Topography Mission that generates the most complete high-resolution digital topographic database of the Earth, 

covering over 80% of the Earth’s land surface between 60°N and 56°S with data points posted approximately 30m. The data 

can be obtained from the website http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (last accessed: 16 Oct., 2019). 

2.2 Deep network 

Deep learning has achieved notable success in modelling ordered sequences and data with spatial context in the field of 15 

computer vison, speech recognition and control systems (LeCun et al., 2015). In geosciences, convolutional neural networks 

(CNN) are widely utilized to extract spatial features for definition and classification of extreme situations, for instance, 

storms, spiral hurricanes, and atmospheric rivers (Reichstein et al., 2019). Extending on previous classical neural networks 

(He et al., 2016; Simonyan and Zisserman, 2014), herein we build a hybrid deep network for radiation prediction from 

geostationary satellite data. The structure is shown in figure 1b and the detailed configurations are listed in table 1. There are 20 

two input pipes: Input1 for MTSAT image blocks and Input2 for attributes. The designed size of input blocks is 1 × 16 × 16 
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pixels (visible channel × width × height), equalling around 80km × 80km on the ground. Firstly, the MTSAT images are 

mapped into multidimensional features through two sequential convolutional layers (Conv) with 64 kernels, followed by a 

max-pooling (MP) with 2 × 2 kernel, stride of 2. Then residual blocks (He et al., 2016), equipped with 128 kernels and 256 

kernels, respectively, are utilized in sequence to extract abstract spatial pattern implicit in satellite imagery. These sequential 

operations are repeated three times and another MP layer with 2 × 2 kernel, stride of 2 is embedded between them for 5 

context aggregation. The resulting 256 × 4 × 4 feature maps are flattened into ordinary vector by a global average-pooling 

(GAP) layer before flowing into the prognostic multi-layer perceptron (MLP) together with additional attributes, normalized 

information on the local time (month, day and hour) and location (longitude, latitude and altitude) of ground stations 

corresponding to the central point of MTSAT block. The two hidden fully-connected layers (FC) of MLP are implemented 

with 256 and 64 nodes, respectively, to simulate the nonlinear relationships between inputs and outputs, i.e., GSR or DIF. It 10 

is stressed that above convolutional layers are followed by the rectified linear unit (ReLU) (Nair and E. Hinton, 2010) 

activation function and batch normalization (Ioffe and Szegedy, 2015) layers to speed up the learning process and alleviate 

the repulsive vanishing gradient problems, and all convolution kernels are of size 3 × 3, the smallest kernel to seize spatial 

patterns in different directions. Such a network is expected to resolve the integration of spatial pattern and simulation of 

complex radiation transfer, thus further improve the accuracy of radiation inversion from satellite images. 15 

Table 1. Detailed configurations of our deep network. Conv: convolutional layer; MP: max-pooling layer; RB: residual block; 

GAP: global average-pooling layer; FC: fully-connected layer; MLP: multi-layer perceptron; ReLU: rectified linear unit. 

Module Unit Input Size Kernel Num. Kernel Size Stride 
Activation 

Function 
Output Size 

 Input1 - - - - - 1 × 16 × 16 

Feature Mapping 

Conv 1 × 16 × 16 64 3 × 3 1 ReLU 64 × 16 × 16 

Conv 64 × 16 × 16 64 3 × 3 1 ReLU 64 × 16 × 16 

MP 64 × 16 × 16 - 2 × 2 2 - 64 × 8 × 8 

Residual Learning 

RB 64 × 8 × 8 128 3 × 3 1 ReLU 128 × 8 × 8 

RB 128 × 8 × 8 128 3 × 3 1 ReLU 128 × 8 × 8 

RB 128 × 8 × 8 128 3 × 3 1 ReLU 128 × 8 × 8 

MP 128 × 8 × 8 - 2 × 2 2 - 128 × 4 × 4 

RB 128 × 4 × 4 256 3 × 3 1 ReLU 256 × 4 × 4 

RB 256 × 4 × 4 256 3 × 3 1 ReLU 256 × 4 × 4 

RB 256 × 4 × 4 256 3 × 3 1 ReLU 256 × 4 × 4 
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GAP 256 × 4 × 4 - 4 × 4 0 - 256 

MLP 

Input2 - - - - - 6 

FC 262 - - - ReLU 256 

FC 256 - - - ReLU 64 

FC 64 - - - ReLU 1 

2.3 Dataset generation 

Figure 1a illustrates the explicit process to generate data production process from MTSAT images. The main procedures are 

as follows: 

1) Prepare the training datasets. For each ground station in 2008, its corresponding 16 ×16 neighbouring pixels are cut out 

from MTSAT images and matched with quality-controlled GSR/DIF records in 2008 according the time information. 5 

These samples are then separated into three groups: GSR training set (93 symbols in figure 2 without labels), DIF 

training set (12 triangles in figure 2 without labels) and validation set (5 triangles in figure 2 with labels).  

