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Abstract. Solar irradiance (SI) is the main driving factor contributing to climate change and energy 10 

balance between the land and atmosphere. High-quality records of global solar irradiance (GHI), direct 11 

normal irradiance (DNI) and diffuse solar irradiance (DIF) are of vital importance for solar applications, 12 

but the solar radiation observations are sparse around the world. As an alternative, numerous SI reanalysis 13 

data in grid format have been developed in regional and global scales. Among them, the MERRA-2 14 

(Modern-Era Retrospective Analysis for Research and Applications, version 2) products could provide 15 

high quality SI records with acceptable accuracy and long temporal ranges. This study attempted to 16 

improve the accuracy of GHI records derived from MERRA-2 products, and to generate grid DNI and 17 

DIF datasets for all-sky conditions over mainland China during 1981-2014, based on the REST2 model 18 

and cloud transmittance estimates combining sunshine observations. The results indicate that the 19 

estimated GHI values (GHInew) show higher agreements with GHI measurement at 17 CMA (China 20 

meteorological administrations) stations than that for the GHI records derived from MERRA-2 products 21 

(MERRA-2 GHI). Then, grid GHI, DNI and DIF datasets (0.50° (lat) *0.625° (lon)) throughout China 22 

were constructed. The results indicated that the MERRA-2 GHI records may overestimate the GHI values 23 

over mainland China. Generally, the GHI and DNI values gradually decreased during 1981-2014, 24 

however, DIF values gradually increased from 1981 to 2014, especially in 1992 (DIF = 90.914 Wm-2, 25 

anomaly DIF value = 15.544 Wm-2). The Qinghai Tibetan Plateau has always been an area with the 26 

highest GHI, the highest DNI and the lowest DIF values, whereas the Sichuan Basin has always been an 27 

area with the lowest GHI, the lowest DNI and the highest DIF values. The grid GHI, DNI and DIF dataset 28 

generated in this study can assist in numerous solar studies and applications. We provide these solar 29 
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irradiance data in publicly available repository: https://doi.org/10.6084/m9.figshare.10026563 (Qin, W. 30 

et al., 2019). 31 

Keywords: global horizontal solar radiation; direct normal irradiance; diffuse horizontal solar radiation; 32 

MERRA-2; China 33 

1 Introduction 34 

Solar energy is a clean, renewable and sustainable energy source for solar energy applications such 35 

as photovoltaic energy utilization (Besharat et al. 2013; Purohit and Purohit 2015). China has the largest 36 

thermal power generation of any country around the world, making it the largest emitter of greenhouse 37 

gases (Amadei et al. 2013). The large demand for electricity and energy consumption has caused the 38 

Chinese government to vigorously develop the concentrated solar thermal (CST) CSP industry (Li et al. 39 

2014). China is also in the leading position regarding the construction and planned installed capacity of 40 

CSP power generation around the world (Zhao et al. 2017). Therefore, accurate measurement of solar 41 

irradiance (SI) is the basis and prerequisite for effective utilization of solar radiation resources (Qin et al. 42 

2019). 43 

Many observation networks have been constructed for providing SI records (in point format) in 44 

China. The Baseline Surface Radiation Network (BSRN, Zhang et al. 2015), the World Radiation Data 45 

Center (WRDC, Zhang et al. 2017), and the Global Energy Balance Archive (GEBA, Wild et al. 2017) 46 

can provide SI records covering more than 2,000 observation stations around the world. In China, 47 

according to the statistics of China Meteorological Data Network, there have been 122 solar radiation 48 

measurement stations installed since 1957. In the 1990s, there were only 96 stations for solar radiation 49 

measurement throughout China (Zou et al. 2017). However, because of the high cost of the site 50 

construction and observation instruments, especially in remote areas with poor natural conditions, these 51 

SI observation networks are still too scarce to support solar energy research and applications in China 52 

(Qin et al. 2018).  53 

In contrast with solar radiation observation stations, there are thousands of meteorological stations 54 

covering mainland China. Thus, many studies have been conducted to construct GHI, DNI and DIF 55 

datasets (in point format) in China using meteorological measurements at CMA stations. Tang et al. (2018) 56 

first constructed a direct solar radiation data set in China with acceptable accuracy and high point density 57 
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(2474 CMA stations). Chen et al. (2019) applied five artificial intelligence models and one broadband 58 

model for estimating direct solar radiation. The direct solar radiation results could be converted to DNI 59 

by multiplying by the solar zenith angle. Feng et al. (2018) evaluated 15 empirical models for predicting 60 

DIF values at 17 CMA radiation stations. However, the drawback to these solar radiation estimations is 61 

that there are few DNI estimation results in Western China, especially in the Qinghai Tibetan Plateau due 62 

to the extremely sparse meteorological measurements in Western China. Thus, SI records in grid format 63 

covering mainland China with high spatial and temporal resolutions are urgently needed for solar 64 

research and solar energy applications in China. 65 

Numerous SI products in grid format have been created providing grid GHI, DNI and DIF records 66 

with high spatial and temporal continuity covering mainland China; for example, the Global Energy and 67 

Water Exchanges-Surface Radiation Budget Project (GEWEX-SRB, Raschke et al., 2006)) and the 68 

