
Response to Referee #2 

We would like to thank the reviewer for the comments and suggestions, which are all 

valuable and very helpful for improving our paper. We have made revisions and a point-

to-point response is present in the following. 

Comments: 

Hou et al. present a study about “surface global and diffuse solar radiation over China 

acquired from geostationary Multi-functional Transport Satellite data”. The following 

questions should be satisfactorily answered before consideration for publication:  

1. The topic is not innovative enough, which has been done by many researchers, for 

example Tang et al (2016) has published an article named “Retrieving high-resolution 

surface solar radiation with cloud parameters derived by combining MODIS and MTSAT 

data”. The input data in your model, the spatial and temporal resolution of your output 

GSR values are similar to that in Tang’ study. Only using a artificial intelligence model 

could not be an innovation idea. I would strongly advise the author(s) of this paper to 

rewrite their introduction section to give more explanation of the research background. A 

very general sentence is not enough to demonstrate the research significance.  

Response: 

Thank you for your advice.  

Yes, the topic of radiation is not new and has been done by many researchers in view of 

its general interests in many fields and supports to various basic models (e.g., JULES, 

FöBAAR, YIBs, SWAP) and applications (e.g., modelling radiation-use efficiency of 

wheat, early yield assessment of soybean, wheat and sunflower), as described in the 

Introduction of our revised manuscript. 

In theory, previous studies (including Tang et al., 2016) are based on an independent 

pixel approximation which assumes a plane-parallel horizontally homogeneous cloud. 

Thus, their radiation retrievals are pixel-based (from point to point), in other words, only 

(multi-band) satellite signals or multi-source information corresponding to the specific 

ground location is used for surface radiation estimation. However, it has been 

demonstrated that multiple reflections and scattering events off the sides of clouds or on 

the surface would lead to significant horizontal photon transport, so that adjacent pixels 

within a certain spatial extent also influence the measured radiation at a specific location 



on the ground. To the best of our knowledge, the traditional pixel-based retrieval cannot 

handle such spatial adjacent effects of surface radiation and none of operational methods 

has been proposed currently. Thus our innovation idea is to deal with image blocks of 

16*16 pixels through CNN blocks to infer the surface radiation at the location 

corresponding to the central point of the input image block. We expect the CNN blocks 

can approximate the spatial adjacent effects thereby improving the final accuracy of 

radiation estimation. The CNN blocks allow for identical treatment of adjacent satellite 

pixels, and can be stacked to construct deep residual structure to extract hierarchical 

features from low-level details (e.g., geometric shapes, sizes, orientations, edges and 

distribution) to high-level comprehensive abstract representations (e.g., intrinsic physical 

and optical properties of mixed clouds). It is believed that such hierarchical architecture 

of spatial features can fully expose the scattering effects, absorption effects as well as 

their interactions in the atmosphere, thus can be considered as substitutes for various 

input parameters representing atmospheric state in radiative transfer models. Meanwhile, 

the MLP can be utilized to link extracted features of CNN and additional auxiliary 

information to target measurements of hourly surface radiation through implicit non-

linear expressions. More explanations have been added into the Introduction of revised 

manuscript as “These algorithms mainly include two categories: constructing empirical 

mathematical relationships between top of atmosphere (TOA) and surface radiative 

fluxes (Linares-Rodriguez et al. 2013; Lu et al. 2011) and driving complex radiative 

transfer models utilizing satellite-derived atmospheric parameters (Greuell et al. 2013; 

Huang et al. 2011). These methods are in theory based on an independent pixel 

approximation which assumes a plane-parallel horizontally homogeneous cloud. Thus, 

surface radiation retrievals from satellite imagers are pixel-based (from point to point), in 

other words, only (multi-band) satellite signals corresponding to the specific ground 

location are used for surface radiation estimation. However, in reality this idealized 

situation does not always exist, or even is uncommon. For example, in the presence of 

broken clouds, multiple reflections and scattering events off the sides of clouds or on the 

surface would lead to significant horizontal photon transport (Madhavan et al. 2017; 

Oreopoulos et al. 2000; Schewski and Macke 2003), which makes significant differences 

when the spatial resolution increases to several kilometres where the surface radiation of 



an individual footprint under inhomogeneous clouds is relevant to multiple adjacent 

satellite pixels (Huang et al. 2019). In fact, large biases and uncertainties occur frequently 

under broken clouds when comparing current high-resolution surface radiation products 

to quality-controlled ground observations (Deneke et al. 2009; Huang et al. 2016).  

