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Comments to the Author: 

Dear Alexander and co-workers, 

 

Thank you very much for your intense work on the manuscript. It really gained a lot more 

conciseness. I am now in the unpleasant situation to ask for another (hopefully largely technical) 

iteration before I can send it to the reviewers. The reason for this is that I anticipate rather 

superficial comments since the flow of the manuscript is not yet to the point. I am fully confident 

that the following suggestions are easy to work through and that it will help the next iteration to 

finally get the manuscript into a publishable shape. I apologise to cause you work but I am sure it is 

to the best of your manuscript. 

We appreciate your input and your suggestions have definitely improved the manuscript a lot! 

 

Abstract:  

P1L22-24 (I refer the pages and line numbers to the annotated version in your reply letter) is the 

most important point here (in my view). The first paragraph appears to be more a relict of the first 

version. I also do not understand in which way the scales are of importance. Later in the manuscript 

you relate to SoilGrids as reference but this comparison is not at all summarised in the abstract. 

Moreover, I was wondering if the title might be amended to somehow relate to the large sources in 

addition to the "Soviet Soil Map".  

What I have in mind is especially that the situation you worked through is not uncommon. There are 

soil maps in many countries but the eco-hydrological process properties/parameters are very 

difficult to distill. You provide one example how to do this plus the final data to use SWAT in Estonia. 

So the central aspect of your manuscript should really emphasise on this as an example. 

 

Thank you for this recommendation. We took this into consideration and re-organized the 

manuscript. 

 

Links as citations: 

Although I can understand the notion of using the weblinks in the manuscript, I think the proper way 

would be to cite the sources similar to paper references. Websites will also require a date for the last 

access. Please see the guidelines here: 

https://publications.copernicus.org/for_authors/manuscript_preparation.html 

We reduced the web links in the ms and formatted them according to the journal guidelines. 

 

Introduction: 

P2L4-6 are central to me. I consider it a better start of the manuscript to state the problem instead 

of referring to SWAT. This also immediately opens your story: There is detailed soil information but 

eco-hydrological and pedi-hydrological process modelling (and understanding) requires information 

on different properties at finer scales. Then you can generalise what information exists in soil maps 

and global datasets and at what resolution.  

We re-organized and re-wrote the introduction to better address the general problem and 

introduce the reader to the topic. 

 

I prefer to give the scale triplet (Western and Blöschl, 1999) instead of a map scale which I have little 
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idea about the actual data density and validity. At the moment there are 1:10000, 30 arcsec, 250m, 

1:500000, 1km etc. given. But I find it very difficult to get an idea about these resources, how the 

data has been derived and for which scale it might be applicable. I.e. remote sensing of soil 

properties in temperate climate is not very reliable nor can it give information about the soil profiles 

over depth. However they provide the advantage of spatially continuous data. You also point to the 

many soil sampling campaigns leading to the existing soil map. The soil samples are exactly opposite 

to remote sensing as they provide very detailed information for some points but it remains 

challenging to transfer this information to a spatially continuous map. I see this in close relation to 

the overview about data you use as additional inputs and data which is used as references plus the 

actual challenge of your study. Moreover, this is a fundamental link to our special issue I really think 

you should exploit for your argumentation. 

Unfortunately, we cannot represent these datasets in scale triplet because all of them are 

representing continuous data and achieved in either generalisation, interpolation or statistical 

modelling. The final map scale is chosen based on the input data density (e.g. number of soil 

profiles per square km) and spatial resolution of environmental covariates that have been used for 

statistical modelling. 

 

The introduction features so many possible data sources but it actually gives no outline of your 

manuscript. This comes P6L10ff. Somehow also 2.1 is hardly discernible from the introduction this 

way. I propose to restructure here. The introduction needs to guide the reader into your topic. The 

long list of soil-related resources can be the first subsection in the methods section. You may 

consider the many possible resources to be reported as a table? Please also clarify what information 

will be used to derive your dataset and which is simply reported for referencing and to clarify the 

importance of your study. Also the PTFs are not clear why they are given extensively in the 

introduction. I suspect that this can become one subsection in the methods and again detail the 

ones you really used and give the other references as brief as necessary. 