International Satellite Cloud Climatology Project-flux data (ISCCP-FD, Lohmann et al., 2006)) can 69 

provide solar radiation records throughout China with spatial resolution of 1° 1°. SI can also be derived 70 

from the GEDEX (Greenhouse Effect Detection Experiment) products developed by the NCAS British 71 

Atmospheric Data Centre (NCAS BADC) (Sinha and Shine 1995). The Climate Data Record (CDR) 72 

generated by NOAA can provide GHI records in China with long temporal ranges (1882-2019) 73 

(Coddington et al. 2016). However, these products still cannot meet the requirements of solar energy 74 

research in China needing GHI, DNI and DIF records with high accuracy and spatial resolution (Qin et 75 

al. 2015). 76 

Remote sensing is an alternative method to obtain GHI, DNI and DIF values in China with high 77 

spatial resolution. GHI, DNI and DIF records could be derived from HelioClim (Blanc et al. 2011), MSG, 78 

Meteosat (Möser and Raschke 1984), GOES (Gautier et al. 1980), MODIS (Qin et al. 2011), Himawari 79 

(Bessho et al. 2016), and CM-SAF SARAH (Riihelä et al. 2015) observations. However, the accuracy of 80 

these GHI, DNI and DIF records needs to be improved. Shi et al. (2018) evaluated the accuracy of the 81 

estimated GHI values derived from the Advanced Himawari Imager (AHI) aboard Himawari-8 at 36 82 

CERN (Chinese Ecosystem Research Network) stations. The results show that the GHI estimations did 83 

not show good agreement with GHI measurements. Thus, many scientists have developed efficient 84 

algorithms to improve the quality of solar radiation estimations in China using satellite images. Wei et 85 

al. Wei et al. (2019) compared the accuracy of the estimated GHI values over China based on four 86 
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different AI models using AVHRR data, and they analyzed the spatial and temporal variations in GHI 87 

over mainland China. Qin et al. (2015) developed an efficient physical parameterization (EPP) for 88 

estimating GHI values using MODIS land and atmospheric products and evaluated the EPP model at 91 89 

CMA stations in China. However, the spatial resolution (1º 1º) and spatial continuity of the estimation 90 

results by the EPP model could not meet the requirements of solar energy research, which requires SI 91 

records with high spatial resolution. Tang et al. (2016a) further improved the EPP model (EPP-TANG) by 92 

combining the MODIS and MTSAT products in China. The spatial resolution of GHI estimations have 93 

been improved to a 5 km spacing, but the spatial continuity of GHI estimations still restrict the 94 

applicability of the EPP-TANG model in China. Liang et al. (2006) developed an efficient model based 95 

on the look-up table method and the atmospheric radiation transfer model for incident GHI using MODIS 96 

products. Zhang et al. (2014) further generated GHI, DNI and DIF products called GLASS (Global Land 97 

Surface Satellite) covering China. Nevertheless, EPP, EPP-TANG and GLASS could only generate 98 

instantaneous solar radiation values, thus they could not provide accurate daily GHI, DNI and DIF 99 

records over mainland China (Tang et al. 2016b). 100 

Reanalysis data is an alternative SI data source with acceptable accuracy and high spatiotemporal 101 

continuity covering mainland China (Rienecker et al. 2011). ERA5 is the fifth generation of ECMWF 102 

atmospheric reanalysis global climate data providing hourly and daily surface downward solar radiation 103 

records from 1979 to present (Babar et al. 2019). SI values could also be derived from NCEP-DOE 104 

AMIP-II reanalysis (Kanamitsu et al. 2002). The CRU JRA V2.0 dataset is also a data source with an 105 

hourly downward solar radiation flux (Beck et al. 2017). The Climate Forecast System Reanalysis (CFSR) 106 

developed by the National Oceanic and Atmospheric Administration (NOAA) could provide solar 107 

radiation records from 1979 to present (Fuka et al. 2014). Using the GEOS-5 atmospheric general 108 

circulation model (AGCM), the Modern-Era Retrospective Analysis for Research and Application 109 

(MERRA) was stimulated by the National Aeronautics and Space Administration (NASA) Global 110 

Modeling and Assimilation Office (GMAO), which could provide hourly, daily and monthly GHI records 111 

during 1980-2019 at global scales (Bosilovich et al. 2011). The GHI values derived from MERRA-2 112 

products were demonstrated to have good agreement with GHI measurements (Hodges et al. 2011; 113 

Kennedy et al. 2011). Thus, the updated version (MERRA-2) was developed with numerous 114 

improvements (Randles et al. 2017). In this study, it was supposed that the accuracy of GHI records in 115 
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MERRA-2 could be improved by integrating the effects of cloud transmittances. Moreover, the DNI and 116 

DIF records are missing in previous MERRA-2 reanalysis data. 117 

In what follows, GHI, DNI and DIF measurements at Wuhan station, Xianghe station, 40 CERN 118 

stations and 17 first-class CMA meteorological stations throughout mainland China are used to evaluate 119 

the performance of the estimated solar irradiance (GHI, DNI and DIF) values and GHI records derived 120 

from MERRA-2 products during 1993–2014. In a subsequent step, the GHI, DNI and DIF databases 121 

throughout mainland China are constructed using MERRA-2 products and sunshine duration 122 

measurements at 2474 CMA stations. Finally, the spatiotemporal variations and possible influencing 123 

factors on GHI, DNI and DIF over different climate zones and terrains in mainland China are investigated. 124 

