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Abstract. The amount of impervious surface is an important indicator in the monitoring of the intensity of human activity and 

environmental change. The use of remote sensing techniques is the only means of accurately carrying out global mapping of 

impervious surfaces covering large areas. Optical imagery can capture surface reflectance characteristics, while synthetic 

aperture radar (SAR) images can be used to provide information on the structure and dielectric properties of surface materials. 15 

In addition, night-time light (NTL) imagery can detect the intensity of human activity and thus provide important a priori 

probabilities of the occurrence of impervious surfaces. In this study, we aimed to generate an accurate global impervious 

surface map at a resolution of 30-m for 2015 by combining Landsat-8 OLI optical images, Sentinel-1 SAR images and VIIRS 

NTL images based on the Google Earth Engine (GEE) platform. First, the global impervious and non-impervious training 

samples were automatically derived by combining the GlobeLand30 land-cover product with VIIRS NTL and MODIS 20 

enhanced vegetation index (EVI) imagery. Then, based on global training samples and multi-source and multi-temporal 

imagery, a random forest classifier was trained and used to generate corresponding impervious surface maps for each 5°×5° 

cell of a geographical grid. Finally, a global impervious surface map, produced by mosaicking numerous 5°×5° regional maps, 

was validated by interpretation samples and then compared with three existing impervious products (GlobeLand30, 

FROM_GLC and NUACI). The results indicated that the global impervious surface map produced using the proposed multi-25 

source, multi-temporal random forest classification (MSMT_RF) method was the most accurate of the maps, having an overall 

accuracy of 96.6% and kappa coefficient of 0.903 as against 92.5% and 0.769 for FROM_GLC, 91.1% and 0.717 for 

GlobeLand30, and 87.43% and 0.585 for NUACI. Therefore, it is concluded that a global 30-m impervious surface map can 

accurately and efficiently be generated by the proposed MSMT_RF method based on the GEE platform. The global impervious 

surface map generated in this paper are available at https://doi.org/10.5281/zenodo.3505079 (Zhang and Liu, 2019). 30 
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1 Introduction 

Impervious surfaces are usually covered by anthropogenic materials which prevent water penetrating into the soil (Weng, 

2012). Impervious surfaces include asphalts, sand and stone, concrete, bricks, glasses, etc. (Chen et al., 2015). Due to the rapid 

growth in the area covered by impervious surfaces, a series of climate, environmental and social problems are emerging, 

including the urban heat island, traffic congestion, waterlogging and the deterioration of urban the environment (Fu and Weng, 35 

2016; Gao et al., 2012; Weng, 2001; Zhou et al., 2017; Zhuo et al., 2018). Furthermore, as an important indicator in the 

monitoring of the intensity of human activity and of ecological and environmental changes, the mapping of impervious surfaces 

is of great interest in many disciplines (Xie and Weng, 2017). Accurate large-area impervious surface mapping is, therefore, 

urgent and necessary. 

Due to the frequent and large-area coverage that it provides, increasing attention has been paid to the use of remote sensing 40 

technology for impervious surface mapping. In recent years, a lot of effort has gone into mapping impervious surfaces at 

different spatial resolutions (Chen et al., 2015; Elvidge et al., 2007; Liu et al., 2018; Schneider et al., 2010; Schneider et al., 

2009). For example, Schneider et al. (2010) used multi-temporal MODIS data to produce a 500-m global urban land map, 

achieving an overall accuracy of 93% and kappa coefficient of 0.65. Elvidge et al. (2007) combined the Defense Meteorological 

Satellite Program (DMSP) Operational Linescan System (OLS) and LandScan population count data to produce a 1-km global 45 

impervious surface area map. However, Gao et al. (2012) explained that these coarse-resolution global impervious surface 

maps were not suitable for many applications and policy makers at local or regional scales. Recently, with the advent of free 

medium-resolution satellite data (e.g. Landsat and Sentinel-2), combined with rapidly-increasing data-storage and computation 

capabilities, many regional or global fine-resolution impervious surface maps have been produced using Landsat and Sentinel-

2 images (Chen et al., 2015; Gao et al., 2012; Goldblatt et al., 2018; Gong et al., 2019; Gong et al., 2013; Homer et al., 2015; 50 

Li et al., 2018; Liu et al., 2018; Sun et al., 2017). Specifically, the National Land Cover Dataset (NLCD) produced the first 

30-m map of the United States including impervious surface as a separate land-cover type using Landsat imagery (Homer et 

al., 2004). Similarly, the FROM_GLC and GlobeLand30 products also produced the global 30-m impervious surface map as 

an independent land cover type (Chen et al., 2015; Gong et al., 2013). However, these land-cover products focus on the overall 

accuracy of the mapping of all land-cover types rather than that of impervious surfaces alone. Latterly, Liu et al. (2018) 55 

proposed the Normalized Urban Areas Composite Index (NUACI) method for producing a global 30-m impervious surface 

map and achieved an overall accuracy of 0.81-0.84 and a kappa values of 0.43-0.50. However, the NUACI product had a 

relatively poor performance in terms of producer’s accuracy (0.50–0.60) and user’s accuracy (0.49-0.61). Therefore, an 

accurate impervious surface map at fine spatial resolution is still urgently needed. 

There are three critical challenges for global impervious surface mapping at medium spatial resolution. These include finding 60 

an adequate image identification method, image selection scheme and image processing platform (Liu et al., 2018).  
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First, although a wide range of methods have already been presented for impervious surface mapping, it is still hard to generate 

an operational and accurate global impervious surface map at 30-m resolution. The methods used so far can be divided into 

three main groups: spectral mixture analysis methods (Ridd, 1995; Wetherley et al., 2017; Wu, 2004; Wu and Murray, 2003; 

Yang and He, 2017; Zhuo et al., 2018), spectral index-based methods (Deng and Wu, 2012; Liu et al., 2018; Xu, 2010), and 65 

image classification methods (Chen et al., 2015; Okujeni et al., 2013; Zhang et al., 2018a; Zhang et al., 2012; Zhang and Weng, 

2016). The spectral mixture analysis methods have great advantages in terms of the repeatable and accurate extraction of 

quantitative sub-pixel information (Weng, 2012). However, these spectral mixture methods can produce underestimates in 

areas whether the density of impervious surfaces is high and overestimates in areas of low density (Sun et al., 2017; Weng, 

2012). The spectral index-based methods have been widely applied in regional impervious surface mapping due to their 70 

simplicity, flexibility and convenience (Liu et al., 2018; Sun et al., 2019b; Xu, 2010). However, the spectral index-based 

methods have great difficulty in finding the optimal threshold for separating the impervious pixels from bare areas and 

vegetation pixels (Sun et al., 2017). The image classification methods can efficiently combine remote sensing datasets from 

multiple sources (Zhang et al., 2016; Zhang et al., 2018a; Zhou et al., 2017) and have great capabilities in spectrally complex 

impervious surface mapping (Okujeni et al., 2013), which has been an area of great interest in recent years (Goldblatt et al., 75 

2018; Zhang et al., 2018b). However, it is very hard to select training samples for large-area impervious surface mapping using 

these methods (Weng, 2012).  

