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Dear Reviewer, 
 
Many thanks for your correspondence regarding our data description paper entitled “A remote             
sensing-based dataset to characterize the ecosystem functioning and functional diversity of a            
Biosphere Reserve: Sierra Nevada (SE Spain)”. We thank you for all your constructive comments,              
which provided valuable insights to improve the conceptual and methodological robustness of our             
data and our paper. We are now very pleased to send you the response to your comments and                  
suggestions. 
 
In our response below, please find our point-by-point responses (indicted with “R”) presenting, in              
detail, how we have addressed the Reviewer comments (“C”). In this document, the Reviewer              
comments are reproduced in bold italic font and our responses are indicated in plain text. We                
numbered each comment and reply for ease of reference and indicated changes that will be made in                 
the manuscript.  
 
Once again, we thank you for your time, constructive comments and suggestions. We hope to meet the                 
expectations with this response, and that the Reviewer considers our data description manuscript             
suitable to be published in Earth System Science Data. 
 
Sincerely, 
 
The authors 
 
Referee #1 Received and published: 23 March 2020  
General comments: The authors provide a valuable compilation of remote sensing based indicators             
that are used to characterize the ecosystem condition of a test site in south-eastern Spain (Sierra                
Nevada). The indicators are computed from time series of Enhanced Vegetation Index (EVI) data              
from 16-day MODIS maximum value composite (MVC) data. The framework for the assessment of              
ecosystem functioning and functional diversity builds on a set of temporal metrics that are              
computed on an inter-annual, annual or seasonal level as well as on metrics that capture the                
spatial heterogeneity of the derived metrics. These metrics are used as proxies for ecosystem              
functional attributes (EFAs). The analysis of the temporal variability of the EFAs yielded the              
ecosystem functional types (EFTs) and the spatio-temporal heterogeneity of EFTs resulted in the             
characterization of ecosystem functional diversity. The main rationale behind this framework is            
that ecosystem primary production can be assessed from satellite vegetation indices and that             
primary production is the key indicator of ecosystem functioning. Overall, the proposed framework             
for computing EFTs and functional diversity from satellite time series is comprehensible and well              
documented. The translation of temporal metrics of vegetation indices into functional attributes            
and type of ecosystems is well-founded and presents a prototype for large-scale ecosystem             
assessment and monitoring. The description of the datasets is appropriate and the data are              



available, structured and labelled logically. However, there are a few specific issues that need to be                
addressed before the manuscript can be accepted for publication:  
Specific comments:  
 
C1. - * The authors do not provide any information about the processing of the MODIS13Q1.006                
time series to annual and inter-annual image stacks. Here, the most important point that has to be                 
considered is the masking of valid pixels (clouds, aerosols, snow / ice, etc.) based on the quality                 
assessment (QA) layer (VI Quality) of the MODIS dataset. The clarification on this issue is crucial                
has a direct impact on a number of the more technical comments below.  
R1. - Thank you very much for raising this question. We used Enhanced Vegetation Index (EVI)                
since it minimizes canopy background variations and maintains sensitivity over dense vegetation            
conditions (Liu and Huete 1995). The MODIS EVI also uses the blue band to reduce residual                
atmosphere contamination caused by smoke and sub-pixel thin clouds (Huete et al. 1999). The              
MODIS EVI products are computed from atmospherically corrected bi-directional surface          
reflectances. Furthermore, the algorithm used by this product (MOD13Q1.006 product) chooses the            
best available pixel value from all the acquisitions from the 16 day period. The algorithm operates on                 
a per-pixel basis and requires multiple observations (16 days) to generate a composited EVI. Due to                
orbit overlap, multiple observations may exist for one day and a maximum of four observations per                
day may be collected. The MOD13Q1 algorithm separates all observations by their orbits providing a               
means to further filter the input data. 
 