       Therefore, it seems that area-to-point retrievals are the optimal solutions. From this 

point of view, a practical effort has been made in our previous works, where a hybrid 

deep network mainly consisting of convolutional neural network (CNN) blocks and 

multi-layer perceptron (MLP) is built to retrieve hourly GSR/DIF from geostationary 

satellite data (Jiang et al. 2019). The CNN blocks takes image blocks as inputs thereby 

allowing for identical treatment of adjacent satellite pixels, and are further stacked to 

construct deep residual structure to extract hierarchical features from low-level details 

(e.g., geometric shapes, sizes, orientations, edges and distribution) to high-level 

comprehensive abstract representations (e.g., intrinsic physical and optical properties of 

mixed clouds). It is believed that such hierarchical architecture of spatial features can 

fully expose the scattering effects, absorption effects as well as their interactions in the 

atmosphere, thus can be considered as substitutes for various input parameters 

representing atmospheric state in radiative transfer models. The MLP is utilized to link 

extracted features of CNN and additional auxiliary information defining the state in time 

and space to target measurements of hourly surface radiation through implicit non-linear 

expressions, whose parameters are learnt from pre-prepared training samples in 

supervised manner. The deep network is demonstrated to be effective in handling spatial 

adjacent effects and simulating complicated radiative transfer processes, and successful 

in achieving superior accuracy of GSR estimates.” 

Here, we would like to point out the differences between our works and Tang’s: 

1) The inputs of our algorithm involve only the visible band of MTSAT data along with 

additional attributes including the local time (month, day and hour) and location 

(longitude, latitude and altitude) without other cloud parameters. 

2) The MTSAT data are input into the model as a whole to handle the spatial adjacent 

effects of surface radiation. 



3) Much higher accuracy of radiation data has been achieved in our work as shown in 

Figure R1, which further demonstrate the importance to take spatial adjacent effects into 

consideration during satellite-based radiation retrievals. 

  

(a) (b) 

Figure R1: The density plots of predicted hourly global solar radiation versus measured values for (a) 

Tang’s data and (b) our datasets in 2007. 

4) The diffuse radiation is also estimated and provided in our datasets, which is 

comparable to the widely-used ECMWF-ERA5 data as shown in R2. 

  

(a) (b) 

Figure R2: The density plots of predicted hourly diffuse solar radiation versus measured values for 

(a) ECMWF ERA5 and (b) our datasets in 2007. 

 

Comments: 

2. In Tang’s study (Ditto), Tang et al., innovatively correlated the cloud optical properties 

to the satellite data that were used in your study. The main radiation dumping processes 

including Rayleigh scattering, aerosol extinction, ozone absorption, water vapor 



absorption, permanent gas absorption, and cloud extinction are considered in Tang’s 

study. What is the scientific correlation between satellite signals in five bands with GSR 

and DIF values in your study? Author should explain the mechanisms in your model.  

Response: 

Thank you for your advice. I am so sorry for the ambiguous explanation of our model and 

its mechanisms.  

Different from Tang’s work, we directly correlate the ground measured GSR or DIF 

values to the visible channel of MTSAT satellite data, and we expect the deep network to 

build their relationships through hierarchical feature representations of CNN and 

continuous mapping function approximation of MLP by learning from pre-prepared 

training samples in a supervised manner. The radiation dumping processes such as 

Rayleigh scattering, aerosol extinction, ozone absorption, water vapor absorption, 

permanent gas absorption, and cloud extinction are avoided as it is believed that 

hierarchical architecture of spatial features can fully expose above-mentioned effects, 

thus can be considered as substitutes for various input parameters representing 

atmospheric state in radiative transfer models. The utilization of other channels such as 

IR1-4 of MTSAT might add useful information about water vapor, cloud temperature etc. 

for radiation estimation, but herein to assure the cross-sensor applications, only the 

visible channel of MTSAT data are used as it is available for almost all satellite images. 