Second, although individual optical data sets have been successfully employed for regional or global impervious surface 

mapping, accurate estimation of impervious surfaces remains challenging due to the diversity of urban land-cover types, which 

leads to difficulties in separating different land-cover types with similar spectral signatures (Zhang et al., 2014b). The 80 

incorporation of multi-source and multi-temporal remote sensing imagery has been demonstrated to improve impervious 

surface mapping accuracy (Weng, 2012; Zhu et al., 2012). For example, optical imagery is only able to capture surface 

reflectance characteristics, while synthetic aperture radar (SAR) data can provide details of the structure and dielectric 

properties of the surface materials (Sun et al., 2019b; Zhang et al., 2014b; Zhu et al., 2012). Zhang et al. (2016) found that the 

addition of dual-polarimetric SAR features resulted in an accuracy improvement of 3.5% compared with using optical SPOT-85 

5 imagery only and also that dual-polarimetric SAR data had a superior performance to single polarimetric SAR data for 

impervious mapping. Similarly, Shao et al. (2016) explained that the combination of GaoFen-1 optical imagery with Sentinel-

1 SAR imagery efficiently reduced the confusion between impervious surfaces and water and bare areas. Furthermore, Zhu et 

al. (2012) found that the inclusion of multi-seasonal imagery increased the mapping accuracy from 77.96% to 86.86% and that 

the further addition of texture variables increased the mapping accuracy to 92.69% for urban and peri-urban land-cover 90 

classification. The reasons for the accuracy increase were that the texture imagery could capture the local spatial structure and 

the variability in land cover categories and also that the temporal information could describe the phenological variability. 

Schug et al. (2018) also used the multi-seasonal Landsat imagery to successfully map impervious extent and land cover 

fractions. In addition, as an important data source for the measurement of socioeconomic activities, DMSP-OLS night-time 
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light (NTL) imagery have been widely used in many impervious-related applications (Li and Zhou, 2017). For example, 95 

Elvidge et al. (2007) successfully produced a global 1-km impervious map using DMSP-OLS NTL imagery, Goldblatt et al. 

(2018) combined DMSP-OLS NTL and Landsat-8 imagery to accurately produce 30-m impervious surface maps at a national 

scale. Therefore, the integration of multi-source and multi-temporal datasets is necessary and crucial to the production of 

accurate global impervious surface maps. 

Lastly, the mapping of impervious surfaces at the global scale usually requires huge amounts of computation and large storage 100 

capabilities. Fortunately, the Google Earth Engine (GEE) cloud-based platform consists of a multi-petabyte analysis-ready 

data catalog co-located with a high-performance, intrinsically parallel computation service (Gorelick et al., 2017), meaning 

that the requirements for large-area image collection and very large computational resources can easily be met by using the 

free-access GEE cloud-computation platform. For example, Liu et al. (2018) produced multi-temporal global impervious 

surface maps and Pekel et al. (2016) developed global high-resolution surface water maps and analyzed long-term changes 105 

using the GEE cloud-computation platform. Recently, Massey et al. (2018) produced a continental-scale cropland extent 

map for North America at 30 m spatial resolution for the nominal year 2010 based on the GEE platform. It can be seen, 

therefore, that the GEE is an efficient and useful computation platform for regional/global applications. 

So far, due to the limitations of data collection and computation capability, impervious surface mapping has mainly focused 

on using a single type of remote sensing data or on case studies made at the regional scale. Although the GEE platform provides 110 

multi-petabyte analysis-ready data and efficient data-processing capabilities, an efficient method that can fully integrate these 

multi-source and multi-temporal datasets and produce accurate impervious surface maps at a spatial resolution of 30-m for the 

whole world is still lacking. The aims of this study, therefore, were (1) to produce a global 30-m impervious surface map from 

multi-source multi-temporal remote sensing datasets including Landsat-8 OLI, Sentinel-1 SAR, VIIRS NTL and MODIS 

imagery using the GEE platform; (2) to investigate the accuracy of the global 30-m impervious surface mapping using 115 

validation samples and cross-comparison with three existing impervious surface products (GlobeLand30 (Chen et al., 2015), 

FROM_GLC (Gong et al., 2013) and NUACI (Liu et al., 2018)). The results indicate that the global impervious surface map 

produced by the proposed method is accurate and is suitable for regional or global impervious surface applications. 

2 Datasets 

2.1 Remote sensing datasets 120 

In this study, five kinds of data sources including Landsat-8 optical imagery, Sentinel-1 SAR data, VIIRS NTL imagery and 

MODIS EVI imagery, as well as STRM/ASTER DEM topographical variables, were selected and collected for the mapping 

of impervious surfaces across the world using the GEE platform. 
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All available Landsat-8 surface reflectance (SR) imagery from 2015 and 2016(USGS, 2015), which had been archived on the 

GEE platform, were used in this study for the nominal year 2015 because of the frequent cloud contamination in the tropic 125 

areas. All the SR images were radiometrically corrected by the Landsat Surface Reflectance Code (LaSRC) atmospheric 

correction method (Hu et al., 2014; Vermote et al., 2016), and bad pixels including clouds, cloud shadow, and saturated pixels 

were identified by the CFMask algorithm (Guide, 2018).  

The Sentinel-1 satellite provides C-band SAR imagery at a variety of polarizations and resolutions, and the repeat cycle of the 

polar-orbiting two-satellite constellation is 6 days (Berger et al., 2012; ESA, 2016; Torres et al., 2012). In this study, all 130 

available Sentinel-1 imagery from 2015 and 2016, which had already been calibrated and ortho-corrected then archived on the 

GEE platform, were also used for the nominal year 2015. In addition, each Sentinel-1 image on the GEE had been pre-

processed with the Sentinel-1 Toolbox, including thermal noise removal, radiometric calibration and terrain correction 

(https://developers.google.com/earth-engine/sentinel1). Also, as HH- and HV-polarized Sentinel-1 SAR imagery does not 

cover the whole world (Sun et al., 2019a), a combination of dual-band cross-polarized (VV and VH) Interferometric Wide 135 

Swath (IW) mode imagery in both ‘ascending’ and ‘descending’ orbits was used. The spatial resolution of this imagery was 

10-m.  

The VIIRS NTL, collected by NASA/NOAA’s Suomi National Polar-orbiting Partnership satellite 

(https://maps.ngdc.noaa.gov/viewers/VIIRS_DNB_nighttime_imagery/index.html), has the unique ability to record emitted 

visible and near-infrared (VNIR) radiation at night with a spatial resolution of 15 arc seconds (equivalent to 0.5 km at the 140 

equator) (Elvidge et al., 2017). Compared to the DMSP-OLS NTL data, the VIIRS NTL data provide higher spatial resolution, 

and finer radiometric resolution, which allows weaker surface radiation to be detected (Bennett and Smith, 2017). It is also the 

main data source used for studying the expansion of impervious surfaces and related sociodemographic issues (Elvidge et al., 

2017). In this study, a combination of VIIRS NTL, MODIS EVI imagery and GlobeLand30 land-cover products was used to 

derive the set of global training samples. 145 

The MODIS EVI imagery (MYD13Q1) from the MODIS V6 products contains the best available EVI data from among all 

the acquisitions obtained over a 16-day compositing period. The imagery has a spatial resolution of 250-m (Didan et al., 2015). 