Overall, this study should prove helpful in solar resource and energy applications that need long-term 125 

grid GHI, DNI and DIF data with moderate spatiotemporal resolution and acceptable accuracy. We 126 

provide these solar irradiance data in publicly available repository (Qin, W. et al., 2019). 127 

2 Materials and methods 128 

2.1 Sites and data processing 129 

Hourly GHI, DNI and DIF measurements at Xianghe station (BSRN) in China were used for 130 

calculated the cloud transmittances for surface global horizontal solar radiation (GHI), direct normal 131 

irradiance (DNI) and diffuse horizontal solar radiation (DIF). Hourly GHI measurements from 40 CERN 132 

stations，hourly DNI and DIF measurements at Wuhan station (in Wuhan university), and Daily GHI, 133 

DNI and DIF measurements during 1993-2014 at 17 CMA stations in China were used for evaluating the 134 

model accuracy of the estimated hourly, daily and month GHI, DNI and DIF values generated in this 135 

study. Meanwhile, the sunshine duration measurements during 1981-2014 that were routinely measured 136 

at 2474 CMA stations over mainland China were also used to calculate the cloud transmittance of the 137 

GHI, DNI and DIF. These meteorological data have been checked for data quality using various control 138 

methods.  139 
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 140 

Figure 1. Spatial distributions of the CMA stations that are used in this study. 141 

Figure 1 show the spatial distributions of the Wuhan station, Xianghe station and CMA 142 

meteorological stations that were used in this study. These stations covered most areas of China with 143 

distinct climatic and terrain features. 144 

2.2 REST2 Model 145 

REST2 is a physically based model for predicting hourly and daily broadband GHI, DNI and DIF 146 

values in clear sky conditions, which was first developed by (Gueymard 2003), then corrected and 147 

modified by (Gueymard 2012) (REST to REST2). REST2 has been validated as one of the best 148 

broadband solar radiation estimation models and has been widely used in numerous solar radiation 149 

research (Gueymard 2003). The REST2 model has corrected the diffusion calculation under low-AOD, 150 

near-Rayleigh conditions in the model. The GHI, DNI and DIF values in REST2 can be obtained using 151 

following equations: 152 

DNI = 𝜏𝑅𝜏𝑔𝜏𝑜𝜏𝑛𝜏𝑤𝜏𝑎E0 (1) 

DIF = 0.5𝜏𝑔𝜏𝑜𝜏𝑛𝜏𝑤(1 − 𝜏𝑎𝜏𝑅)E0 (2) 

GHI = DNI ∗ cos(θ) + DIF (3) 

where 𝜏𝑅,𝜏𝑔,𝜏𝑜,𝜏𝑛,𝜏𝑤and 𝜏𝑎 are the transmittances for Rayleigh scattering, uniformly mixed gases 153 

absorption, ozone absorption, nitrogen dioxide absorption, water vapor absorption and aerosol extinction, 154 

respectively. E0 is the extraterrestrial solar radiation.  is the solar zenith angle. These transmittances 155 

have been obtained accurately by fitting a large number of parametric runs of the SMARTS code to 156 

computationally efficient polynomial ratios (Gueymard 2012).  157 
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Considering the data availability, the hourly reanalysis meteorological records derived from the 158 

MERRA-2 dataset during 1981-2014, including aerosol optical depth in band 550 (AOD550), regional 159 

ground albedo (rog), air pressure (p) and precipitable water vapor (w) were used as model inputs for 160 

REST2. The spatial resolution of the MERRA-2 dataset that was used in this study is 0.50° (lat) *0.625° (lon). 161 

More detailed descriptions and resulting equations of the REST2 model can be found in Ref (Gueymard 162 

2008, 2012). 163 

2.3 Anusplin 164 

The sunshine duration measurements during 1981-2014 at 2474 CMA stations throughout mainland 165 

China were used to calculate the cloud transmittances of GHI, DNI and DIF values. However, these CMA 166 

stations are still too sparse to support the solar radiation estimations in this study. Therefore, using the 167 

sunshine durations measurements at CMA stations, grid sunshine duration data (0.50° (lat) *0.625° (lon)) 168 

during 1981-2014 over mainland China were generated based on the Anusplin tool. The ANUSPLIN 169 

package provides a facility for transparent analysis and interpolation of noisy multivariate data using 170 

thin-plate smoothing splines, comprehensive statistical analyses, data diagnostics and spatially 171 

distributed standard errors (Xu and Hutchinson 2013). The flowchart in the Anusplin tool was shown in 172 

Figure 2. A detailed description of the Anusplin tool could be found in Ref (Hutchinson and Xu 2004). 173 

 174 
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 175 

Figure 2. The flowchart of the processes of Anusplin tool. 176 

2.4 Comparisons of measures of fit 177 

In this study, 16 indicators were used to evaluate the model accuracy (Gueymard 2014). N and bar, 178 

respectively, indicate the number of data and mean of the variables; 𝑒𝑖  and 𝑜𝑖  are the modeled and 179 

observed GHI, DNI and DIF values. These indicators are divided into four classes: Class A-indicators of 180 

dispersion, Class B-indicators of overall performance, Class C-indicators of distribution similitude and 181 