We removed most of the dataset descriptions and web links from the introduction and rather 

focused on giving broader context and limitations of current fine resolution soil mapping. 

 

Methods: 

As stated above, Figure 1 should come rather early. As you have done, the methods then follow the 

four steps. And as proposed earlier, I suggest to include the respective background information, 

references etc. in these subsections. So everything about the actual mapping, unit derivation, etc. is 

maybe 2.1, 2.2 is A etc. 

 

All Figures should be included as a vector graphics if possible. Fig. 1 still holds v1.0 and other details 

which might be easy to clarify in a revision. You said USLE_k is omitted as intermediate parameter? I 

would also suggest to reduce the used symbols to a minimum and to give a legend. The 4 main boxes 

could simply get their respective headers. The dashed sub-boxes and speech bubbles might simply 

become the same shape as annotations? The resulting properties could be given as something like a 

bottom line? 

We simplified the figure and kept only the main workflow. 

 

In the methods, the subsections should really align with the workflow in Fig. 1 to avoid confusion. If 

necessary, details can be of cause extended in subsubsections. Make it easy for the readers to 

follow. Always trace what information is really used and what is further reference. Please try to give 



it always the same pattern: What is needed, available sources, other examples, how did you derive 

the property and how will you evaluate the results. Please avoid jumps between sub-topics. I think it 

is all there but still a little hard to fit the puzzle. E.g. 2.2 is about texture. Texture can be encoded as 

fractions of sand, silt and clay (or finer textural classes) or as WRB name. The layers (2.2.3) are for 

me a different thing more related to the geometric questions of mapping. 

 

2.3 starts off with reference to 2.4. Maybe this could be more content of the overall introduction 

when Fig. 1 is explained in detail? Then 2.3 is clear to derive topographic indices and you have room 

to also link to the method background why these indices are selected. Maybe it is not even 

necessary to use so many subsections? 

We removed the subsubsections and moved a lot of technical details to the supplements in order 

to keep the flow more straightforward for the reader.  

 

In 2.4 you again motivate the application of PTFs of 2.5 but the overall pathway could be given 

earlier to avoid confusion and to really concentrate on SOC, SOM and BD. Since you use a random 

forest, I would simply remain with RF as one way of machine learning. Avoiding to use the two terms 

as synonyms could give room for details and clarity. I think that it is important to also clarify how and 

when PTFs (which are often also ML e.g. Rosetta as ANN) are used. Are they really part of 2.4? 

2.5 is very brief although I suspect it to be the very crucial step. Contrary to the former subsections 

which should be more concise, I think here could be a little more explanation e.g. why the AWC, FC, 

WP are important. Moreover, again some layers are defined. This time at fixed depths. I still struggle 

to understand the geometric idea of your database. 

 

We shortened the introduction and really try to focus only on PTFs and ML application used as PTF 

(such as in SoilGrids and EU-HydroSoilGrids) and only for our specific application domain. 

 

I think the final database including the respective names and encodings could be a further section 

after the methods. There can come all details about your naming conventions etc.  

 

Results: 

I understand the results to align best along the four subsections again. At the moment I really 

struggle to follow how the evaluation is done and if the maps are somehow reliable. Maybe you 

could use a few of the sampling areas from Fig. 2 plus a few other areas with information from other 

resources here? The maps of course look beautiful. But I have no idea if they achieve your goal for 

SWAT modelling. 

 

We reduced the number of figures and focused on less, but show the incredible detail as inset to 

demonstrate the high-resolution. 

 

Figure 9 is clearly result evaluation. But you refer to it only in the methods 2.2.4. I like the plot but 

cannot read the axes. I think this plot is too small. Maybe you can think of another form to give this 

reference? Moreover, I am a little puzzled about the continuous histograms in SoilGrids but the very 

few distinct bars in your database for texture. Also the other parameters do not really appear to 

resemble SoilGrids. I am not at all saying that SoilGrids is more correct. But you really have to discuss 



why you come up with different values and why your data is trustworthy.  