In this study, the EVI imagery for 2015 in the GEE used the blue band to remove residual atmospheric contamination caused 

by smoke and sub-pixel thin clouds (https://developers.google.com/earth-engine/datasets/catalog/ MODIS_006_MYD13Q1). 

The last data source used was the Shuttle Radar Topography Mission digital elevation model (SRTM DEM),  provided by the 150 

NASA JPL at a resolution of 1 arc-second (approximately 30 m) and covering the area between 60° north and 56° south (Farr 

et al., 2007). This dataset has undergone a void-filling process using other open-source data (ASTER GDEM2, GMTED2010 

and NED) in the GEE platform. As for the high-latitude areas that lacked the SRTM data, the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2) (Tachikawa et al., 

2011) was used instead. 155 
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2.2 Global impervious surface products  

In this study, three global impervious surface products − GlobeLand30, FROM_GLC and NUACI − were used to validate the 

global impervious surface map produced using the MSMT_RF method. The GlobeLand30 data were also used to automatically 

derive the global impervious and non-impervious training samples. 

GlobeLand30 is an operational 30-m global land-cover dataset produced using the Pixel-Object-Knowledge-based method 160 

(POK-based) approach in 2000 and 2010 (Chen et al., 2015). In this study, the global impervious product derived from 

GlobeLand30 in 2010 (GlobeLand30-2010) was selected (http://www.globallandcover.com/ GLC30Download/index.aspx). 

The impervious surface land-cover type in GlobeLand30-2010 has been validated as having a user’s accuracy of 86.7%. 

FROM_GLC, first produced in 2010, was the first 30-m resolution global land-cover dataset and was produced by supervised 

classification of 8,900 Landsat images (Gong et al., 2013). In this study, the second generation of FROM_GLC from 2015 165 

(FROM_GLC2015) (http://data.ess.tsinghua.edu.cn/) was used. This dataset was produced by using multi-seasonal Landsat 

imagery acquired between 2013 and 2015 and incorporates the day of year, geographical coordinates and elevation data (Li et 

al., 2017).  

The NUACI-based maps, developed using the spectral index-based method applied to Landsat and DMSP-OLS NTL imagery, 

are multi-temporal global 30-m impervious surface datasets (Liu et al., 2018). In this study, the NUACI impervious map from 170 

2015 (NUACI_2015) was used (http://www.geosimulation.cn/ GlobalUrbanLand.html). This map has been validated as having 

an overall accuracy of 0.81–0.84 and kappa coefficient of 0.43–0.50 at the global level (Liu et al., 2018). 

2.3 Validation samples 

To quantitatively assess the performance of the global impervious surface map, twelve 1° × 1° validation regions (blue 

rectangles), including five high-density, four medium-density and three low-density regions, were randomly selected based on 175 

the density and distribution of the impervious surfaces (Fig. 1). For each validation region, 600-1000 samples were randomly 

generated using the stratified random sampling strategy (Bai et al., 2015). As there were significant advantages to using Google 

Earth for validation sample selection (Zhang et al., 2018c), each sample was labeled either as “non-impervious surface” or 

“impervious surface” based on visual interpretation of the available high-resolution remote sensing imagery in Google Earth. 

In addition, to ensure the reliability of each validation sample, the location of each sample was moved to the center of the 180 

relevant surface object (building, road, etc.) because of the greater spectral mixing effect and uncertainty at the boundary of 

the objects. Like the work of Sun et al. (2019b), if the impervious area in the 30-m ×30-m validation window was more than 

a predefined threshold of 50%, we will consider this validation point as impervious surface, otherwise, it would be labeled as 

non-impervious surface. After careful interpretation, a total of 10,142 samples including 2381 impervious samples and 7761 

non-impervious samples were obtained. In order to minimize the subjective influence of interpretation, the validation samples 185 
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were collected independently by three different scientists. If there was dispute between the interpretation results of three 

scientists, the validation point was discarded. 

 

Figure 1: The spatial distribution of twelve 1°×1° validation regions (blue) corresponding to regions of different impervious surface 

density on different continents together with six 5°×5° validation regions (red) used to measure the variable importance. 190 

3 Methods 

To develop the global 30-m impervious surface map for 2015, the multi-source and multi-temporal random forest classification 

(MSMT_RF) method was proposed. The method is illustrated in Fig. 2. First, time series of Landsat-8 SR and Sentinel-1 SAR 

imagery archived on the GEE platform were collected. Secondly, the temporalspectraltextural features and temporalSAR 

features were derived from the Landsat-8 and Sentinel-1 imagery using image compositing methods. Thirdly, based on the 195 

GlobeLand30-2010 impervious surface products, and the VIIRS NTL and MODIS EVI imagery, the global impervious and 

non-impervious training samples were automatically generated. The random forest classifier was trained at each 5°×5° 

geographical grid cell using the temporalspectraltexturalSAR-topographical features and the global training samples. 

Finally, the global impervious surface map was compared with three existing impervious surface products and further validated 

using the visual interpretation samples. 200 
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Figure 2: Flowchart illustrating the MSMT_RF method. 

3.1 Derivation of global training samples from GlobeLand30-2010 

As the reliability and representativeness of the training samples would affect the classification accuracy directly (Foody and 

Mathur, 2004), we proposed using the multi-source datasets to derive accurate impervious and non-impervious samples. It was 205 

assumed that the process of transforming non-impervious surfaces into impervious surfaces was irreversible during the period 

2010 to 2015, meaning that the global training samples derived from GlobeLand30-2010 could also be used to represent the 

situation in 2015.  

First, as GlobeLand30 used an object-based labeling method to remove the “salt-and-pepper effect” caused by the pixel-based 

classification method (Chen et al., 2015), the impervious surfaces consisted of independent blocks. Usually, a large number of 210 

mixed pixels and misclassifications occur at the boundary of image blocks or objects, and Yang et al. (2017) also found that 

GlobeLand30 exhibited higher accuracy in homogeneous areas. The land-cover heterogeneity was calculated as the number of 

land-cover types occurring in a local window (Jokar Arsanjani et al., 2016). According to the statistics of Chen et al. (2015), 

there were a little commission and omission errors in each scene when the area of impervious surface block was less than 8×8. 

In this study, the local window size was set to 9×9 after balancing the sample reliability and completeness because the higher 215 

window size would cause the candidate samples miss those small and broken impervious objects (such as: rural villages). 

Therefore, if the land-cover heterogeneity in the 9×9 local window was greater than 1 (meaning that the land-cover types 

within the window consisted of both impervious and non-impervious types), the center pixel was removed from the candidate 

training point set (CanTPS_Imp). 