2) Simulate the state at the top of Mt. Everest. To guarantee that in high elevation regions the final trained network has a 

reasonable extrapolation, constraints from radiative transfer model simulation at the top of Mt. Everest are mixed into 

the GSR/DIF training set. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model is adopted for 10 

the simulation (Lu et al., 2011). 

3) Initialize the deep network. The network is implemented using the keras (Chollet and others, 2015) package with the 

theano backend (Theano Development Team et al., 2016). All parameters of the network are initialized through Xavier 

(Glorot and Bengio, 2010). The validation split is set to 20%, meaning that 80% of the training samples are randomly 

selected to determine the network parameters while the remaining samples serve as validation ones to identify whether 15 

the network is overfitting during training section. The learning rate is initially 0.01 but multiplied by 0.5 across a 

learning plateau.  

4) Train the network for GSR prediction. After initialization, the Adagrad optimizer (Duchi et al., 2011) is used to 

iteratively find the optimal weights and biases that minimize the mean-squared error (MSE) between the network’s 

predictions and the training targets. An early-stopping mechanism which relinquishes on further optimization when the 20 

performance ceases to improve sufficiently or even degrades, is utilized to relieve overfitting by monitoring the 

network’s performance on the validation part, randomly selected 20% of the GSR training set. The model with the best 

performance is preserved for subsequent predictions, i.e., gaining spatially continuous radiation maps or estimates for 

other years. 

5) Fine-tune the network for DIF prediction. The gained knowledge of the trained network in 4) is from GSR labels 25 

through supervised learning, making it not completely suitable for DIF estimation. Thus, DIF training set is used to fine-
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tune the network through the transfer learning technique which gets new skills while recycling acquired knowledge. The 

best model can be obtained in short time as all initial parameters have been optimized once in 4). 

6) Generate spatially continuous hourly estimation of GSR/DIF. Hourly MTSAT images are gridded and matched with 

corresponding pixel attributes on time and location to meet the input criteria. The best models gained in 4) and 5) are 

then used to predict GSR and DIF maps, respectively. In addition, the direct solar radiation (DIR) can be derived by 5 

subtracting DIF from GSR. 

7) Integrate daily and monthly estimation of GSR/DIF. Daily total values are integrated from the predicted hourly maps by 

adopting the same method during the ground measurements. Monthly total values are the sum of all daily values within 

the corresponding month. 

8) Validate the radiation datasets. The validation set representing ground measurements from 5 independent sites is used 10 

for our product evaluation. The overall accuracy is measured using four indices: coefficient of determination (R2, the 

confidence level is 95%), mean bias error (MBE), root mean-squared error (RMSE), and relative root mean-squared 

error (rRMSE), between predictions and ground measurements: 

𝑅2 = 1 − ∑ (𝑦̂𝑖 − 𝑦𝑖)
2𝑛

𝑖=0 ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=0⁄  ,        (1) 

MBE =
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)
𝑛
𝑖=0  ,          (2) 15 

RMSE = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=0  ,                        (3) 

rRMSE = 100 × RMSE 𝑦̅⁄ ,                        (4) 

where 𝑛 is the total number of data samples indexed by i,  𝑦 represents the measured value whose mean value is  𝑦̅ , and 

𝑦̂  is the prediction value from our production. 

3 Description of the radiation datasets 20 

Our datasets provide the gridded surface global and diffuse solar radiation within 71.025°E - 141.025°E and 14.975°N - 

59.975°N (mainly in China) with an increment of 0.05°, covering the period from 2007 to 2018. Both the direct predicted 

hourly values and the integrated daily and monthly total values are available. The dataset should be useful for the analysis of 

the regional differences and temporal cycles of solar radiation in fine scales, as well as the impact of diffuse radiation on 

plant growth etc. 25 

Figure 3 shows an example of the hourly estimation of GSR and DIF at UTC 6:00, 22 Jun., 2008 (BJT 14:00, 22 Jun., 2008). 