Class D-a global performance indicator. 182 

2.4.1 Class A – indicators of dispersion 183 

The Class A indicators are the root mean square error (RMSE), the mean absolute bias error (MAE), 184 

the relatively root mean square error (RMSD), the relatively mean absolute bias error (MAD), the 185 

correlation coefficient R, the standard deviation (SD), the slope of best-fit line (SBF), the uncertainty at 186 

95% (U95), and the t-statistic (TS), which can be expressed as: 187 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑒𝑖 − 𝑜𝑖)
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𝑆𝐷 =
100

𝑜
×

(
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2

𝑁

𝑖=1

−∑(𝑜𝑖 − 𝑜)
2

𝑁

𝑖=1
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𝑆𝐵𝐹 =
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𝑛
𝑖=1

∑ (𝑜𝑖 − 𝑜)
2𝑛

𝑖=1

 (10) 

U95 = 1.96√(SD2 + RMSD2) (11) 

TS = √(N − 1)MBD2/(RMSD2 −MBD2) (12) 

2.4.2 Class B – indicators of overall performance 188 

 The Class B indicators are the Nash–Sutcliffe’s efficiency (NSE), the Willmotts’s index of agreement 189 

(WIA) and the Legates’s coefficient of efficiency (LCE), which can be expressed as: 190 

𝑁𝑆𝐸 = 1 −∑(𝑒𝑖 − 𝑜𝑖)
2

𝑁

𝑖=1

/∑(𝑜𝑖 − 𝑜)
2

𝑁

𝑖=1

 (13) 

𝑊𝐼𝐴 = 1 −∑(𝑒𝑖 − 𝑜𝑖)
2

𝑁

𝑖=1

/∑(|𝑒𝑖 − 𝑜𝑖| + |𝑜𝑖 − 𝑜|)
2

𝑁

𝑖=1

 (14) 

𝐼𝐶𝐸 = 1 −∑|𝑒𝑖 − 𝑜𝑖|

𝑁

𝑖=1

/∑|𝑜𝑖 − 𝑜|

𝑁

𝑖=1

 (15) 

2.4.3 Class C – indicators of distribution similitude 191 

 The Class C indicators are the Kolmo-gorov–Smirnovtest Integral (KSI), the relative frequency of 192 

exceedance (OVER) and combined performance index (CPI), which can be expressed as: 193 

KSI = 
100

𝐴𝑐
∫ 𝐷𝑛𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 (16) 

𝐴𝑐 = 𝐷𝑐(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (17) 

𝐷𝑐 = ∅(𝑁)/√𝑁 (18) 

OVER = 
100

𝐴𝑐
∫ 𝑀𝑎𝑥(𝐷𝑛 − 𝐷𝐶 , 0)𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 (19) 

CPI = (KSI+OVER+2RMSE)/4 (20) 

where 𝐷𝑛 is the absolute difference between the two normalized distributions within irradiance interval 194 

n, 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum values of the binned reduced irradiance, x, and 𝐴𝑐 is a 195 

characteristic quantity of the distribution. Detail descriptions of KSI, OVER and CPI indicators could be 196 
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found in Ref (Gueymard 2014). 197 

2.4.4 Class D –a global performance indicator (GPI) 198 

 Although 16 indicators are introduced to reveal the model accuracy of GHI, DNI and DIF values, 199 

too many indicators cannot reflect the overall accuracy of the estimated GHI, DNI and DIF values. In 200 

this study, a global performance indicator (GPI) is used to represent the global performance of the 201 

estimated GHI, DNI and DIF values (Despotovic et al. 2015). The GPI can be described by following 202 

equation: 203 

𝐺𝑃𝐼𝑖 =∑𝑎𝑗(�̃� − 𝑦𝑖𝑗)

𝑛

𝑗=1

 (21) 

where ỹ is the median of the scaled values of indicator j,𝑦𝑖𝑗is the scaled value of indicator j for model i, 204 

and n is the number (16) of indicators.𝑎𝑗 equals -1 for R, SBF, NSE, WIA and LCE, and equals 1 for 205 

other indicators. The greater the accuracy of the model, the higher the value of the GPI. 206 

3 Result 207 

3.1 Cloud transmittance for surface solar irradiance 208 

Due to the shape, type and phase variability in clouds, they have been considered to be the most 209 

uncertain factor in estimating SI. In this study, the relative sunshine duration, defined as the ratio between 210 

the measured sunshine duration and the maximum possible sunshine duration, (N) was introduced to 211 

correct the cloud effect on hourly GHI, DNI and DIF values. Following the example of the Ångström-212 

Prescott equation, we parameterized the cloud transmittance (τc) as a function of the relative sunshine 213 

duration (n/N), and the formula form was a quadratic polynomial formulation as follows: 214 

τ𝑐 =
R

R𝑐𝑙𝑟
= a + b (

n

N
) + c(

n

N
)2 (22) 

where R is the hourly and daily all-sky GHI, DNI and DIF; R𝑐𝑙𝑟  is the hourly and daily clear-sky GHI, 215 