 

We removed the pair-plot grids and focus on discussion and rather than 1:1 comparison as 

validation. 

 

Discussion: 

Maybe you could move some of the open issues from the methods section to the discussion? I 

would expect a little more structure what is discussed here. 

 

We indeed removed parts from the introduction completely for focus and took a few sentences on 

soviet vs WRB/USDA particle size to discussion. 

 

 

Again, I am sorry to return the manuscript before sending it to reviewers. I simply fear that we might 

enter an internal loop of rather structural deficits which obscure to dive to the actual matter of your 

work. I hope you can easily follow my suggestions and that you find it helpful. In case of any 

questions, please contact me. We can even quickly arrange a video-call. 

 

All the best.  

Conrad 

 

On behalf of all authors, 

Thank you very much for your guidance. We apologize for the hard-to-follow changes, as we have 

drastically restructured and re-written large sections of the manuscript, it is almost a new 

submission. We hope to have fulfilled your expectations and look forward to hearing back. 

 

Alexander Kmoch 
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Abstract. To understand, model and predict landscape evolution, functionsecosystem services and hydrological processes the 

availability of detailed observation-based soil data is extremely valuable. For the EstSoil-EH dataset, we synthesized more 

than 20 extended eco-hydrological variables for Estonia (Kmoch et al., 2019a; doi:10.5281/zenodo.3473289) as numerical and 

categorical values from the original Soil Map of Estonia, the Estonian 5m Lidar DEM, Estonian Topographic Database and 

EU-HydroSoilGrids layers. 15 

The Soil Map of Estonia is a vector dataset that maps more than 750 000 soil units throughout Estonia at a scale of 1:10 000 

and forms the basis for EstSoil-EH.. It is the most detailed and information-rich dataset for soils in Estonia, with 75% of 

mapped units smaller than 4.0 ha,  and based on Soviet era field -mapping. a Baltic country with an area of approximately 45 

000 km2. For each soil unit, it describes the soil type (i.e. soil reference group), quality, soil texture, and layer information with 

a composite text code, that which comprises not only of the actual texture class, but also of the classifiers for the rock content, 20 

peat soils, its distinct compositional layers and their depths. However, tTo use these asit eco-hydrological process properties 

in as an input for numerical modelling  using process-based physical models, applications we translated these text codes must 

be translated into numbers. The derived parameters include soil profiles (e.g., layers, depths), texture (clay, silt, sand 

components), coarse fragments and rock content. In addition, we aggregated and predicted physical variables related to water 

and carbon (bulk density, hydraulic conductivity, organic carbon content, available water capacity). Various generalisations 25 

and aggregations for agricultural soils for less-detailed versions of the map have been made at a scale of 1:100 000 and 

1:200 000. 

In this study, we create an extended eco-hydrological dataset for Estonia, the EstSoil-EH v1.0 (Kmoch et al., 2019a; 

doi:10.5281/zenodo.3473289), containing derived numerical values for the following data in all of the mapped soil units in the 

1:10 000 soil map: soil profiles (e.g., layers, depths), texture (clay, silt, sand components), coarse fragments and rock content, 30 

and physical variables related to water and carbon (bulk density, hydraulic conductivity, organic carbon content). Ultimately, 
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our objective was to develop a reproducible method for deriving numerical values to support modelling and prediction of eco-

hydrological processes in Estonia using the popular Soil and Water Assessment Tool. 