This is reasonable as the visible channel provides the most proportion of information on 

aerosols, clouds and other atmospheric properties. More explanations on the mechanisms 

in our model are added into the Introduction and Section 2.2 of the revised manuscript. 

The related parts in the Introduction are as “The CNN blocks takes image blocks as 

inputs thereby allowing for identical treatment of adjacent satellite pixels, and are further 

stacked to construct deep residual structure to extract hierarchical features from low-level 

details (e.g., geometric shapes, sizes, orientations, edges and distribution) to high-level 

comprehensive abstract representations (e.g., intrinsic physical and optical properties of 

mixed clouds). It is believed that such hierarchical architecture of spatial features can 

fully expose the scattering effects, absorption effects as well as their interactions in the 

atmosphere, thus can be considered as substitutes for various input parameters 

representing atmospheric state in radiative transfer models. The MLP is utilized to link 



extracted features of CNN and additional auxiliary information defining the state in time 

and space to target measurements of hourly surface radiation through implicit non-linear 

expressions, whose parameters are learnt from pre-prepared training samples in 

supervised manner. The deep network is demonstrated to be effective in handling spatial 

adjacent effects and simulating complicated radiative transfer processes, and successful 

in achieving superior accuracy of GSR estimates.” The related parts in Section 2.2 are as 

“Satellite image is regarded as a vivid portrayal of the atmosphere and the surface state, 

and its recorded signals usually contain information on cloud-radiation interactions and 

impacts among adjacent locations. Traditional physical algorithms retrieve surface 

radiation from satellite signals on the basis of various radiative transfer models or their 

simplified versions, where geometric conditions, atmospheric conditions, and aerosol 

types should be strictly defined, complex processes such as atmospheric absorption and 

scattering, and their interactions are needed to be precisely simulated, or clear-sky and 

cloudy retrieval modes are independently developed. Herein, we utilize deep learning 

technique to directly build the implicit correlations between satellite signals and surface 

radiation in view of its powerful approximation ability of continuous mapping function. 

Except that all-sky situations are under a unified framework and tedious intermediate 

simulations are avoided, different from classical pixel-based retrievals, the CNN blocks 

are able to deal with spatial adjacent effects of surface radiation, that is, the influence of 

neighbouring pixels on the central point can be taken into account … In addition, for the 

convenience of cross-sensor applications, it is better to only depend on the visible 

channel which is available for nearly all satellite images. This is reasonable as the visible 

channel provides the most proportion of information on aerosols, clouds and other 

atmospheric properties (Lu et al. 2011)” 

 

Comments: 

3. Please check the unit of GSR, DIF in Figure 4. The unit are different throughout your 

article.  

Response: 

Thank you for your advice. We have checked it carefully throughout our article. In this 

paper, two units (i.e., W/m2 and MJ/m2) are used. In Section 3, all figures are shown in 



the unit of MJ/m2 corresponding to the unit of the published datasets. To compare the 

spatial distribution of other products with our results in Figure 4, the figures in Figure 9 

also shown in the unit of MJ/m2. In contrast, the figure 6-8 during validation are 

displayed in the unit of W/m2 to keep identical with other studies of hourly radiation 

estimation (e.g., Tang et al., 2016) for the convenience of comparisons.  

 

Comments: 

4. Check the label of the color-bar in Figure 6.  

Response: 

Thank you for your advice. We have checked it carefully and added color-bar for each 

sub-plot as well as labels for each color-bar. More explanations about the density of 

color-bar are added in the figure title as “Figure 6: The density plots of predicted hourly 

GSR (first column) and DIF (second column) versus measured values at (a-b) all sites 

and the top of Mt. Everest and (c-d) 5 independent validation sites in 2008. The black 

solid lines are 1:1 lines and the red dashed lines represent the fitted regression lines, 

whose expressions are labelled at the lower right corner. Gaussian kernels are used for 

density plots and the density values are normalized to the 0–1 range through min-max 

normalization.” 