DNI and DIF; and n and N are the sunshine duration and the maximum possible sunshine duration, 216 

respectively. The calibrated cloud transmittance for hourly GHI/DNI/DIF values are shown as the 217 

following equations: 218 

τ𝑐1 = 0.368 + 0.628(
n

N
)− 0.005(

n

N
)2 (23) 

τ𝑐2 = 0.035 + 0.331(
n

N
)+ 0.298(

n

N
)2 (24) 

τ𝑐3 = 0.752 + 2.396(
n

N
)− 2.029(

n

N
)2 (25) 

where τc1,τc2 and τc3 are the cloud transmittance formula for hourly GHI, DNI and DIF values, 219 
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respectively. 220 

The calibrated cloud transmittance for daily GHI/DNI/DIF values are shown as the following 221 

equations: 222 

τ𝑐1 = 0.280 + 0.954(
n

N
)− 0.299(

n

N
)2 (26) 

τ𝑐2 = 0.024 + 0.227(
n

N
)+ 0.619(

n

N
)2 (27) 

τ𝑐3 = 0.959 + 4.115(
n

N
)− 4.232(

n

N
)2 (28) 

where τc1,τc2 and τc3 are the cloud transmittance formula for daily GHI, DNI and DIF values, 223 

respectively. 224 

3.2 Validation of the estimated GHI, DNI and DIF at CMA stations 225 

Hourly GHI, DNI and DIF measurements at Wuhan stations, Xianghe stations and 40 CERN stations 226 

were used to validate the accuracy of the estimated hourly GHI, DNI and DIF values. Daily GHI, DNI 227 

and DIF measurements during 1993-2014 at 17 CMA meteorological stations are used for evaluating the 228 

model accuracy of the daily estimated GHI, DNI and DIF values. The GHI records derived from 229 

MERRA-2 products are also compared with the estimated GHI values in this study.230 
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Table 1 illustrate the statistical indicators representing the model accuracy of the estimated hourly 233 

GHI, DNI and DIF values at Wuhan and Xianghe station. The result indicated that the estimated hourly 234 

GHI, DNI and DIF values show high agreements with the hourly GHI, DNI and DIF measurements. The 235 

cloud has obvious effect on the accuracy of the estimated solar irradiance values. The modeling accuracy 236 

have been significantly improved after incorporating the cloud transmittances for solar irradiance. The 237 

GPI scores for GHIWHU, DNIWHU, DIFWHU, GHIXIA, DNIXIA and DIFXIA without cloud transmittances are 238 

0.003, -4.658, -5.468, 2.452, -2.042 and 1.185, respectively; the GPI scores for GHIWHU, DNIWHU, 239 

DIFWHU, GHIXIA, DNIXIA and DIFXIA with cloud transmittances are 2.876, -0.923, -3.260, 4.872, 1.694 240 

and 3.269, respectively. Table S1 show the validation results of the estimated GHI values in different 241 

CERN stations over mainland China. The estimated hourly GHI values show good agreements with the 242 

hourly GHI measurements, but with distinct spatial variations over mainland China. Relatively large 243 

model deviations are found in mountain and desert zones, due to the dramatic diurnal variations of the 244 

climate factors (water vapor, temperature, cloud and pressure etc.) there, for example the GPI scores for 245 

GSF, AKA, ALS, LAS and CHL are -9.869, -5.528, -2.685, -2.363 and -2.220, respectively. 246 

Table S1. Validation results of the estimated hourly GHI values at CERN stations. 247 

 248 
Figure 3. Validation of the daily mean GHI, DNI and DIF values at CMA stations. 249 
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Figure 3 is the scatter plot showing the model accuracy of MERRA-2 GHI records and the estimated 250 

GHI, DNI and DIF values from the REST model. Table 2 specifies the statistical indicators representing 251 

the model accuracy of the estimated GHI, DNI and DIF values. It is clear that the GHI estimations by 252 

the REST model (GHInew) show greater agreement with the measured GHI values than with the 253 

MERRA-2 GHI records. The RMSE, MAE, RMSD, MAD, MBD, SD, U95, TS, KSI, OVER and CPI 254 

(Group 1 indicators) for MERRA-2 GHI records are significantly larger than for GHInew, while the R, 255 

NSE, WIA, ICE (Group 2 indicators) for MERRA-2 GHI records are significantly lower than for GHInew. 256 

The RMSE, MAE and R for MERRA-2 GHI records are 85.775 Wm-2, 71.696 Wm-2 and 0.822, 257 

respectively. The RMSE, MAE and R for GHInew are 25.505 Wm-2, 18.994 Wm-2 and 0.955, respectively. 258 

The accuracy of GHI records is significantly improved. The DNI and DIF estimations by the REST model 259 

(DNInew and DIFnew) also show a high correlation with the ground DNI measurements. The RMSE, 260 

MAE and R for DNInew are 46.853 Wm-2, 32.917 Wm-2 and 0.914, respectively. The RMSE, MAE and 261 

R for DIFnew are 35.700 Wm-2, 25.870 Wm-2 and 0.690, respectively. 262 

Table 2. The statistical indicators representing the model accuracy of the estimated daily GHI, DNI and 263 