The influence of cloud depth, surface topography and elevation are reflected in the spatial distribution of surface radiation. 

Under the thick clouds (red regions in figure 3a), both GSR and DIF are lower than surrounding areas. In contrast, with 

respect to regions below thin clouds (yellow regions in figure 3a), as more DIF is obtained on the surface, GSR is relatively 

https://doi.org/10.5194/essd-2019-209

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 7 November 2019
c© Author(s) 2019. CC BY 4.0 License.



9 

 

higher. As for areas under clear sky conditions (blue regions in figure 3a), the surface radiation is relatively stronger in high 

altitude areas, for example, the Tibetan Plateau.  

 

Figure 3: Spatial distribution of hourly GSR and DIF at UTC 6:00, 22 Jun., 2008 (BJT 14:00, 22 Jun., 2008). (a) Reflectance of 

MTSAT visible channel; (b) GSR; (c) DIF. The unit of radiation is MJ m-2.  5 
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Figure 4: Spatial distribution of daily, monthly and yearly GSR, DIF and DIR. (a-c) Daily total GSR, DIF and DIR on 22 Jun., 

2008; (d-f) Monthly total GSR, DIF and DIR in June, 2008; (c) Yearly total GSR, DIF and DIR in 2008. The legend for each row is 

labelled at the right. The unit of radiation is MJ m-2.   

Figure 4 shows the spatial distribution of total GSR, DIF and the derived DIR in daily, monthly and yearly scales. The daily 5 

total radiation on 22 June, 2008 shares the similar characteristics with the hourly radiation in figure 3, indicating a stable 

atmospheric state and nonviolent weather conditions in the day. At monthly total and yearly total scales, the apparent 

regional differences are exposed thoroughly. The distribution of solar radiation exhibits obvious latitudinal dependency, but 

also affected by the surface topography, regional climate and distance to coastal line. Nationwide, GSR is highest on the 

Tibetan Plateau and the lowest in the Szechwan, while DIF has the maximum value on the North China Plain and the 10 

minimum value on the Tibetan Plateau. The direct radiation is predominant in regions with high altitudes (the Tibetan 

Plateau) or drought climate types (the Mongolia Plateau). DIF is the main source of solar radiation on the surface for areas 

with abundant rainfall or frequently covered by clouds (the middle and lower reaches of the Yangtze River, the Szechwan 
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Basin and Guizhou). Although the networks used for prediction are based on the samples in China, it provides satisfying 

estimation in surrounding areas, for example, in June DIF contributes to the majority of surface radiation in India and 

Southeast Asia due to the coming of rainy season. 

 

Figure 5: Monthly variations of averaged GSR (a) and DIF (b) in different regions from 2007 to 2018. The values are from the 5 
monthly total radiation data in the unit is MJ m-2. Different regions are as shown at the upper right corner. 

We also establish time series products to observe the temporal variations of surface solar radiation. Figure 5 shows the 

monthly variations of statistically averaged GSR and DIF for different regions in China from 2007 to 2018. It presents that 

GSR in the Qinghai-Tibet Plateau is the highest all the year round, owning to its large amounts of direct radiations benefiting 

from the significantly higher altitudes, which in contrast leads to its lowest received DIF as shown in figure 5b. The 10 

proportion of diffuse radiation exhibits the highest in the south of China (relatively lower GSR but higher DIF) compared 

with other regions due to the frequent cloudy and rainy weather. A slight dimming of GSR is observed in 2010, followed by 

the brightening from 2011 to 2015, and then by a dimming from 2016 to 2017. Howbeit the long-term trends of GSR is not 

directly related to the variations of DIF in corresponding regions. For instance, neither obvious brightening nor dimming is 

manifested in the northwest while the dimming of DIF in the Qinghai-Tibet Plateau continues up to 2015. In recent years 15 

(2016 - 2018), dramatic variations of solar radiation are observed in summer. 
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4 Validation of the radiation datasets 

4.1 Overall performance 

 

Figure 6: The density plots of predicted hourly GSR (first column) and DIF (second column) versus measured values at (a-b) all 

sites and the top of Mt. Everest and (c-d) 5 independent validation sites in 2008. The black solid lines are 1:1 lines and the red 5 
dashed lines represent the fitted regression lines, whose expressions are labelled at the lower right corner. 