 

Comments: 

5. Many statistical indicators (RMSE, MAE, rRMSE, R2) are used to evaluate the model 

accuracy. How to evaluate the overall model performance of your model?  

Response: 

Thank you for your advice. We have chosen four indicators, i.e., R2, MBE, RMSE, 

rRMSE, to evaluate the model accuracy from different aspects as any single index cannot 

demonstrate the comprehensive quality of datasets. In fact, it's almost impossible to 

develop a single indicator to assess the comprehensive model performance. For example, 

there are issues that the predicted hourly values are highly correlated to the measurements 

(large R2 values) but show significant overestimation or underestimation (large MBE 

values). In contrast, the utilization of multiple indicators could avoid such situation. The 

R2 measures the linear correlation between the observations and predictions, RMSE is 



measure of their overall differences and MBE indicates whether predictions are 

overestimated or underestimated. For the convenience of comparison, rRMSE is also 

adopted as it is usually used in similar researches. The overall model performance of our 

model should be the comprehensive inspects of these four indicators. In addition, I 

wonder whether the word “overall” leads to misunderstanding. Herein, we use the word 

“overall” to mean that the model performance is validated on all measured records, not 

for different months or seasons, or for clear-sky and cloudy conditions. To avoid such 

misunderstanding, we have changed the title of Section 4.1 as “Validation against ground 

measurements” 

 

Comments: 

6. On the 14th page of your article, you noted “on the whole, estimates from our 

production correlate well with ground observations at sites with high probability of 

cloud-free skies”. As well known, the northern China and northwestern China are the 

area with the highest of dust aerosol particles in China, especially in summer. How do 

you detect clear-sky? Author should evaluate the model accuracy in clear-skies and 

cloudy skies, otherwise author could not get this conclusion above. As well known, the 

southern and southeastern China are the areas with abundant precipitable water vapor and 

dense cloud, which would strongly affect the accuracy of your model. How do explain 

the accuracy of the estimated DIF are higher in cloud weather conditions? Further 

sufficient explanation should be given for these questions.  

Response: 

Thank you for your advice.  

The conclusion that estimates from our production correlate well with ground 

observations at sites with high probability of cloud-free skies is incorrect. We have 

corrected as “On the whole, estimates from our production correlate well with ground 

observations at sites with low probability of cloudy conditions, for instance, the north and 

northwest China.” Besides, more explanations are added as “Low R2 and large rRMSE 

are likely to occur at sites located in regions with more cloudy days, such as the south and 

southwest China, especially the Szechwan Basin perennially covered by clouds. As we 

know, both dust aerosol particles in the north and the northeast China and abundant 



precipitable water vapor and dense cloud in the south and southeast China lead to non-

clear skies, but the model performance is opposite in these areas. This might indicate that 

deep network does better in emulating the radiation effect of aerosols, but slightly worse 

in handling that of water vapor.”  

Different from the previous parameterization schemes, we didn’t develop independent 

clear-sky and cloudy retrieval modes separately. The deep network estimates solar 

radiation under all-sky conditions in a unified manner, and provides reliable results as 

indicated by Figure 6. As labels indicating a clear-sky or cloudy condition are unavailable 

for hourly measurements, we didn’t carry out separate comparisons during validation.  

To investigate the causes for the contradiction that the accuracy of the estimated DIF are 

higher in cloudy weather conditions, we carry out an overfitting-test, in which the early-

stopping mechanism is removed deliberately and the model for DIF estimate is trained 

repeatedly until it reaches an obvious over-fitting state where all training samples are 

intended to be well-fitted. If the model capability is responsible for the contradiction, 

changes in spatial distribution of R2 and rRMSE will be in our expectation. However, the 

results in figure R3-4 show that the model performance in the northwest China is 

improved but the spatial distribution keeps consistent with that in Figure 8c-d. This 

evidence points out that the low-quality diffuse measurements in the northwest China 

results in the apparently worse performance of diffuse estimation. In theory, on the 

premise that GSR model has proved its effectiveness in arid areas, the worse performance 

of DIF estimation under the same framework can only be attributed to the data quality. 