DIF values. 264 

Indicators GHInew DNInew DIFnew MERRA-2 GHI 

RMSE 25.52  46.85  35.70  85.81  

MAE 19.01  32.91  25.87  71.72  

RMSD 15.18  34.17  42.06  36.60  

MAD 11.30  24.00  30.49  30.59  

MBD -0.17  -0.32  -8.16  -28.41  

SD 15.18  34.17  42.06  36.60  

R 0.95  0.91  0.69  0.82  

SBF 1.01  1.01  0.59  0.75  

U95 42.07  94.71  116.59  101.44  

TS 3.91  3.32  70.75  440.33  

NSE 0.90  0.80  0.43  0.16  

WIA 1.00  1.00  0.99  0.84  

LCE 0.72  0.63  0.30  0.08  

KSI 122.04  263.13  284.45  738.80  

OVER 103.56  255.81  275.86  732.45  

CPI 63.99  146.82  161.11  386.11  

* The units for RMSE and MAE are Wm-2; the units for RMSD, MAD, MBD, SD, U95, TS, KSI, OVER 265 

and CPI are %; R, NSE, WIA, ICE are dimensionless indexes. 266 
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  267 
Figure 4. The statistical indicators representing the model accuracy of the estimated GHI, DNI and DIF 268 

values in different months (The units for RMSE and MAE is MJ m-2day-1; the units for RMSD, MAD, 269 

MBD, SD, U95, TS, KSI, OVER and CPI are %; R, NSE, WIA, ICE are dimensionless indexes.). 270 

Figure 4 shows the statistical indicators representing the model accuracy of the estimated GHI, DNI 271 

and DIF values in different months. The MERRA-2 GHI records are not as accurate as GHInew in all 272 

months throughout the year. The values of Group 1 indicators for MERRA-2 GHI records are 273 

significantly larger than GHInew, while the values of Group 2 indicators for MERRA-2 GHI records are 274 

significantly lower than GHInew. The fluctuations in the values of Group 1 and Group 2 indicators for 275 

MERRA-2 GHI records in Figure 4 are also more obvious than that for GHInew, DNInew and DIFnew 276 

values, which further verified that the accuracy and robustness of GHI records are significantly improved 277 

in this study. 278 
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 279 

Figure 5. The statistical indicators representing the model accuracy of the estimated GHI, DNI and DIF 280 

values at 17 CMA stations (The number in x axis correspond to the ID in Table 1.). 281 

The model accuracy of the MERRA-2 GHI records and the estimated GHI, DNI and DIF values are 282 

closely correlated to local climate and terrain features. Figure 5 illustrated the statistical indicators 283 

representing the model accuracy of the estimated GHI, DNI and DIF values at 17 CMA stations. It was 284 

clear that the GHInew performance was superior to MERRA-2 GHI records with higher accuracy and 285 

robustness. The values of Group 1 indicators for GHInew were significantly lower than for MERRA-2 286 

GHI products in all months throughout the year, while the values of Group 2 indicators of GHInew were 287 

significantly higher than those of MERRA-2 GHI products in all months throughout the year. 288 

Furthermore, the GPI scores for the MERRA-2 GHI and GHInew values are also calculated to show 289 

the overall model estimation error at 17 CMA stations over mainland China. Figure 6 show the spatial 290 

distribution of GPI scores for MERRA-2 GHI and GHInew values at 17 CMA stations in China. The 291 

accuracy of GHInew values is obviously higher than MERRA-2 GHI records with higher GPI scores. 292 

The mean GPI scores for GHInew and MERRA-2 are 3.079 and -3.079, respectively. Relatively larger 293 

estimation errors are found in the Sichuan Basin, which may be due to the strong atmospheric radiation 294 

dumping processes there (frequent rainy and cloudy weather). The GPI scores for MERRA-2 GHI and 295 

GHInew at the Chengdu station were 1.911 and -10.329, respectively. The accuracy of MERRA-2 GHI 296 
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and GHInew values were higher in arid zones and plateau zones with high GPI scores due to the relative 297 

clear sky conditions there. The GPI scores for MERRA-2 GHI and GHInew at the Ejinaqi station were 298 

3.284 and 0.753, respectively. The GPI scores for MERRA-2 GHI and GHInew at the Germu station 299 

were 3.904 and -1.469, respectively. 300 

 301 

Figure 6. The GPI scores of the MERRA-2 GHI and GHInew values at 17 CMA stations. (The GPI is a 302 

dimensionless index.). 303 

Figure 7 shows the validation results of the monthly mean MERRA-2 GHI, GHInew, DNInew and 304 

DIFnew values. It was obvious that the monthly mean GHInew, DNInew and DIFnew estimation results 305 

could meet the requirement of the potential solar energy estimations and the proper installations of solar 306 

power plants using CST with acceptable accuracy. The RMSE, MAE and R for the monthly mean 307 

GHInew estimations were 14.745 Wm-2, 10.602 Wm-2 and 0.973, respectively. The RMSE, MAE and R 308 

for the monthly mean DNInew estimations were 27.778 Wm-2, 20.463 Wm-2 and 0.922, respectively. The 309 

RMSE, MAE and R for the monthly mean DIFnew estimations were 22.730 Wm-2, 17.690 Wm-2 and 310 

0.798, respectively. 311 
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 312 
Figure 7. Validation of the monthly mean GHI, DNI and DIF values at CMA stations. 313 