Once all 16 days are collected, the MODIS algorithm applies a filter to the data based on quality,                  
cloud presence, and viewing geometry (Figure 1). Cloud-contaminated pixels and extreme off-nadir            
sensor views are considered lower quality. A cloud-free, nadir view pixel with no residual              
atmospheric contamination represents the best quality pixel. Only the highest quality, cloud-free,            
filtered data are retained for compositing (Huete et al. 1999, Didan 2015b). The goal of the                
compositing methodology is to extract a single value per pixel from all the retained filtered data,                
which is representative of each pixel over the particular 16-day period. The compositing technique              
uses an enhanced criteria for normal-to-ideal observations, but switches to an optional backup method              
when conditions are less than ideal (Figure 1).  



 
Figure 1. MODIS compositing algorithm data flow (from Didan et al. 2015b). 
 
 
The EVI values range from -1 to +1, where negative values generally correspond to snow, ice, or                 
water; and values closer to +1 represent the higher density of green leaves (Huete et al. 2002). In our                   
data, in addition to assuming the correct native pre-processing of the data explained above, negative               
values (associated with snow, ice or water) were transformed into zeros. 
 
Despite the high standard quality of the 16-day EVI maximum value composite in MOD13Q1, we               
have assessed the effect of the additional application of the QA mask flags on the three Ecosystem                 
Functional Attributes that are used as the basis for our further analyses and maps (e.g. the three                 
metrics: EVI_mean, EVI_SD and EVI_DMAX). To do this, we have calculated EFAs using the              
"Summary Quality Assessment'' band of MOD13Q1 product and masking out (values were substituted             
by NANs) the values 2: pixel covered with snow/ice, and 3: pixel cloudy. For EVI_mean and EVI_SD                 
(continuous variables), and we carried out two comparisons: 1) we calculated a simple sliding window               
(3x3 pixels) correlation (Pearson correlation) between two rasters (data with QA mask and our data               
with negative values transformed into zeros), and plotted the map and histogram of the correlation               
coefficients (Figure 2a-d), and 2)we calculated the linear regression between the filtered and             
unfiltered EFAs for the average year (Figure 3). Most pixels had correlation values greater than 0.9,                
and the small areas with lower correlation between the filtered and non-filtered EVI_SD mainly              
occurred in oromediterranean belt, above the treeline. For EVI_DMAX, we assessed the impact of              
masking by subtracting the filtered and unfiltered EVI_DMAX layers, once classified into seasons, to              
map the pixels that changed (mapped as 0) and those that did not change (mapped as 1) and to                   
produce the corresponding histogram (Figure 2e,f). Here, we only observed a small percentage of              



pixels with changes (4.35% of pixels changed and 95.65% did not change the EVI_DMAX season),               
located mainly in the oro- and crioromediterranean belts and the changes were from spring (with               
filtering using the QA mask) to summer (without QA mask). Therefore, the functional attribute less               
affected by the filtering was EVI_Mean, the one that has more weight in our data, the surrogate for                  
primary production (see R8). 
 

 
 
Figure 2. Comparisons of EFAs with MODIS MOD13Q1 EVI data filtered by quality (layer product               
“QA summary”: bands 2 (snow/ice) and 3 (clouds)) and with pre-processing data of the product and                
negative values (generally corresponding to snow, ice or water) converted into zeros. Left panels (a, c,                
e) show maps of simple sliding window (3x3 pixels) correlation for EVI_mean and EVI_SD              
(continuous variables) and changes for EVI_DMAX (discrete variable). Right panels (b, d, f) show the               
histograms associated with the left panel maps, i.e. how many pixels have a low or high correlation (b,                  
d) and for the case of EVI_DMAX how many pixels have changed or not (f). 
 
We also calculated linear regressions between the filtered and non-filtered, detecting a high             
relationship between both for EVI_mean (R=0.99), with slightly higher values of EVI for QA data               
(Figure 3a) and a little more dispersion for EVI_sd (R=0.97), with lower values of sd for QA data                  
(Figure 3b). 
 