Further evidence also comes from the fact that measurements of diffuse radiation in the 

western China are not in a full-automatic tracking manner but involves manual operations, 

of which the nonstandard ones usually lead to measurement errors. More explanations are 

added into Section 4.3 in the revised manuscript as “With regard to DIF, the correlation 

between predictions and measurements is much worse than that of GSR, in agreement 

with the results in section 4.2. Contrary to the GSR, predications of DIF behave well in 

humid areas (southern China) rather than arid areas (northwest China), which is against 

our common sense that cloudy weather conditions in the southern China strongly affect 

the accuracy of radiation estimation. On the premise that GSR model has proved its 

effectiveness in arid areas, the worse performance of DIF estimation under the same 



framework might be attributed to the poor data quality. To further investigate whether the 

model capability or data quality leads to such contradiction, we carry out an overfitting-

test, in which the early-stopping mechanism is removed deliberately and the model for 

DIF estimation is trained repeatedly until it reaches an obvious over-fitting state where all 

training samples are intended to be well-fitted. If the model capability is responsible for 

aforementioned contradiction, changes in spatial distribution of R2 and rRMSE will be in 

our expectation. The results show that the model performance in the northwest China is 

improved but the spatial distribution keeps consistent with that in Figure 8c-d, supporting 

the judgement that the low-quality diffuse measurements in the northwest China bear the 

responsibility for the apparently worse performance. Another evidence comes from the 

fact that measurements of diffuse radiation in the western China are not in a full-

automatic tracking manner but involves manual operations, of which the nonstandard 

ones often lead to measurement errors. Howbeit, this contradictory phenomenon on the 

contrary proves the outstanding robust of deep network whose performance would not be 

easily affected by a small proportion of problematic ground measurements.” 

 

Figure R3 The spatial distribution of R2 and rRMSE in 2008 during the overfitting-test. 

  



  

 
 

Figure R4 Comparisons of model performance during the overfitting-test (left column) and the 

standard one (right column) at three sites whose locations are labelled in Figure R3. 

 

Comments: 

7. Syntax check in the whole manuscript should be done.  

Response: 

Thank you very much for your advice. We have checked the grammar throughout the 

manuscript and corrected related errors. 

 

Comments: 

8. The main contents of this article have been published previously in another journal. 

This is a serious academic moral issue. This article is highly repetitive with your previous 

articles on Renewable and sustainable Energy Reviews 

(https://doi.org/10.1016/j.rser.2019.109327). The Figure 1, Figure 2 have been used in 

your previously published article. Even the main method (CNN and MLP) and the main 

framework of this article are the same as that in previously published article. 



Response: 

Thank you very much for your advice.  

First of all, we would like to declare that this manuscript is not a copy but a further 

development of previous works: 

1) The previous network for GSR estimation is extended to fit the estimation of diffuse 

radiation through transfer learning, an approach to reuse already gained knowledge to 

solve different but analogous problems. A new deep network for DIF estimation is 

obtained by fine-tuning the GSR network using new training samples consisting of 

ground measured diffuse radiation and the corresponding satellite image block.  

2) The trained DIF network and the previous GSR network are used to simultaneously 

generate global and diffuse solar radiation over China based on the visible channel of 

MTSAT data. Herein, time series from 2007 to 2018 are generated to observe long-term 

variations of surface solar radiation, and a simple example is given in Figure 5.  

3) Spatiotemporal errors of our datasets and their potential causes are analyzed to verify 

the expansion capability of deep network in radiation estimation, provide new insights for 

future model improvement and give suggestions for rational use of our datasets. 