The developed methodology and dataset will be an important resource for the Baltic region, but possibly also all other regions 

where detailed field-based soil mapping data is available. Countries like Lithuania and Latvia have similar historical soil 

records from the Soviet era that could be turned into value-added datasets such as the one we developed for Estonia. 5 

1 Introduction 

Soil has remarkable complexity and through its various functions plays thea key role in the Earth’s ecosystems and provides 

multiple ecosystem services to humans, such as food, and clean water. Recent studies have highlighted the role of properly 

functioning soils that can provide their ecosystem services for the achievement of the United Nations (UN) adopted the 

Sustainable Development Goals (SDGs) (Keesstra et al., 2018, 2016). Therefore an accurate quantitative description and 10 

prediction of soil processes and properties is essential in understanding the impacts of climate and land use changes on 

ecosystem services (Van Looy et al., 2017). For this purpose, spatially accurate maps of soil properties are needed, but 

unfortunately, these are either missing for many countries and regions in the world or which existst with insufficiently fine 

spatial resolution (Nussbaum et al., 2018). However, for many countries still some field-based data on soil properties are 

available. Moreover, the recent increase of spatial environmental data created by remote sensing (climatic, terrain variables 15 

etc.) can be made usefuld for deriving the desired soil properties at fine resolution. There are several useful approaches to 

combine, or fuse, several datasets into one and obtain full desired complete spatial coverage of the soil properties needed for 

modelling.  

At the global level, two main soil databases are available. The first was made available by the United Nations Food 

and Agricultural Organisation (FAO): the Harmonized World Soil Database (HWSD) v1.2 (Fischer et al., 2008). The dataset 20 

is a 30-arc-second  raster database (approx. 100 ha resolution) with more than 15 000 different soil mapping units. It combines 

existing regional and national updates of soil information from around the world. Another global level soil datasetdatabase is 

SoilGrids250m (Hengl et al., 2017), which provides harmonized gridded soil data with values for sand, silt, clay, and rock 

fractions, and organic carbon and carbon stocks at several depths with a resolution of approx. 6.5 ha, whichand can be used as 

inputs for eco-hydrological models e.g. SWAT. SoilGrids also provides a harmonized soil database for Europe. The 25 

SoilGrids250m has been derived with machine learning methods and using environmental variables, such as terrain properties, 

as predictor variables and field-based soil profiles as training set (Hengl et al., 2017). This approach takes advantage of recent 

abundance of high resolution environmental spatial data mostly obtained from remote sensing (e.g. terrain, climatic variables, 

soil moisture), and employs these datasets as explanatory variables to model soil properties at fine spatial resolution (Nussbaum 

et al., 2018). Analogously, EU-HydroSoilGrids (Tóth et al., 2017) provides a 3D soil hydraulic database for Europe based on 30 

SoilGrids250m and trained pedotransfer functions (PTFs). In other words, theyit uses machine-learning regression as 

specialised pedotransfer functionsPTFs (PTFs).  
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PTFs are predictive functions of certain soil properties using data from field-based soil surveys (e.g. soil profiles). 

However, the potential of available PTFs has not fully been exploited and integrated into eco-hydrological modelling and 

ecosystem services provided by soils (Van Looy et al., 2017). For example, Soil organic carbon (SOC) is an important indicator 

of soil health and plays a key role in the global carbon cycle and therefore it is crucial to adequately quantify and monitor soil 

organic carbon (SOC) changes (Vitharana et al., 2017). However, reliable estimates for SOC have been difficult to obtain due 5 

to a lack of global data on the SOC content of each soil type (Eswaran et al., 1993). Very few SOC datasets are available for 

countries or regions. For example, the Northern Circumpolar Soil Carbon Database (Tarnocai et al., 2009) was developed to 

describe the SOC pools in soils of the northern circumpolar permafrost region. SOC stocks were also predicted under future 

climate and land cover change scenarios using a geostatistical model for predicting current and future SOC in Europe (Yigini 

and Panagos, 2016). Prévost (2004) described predictions of soil properties from the SOC content, and found that SOC was 10 

closely related to soil bulk density (BD) and porosity. Suuster et al. (2011) emphasized the importance of BD as an indicator 

of soil quality, site productivity, and soil compaction and proposed a PTF for the organic horizon in arable soils in Estonia. 