 
Figure 3. Scatter plots between the non-filtered (X-axes) and filtered (Y-axes) EFAs: a) EVI_mean              
MOD13Q1.006 and b) EVI_SD MOD13Q1.006, both of the average year. 
 
Considering the small effect of filtering using the Quality Assessment bands on Ecosystem Functional              
Attributes and the very time-consuming effort that represents reprocessing all data, we have decided              
not to filter the dataset so far. However, if the reviewer and editor still think that we should apply the                    
QA filtering, we will filter out snow, ice and water as zeros and clouds as NANs. 
 
In case that the editor considers that no filtering is required, we would add the following text in the                   
manuscript into section 2.2. 
“MOD13Q1.006 EVI product is computed from atmospherically corrected bi-directional surface          
reflectances by choosing the best available pixel value from all the acquisitions (4 per day) in a 16                  
day period based on quality, cloud presence, and viewing geometry (Huete et al., 1999, Didan et al.                 
2015a). In addition, to further remove the potential remaining effect of snow, ice and water in our                 
dataset, negative EVI values were transformed into zeros.” 
 
 
C2. - *  If no masking has been carried out, the whole results section has to be revised.  
R2. - Please, see response R1. We will provide comments (e.g. advantages and limitations) on this                
topic in the Discussion section of the manuscript after the open online discussion. 
 
 
C3. - * The study area is rather small (2000 km2) and the landscape in the area shows small-scaled                   
patterns of land-use patches. Why did you use coarse scale satellite data for your analysis and not                 
the archive of available medium resolution satellite data (e.g. Landsat) for your work? This is more                
a general question, I do not really expect that you redo the full work, however, you could add a                   
conclusive remark at the end of your work.  
R3. - Thank you very much for your interesting question.  
Using MODIS instead of other satellites with higher spatial resolution (e.g. Landsat) has several              
advantages in terms of data quality (e.g. presence of clouds) along the time series. Since the MODIS                 
sensor provides a daily image of the Earth, such high frequency (1 per day) increases the probability                 
of finding a cloud-free image every 16-days (see response R1). MODIS provides the best composite               
value every 16 days (i.e. chooses the best available pixel value from all the acquisitions from the 16                  
day period), applying an algorithm that selects the image atmospherically corrected bi-directional            



surface reflectances and select the image with lowest cloud presence, the lowest view angle, and the                
highest EVI value (see response R1). Although Landsat has a lower pixel size, their images have a                 
lower frequency (i.e., 1 image every 16 days). Thus, the fixed acquisition schedule makes it less                
probable to acquire good-quality imagery for a particular place periodically (especially if clouds occur              
frequently over the area of interest, e.g. winter dates).  
Second, the Landsat product with the largest time series is Landsat 7 (1999-actually), however, on               
May 31, 2003, the satellite's scan-line corrector failed. The scan-line corrector is a device on the                
satellite that keeps the scan lines parallel to each other. Without the Scan Line Corrector (SLC), the                 
scan lines are mis-aligned and there are wedge-shaped data gaps in the image (see sample Figure 4 for                  
Sierra Nevada). Providers offer different procedures for filling-in the data gaps, but each amounts to               
using data from good images prior to 2003 to do so. Obviously the further one gets from 2003, the                   
less valid this approach will be. Therefore, since 2003 SLC failure of Landsat 7, Landsat 8 is the only                   
fully operational Landsat satellite in orbita, but covers a shorter time series than MODIS (Landsat8               
covers from 2013 to actually, while MODIS covers from 2001 to actually).  

 
Figure 4. Effect of Scan Line Corrector fault on Landsat7 imagery in Sierra Nevada and data gaps due                  
to clouds (in green and white). Landsat-7 image courtesy of the U.S. Geological Survey. 
 
 
Other satellites have also been considered for their use, as Sentinel, which also has a higher spatial                 
resolution but the time series is still too short for long-term assessments (2014-present).  
 