Secondly, to minimize the effects of mapping error in GlobeLand30-2010 and temporal interval between GlobeLand30-2010 220 

and the input imagery for training samples in CanTPS_Imp, the VIIRS NTL data, revealed the intensity of socioeconomic 

activities, was imported to refine each training point in 2015. However, as the coarse spatial resolution of VIIRS NTL imagery 
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might cause a ‘blooming effect’ in suburban areas, the EANTLI proposed by Zhuo et al. (2018) was applied to reduce the 

blooming effects: 

𝐸𝐴𝑁𝑇𝐿𝐼 =
1+(𝑁𝑇𝐿𝑛𝑜𝑟𝑚−𝐸𝑉𝐼)

1−(𝑁𝑇𝐿𝑛𝑜𝑟𝑚−𝐸𝑉𝐼)
× 𝑁𝑇𝐿 ,         (1) 225 

where 𝑁𝑇𝐿𝑛𝑜𝑟𝑚 is the normalized NTL value, 𝐸𝑉𝐼 is the annual mean value of the time-series MODIS EVI products and 𝑁𝑇𝐿 

is the actual value of the VIIRS NTL data.  

The EANTLI measured the likelihood of the pixel corresponding to an impervious surface, so it was reasonable to assume that 

the pixels where EANTLI exceeded a certain threshold were impervious surface pixels. In this study, as the candidate training 

points in CanTPS_Imp were collected from homogenous 9×9 pixel areas (270 m×270 m), the EANTLI image in 2015 230 

(EANTLI-2015) was first resampled to the 270 m to match with these candidate points. The GlobeLand30-2010 impervious 

surface map had a user’s accuracy of 86.7%, and we assumed that the process of transforming non-impervious surfaces into 

impervious surfaces was irreversible during the period 2010 to 2015, so the impervious segmentation threshold was selected 

as being the lowest 15th quantile of the cumulative probability of all candidate impervious points for EANTLI-2015; namely, 

if the cumulative probability of the impervious point in CanTPS_Imp was lower than the threshold, the candidate point was 235 

removed from CanTPS_Imp. As for the non-impervious pixels, there was usually a negative correlation between non-

impervious surfaces and EANTLI values, and the non-impervious surface samples turned into impervious surface would reflect 

the high EANTLI-2015 values, so if the cumulative probability of a candidate non-impervious point in CanTPS_Imp was 

greater than the top 20th percentile of the cumulative probability of all candidate non-impervious points (the threshold being 

based on the overall accuracy of 80.33% for GlobeLand30-2010 and a little potential conversion samples), the candidate non-240 

impervious point was also removed.  

Lastly, although the candidate training points were refined using the GlobeLand30-2010 and EANTLI-2015 imagery, the 

volume of candidate training points was still huge and so it was necessary to further resample the CanTPS_Imp. Based on the 

work of Jin et al. (2014), who investigated the impact of training sample selection on the impervious classification accuracy, 

the proportional resampling method was chosen for use in this study. Furthermore, the non-impervious surfaces consisted of 245 

many land-cover types (water, vegetation, cropland and bare area). As the bare land was easier to be confused with the 

impervious surface compared with the water and vegetation types especially in the cities with rapid urbanization (Weng, 2012), 

and the suburban areas or rural villages were also easy to confused with croplands (Li et al., 2015), the non-impervious surfaces 

were spited into three independent groups including: bare area, cropland and other land-cover types. Then, in order to guarantee 

the rationality of training samples, the stratified random sampling strategy was applied at every 5°×5° geographical grids. 250 

Finally, the approximate value of 1:3 was used to represent the proportion of impervious to non-impervious surfaces (bare 

area, cropland and other land-cover types). Using the proportional resampling method and the stratified random sampling 

strategy, a total of 4,483,000 training samples, including 3,499,000 non-impervious samples and 984,000 impervious samples, 

were collected over the land areas across the globe. 
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3.2 Multi-source and multi-temporal impervious classification method 255 

3.2.1 Multi-source and multi-temporal feature selection 

As mentioned above, the datasets used in this study had been acquired from various satellite sensors and had distinctive features. 

Also the incorporation of multi-source and multi-temporal remote sensing data has been demonstrated to improve the accuracy 

of the mapping of impervious surfaces. In this study, three kinds of satellite imagery, including Landsat-8 SR, Sentinel-1 SAR 

and SRTM/ASTER DEM imagery, were collected for the global classification of impervious surfaces.   260 

After masking out the bad pixels (cloud, shadow and saturated pixels), the time-series Landsat SR imagery were needed to 

reduce the number of dimensions of the temporalspectral features to guard against the Hughes phenomenon (Zhang et al., 

2019). Similar to what Hansen et al. (2014) and Zhang and Roy (2017) introduced to capture phenology, the 15th and 85th 

percentiles of Landsat SR were used instead of the minimum and maximum values to minimize the effects of residual shadows 

and cloud caused by the errors in the CFMask method (Massey et al., 2018). In addition, as the Sun et al. (2017) explained that 265 

the growing season was the best time for impervious surface mapping over temperate continental climate zones and Zhang et 

al. (2014a) found that winter (dry season) is the best season to estimate impervious surface in subtropical monsoon regions, 

the combination of 15th and 85th percentiles of Landsat SR was used to efficiently capture intra-annual variation information 

of various land-cover types. It should be noted that only the six optical bands (Blue, Green, Red, NIR, SWIR1 and SWIR2) 

were selected because the Coastal band was sensitive to the atmospheric scattering (Wang et al., 2016). Liu et al. (2018) found 270 

that the Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI) and Normalized 

Difference Built-up Index (NDBI) were of great help in impervious surface identification; therefore, these three spectral 

indexes were added to the spectral features, giving a total of 18 features for the two-epoch imagery. Furthermore, as the texture 

information contributed to the classification performance (Weng, 2012), the local textural measures based on the Gray Level 

Co-occurrence Matrix (GLCM) were adopted; however, because of the redundancy and similarity between texture features 275 

(Rodriguez-Galiano et al., 2012), only the variance, dissimilarity and entropy of the NIR band were selected from the 7×7 

local window for the two-epoch imagery (Chen et al., 2016; Zhang et al., 2014b). The optimal window size for texture 

measurements was highly dependent on the image spatial resolution and the land cover characteristics (Zhu et al., 2012) and 

Shaban and Dikshit (2001) computed texture measurements with different window sizes as inputs for urban area classification 

and suggested window sizes of 7 ×7 pixels perform best. 280 

As the Sentinel-1 SAR imagery had been pre-processed in the GEE platform, the annual mean and standard deviation of the 

VV and VH imagery were directly derived from the time-series of Sentinel-1 SAR imagery. Zhang et al. (2014b) found that 

SAR texture features were also relevant to impervious surfaces and the dissimilarity, variance and entropy features of the VV 

and VH imagery were identified as effective indicators for the texture description of different urban land cover types. As Zhang 

et al. (2014b) explained the window size for calculating GLCM should be smaller as terrains are smaller under coarser 285 

resolution, the window size was chose as 9×9 pixels at 10-m spatial resolution, equivalent to 3×3 pixels in 30-m. Moreover, 
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as the spatial resolution of the Landsat SR (30-m) was three times that of the Sentinel-1 imagery (10-m), the SAR data were 

resampled to 30-m for integration with the Landsat SR data.  