Abdelbaki  (2018) evaluated the predictive accuracy of 48 published PTFs for predicting BD using State Soil Geographic 

(STATSGO) and Soil Survey Geographic (SSURGO) soil databases from the United States. They also proposed and validated 

a new PTF for predicting BD using SOC inputs. 15 

However, these regional datasets are not often not detailed enough for a country -level applications nor do they benefit 

fully from the local high-resolution field-based soil data, as is the case for Estonia. There is no national scale dataset of 

measurements or predictions of SOC or bulk density (BD) for Estonia, and no large-scale high-resolution soil database is 

currently available with numerical data for a range of typical eco-hydrological process-based models. However, Estonia has a 

national level highly detailed digitized soil map (1 : 10 000) with 75% of mapped units smaller than four ha. It was  created 20 

based on Soviet-era extensive field-mappingfield mapping during the Soviet-era whichand can serves as an excellent basis for 

PTFs and robust models that canto predict soil properties at any given location (Minasny and Hartemink, 2011). 

Eco-hydrological numerical models like the Soil and Water Assessment Tool (SWAT; https://swat.tamu.edu/) or the 

Regional Hydro-Ecologic Simulation System (RHESSys) have been developed and applied during the past 30 years to evaluate 

the effects of alternative management decisions on water resources and non-point-source pollution in river basins through the 25 

simulation of physical processes (Arnold et al., 1998; Douglas-Mankin et al., 2010). SWAT is widely used internationally and 

is increasingly applied in Northern European and Baltic watersheds to better assess the hydrological state of the environment 

based on modelling of the most relevant physical processes (Piniewski et al., 2018; Tamm et al., 2016, 2018). However, a 

main input factor for many of these models is detailed soil data, which does not exist for many countries on national scale or 

which exists with insufficiently fine spatial resolution. In addition, it is complicated to derive the values of the model 30 

parameters. 

The objective of the present study was to develop a numerical soil database, EstSoil-EH, for modelling and for 

predicting eco-hydrological processes in Estonia and to giveprovide a solid basis to estimate ecosystem services. The 

foundation of EstSoil-EH is the Soil Map of Estonia, which. The dataset includes information about for soil profiles (e.g., 
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layers, depths), textures (clay, silt, and sand contents), coarse fragments and rock content. We derived numerical values for 

the key characteristics for the whole of Estonia. The hHigh-resolution environmental data available nowadays allow to develop 

improved PTFs, and modern advanced methods (e.g. machine learning, geostatistics) extrapolation and upscaling (Gunarathna 

et al., 2019; Van Looy et al., 2017). Thus, we employed machine learning and PTF-s to derive and aggregate additional physical 

variables related to the water and carbon cycle these parameters based on high-resolution field-based data and other 5 

environmental covariates (e.g. terrain variables).In this study, we derived numerical values for the following data in all of the 

mapped soil units in the 1:10 000 soil map: soil type (i.e. soil reference group), texture class, soil profiles (e.g., layers, depths), 

texture (clay, silt, sand components, and coarse fragments), rock content, and physical variables related to the water and carbon 

cycle (organic carbon content, bulk density, hydraulic conductivity, available water capacity and erodibility factor). We present 

also describe the development of a reproducible method for deriving numerical values from a the Soil Map of Estonia to 10 

support modelling and prediction of eco-hydrological processes with the popular Soil and Water Assessment Tool and we 

create provide an extended ready-to-use dataset containing the additional parameters. 

2 Materials and Methods 

2.1 Pre-processing and screening of the initialbase soil databaseset 

We performed extensive database standardisation on the original Soil Map of Estonia as the working basis and 15 

synthesise all further variables based on the standardised dataset sequentially. Figure 1  illustrates the major working packages 

and their in- and outputs of eco-hydrological parameters. The subsequent sections of the manuscript are structured accordingly: 

Section 2.2 Textural properties; Additional topographic variables, areal proportions of drainage and land use/land cover as 

predictor variables in section 2.3, section 2.4 describes the SOC RF model and BD PTF; and hydrological parameters added 

in section 2.5.   20 
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Figure 1: Flowchart for executed processing steps outlining the work packages, in- and outputs 

 