Finally, we consider appropriate MODIS spatial resolution for ecological studies at protected-area            
level, according to Anderson (2018), which showed that the temporal resolution of MODIS is useful               
for characterizing the seasonal dynamics of ecosystem functioning (Figure 5). Furthermore, there are             
other works that use MODIS successfully at protected-area level (e.g. Lourenço et al. 2018,              
Requena-Mullor et al. 2018).  
 



 
Figure 5. Anderson (2018) : “Log–log plot of spatial and temporal and grain sizes for 44 current and                  
historic satellite Earth observation (EO) sensors, coloured by biodiversity pattern type. Several            
sensors have been used to measure multiple biodiversity patterns, and the most cited or most novel                
were selected in these cases”. 
 
The arguments for the choice of MODIS were not included in the manuscript, therefore we would add                 
the following sentence that briefly justify the choice of MODIS (section 2.2.): “Despite its moderate               
spatial resolution (aprox. 230 m/pixel), we chose MODIS since it offers a long time series (almost 20                 
years) of almost cloud-free images every 16 days thanks to the maximum value composite of daily                
images,which allows for the characterization of the temporal dynamics of ecosystem functioning            
(Anderson et al. 2018)”. 
Furthermore, we will also include comments in the Discussion section on the potential of extending               
our approach to Sentinel-2 data once the time-series gets longer. 
 
 
Technical comments:  
C4. - * Line 126: explain EVI and add reference  
R4. - We chose EVI instead of any other vegetation index (such as SAVI, ARVI, or NDVI) as an                   
indicator of carbon gains since it is supposed to be more reliable in both low and high vegetation                  
cover situations (Huete et al. 1997). EVI is sensitive to changes in areas having high biomass, EVI                 
reduces the influence of atmospheric conditions on vegetation index values, and EVI corrects for              
canopy background signals (see R1).  
EVI is computed following this equation: 



 
where NIR/red/blue are atmospherically-corrected (Rayleigh and ozone absorption) surface         
reflectances, L is the canopy background adjustment that addresses non-linear, differential NIR and             
red radiant transfer through a canopy, and C1, C2 are the coefficients of the aerosol resistance term,                 
which uses the blue band to correct for aerosol influences in the red band. The coefficients adopted in                  
the MODIS-EVI algorithm are; L=1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5. 
 
We will explain EVI with its reference in the manuscript in section 2.2. 
 
 
C5. - * Line 130: linked site is not available  

R5. - Thank you for pointing it out. We will replace the old link with the updated one                  
(https://lpdaac.usgs.gov/products/mod13q1v006/ ) (Didan 2015a). 
 
 
C6. - * Line 130/131: the doi is not related to GEE. Please adjust accordingly either the link or the                    
description.  
R6. - Ok, thank you. We will modify the line by adding the official GEE reference:  
“Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google               
Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.” 
 
 
C7. - * Line 131/132: EVI between 0 and 1000 – in tables you use scaling from 0-1; what about                    
negative values? The full data range is from -1 to +1.  
R7. - Thank you for your comment. We transformed all negative values into 0, since negative EVI                 
values are known to be related to the presence of snow, ice or water (and therefore, ecologically, it                  
makes more sense to have an EVI value of zero rather than negative) (Huete et al. 2002). In the new                    
version, we will add an explanation about this in section 2.2 (see R1). 
 