In the revised manuscript, we have made the relations to our previous work clear in the 

Introduction as “From this point of view, a practical effort has been made in our previous 

works, where a hybrid deep network mainly consisting of convolutional neural network 

(CNN) blocks and multi-layer perceptron (MLP) is built to retrieve hourly GSR/DIF from 

geostationary satellite data (Jiang et al. 2019)… In this paper, we extend the previous 

network for GSR to fit the estimation of diffuse radiation through transfer learning, an 

approach to reuse already gained knowledge to solve different but analogous problems. A 

new deep network for DIF estimation is obtained by fine-tuning the GSR network using 

new training samples consisting of ground measured diffuse radiation and the 

corresponding satellite image block. After complete learning and optimization, the 

trained DIF network in combination with previous GSR network is used to generate 

radiation datasets including GSR and DIF over China based on Multi-functional 

Transport Satellites (MTSAT) data. The datasets, covering a period from 2007 to 2018, 

with a spatial resolution of 1/20 degree, reproduce the spatial distribution and 

diurnal/seasonal variations of solar radiation in fine scales.” and also in Section 2.2 as “In 



the previous work (Jiang et al. 2019), we have built a hybrid deep network for GSR 

estimation. Herein, we further optimize the GSR model to fit the estimation of diffuse 

radiation by fine-tuning (refer to Section 2.3). The structure is shown in figure 1b and the 

detailed configurations are listed in table 1. There are two input pipes: Input1 for MTSAT 

image blocks and Input2 for additional attributes including the local time (month, day and 

hour) and location (longitude, latitude and altitude) corresponding to the central point of 

Input1. The Output can be either GSR or DIF associated with the central point of Input1.” 

Transfer learning process is also added into Section 2.3 as “4) Train the network for GSR 

prediction. After initialization, the Adagrad optimizer (Duchi et al. 2011) is used to 

iteratively find the optimal weights and biases that minimize the mean-squared error 

(MSE) between the network’s predictions and the training targets. An early-stopping 

mechanism which relinquishes on further optimization when the performance ceases to 

improve sufficiently or even degrades, is utilized to relieve overfitting by monitoring the 

network’s performance on the validation part, randomly selected 20% of the GSR 

training set. The model with the best performance is preserved for subsequent predictions, 

i.e., gaining spatially continuous radiation maps or estimates for other years. 5) Fine-tune 

the network for DIF prediction. The gained knowledge of the trained network in 4) is 

from GSR labels through supervised learning, making it not completely suitable for DIF 

estimation. Thus, DIF training set is used to fine-tune the network through the transfer 

learning technique. The parameters for CNN blocks are initialized from the pre-trained 

GSR model while that for FC layers are reset to zero. Other processes are the same to that 

in 4). In this way, the best model for DIF estimation can be obtained in short time as 

CNN blocks have mastered the knowledge to extract abstract spatial pattern from image 

blocks.” 

The datasets present in this paper are related to the previous work. The main framework 

of deep network (consisting of CNN and MLP) and the basic data used for model input 

are similar to the published ones. To avoid the duplication issues, we have revised related 

figures, for example, the background of figure 2 is changed as land cover types that are a 

perfect way to demonstrate the representativeness of our stations, the graphical structure 

of the deep network (figure 1b) is expressed in the way similar to the widely-used 

framework Keras. These changes are added into the revised manuscript as follows. 



 
Figure 1: The algorithm used to generate radiation datasets. (a) The flowchart to generate GSR and 

DIF. Numbers 1-8 correspond to the main procedures listed in section 2.3. (b) The structure of the 

hybrid deep network. Conv represents convolution operation, MP means max-pooling operation, RB 

is the abbreviation of residual blocks, and GAP stands for global average-pooling operation. The size 

of three-dimensional blocks is labelled below as channels × width × height. 

 

Figure 2: Locations of radiation stations used in our study. Triangles with central point are used for 

model validation while others are for model training or fine-tuning. The background land cover 

types are a reclassification of MODIS MCD12Q1 products in 2008. 

Comments: 

In all, we think that this article is not prepared and should be rejected for publication on 

ESSD. 

Response: 

Thank you very much for your comments and suggestions. In the revised manuscript, we 

have further improved the content of the article and more explanations about the research 



background and the mechanisms of our model are added. We hope that all the revisions 

will meet your expectations and you can reconsider our paper and datasets. In addition, 

we think that our dataset really deserves more attention, especially the provided diffuse 

radiation which reveals a similar spatial distribution to that of National Renewable 

Energy Laboratory (NERL), but is significantly different from that of ECMWF-ERA5. 

Such difference also calls for more attention to the verification and analysis of diffuse 

radiation from different datasets. 

 