Lastly, as Clarke et al. (1997) found that terrain variables were of great help in identifying impervious surfaces, the elevation, 

slope and aspect, calculated from the SRTM/ASTER DEM data, were added to the feature vector. This gave a total of 37 290 

features for each pixel location, including 18 spectral features and 6 texture features from the Landsat imagery, 10 SAR features 

and 3 topographical variables. The features are listed in Table 1. 

Table 1. Training features for global impervious surface mapping. 

Data Features References 

LandSat-8 OLI 

Reflectance: Blue, Green, Red, NIR, SWIR1 and SWIR2 
Liu et al. (2018) 

Normalized indices: NDVI, NDWI and NDBI 

Textural variables: variance, dissimilarity and entropy of the NIR Chen et al. (2016) 

Sentinel-1 SAR 
Annual statistics: mean and standard deviation of VV and VH Sun et al. (2019b) 

Textural features: dissimilarity, variance and entropy of VV and VH Zhang et al. (2014b) 

DEM Elevation, slope and aspect Clarke et al. (1997) 

3.2.2 Random forest classification model 

As in the work of Zhang and Roy (2017), there were two options for models to use in the global impervious surface 295 

classification: global and local models. The global model is a single classifier, trained using the global training samples, and 

then used to classify the entire global data set. The local model, is trained using regional samples; the regional classification 

results are then mosaicked to produce the global map. Zhang and Roy (2017) confirmed that locally adaptive models achieve 

a higher classification accuracy than a single global model. Therefore, the global land surfaces were split into approximately 

1000 5°×5° geographical grid cells after considering the data volume and amount of computation needed for the regional 300 

mapping. In addition, to ensure the classification consistency across the cell boundaries, as in the work of Zhang et al. (2018c) 

and Zhang and Roy (2017), the training samples from the adjacent 3×3 geographical cells were also imported to train the 

classifier in classifying the central geographical cell. 

As for the specific techniques used in classifiers, according to our previous investigations (Zhang et al., 2019), the Random 

Forest (RF) classifier is more capable of handling high-dimensional multicollinearity data. It is also less affected by noise and 305 

feature selection as well as being more accurate and efficient than other widely used classifiers such as the SVM (Support 

Vector Machine), CART (Classification And Regression Tree) and ANN (Artificial Neural Network) classifiers. Therefore, 

the RF classifier was selected for the development of the global impervious surface map. 

The RF classifier has only two parameters: the number of classification trees (Ntree) and the number of selected predication 

features (Mtry). Furthermore, many researchers have demonstrated that there is almost no correlation between these two 310 
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parameters and the classification accuracy (Belgiu and Drăguţ, 2016; Du et al., 2015; Gislason et al., 2006); therefore, the 

default values of 500 for Ntree and the square root of the total number of training features for Mtry were selected. 

3.3 Accuracy assessment 

To quantitatively assess the global consistency between the MSMT_RF-based impervious surface map and the three existing 

products (GlobeLand30-2010, FROM_GLC2015 and NUACI_2015), four global 30-m impervious surface maps were 315 

aggregated to a resolution of 0.05°×0.05° and the fraction of impervious area was then calculated. Following that, scatter plots 

of the linear regression between the MSMT_RF-based results and the reference data were produced to support the quantitative 

analysis. Two evaluation indicators  the coefficient of determination (R2) and the root mean square error (RMSE)  were 

calculated to measure the consistency.  

In addition, a validation based on the visual interpretation samples was implemented over twelve 1°×1° regions covering 320 

different impervious surface densities and different continents. Four accuracy metrics, including the overall accuracy (O.A.), 

the producer’s accuracy (P.A.), user’s accuracy (U.A.) and kappa coefficient (Olofsson et al., 2014), were computed to assess 

the performance of the MSMT_RF-based global impervious surface mapping. 

4 results 

4.1 Global impervious surface map and cross-comparison 325 

The global distribution of the fraction of impervious area (FIA) at a spatial resolution of 0.05° is illustrated in Fig. 3, whilst 

the meridional and zonal total FIA for each 0.05° longitude and latitude bin are shown at the top and left of Fig. 3. From an 

intuitive and statistical perspective, globally, impervious surfaces are mainly concentrated in three continents: Asia (34.43%), 

North America (28.04%) and Europe (24.98%), followed by South America (5.89%), Africa (5.63%) and Australia (1.06%). 

In addition, the zonal statistics indicate that 70% of the impervious surfaces are distributed between 30°N and 60°N because 330 

these regions contain the key areas of Asia, North America and Europe, which are the locations of the most developed countries 

and highest population densities. The meridional results illustrate that there are four peak intervals: 100° W to 70° W (United 

States), 10° W to 40° E (European Union), 60° E to 90° E (India) and 100° E to 130° E (China and southeastern Asia). The 

two peak values in the meridional direction are located in the centers of the United States and China.  
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 335 

Figure 3. Global fraction of impervious cover derived from multi-source and multi-temporal Landsat-8 SR and Sentinel-1 SAR 

imagery acquired in 2015 to 2016. The spatial resolution of the map is 0.05°. 

Summaries of the impervious surface areas at a national scale were also produced. The statistical results indicated that the total 

impervious surface areas of the top 20 countries account for 75.96% of the total global area. Fig. 4 presents the top 20 counties 

in terms of impervious surface area and corresponding fractions of the world total. Overall, there is a positive correlation 340 

between these statistical fractions and the land area, population and degree of economic development of these nations. 

Specifically, it was found that the U.S. has the biggest impervious surface area, accounting for more than 20% of the global 

total, and only the top 3 countries (U.S., China and Russia) exceed 5% of the total global area. The ranking is also basically 

consistent with the statistics produced by the Organization for Economic Co-operation and Development (OECD) for built-up 

areas in 2014 (https://stats.oecd.org/Index.aspx?DataSetCode=BUILT_UP). 345 

 

Figure 4. The top 20 countries in terms of impervious surface area and corresponding fractions of the global total. 
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To quantitatively evaluate the consistency between the MSMT_RF-based impervious surface map and the three existing 

products (GlobeLand30-2010, FROM_FLC2015 and NUACI_2015), four global 30-m impervious surface maps were first 

aggregated to a resolution of 0.05°. Scatter plots of the three products against the MSMT_RF-based impervious map were then 350 

made, as illustrated as Fig. 5. The results indicate that there is a greater consistency between the MSMT_RF-based map and 

FROM_GLC2015 (R2 of 0.7696 and RMSE of 0.0546), than for GlobeLand30-2010 (R2 of 0.7416 and RMSE of 0.0604) or 

NUACI_2015 (R2 of 0.6631 and RMSE of 0.0996). The main differences between the GlobeLand30 and the MSMT_RF-

based maps are due to the temporal interval of 5 years and the limitations of the minimum 4×4 mapping unit for GlobeLand30-

2010 (Chen et al., 2015). As NUACI_2015 has been demonstrated to miss some small, fragmented villages and roads (Sun et 355 

al., 2019b), the slope of the regression line was less than 1.0 in this case. Lastly, subsequent validation (Section 4.2) indicated 

that there was a high degree of consistency (close to 1:1) between FROM_GLC2015 and the MSMT_RF-based results in high-

density regions but that the product suffered from the problem of underestimation in low and medium-density regions. The 

slope of the regression line for these results is also less than 1. 