 
C8. - * Line 135/136: How did you identify these 3 metrics? There are a number of additional                  
phenological metrics available that are known to represent meaningful features of ecosystem            
productivity (e.g. start / end, length of season). What is "biologically meaningful" in the context of                
your research?  
R8. - Biologically, these three metrics can be interpreted as surrogates (Paruelo et al. 2001, Pettorelli                
et al. 2005, Alcaraz-Segura et al. 2006) of the total amount and timing (seasonality and phenology) of                 
primary production, on of the most integrative indicators of ecosystem functioning (Virginia and Wall              
2001). Statistically, these three metrics are known to be highly correlated with the first two or three                 
axes (and hence capture most of the variance) of a Principal Component Analysis (PCA) carried out                
on the NDVI or EVI annual dynamics in different regions (Townshend et al. 1985, Paruelo and                
Lauenroth 1998, Paruelo et al. 2001, Alcaraz-Segura et al. 2006, Alcaraz-Segura et al. 2009, Ivits et                
al. 2013). To know the statistical meaningfulness of these metrics in Sierra Nevada Biosphere              
Reserve, we also examined their correlation with the first axes of a PCA run on the EVI annual curve                   
of the average year (12 EVI values, i.e. the interannual means of the the maximum value composites                 

https://en.wikipedia.org/wiki/Rayleigh_scattering
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https://lpdaac.usgs.gov/products/mod13q1v006/


for each month). The first two axes cumulated 96.5% of the variance (PC1 87.3%, PC2 9.2%). The                 
eigenvectors showed that the weights along the months were similar for the first PCA axis (even                
weights throughout the year), while for the second axis they showed a contrast between winter and                
summer months (Table 1). This indicated that PC1 can be related to the total or average amount of                  
EVI, and that PC2 can be related to the intra-annual variability of EVI (Figure 6).  
 
Table 1. Eigenvectors and cumulative variance explained by the first two components of a principal               
component analysis (PCA) performed on the annual curve of EVI values in Sierra Nevada. 
 

  Scores  

PCA 
axis %a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 87.3 0.334 0.328 0.333 0.318 0.293 0.246 0.236 0.239 0.242 0.251 0.287 0.325 

2 96.5 0.329 0.365 0.326 0.109 -0.244 -0.454 -0.380 -0.301 -0.252 -0.154 -0.007 0.229 
a Cumulated variance 
 

 
Figure 6. Eigenvectors of the first two components of a PCA performed on the annual curve of EVI 
values in Sierra Nevada (Axis x: months; axis y: eigenvectors values). 
 
In addition, we explored the correlation between the PCA axis and the EVI metrics (i.e., EFAs). The                 
EVI metrics showed high correlation with the PCA axes. PC1 accounted for most of the total variance                 
in the seasonal dynamics of the EVI (87.3%) and was strongly correlated with the EVI annual mean                 
(PC1 vs. EVI_Mean r = 0.94). PC2 accounted for 9.2% of the total variance (PC1 and PC2 cumulated                  
96.5% of total variance) and was related to seasonality and phenology metrics (as in Alcaraz-Segura               
et al. 2006, 2009) (PC2 vs. EVI_SD r = -0.75; PC2 vs DMAX_Sine = 0.67; PC2-vs DMAX_Cosine =                  
-0.61) (Table 2). To correlate DMAX with the PC axes and keep the continuous nature of the annual                  
period and the relative distance between months (i.e. December is as close to January as July is to                  
June, that is, the distance between December (12) and January (1) is one month, not eleven months),                 
we transformed months into polar coordinates. The entire circumference of a year was divided into 12                
portions and each month was equated to an angle (30º for January and 360º for December). DMAX                 
months were therefore characterised by their sine and cosine values.  
 



In summary, PC1 was very highly correlated to EVI_Mean and then can be interpreted as annual                
primary production. PC2 shows a high contrast in the eigenvector values between winter and summer               
and is highly correlated with EVI_SD and with the Sine and Cosine components of DMAX, so it can                  
be interpreted as a combination of seasonality (SD) and phenology (DMAX). Mathematically, it could              
be expressed as follows: PC2 = f( a*SD + b*DMAX_Sine + c*DMAX_Cosine + d + e) (Table 1 and                   
2), and the r-square of this multiple regression was 0.70. 
 
Table 2. Correlation values between PCA axis 1 and 2 and ecosystem functional attributes. 