Overall, the MERRA-2 GHI products have been significantly improved in this study. Moreover, the 314 

DNI and DIF datasets during 1981-2014 were generated with acceptable accuracy, which can be used 315 

for solar energy research and applications. 316 

3.3 Spatial and temporal variations in surface solar radiation 317 

By applying the REST model, grid GHI, DNI and DIF datasets (0.50° (lat) *0.625° (lon)) during 318 

1981-2014 throughout China are constructed. Figure 8 illustrates the spatial distributions of mean daily 319 

GHI, DNI and DIF values from 1981-2014 in China. The MERRA-2 GHI records may overestimate the 320 

GHI values in China, especially in the Sichuan Basin and Yungui Plateau, which may be due to ignoring 321 

the effect of sunshine duration and clouds. The ranges of GHI values for MERRA-2 are 133.831 Wm-2-322 

280.856 Wm-2, while the ranges for GHI values by the REST models are 108.819 Wm-2-246.134 Wm-2. 323 

The DNI values are closely correlated to the GHI values with similar spatial distribution patterns. 324 

Generally, both GHI and DNI gradually decline from Northwestern China to Southeastern China. 325 

However, DIF show a distinct spatial distribution pattern from that of GHI and DNI. The DIF values are 326 

higher in Southeastern China and the Tarim Basin in Xinjiang Province. The Qinghai Tibetan Plateau is 327 
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always an area with the highest GHI, the highest DNI values and the lowest DIF values owing to the 328 

relatively weak radiation dumping effect there, while the Sichuan Basin is always an area with the highest 329 

DIF values and lowest GHI; the lowest DNI values are affected by the strong cloud cover effect. 330 

 331 
Figure 8. The spatial variation of GHI, DNI and DIF over mainland China (The units for GHI, DNI and 332 

DIF are Wm-2). 333 

 334 
Figure 9. The annually variations of GHI, DNI and DIF throughout China. (The units for GHI, DNI and 335 

DIF areWm-2.) 336 

Figure 9 indicates the yearly variations in GHI, DNI and DIF values over mainland China during 337 

1981-2014. To better characterize the yearly variations in solar radiation in China, the anomaly GHI, 338 
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DNI and DIF values are calculated. Figure 10 illustrated the annual variations of the anomaly GHI, DNI 339 

and DIF values in China. The results show that the MERRA-2 GHI values obviously overestimate the 340 

GHI values in China during 1981-2014. Combined with the validation results of MERRA-2 GHI and 341 

GHInew values, we think GHInew estimations fit the measured GHI values better. It is clear from Figure 342 

9 and Figure 10 that GHI values have been gradually decreased from 1981 to 2014. The lowest annual 343 

mean GHI (174.329 Wm-2) and anomaly GHI (-50.914 Wm-2) value occurred in 1992, which was 344 

supposed to be caused by the strong aerosol radiative effect of volcanic eruption events in the Philippines 345 

in 1992. The DNI values are directly proportion to GHI values with similar temporal variations, because 346 

DNI is the main component of GHI values. The highest and lowest GHI values are found in 1981 347 

(158.657 Wm-2) and 1992 (133.137 Wm-2), respectively. In contrast, DIF values show an opposite 348 

temporal variation with GHI and DNI values. The DIF values have been gradually increasing from 1981 349 

to 2014, especially in 1992 (DIF = 90.914 Wm-2, anomaly DIF value = 15.544 Wm-2) with an explosive 350 

growth of DIF values. It is thought that DIF values are directly proportional to AOD value. 351 

 352 
Figure 10. The annually variations of anomaly GHI, DNI and DIF throughout China (The units for 353 

anomaly GHI, DNI and DIF are Wm-2). 354 

4 Discussion 355 

The model accuracy of DNInew and DIFnew is relatively lower than that of GHInew, which may 356 

be caused by three factors. First, there are too many low DNI and DIF values, because low DNI values 357 

generally correspond to cloudy sky conditions, which may cause large uncertainties in DNI estimations. 358 

Second, although they were the only available sunshine duration datasets with the highest density in 359 
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China, the point density of sunshine duration measurements at 2474 CMA stations was still sparse. 360 

Finally, the spatial resolution of the input parameters derived from MERRA-2 products and the output 361 

values (DNInew and DIFnew) were 0.50° (lat) *0.625° (lon), which may also degrade the accuracy of 362 

the estimated DNI and DIF values.   363 

Table 3. Validation of GHI estimations in China in previous studies. 364 

Parameters 
Models/ 

Products 
Format 

Spatial 

resolution 

Spatio-temporal 

continuity 

RMSE 

(Wm-2) 
R 

GHI EPP Grid 1º 1º Few vacancies 34.028 0.930 

GHI ISCCP-FD Grid 1º 1º High continuity 35.764 0.910 

GHI GEWEX-SRB Grid 1º 1º High continuity 34.144 0.930 

GHI EPP-TANG Grid 5km Few vacancies 33.912 0.930 

GHI GLASS Grid 0.05º 0.05º High continuity 34.144 0.930 

GHI MERRA Grid 0.625º 0.5º High continuity 85.775 0.822 

GHI GHInew Grid 0.625º 0.5º High continuity 25.509 0.955 

The estimated GHI values in this study were compared with other estimation results in previous 365 

studies. The validation of DNI and DIF estimations in previous studies is not listed and discussed, 366 

because the evaluation of DNI and DIF values over mainland China is not founded in previous studies. 367 