 360 

Figure 5. Scatter plots between the MSMT_RF-based impervious map and the GlobeLand30-2010, FROM_GLC2015 and 

NUACI_2015 global impervious surface products at a spatial resolution of 0.05°×0.05°. 

4.2 Accuracy assessment using validation samples 

The accuracy of the four global impervious surface maps over 12 validation regions with different impervious densities is 

presented in Table 2. Six evaluation metrics, including the producer’s accuracy (which measures the commission error) and 365 

user’s accuracy (which measures the omission error) of the impervious surface, the producer’s and user’s accuracy of non-

impervious surfaces as well as the overall accuracy and kappa coefficient, were used to assess the accuracy. Overall, the 

MSMT_RF-based map achieved the highest overall accuracy of 0.966 and kappa coefficient of 0.903 compared with 0.925 

and 0.769 for FROM_GLC2015, 0.873 and 0.585 for NUACI_2015, and 0.911 and 0.717 for GlobeLand30-2010 using all 12 

regional validation data. From the perspective of the value of the producer’s accuracy for impervious surfaces, the MSMT_RF 370 

method performed significantly better than the other impervious surface products, especially in the low- and medium-density 
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regions. Specifically, as the minimum mapping unit of GlobeLand30 was a 4×4-pixel area, many rural impervious surfaces 

were ignored in these low and medium-density regions, which caused large omission errors that ranged from 73.6% to 12.4%. 

NUACI_2015 had the lowest producer’s accuracy and this might be due to its poor performance over small impervious surfaces 

(Sun et al., 2019b). FROM_GLC2015 had a similar performance to the MSMT_RF method for high-density regions, but its 375 

accuracy decreased sharply over low- and medium-density regions. Moreover, we could found that the producer’s accuracy 

for impervious surfaces and kappa coefficient varied with the impervious density, specifically, the higher accuracies were 

achieved at high impervious density regions followed by medium and low impervious density regions. As the stratified random 

sampling strategy was applied to each validation region independently, the low and medium density regions were easier to 

select these mixed impervious validation points (simultaneously containing the impervious and non-impervious surfaces in the 380 

30-m ×30-m validation window and the impervious areas exceed the predefined threshold of 50%) which were most difficult 

to identify for impervious surface mapping. 

As for the user’s accuracy for impervious surfaces, and the producer’s accuracy and user’s accuracy for non-impervious 

surfaces, the MSMT_RF method achieved an accuracy similar to that achieved by FROM_GLC2015 and GlobeLand30-2010 

and higher than that of NUACI_2015. In contrast to the results for the producer’s accuracy for impervious surfaces, the three 385 

other products mostly performed very well as measured by these three metrics, especially in low- and medium-density regions.  
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Table 2. Accuracy of the four impervious surface maps over 12 validation regions 

    a b c d e f g h i J k l Overall 

 I.D. high low low high medium medium low high high medium high medium  

T
h

e 
M

S
M

T
_

R
F

 m
ap

 

P.I. 0.885 0.822 0.847 0.938 0.757 0.782 0.765 0.905 0.990 0.941 0.969 0.845 0.900 

U.I. 0.955 0.961 1.000 0.944 0.858 0.991 1.000 0.987 0.940 0.923 0.948 0.990 0.952 

P.N. 0.979 0.994 1.000 0.971 0.974 0.999 1.000 0.996 0.985 0.980 0.962 0.999 0.986 

U.N. 0.944 0.969 0.975 0.969 0.951 0.958 0.965 0.970 0.998 0.985 0.977 0.974 0.970 

O.A. 0.948 0.968 0.978 0.968 0.937 0.960 0.968 0.974 0.986 0.972 0.965 0.976 0.966 

Kappa 0.880 0.868 0.905 0.910 0.767 0.852 0.850 0.927 0.955 0.914 0.928 0.898 0.903 

F
R

O
M

_
G

L
C

2
0

1
5

 

P.I. 0.965 0.100 0.824 0.787 0.272 0.489 0.395 0.819 0.974 0.525 0.942 0.112 0.715 

U.I. 0.910 0.900 1.000 0.967 0.925 1.000 1.000 0.939 0.873 0.991 0.980 1.000 0.948 

P.N. 0.955 0.998 1.000 0.986 0.996 1.000 1.000 0.983 0.966 0.999 0.986 1.000 0.988 

U.N. 0.983 0.862 0.972 0.900 0.869 0.907 0.914 0.944 0.994 0.891 0.959 0.869 0.920 

O.A. 0.958 0.862 0.975 0.919 0.872 0.915 0.918 0.943 0.968 0.901 0.968 0.871 0.925 

Kappa 0.906 0.155 0.889 0.810 0.372 0.615 0.531 0.838 0.900 0.634 0.933 0.178 0.769 

N
U

A
C

I_
2

0
1
5
 

P.I. 0.309 0.211 0.141 0.680 0.162 0.579 0.247 0.626 0.758 0.539 0.843 0.042 0.527 

U.I. 0.669 1.000 1.000 0.871 0.786 0.939 0.952 0.788 0.900 1.000 0.933 0.556 0.873 

P.N. 0.928 1.000 1.000 0.948 0.991 0.993 0.998 0.946 0.980 1.000 0.957 0.994 0.977 

U.N. 0.741 0.877 0.876 0.852 0.852 0.922 0.895 0.887 0.944 0.894 0.894 0.855 0.874 

O.A. 0.730 0.881 0.879 0.857 0.849 0.924 0.897 0.868 0.937 0.905 0.909 0.852 0.873 

Kappa 0.277 0.312 0.220 0.664 0.223 0.675 0.356 0.614 0.785 0.650 0.811 0.058 0.585 

G
lo

b
eL

an
d

3
0

-2
0

1
0
 

P.I. 0.876 0.244 0.671 0.500 0.346 0.263 0.593 0.774 0.895 0.642 0.785 0.310 0.641 

U.I. 0.926 1.000 1.000 0.944 0.904 1.000 1.000 0.940 0.971 0.985 0.982 1.000 0.960 

P.N. 0.967 1.000 1.000 0.985 0.992 1.000 1.000 0.984 0.994 0.997 0.990 1.000 0.992 

U.N. 0.943 0.882 0.949 0.793 0.881 0.872 0.940 0.931 0.975 0.915 0.865 0.895 0.902 

O.A. 0.938 0.886 0.953 0.820 0.882 0.878 0.945 0.933 0.975 0.925 0.904 0.900 0.911 

Kappa 0.855 0.355 0.778 0.547 0.448 0.373 0.716 0.806 0.916 0.734 0.797 0.435 0.717 

Note: I.D., impervious density, P.I., producer’s accuracy of impervious surfaces, U.I., user’s accuracy of impervious surfaces, P.N., 390 

producer’s accuracy of non-impervious surfaces, U.N., user’s accuracy of non-impervious surfaces, O.A., overall accuracy. 