  PC1 PC2 

EVI_Mean 0.94 -0.01 

EVI_SD -0.14 -0.75 

DMAX_Sine -0.10 0.67 

DMAX_Cosine 0.017 -0.61 

 
 
In addition, the EVI metrics were orthogonal, since the correlation between them was low, so that                
each EVI metric contributed independently to explain the variance of the EVI time series (Table 3). 
 
Table 3. Pearson correlation values between metrics. 

  EVI_Mean EVI_SD 

EVI_Mean 1   

EVI_SD -0.14 1 

EVI_DMAX 0.10 -0.05 

 
 
Hence, these three EVI metrics are both "biologically and statistically meaningful" since they are              
linked to essential biodiversity variables such as productivity, seasonality and phenology and capture             
most of the variability of the EVI annual dynamics, a surrogate of primary production dynamics               
(Monteith 1972), the most integrative indicator of ecosystem functioning (Virginia and Wall, 2001),             
and the basis for multiple ecosystem processes and services (Paruelo and others 2016).  
 
We will include a summary of this analysis (PCA and correlations) in the manuscript to better justify                 
the biological and statistical meaningfulness of our EFAs. 
 
 
C9. - * Line 139/140: How did you define the growing season?  
R9. - Here we refer to a conceptual more than a technical definition of the growing season, as the                   
period of the year with greater vegetation activity compared to other periods of the year with lower                 
vegetation activity (de Beurs and Henebry 2010, Henebry and de Beurs 2013). 
 



 
C10. - * Line 147/148: I doubt that you will have EVImax in the winter period after clearing your                   
EVI data for snow/ice, clouds, etc.  
 
R10. - The values of EVImax that we have found can be explained by the changing conditions of the                   
environmental controls of vegetation growth along Sierra Nevada. In the Mediterranean mountains,            
both summer drought and winter cold are known to be the limiting factors of vegetation growth                
(Alcaraz-Segura et al. 2009). In Sierra Nevada, temperature is the main limiting factor of biological               
activity at the highest altitudes (oro- and crioro-mediterranean bioclimatic belts, see Figure in             
response R14), where vegetation growth is centered in the summer months (high temperature and              
water availability from the thaw). However, lower altitudes, and particularly in the southern and              
eastern parts of Sierra Nevada (see Figure in response R14), have drier and warmer conditions, and                
vegetation activity is mainly constrained by water availability during the summer. In these areas,              
during the winter months, precipitation is greater and temperature is still mild (12-15 ºC,              
Rivas-Martínez 1997) which allows for vegetation growth (Alcaraz-Segura et al. 2009). In addition,             
such environmental conditions in the drylands have shaped plant species adaptations that enhance             
peak winter greenness, due to their fast response to scarce water inputs ( Cabello et al. 2012). This is                   
the case of some of the meso- and thermo- mediterranean scrublands (e.g. Anthyllis terniflora              
scrublands) which are dominated by summer-deciduous or malacophilous plant species (e.g. Anthyllis            
cytisoides, A. terniflora) that develop their maximum foliage in the mid-winter. Nevertheless,            
ecosystem functioning in these areas was considered as rare in the context of the whole reserve,                
presenting EFTs with maximum greenness in winter (Ba4, Aa4). Since these areas are at the lowest                
altitudes in the park, and are not affected by the snow, the data filtering will not affect their EVI max                    
in the winter period.  
 