The performance of the hybrid network is evaluated by means of comparing predicted values with ground measurements as 

shown in figure 6. Overall, it provides satisfactory estimates for hourly radiation at the site scale with an R2 of 0.93, MBE of 

9.83 W/m2, RMSE of 73.79 W/m2 and rRMSE of 20.47 for GSR, whereas an R2 of 0.78, MBE of 3.09 W/m2, RMSE of 

58.22 W/m2 and rRMSE of 37.03 for DIF, as shown in figure 6a-b. The positive MBE values confirm that our production 10 

overestimates the surface radiation at some degree, which might attribute to the relative lower measurements due to the 

urbanization effects (Wang et al., 2014). The errors of DIF are more serious than GSR indicated by the lower R2 and larger 

rRMSE. The potential causes are the higher requirements during DIF estimation for explicit representation of aerosols, 

clouds, and their interactions. With respect to the five independent sites (figure 6c-d), it achieves an R2 of 0.91, MBE of 9.32 
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W/m2, RMSE of 73.08 W/m2 and rRMSE of 24.20 for GSR, and an R2 of 0.78, MBE of 9.09 W/m2, RMSE of 58.33 W/m2 

and rRMSE of 36.53 for DIF, proving that our hybrid network owns perfect extendibility in space. Still, the performance on 

DIF is slightly worse than that on GSR. Anyhow, the above RMSE values are comparable to those in existing models, for 

instance, Shamim et al. (2015) achieved a testing RMSE of GSR about 110.83 W/m2; the RMSE values of GSR ranged from 

131.39 to 142.22 W/m2 from Yao et al. (2015). Owing to the appropriate representation of changeable cloud morphology and 5 

non-linear relationships between inputs and outputs, the deep network provides the most exciting estimation of hourly 

radiation. The performance on GSR estimation at daily total and monthly-averaged daily total scales with an RMSE of 2.14 

MJ/m2 and 1.30 MJ/m2, respectively, is also remarkably better than previous studies. For example, the testing RMSE of daily 

total GSR was 3.09 MJ/m2 from Lu et al. (2011) and 2.93 MJ/m2 from Landeras et al. (2012); the RMSE of monthly-

averaged daily total GSR for validation was 3.94 MJ/m2 from Senkal and Kuleli (2009) and 1.92 MJ/m2 from Lu et al. 10 

(2011). 

4.2 Temporal distribution of errors 

 

Figure 7: The R2, MBE, RMSE and rRMSE between predicted hourly GSR/DIF and ground measurements in 2008 grouped by 

the local hour from 8:00 to 17:00. The units of MBE and RMSE are W/m2. 15 

Figure 7a-d shows the total errors of hourly predictions grouped by the local hour from 8:00 to 17:00. All predictions 

correlate well with the ground measurements with the lowest R2 being 0.86 for GSR and 0.65 for DIF, fully proving the 

superior performance of deep network in hourly radiation estimation again. Large MBEs are likely to occur in the afternoon 

due to the high intensity of solar radiation. Although the MBE and RMSE illustrate that errors at hours near noon are much 

larger along with the increasing intensity of solar radiation, the performances are still promising given that rRMSE are all 20 

below 35%. Because the amounts of received surface radiation in the morning and at night are originally very low, rRMSE 

values at related hours are conversely large regardless of the relatively small RMSE. In the temporal dimension, these 

deviations might result from the difference that the satellite images reflect an instantaneous state of the atmosphere whereas 

ground measurements represent the average state within per unit time (herein one hour). If the clouds move rapidly, the 

ground stations would be covered by cloud shadows within a certain period but finally under a clear condition at the time the 25 

sensor scans so that the ground measurements are much smaller than satellite-based inversion values. Therefore, large 
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positive MBEs are likely to occur when coming across changeable clouds. As the deep network just takes into consideration 

the spatial concentration of solar radiation, it cannot properly handle the lag effect and cumulative effect in time series, thus 

is difficult to simulate the dramatic change in a short time. The recurrent neural networks (Heck and Salem, 2017; Hochreiter 

and Schmidhuber, 1997) which allow for exhibition of temporal dynamic behaviour, are the promising solutions. In addition, 

both figure 7a and 7b confirm that the prediction accuracy of GSR surpasses that of DIF, suggesting that using only the 5 

visible information of geostationary imagery may not be enough for the deep networks to fully capture the sophisticated 

atmospheric scattering mechanism. 