To intuitively compare the performance of these four products, five validation regions, including two high-density regions, 

one low-density and two medium-density regions, were selected in Figure 6. First, in the low-density region (Table 2b and 
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Figure 6b), FROM_GLC2015 had the most obvious underestimation problem, except for the urban centers, almost all 

impervious objects (peripheral urban and rural villages and roads) were missed. The series omission error maybe came from 395 

the sparse training samples (91,433 training samples in the globe) (Gong et al., 2013). The NUACI_2015, only identifying the 

urban areas and some obvious impervious objects, also missed fragmented and small rural villages. The causes of omission 

maybe came from the threshold method used by the NUACI_2015, specifically, Liu et al. (2018) developed a novel NUACI 

index to enhance the impervious surfaces and suppress the non-impervious surfaces and then found an optimal threshold for 

NUACI index to split the impervious and non-impervious surfaces. However, the NUACI values of rural villages and roads 400 

were usually located in the mixed areas of impervious and non-impervious surfaces, so the NUACI_2015 had great ability for 

obvious impervious surfaces but bad performance for fragmented impervious surfaces. As for the GlobeLand30-2010, the 

omission errors were mainly due to the temporal interval of 5 years and the minimum 4×4 mapping unit(Chen et al., 2015). 

Next, in the first high-density region (Table 2d), GlobeLand30-2010 produced underestimates in many peripheral urban areas, 

which was mainly due to the temporal interval of 5 years. FROM_GLC2015 and NUACI_2015 still omitted some rural roads 405 

and villages (top-right and center-left of Figure 6d) compared with the MSMT_RF-based results. In the second high-density 

region (Table 2i), NUACI_2015 identified large and medium-sized cities at the cost of missing all of the fragmented villages. 

The MSMT_RF-based results and FROM_GLC2015 accurately delineated the spatial distributions of urban and rural roads 

and settlements. GlobeLand30-2010 still suffered from a few omission errors caused by the temporal difference between data 

sets and the limitation of minimum mapping unit.  410 

Lastly, in the first medium-density region (Table 2j and Fig. 6j), the situation was similar to that for Figure 6d  the omission 

errors in FROM_GLC2015, NUACI_2015 and GlobeLand30-2010 were caused by the omission of small and fragmented 

villages and roads. As for the last validation region, the medium-density region (Table 2l and Figure 6l) consisted of typical 

rural areas of North America containing a large number of small and rural roads. As Figure 6l illustrates, almost all roads and 

villages were missed in FROM_GLC2015 and NUACI_2015 whereas GlobeLand30-2010 could identify the main roads while 415 

still missing the minor roads. In summary, as the MSMT_RF method could accurately and comprehensively identify 

fragmented and small villages and roads, it gave a higher producer’s accuracy. 

 

https://doi.org/10.5194/essd-2019-200

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 21 January 2020
c© Author(s) 2020. CC BY 4.0 License.



18 

 

 

Figure 6. Comparisons between the MSMT_RF-based maps (the second column) and other impervious surface products (the 3rd to 420 
5th columns corresponded to the FROM_GLC products developed by Gong et al. (2013), the NUACI products developed by Liu et 

al. (2018) and the GlobeLand30 products developed by Chen et al. (2015), respectively) for five regions with various impervious 

surface densities. The first column listed the corresponding natural-composited Landsat images in the growing season of 2015. 
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5 Discussion 

5.1 The advantages of multi-source and multi-temporal classification 425 

Because of the spectral heterogeneity of impervious surfaces, it is very difficult to accurately map impervious surfaces using 

only optical remote sensing imagery (Zhang et al., 2014b). Although some studies have demonstrated that the integration of 

multi-source and multi-temporal information can improve the mapping accuracy, these studies mainly focused on the regional 

scale and regions of high impervious surface density (Zhang et al., 2014b; Zhu et al., 2012). At present, global impervious 

surface maps are still produced by optical imagery alone or by using a combination of optical and DMSP-OLS or VIIRS NTL 430 

imagery (Huang et al., 2016; Liu et al., 2018; Schneider et al., 2010). In this study, we first developed the global 30-m 

impervious surface map using multi-source and multi-temporal imagery. To quantitatively demonstrate the need for using 

multi-source, multi-temporal information and the results of using it, we randomly selected six 5°×5° regions (red rectangles in 

Fig. 1) from six different continents and then calculated the importance of the training features using the RF model at the 

Python environment. Specifically, the RF model computed the average increase in the mean square error by permuting out-of-435 

bag data for a variable while keeping all the other variables constant, thus measuring the variable’s importance (Pflugmacher 

et al., 2014). Training features that had a high importance were the drivers of the model decision and their values had a 

significant impact on the output values. 

The importance of all 37 training features for the six regions is illustrated in Fig. 7. These results indicate that the Sentinel-1 

SAR features (VV and VH) had the greatest contribution to the final decision in most regions because SAR images can provide 440 

information about the structure and dielectric properties of the surface materials. Next in importance were the 15th percentile 

of Landsat SR in the blue, green, red and SWIR2 bands and the corresponding NDVI and NDWI indices, as well as the texture 

variance and dissimilarity for Sentinel-1 SAR: the importance of these feature was close to or exceeded 5% in most cases. 

Following these were the 85th percentile of Landsat SR in the NIR and SWIR1 bands as well as the SAR texture features, 

whose mean importance was approximately 3%. In summary, only the integration of multi-source training features could 445 

guarantee the classification accuracy across different impervious landscapes. Similarly, Zhang et al. (2014b) also concluded 

that the combination of optical and SAR imagery could significantly improve the land-cover classification and impervious 

surface area estimation.  

Secondly, as the intra-annual variability could increase the separability of impervious and non-impervious surfaces (Zhang 

and Weng, 2016), the importance of multi-temporal optical features was also investigated. Although the 15th percentile had a 450 

higher importance than the 85th percentile in most of the spectral bands, we found that there was a large degree of 

complementarity between the images from two different seasons: for example, the importance of the 15th percentile in the 

NIR and SWIR1 bands was low while that of 85th percentile was high. Therefore, the total importance of the bi-seasonal 

spectral features exceeded 70% in some cases. Similarly, Zhu et al. (2012) demonstrated that the inclusion of multi-temporal 

imagery increased the accuracy by 8.9%. Schug et al. (2018) also found that bi-seasonal information could produce a more 455 
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reliable performance than a single-year composited image. Therefore, temporal variability can be considered an important 

addition to accurate impervious surface mapping. 

Lastly, although the importance of Landsat texture features and the topographical variables was lower than 5% in these six 

regions, some scientists have demonstrated that these features contribute a lot to the improvement of impervious mapping 

accuracy. For example, Shaban and Dikshit (2001) found that the combination of texture and spectral features improved the 460 

classification accuracy by 9% to 17% compared with the use of pure spectral features. Zhu et al. (2012) also emphasized that 

the integration of texture variables increased the accuracy from 86.86% to 92.69% because texture imagery could capture the 

local spatial structure and the variability of land-cover categories. Subsequently, the cumulative importance of topographical 

variables over the region in Asia exceeded 5%, the topographical variables were necessary for impervious surface mapping in 

mountain areas. Similarly, Clarke et al. (1997) explained that topographical variables (slope, aspect and DEM) contribute a lot 465 

to impervious surface mapping. These features are, therefore, indispensable in the accurate mapping of impervious surfaces in 

complex landscapes. 