Another interesting result for the winter EVI peaks that can also be related to the particular climatic                 
conditions in Mediterranean areas, is the case of pine afforestations at the upper bioclimatic belts               
(mainly in the supramediterranean belt). In Sierra Nevada, the pine formations in these bioclimatic              
belts correspond mainly to Pinus sylvestris and Pinus pinaster plantations and occur in the North               
slope, where we have found the largest areas with winter EVI max. According to Aragonés et al.                 
(2019), there is a generalised pattern in the warmest and driest Mediterranean areas (i.e. Iberian               
Peninsula), where growing seasons of pines begin in autumn and extend to the following spring, due                
to the mild winters. The dormant period for these formations occurs in summer, as a consequence of                 
the prolonged water stress (Atzberger et al. 2013, Peñuelas et al. 2004, Verger et al. 2016). Aragonés                 
et al. (2019) findings couple with the phenological patterns in the supra- and oromediterranean pine               
forest areas, showing maximum peaks of EVI in winter (Figure 7). Hence, Mediterranean pine species               
differing in relation to the dates of phenological events of the northern hemisphere, where the typical                
growing season of the vegetation in the northern hemisphere, according to the NDVI phenological              
pattern, starts with the photosynthetic activity in spring, achieves its maximum at the beginning of               
summer, and ends in autumn, with a dormant period in winter. 
 
 



 
Figure 7. From Aragonés et al. (2019). “NDVI values in the average year. This shows the average                 
values of the sum of the trend and seasonal components for each species, obtained using the BFAST                 
algorithm. Three months of data are shown before and after, as the growing seasons can span the                 
calendar year.” This study was carried out in the Iberian Peninsula, including samples from Sierra               
Nevada. 
 
 
C11. - * Line 161: “relative extension” - what do you mean, here? Share of area of EFTi within a                    
defined area (moving window)?  
R11. - Thank you for this comment, which can lead to misinterpretation. “Relative extension” means               
that, in order to calculate rarity, the abundance of each EFT (in terms of occupied surface) is relative                  
to the most abundant. However, for a better understanding, we will rewrite this part and the phrase                 
will be replaced by removing the word "relative”: "EFT rarity was calculated as the extension of each                 
EFT compared to the most abundant EFT” 
 
Once we have the rarity value of each EFT (using Equation 1) (line 164), we assign to each pixel in                    
the EFT map such value according to its EFT class. Hence, the original spatial resolution of the EFT                  
rarity map is the same as the resolution of the EFT map (230 m). 
 
 
C12. - * Line 162: “compared to the most abundant EFT” – in a defined area / window?  
R12. - Compared to the most abundant EFT in the study area. We will add this clarification to the                   
sentence in the manuscript as follows: “EFT rarity was calculated for each year as the relative                
extension of each EFT compared to the most abundant EFT in the study area (Equation 1)” (line                 
164). 
 
C13. - * Line 218: “altitudinal patterns”- What about topographical patterns (aspect, slope)?  



R13. Thanks for this comment. We talk about data referring to altitudinal patterns as an example of                 
data description. In the revised version, we will include patterns related to topography. However, we               
consider that further formal analyses in this regard are beyond the scope of a descriptive data paper. 
 
 
C14. - * Line 219 ff.: I cannot find any map of those bioclimatic belts for the study area. Hence, I                     
am not able to follow the description of results. Please add a figure.  
R14. - We are very thankful for this comment, which will allow a better reading of the results. In the                    
new manuscript, we will modify Figure 1 in the manuscript to include: the delimitation of the                
Biosphere Reserve and the distribution of the main ecosystems (Pérez-Luque et al. 2019) and              
thermotype bioclimatic belts (Molero-Mesa and Marfil 2015).  
 



 
Figure 1. Study area: Sierra Nevada Biosphere Reserve. a) Location in the context of the Iberian                
Peninsula; b) remote view of Sierra Nevada mountain region (image from the International Space              
Station took in December 2014; courtesy of “Earth Science and Remote Sensing Unit, 615 NASA               
Johnson Space Center”); c) delimitation of the Biosphere Reserve and the distribution of the main               
ecosystems (Pérez-Luque et al. 2019) and thermotype bioclimatic belts (Molero-Mesa and Marfil            
2015).  
 

 
C15. - * Line 235: “maximum greenness in winter” – see comment above, how would you explain a                  
greenness peak in wintertime?  
R15. - Please, see response R10. 