4.3 Spatial distribution of errors 

 

Figure 8: The spatial distribution of R2 and rRMSE in 2008 at each site. (a) R2 for GSR; (b) rRMSE for GSR; (c) R2 for DIF; (d) 10 
rRMSE for DIF. Note that DIF is measured only at 17 radiation sites. 

The R2 and rRMSE of hourly GSR/DIF at each site are displayed in figure 8, where obvious geographical differentiation is 

observed. On the whole, estimates from our production correlate well with ground observations at sites with high probability 

of cloud-free skies, for instance, the north and northwest China. Low R2 and large rRMSE are likely to occur at sites located 

in regions with more cloudy days, such as the south and southwest China, especially the Szechwan Basin perennially 15 
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covered by clouds. It is particularly obvious that the correspondence is relatively worse from the Tibetan Plateau to southern 

China. The previous assessment on the ERA-Interim data in China (Zhang et al., 2018) suggests that the possible causes are 

various due to the spatially stratified heterogeneity of the atmosphere: the dominant factor is aerosols on the Tibetan Plateau, 

cloud coverage in the Sichuan Basin or on the Yunnan-Guizhou Plateau, and aerosols and water vapour content in the 

Southeast Hills. In the spatial dimension, the errors might result from the fact that the gridded estimation from satellite data 5 

is inherently spatial domain-averaged while ground observations focus on the local concentration of solar radiation, easily 

affected by surrounding environments (Greuell and Roebeling, 2009). If the ground station is covered by shadows of cirrus 

clouds or surroundings, its real-time measured GSR will be lower than that of other locations within the matching pixel of 

satellite images, thus being lower than satellite-derived values. With regard to DIF, the correlation between predictions and 

measurements is much worse than that of GSR, in agreement with the results in section 4.2. Contrary to the GSR, 10 

predications of DIF behave well in humid areas (southern China) rather than in arid areas (northwest China). It may attribute 

to that the deep network has only gained the knowledge of cloud depth, thus fails in accurately distinguishing the difference 

of scattering patterns between wet and dry climates due to the absence of  information about atmospheric water vapour and 

particulate matter. Anyhow, the root cause still lies in the insufficiency of DIF training samples. From this point of view, 

spatially uniformly distributed and densely installed surface radiation networks are in urgent requirements.  15 

4.4 Comparisons to other products 

To further verify the reliability of our datasets, we compare it to two widely-used radiation products: ERA5 reanalysis 

product from the European Centre for Medium-Range Weather Forecasts (ECMWF) (https://climate.copernicus.eu/ last 

accessed: 21 May 2019) and solar radiation from National Renewable Energy Laboratory (NREL) (https://www.nrel.gov/ 

last accessed: 21 May 2019). ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate, providing 20 

estimates for each hour of the day on 0.25° × 0.25° latitude-longitude grids. It adopts the Integrated Forecasting System (IFS 

Cycle 41r2), the perfect representative of the advanced research and development in modelling and data assimilation, to 

guarantee the significant increase in forecast accuracy, and then combines the model simulation with observations from 

across the world into a globally complete and consistent dataset using the laws of physics. NERL datasets are based on the 

State University of New York/Albany satellite radiation model (Perez et al., 2002), developed at the National Renewable 25 

Energy Laboratory and other universities for the U.S. Department of Energy. The model uses hourly radiance images from 

geostationary weather satellites, daily snow cover data, and monthly averages of atmospheric water vapour, trace gases, and 

the amount of aerosols in the atmosphere to calculate the hourly total insolation (sun and sky) falling on a horizontal surface. 