 

Figure 7. The importance of the input features derived from the random forest model using the training samples in six continental 

regions. 470 

From the perspective of the impervious mapping method, the comparison between our MSMT_RF product and NUACI_2015 

also demonstrates that the classification-based method performed better than the spectral index-based method (Section 4.2). 

We concluded that this improvement was mainly due to the combination of the multi-source and multi-temporal information 

in the classification method.  
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5.2 Reliability and sensitivity of the global training samples 475 

In contrast to other classification-related studies that require manual efforts to collect training samples (Gao et al., 2012; Im et 

al., 2012; Zhang et al., 2016), we overcame the expensive cost of collecting accurate and sufficient training samples at a global 

scale. To ensure the accuracy and reliability of the training samples, a combination of the GlobeLand30-2010 land-cover 

product, which had been validated to have a user’s accuracy (which measures the commission error) of 97.1% for impervious 

surfaces (see Section 4.2), and DMSP-OLS NTL imagery was adopted to guarantee the reliability of each sample. As it was 480 

difficult and challenging to evaluate the accuracy of all the training samples, we randomly selected 1% of the total training 

samples (in Section 3.1) including 34,990 non-impervious and 9,840 impervious points to measure the reliability of the global 

training samples. After careful checking, we found that these training samples achieved accuracies of 91.9% and 99.5% for 

impervious and non-impervious surfaces, respectively. 

Meanwhile, even if the training samples still contained a small number of erroneous points, the random forest model has been 485 

demonstrated to be resistant to noise and presence of erroneous samples (Belgiu and Drăguţ, 2016). In this study, we randomly 

changed the category of a certain percentage of the 34,990 samples and used the ‘‘noisy” samples to train the random forest 

classifier. Fig. 8 illustrates the overall accuracy and impervious producer’s accuracy decreased for the increased percentage of 

erroneous samples. It was found that the overall and impervious producer’s accuracy remained stable when the percentage of 

erroneous samples increased from 1% to 20% while it rapidly decreased when the percentage of erroneous samples was higher 490 

than 20%. Similarly, Gong et al. (2019) also found that the decrease in overall accuracy was less than 1% when the error in 

the training samples was less than 20%. 

  

Figure 8. Sensitivity analysis showing the relation between the classification accuracy and the percentage of erroneous samples points. 
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Therefore, the reliability and sensitivity analysis indicated that: 1) the random forest model is resistant to noisy training samples 495 

and performs well if the percentage of erroneous samples is lower than 20%; and 2) the training samples derived from the 

GlobeLand30 and DMSP-OLS NTL imagery were accurate enough for use in global impervious surface mapping.  

5.3 Limitations of the proposed method 

Although the proposed MSMT_RF method has been demonstrated to have the ability to produce the accurate impervious 

surface products, there are still some limitations to the method. First, as the training samples derived from the GlobeLand30-500 

2010 are restricted to a 9×9-pixel local window and further refined by the integration of MODIS EVI and VIIRS NTL imagery, 

low-density impervious samples might be omitted and cause further omission of low-density impervious surfaces (rural 

villages, small roads and so on). Although, in this study, spatially adjacent training samples from the surrounding 33 areas 

were imported to reduce the omission of low-density samples, according to the accuracy assessment, higher omission errors 

were found in low and medium-density regions than in high-density regions. Therefore, our future work will pay more attention 505 

to the omission of low-density impervious surfaces. 

Secondly, as Weng (2012) pointed out, mixed pixels are common in medium-resolution imagery due to the limitations of the 

spatial resolution and spectral heterogeneity of the landscape. The effectiveness of ‘hard’ classifiers is easily affected by these 

mixed pixels (low-density impervious pixels also constitute mixed pixels). Due to the proportion of impervious surfaces within 

a pixel, impervious surface areas are often overestimated in urban areas or underestimated in rural areas when using medium-510 

resolution images (Lu and Weng, 2006). Therefore, our future work will focus on simultaneously producing the likelihood 

(‘soft’ probability) of each pixel being an impervious surface. At present, some scientists have produced continuous impervious 

fractions at a regional scale: for example, Okujeni et al. (2018) used the support vector regression method to estimate the 

fraction of impervious surfaces at the pixel scale.  

6 Data availability and user guidelines 515 

The global impervious surface map data set generated in this paper are available on Zenodo:  

https://doi.org/10.5281/zenodo.3505079 (Zhang and Liu, 2019). 

To facilitate the readers to reproduce this work, Table 3 gives the details of the datasource and platform information of the 

datasets and processes in this study. The input remote sensing datasets and products came from three parts including: GEE 

platform, free access websites and our group. Specifically, five kinds of basic datasets in section 2.1 were available at GEE 520 

platform. The three global impervious surface products in section 2.2 were downloaded from the free access websites from 

National Geomatics Center of China, Tsinghua University and Sun Yat-sen University. The validation samples were produced 

by our group using visual interpretation.  

Further, the process of derivation of global training samples was implemented by using the multi-source datasets at localhost 

computation platform, and the random forest classification at each 5°×5° regional grid was developed by our group on the 525 
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GEE platform using JavaScript language. The importance of multi-source and multi-temporal features and reliability and 

sensitivity of global training samples were analyzed at the localhost Python computation environment. 

Table 3. The detailed information of the datasets and processes in this study 

 Datasource and platform Detailed datasets and processing steps 

Datasets 

Google Earth Engine platform 
Landsat-8 optical, Sentinel-1 SAR, VIIRS NTL, MODIS EVI and 

STRM/ASTER DEM topographical imagery 

Free download websites GlobeLand30-2010, FROM_GLC-2015, NUACI-2015 products 

Our Group Validation samples 

Processes 

Google Earth Engine platform 

(JavaScript language) 
The random forest classification at each 5°×5° regional grid 

Localhost platform 

(Python environment) 

Derivation of global training samples 

The importance of multi-source and multi-temporal features 

reliability and sensitivity of global training samples 

7 Conclusions 

Due to the spectral heterogeneity and complicated make-up of impervious surfaces, large-area impervious mapping is 530 

challenging and difficult. In this study, a global 30-m impervious surface map was developed by using multi-source, multi-

temporal remote sensing data based on the Google Earth Engine platform. First, the global training samples were automatically 

derived from the GlobeLand30-2010 land-cover product together with VIIRS NTL and MODIS EVI imagery. Then, a local 

adaptive random forest model was trained using the training samples and multi-source and multi-temporal datasets for each 

5°×5° geographical grid. Following that, the global impervious map produced by mosaicking a large number of 5°×5° regional 535 

impervious surface maps was validated by comparing it with three existing products (GlobeLand30-2010, FROM_GLC2015 

and NUACI_2015) using approximately 10,142 interpretation samples. The results indicated that the MSMT_RF-based 

impervious surface map had the highest overall accuracy of 96.7% and a kappa coefficient of 0.888, followed by 

FROM_GLC2015 (92.5% and 0.769), GlobeLand30-2010 (91.1% and 0.717) and NUACI_2015 (87.43% and 0.585). 

Therefore, it can be concluded that the global 30-m impervious surface map produced by the proposed MSMT_RF method is 540 

accurate and reliable for use in global impervious surface mapping. 
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