 
 
C16. - * Line 254: “interannual variability ranged from 1 to 17 different EFTs over the 18-year                 
period” - what is the contribution of data uncertainty / data quality in this context, e.g. the missing                  
QA-masking on one side and the very low EVI values on the other hand?  
R16. - We consider that the data quality has no significant effect on the interannual variability of                 
EFTs in the study area. First, although the inter-annual variability ranged from 1 to 17 different EFTs                 
over the 18-year period, that maximum value of EFT changes occurred in only two pixels of the study                  
area. More than 90% of the study area showed less than 10 EFTs over the 18-year period, and only                   
3% of the study area showed more than 12 EFTs. More than 75% of the study area showed a                   
variability from 1 to 8 different EFTs (Table 4). Furthermore, variability was greater in intermediate               
bioclimatic belts, e.g. the mesomediterranean or supramediterranean, where pixels are not so            
influenced by the snow, but are more exposed to varying limiting conditions among years, summer               
droughts some years and winter cold some others. Whereas in the highest bioclimatic belts (e.g. oro-                
crioromediterranean), where the presence of snow and clouds is greater and more regular, so data               
quality would have a greater influence, the interannual variability was lower. 
 
 
Table 4. Number of pixels and percentage of the study area that experienced different levels of                
inter-annual variability in EFTs (number of EFTs that were observed over the period in each pixel). 
 

Interannual 
variability 

n  
pixels 

% study area 
surface 

Cumulated % of study 
area surface 

1 49 0.12 0.12 

2 301 0.74 0.86 

3 2582 6.32 7.17 

4 4436 10.85 18.02 

5 6010 14.70 32.73 

6 6605 16.16 48.88 

7 6064 14.83 63.72 

8 5144 12.58 76.30 

9 3875 9.48 85.78 

10 2707 6.62 92.40 

11 1678 4.11 96.51 

12 871 2.13 98.64 

13 372 0.91 99.55 



14 130 0.32 99.87 

15 40 0.10 99.97 

16 12 0.03 99.99 

17 2 0.01 100.00 
 
 
Second, regarding the very low EVI values (i.e. negative values), we had already transformed all               
negative values into zeros (but it was not sufficiently explained in the manuscript), to remove the                
potential remaining effect of snow, ice and water (please, see R1). Thus, we do not expect a high                  
effect of filtering snow, ice or water on interannual variability of EFTs. 
 
Finally, considering the small effect of filtering using the Quality Assessment bands on Ecosystem              
Functional Attributes, we believe that filtering would not affect the inter-annual variability. However,             
if the reviewer and editor still think that we should apply the QA filtering, we will filter out snow, ice                    
and water as zeros and clouds as NANs. 
 
 
C17. - * Line 359: “geospatial data Sierra Nevada Park” – Where do you show these data? 
R17. - This is just the shapefile with the boundaries of Sierra Nevada. We will rename it and we will                    
also include the ecosystem and bioclimatic belt maps (please, see R14). 
 
 
C18. - * Line 366: “Sierra Nevada Biosphere Reserve (SE Spain)” – show in map!  
R18. - Thank you for your suggestion, we will add a new figure showing this one,  see R14. 
 
 
C19. - * Figure 1: It would be helpful for the interpretation of the EFA and EFT data to have a                     
map of vegetation types rather than a simple snapshot from the ISS without any information on                
content and scale.  
R19. - We will do that, see R14. 
 
 
C20. - * Figure 3: the mean EVI is NOT the “area under curve”! This would rather be the                   
cumulative EVI. 
R20. - That’s right, we will rewrite this sentence as follows: “ EFAs were: the annual mean or the                   
cumulative EVI, an estimator of annual productivity (EVI_mean), the EVI seasonal coefficient of             
variation, i.e. the differences between the minimum and the maximum EVI values, a descriptor of               
seasonality (EVI_sSD), and the date of maximum EVI, an indicator of phenology (EVI_DMAX)”. 
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