Table 3 shows the validation results of GHI estimations in China in this study and previous studies. 368 

Detailed descriptions of these models and products have been described in the Introduction Section. It 369 

was clear that the surface GHI estimation results in this study show higher agreement with surface solar 370 

radiation measurements at CMA stations than those of other estimation results in previous studies, which 371 

may be due to the consideration of cloud effects on GHI. Although the spatial resolution of GHI 372 

estimations by EPP-TANG is higher than GHInew, high spatiotemporal continuity and long temporal 373 

ranges of the GHInew estimation results could remedy the defect of relatively lower spatial resolutions. 374 
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 375 
Figure 11. The spatial and temporal variations of AOD values during 1981-2014 throughout mainland 376 

China. 377 

It was supposed that the DIF values were strongly correlated to aerosol optical depth (AOD) in 378 

China. Thus, we introduced the MERRA-2 AOD product to analyze the correlation between DIF values 379 

and AOD values in China. Figure 11 show the spatial distribution of AOD values over mainland China. 380 

As seen from Figure 8, Figure 9 and Figure 11, DIF values show similar spatial distribution patterns with 381 

AOD values in China. The correlation coefficient between the annual mean DIF and annual mean AOD 382 

values is 0.890. The Sichuan Basin is the area with the highest AOD (0.703) and the highest DIF (115.706 383 

Wm-2) values, while the Qinghai Tibetan Plateau is the area with the lowest AOD (0.060) and the lowest 384 

DIF (42.928 Wm-2) values. It is certain that AOD is an import factor in the DIF variations in China. 385 

5 Data availability 386 

The MERRA-2 Reanalysis data are available at GES DISC by NASA 387 

(https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl). We provide these solar irradiance data in publicly 388 

available repository: https://doi.org/10.6084/m9.figshare.10026563 (Qin, W. et al., 2019). The 389 

corresponding author can be contacted for access meteorological data at CMA stations and solar 390 

irradiance dataset generated in this study during 1981-2014 as well as ancillary data. 391 

6 Summary 392 

The applicability of REST2 in modeling GHI, DNI and DIF values using MERRA-2 reanalysis 393 

products (AOD550, p, rog and w) and sunshine duration measurements at 2474 CMA stations throughout 394 

China was tested in this study. Long-term grid GHI, DNI and DIF datasets (0.50° (lat) *0.625° (lon)) 395 

throughout China were then constructed. Finally, the spatiotemporal characteristics of GHI, DNI and DIF 396 
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in China were investigated. 397 

The estimated SI values show high agreements with SI measurements at 17 CMA stations with 398 

radiation measurements. Eighteen indicators including RMSE, MAE, RMSD, MAD, and MBD were 399 

used to represent the model accuracy of the MERRA-2 GHI, GHInew, DNInew and DIFnew values. The 400 

RMSE for MERRA-2 GHI, GHInew, DNInew and DIFnew are 85.775, 25.509, 46.852 and 35.700 Wm-401 

2, respectively; the MAE are 71.701, 18.993, 32.917 and 25.870 Wm-2, respectively; and the R are 0.822, 402 

0.955, 0.914 and 0.691, respectively. It could be concluded that the accuracy of MERRA-2 GHI values 403 

has been significantly improved in this study. Relatively large estimation errors for MERRA-2 GHI and 404 

GHInew values are found CHD in Sichuan Basin with GPI scores of 1.911 and -10.329, respectively, 405 

because of the cloud air conditions there. 406 

The spatiotemporal characteristics of GHI, DNI and DIF values from 1981-2014 over mainland 407 

China were discussed using the generated grid GHI, DNI and DIF datasets in this study. The results show 408 

that the MERRA-2 GHI records may overestimate the GHI values over mainland China. Generally, the 409 

GHI and DNI values have gradually decreased from 1981-2014. However, DIF values have gradually 410 

increased from 1981 to 2014, especially in 1992 (DIF = 90.914 Wm-2, anomaly DIF value = 15.544 Wm-411 

2), which may be caused by the increasingly strong aerosol radiative forcing effects throughout China 412 

during 1981-2014. The Qinghai Tibetan Plateau has always been the area with the highest GHI, highest 413 

DNI and lowest DIF values (clear sky condition), while the Sichuan Basin has always been the area with 414 

the lowest GHI, lowest DNI and highest DIF values (cloudy and rainy sky condition). It was validated 415 

that the DIF values are strongly correlated with aerosol optical depth (AOD) in China. 416 

Certainly, the REST2 model should be further validated in other climate zones around the world. As 417 

discussed above, the GHI, DNI and DIF estimations are subject to input data quality, the interpolated 418 

method and the relatively coarse resolution of MERRA-2 products. Further work should be conducted 419 

to improve the accuracy of the GHI, DNI and DIF datasets generated in this study. Moreover, significant 420 

relations between DIF and the AOD values are validated in this study, and further studies should be 421 

undertaken to reveal the main driving factors for the spatio-temporal variations in GHI, DNI and DIF 422 

values. 423 
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