Figure 9 shows the spatial distribution of yearly GSR, DIF and DIR from ECMWF ERA5 and NERL, which are comparable 

to the results shown in figure 4g-i. Overall, our results are highly similar to that of NERL, but significantly differ from that 30 

of ERA5. Taking the NERL radiation as the reference, ERA5 underestimates DIF thoroughly except on the Tibetan Plateau 

and Pamirs Plateau and overestimates GSR and DIR in Taklimakan Desert and East China, while our estimates perform well 
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in most regions except the Tibetan Plateau and Pamirs Plateau where large differences on GSR/DIR are observed. That the 

derived DIF of ERA5 exhibits high values on the Tibetan Plateau (frequent clear skies) while low values in the Middle and 

Lower Reaches of the Yangtze River (frequent cloudy skies) is obviously contrary to our common knowledge. However, to 

validate the reliability of different products on the Tibetan Plateau additional observations are required. With respect to the 

neighbouring regions, although our estimates are erroneously deviated in India and Southeast Asia due to the lack of training 5 

samples, the relative differences of radiation caused by local cloud thickness are properly represented. 

 

Figure 9: Spatial distribution of yearly GSR, DIF and DIR from (a-c) ECMWF ERA5 and (d-f) NERL in MJ m-2. Note that data 

from NERL are long-term yearly average of daily totals, covering the period from 1994/1999/2007 (depending on the region) to 

2015 over the land area.  10 

5 Data availability 

All hourly, daily and monthly radiation datasets from 2007 to 2018 are freely available from the Pangaea at 

https://doi.pangaea.de/10.1594/PANGAEA.904136 (Jiang and Lu, 2019), through which users can link to the specific data 

entities of each year. The dataset for one year includes twelve folders for hourly radiation, one folder for daily total radiation, 

one folder for monthly total radiation as well as other supporting documents. All radiation files are stored in HDF5 format 15 

and each file contains two variables representing (daily/monthly total) global radiation and (daily/monthly total) diffuse 

radiation, respectively. The files for hourly datasets, named as “RAD_yyyymmddhh.h5” where “yyyy”, “mm”, “dd”, and 

“hh” denote year, month, day and hour (UTC time), are stored as int16 data type with an scaling factor of 0.01, whereas the 
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files for daily datasets (named as “RAD_yyyymmdd.h5” where “yyyy”, “mm”, and “dd” denote year, month, and day) and 

monthly datasets (named as “RAD_yyyymm.h5” where “yyyy” and “mm” denote year and month) are stored as floating-

point data type with scaling factor of 1.00. The datasets provide gridded radiation data within 71.025°E - 141.025°E and 

14.975°N - 59.975°N along with a spatial resolution of 0.05° in the unit of 0.01 MJ m-2. The hourly radiation can also be 

expressed in unit of W/m2 through the conversion: 0.01 MJ m-2 hour-1=1/0.36 W m-2. The time coverage of hourly dataset is 5 

from 2007-01-01 0:00 to 2018-12-31 23:00 (UTC). More details and examples of data visualization can refer to the 

published description files in each dataset. It is noted that all hourly data are provided in UTC universal time. 

6 Conclusions 

Datasets on solar radiation is of great importance to the detection of global dimming and brightening; the quantification of 

the Earth’s surface energy budget; the sustainable development of ecological environments or vegetation productivity, the 10 

simulation of regional climate models, and assessments of solar resources for solar power production. For the first time, we 

introduce a new satellite-based radiation inversion method which relies on CNN to characterize changeable cloud 

morphology of satellite imagery and MLP to build non-linear relationships between satellite signals and ground observations, 

to generate high-precision hourly radiation data series, including GSR and DIF over China from 2007 to 2018. The method 

achieves the integration of spatial pattern and the simulation of complex radiation transfer process, finally yielding an overall 15 

R2 of 0.93, MBE of 9.83 W/m2, RMSE of 73.79 W/m2 and rRMSE of 20.47 for hourly GSR, and an R2 of 0.78, MBE of 3.09 

W/m2, RMSE of 58.22 W/m2 and rRMSE of 37.03 for hourly DIF. The RMSE of daily total and monthly-average daily total 

GSR decrease to 2.14 MJ/m2 and 1.30 MJ/m2, respectively, notably superior to the results of existing algorithms. The 

spatially continuous maps also properly reflect the temporal variations and spatial distribution in fine scales. Error analysis 

of our datasets and comparison to other products reveal that fusion of time series images along with auxiliary information 20 

from other channels could further improve the data accuracy and advance in reproducing the short-term fluctuation of solar 

radiation. Next, we intend to optimize the hybrid network based on above findings, and then to produce long-term time series 

solar radiation datasets for change detection and tendency analysis. We expect that our products would serve as a key data 

source on spatiotemporal distribution of solar radiation in support of related scientific researches and industrial applications 

in the future. 25 
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