The source base dataset – - the original Soil Map of Estonia -   as described in the article, is not based on modelled 

but is  based on fully observed data (e.g. texture, soil profile depth, rockiness, presence of organic layer etc). Systematic 5 

mapping of Estonian soils to produce a paper-based soil map in scales 1:5 000 and 1:10 000 was started in 1954 (Reintam et 

al., 2005), with most intensive field studies in the period 1965-1969, for the main purposes of land evaluation and assessing 

potential for agricultural use. Generally, field mapping was carried out in scale 1:10 000 but in hilly or undulating areas with 

higher soil diversity in scale 1:5000, which resulted in mapped units with areas as small as 2500 m2. In During 1982-1988 

older mapping data was updated and new areas were included with full-area soil quality (primarily fertility, rockiness, water 10 

regime, texture, erodability) assessment. In During 1988-1990 soil field studies were performed forin non-arable lands and 

new mapping of ameliorated lands. Forest soils were mapped in during period 1976-1989. During these large-scale field 

mappingfield-mapping of soilsactivities, the soil texture was determined in situ based on organoleptic methods (feel methods) 

and for reference profiles laboratory analyses were performed. This enabled calibration between texture defined by 
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organoleptic method by each researcher participating in field survey and texture determined in the laboratory (Estonian 

Landboard, 2017). As athe result of large-scale soil mapping, 119 soil varieties in Estonian national classification system have 

been distinguished in the Estonian national classification system and more than 500 combinations of textural status have been 

described. About 10 ,000 profiles up to 1-meter depth (1 profile per 330ha) have been sampled and analysed for characterisation 

of mineral soils (Reintam et al., 2003, 2005).  Thus, the texture codes and soil types assigned to the ca. 750 000 mapped soil 5 

units (polygons) are based on many decades of in-situ land surveying practices. 

Between 1997 and 2001, the soil map was digitized and attribute data was inserted into the database, resulting in the 

official National Soil Map of Estonia, as a GIS vector dataset that mappedcontaining 750 000 soil units. It is at a scale of 1:10 

000 (Estonian Landboard, 2017; https://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/Mullastiku-kaart-p33.html).  The 

original Soil Map of Estonia is available vector layer for geographical information system software that can be downloaded 10 

from the Estonian Land Board (https://www.maaamet.ee/en) in several formats under a permissive open data license(Estonian 

Landboard, 2017). A copy with the original shapefile dataset, the related required documentation and checksums has been 

archived for reference (Estonian Landboard, 2017).  

The Estonian soil map contains the following used attribute fields: 

- Soil type: a designation of the soil name, the Estonian analogue to the WRB soil reference groups 15 

- Texture: combination of texture classes defined for fine and coarse fragments, and to which depths the same texture 

and coarse fragments are observed (layer)  

These attributes are encoded as “string” values, which include both letters and numbers. The important fields soil type and 

texture, are not just stored as standardised class values, but are instead a coded description based on abbreviations that are then 

combined with numbers for example depths and indictors for level of erosion, and are grouped together for different depths 20 

within the same attribute field. These description-based attribute values make it difficult to derive the foundational numerical 

values for sand, silt, clay and coarse fragments from the codes and to make them more consistent and usable in calculations 

and statistical analyses. In addition, our data screening revealed that the attribute values sometimes contradict the official 

legend for the Soil Map of Estonia. For example, the soil type reference sheet provided with the soil map lists ca. 120 different 

soil types in Estonia (Estonian Landboard, 2017; "muldade_tabel.pdf")  and the soil legend document describes 9 main texture 25 

classes and 12 soil skeleton types, i.e., coarse fragments and rock morphology (Estonian Landboard, 2017; "mullalegend.pdf"). 

However, the database’s attribute table contains 7067 unique variations for soil types, which resulted from the use of many 

specific local derivatives and transcription errors. Similarly, the texture column actually contains 87240 unique values instead 

of 9, 21 (9+12) or 108 (9x12). Considering the possible permutations of these soil types and textures, it would be prohibitively 

difficult to develop any kind of reasonable standardisation for the soil parameters before cleaning and unifying the dataset. 30 

Therefore, we performed extensive database standardisation on the original Soil Map of Estonia as the working basis and 

derive all further variables based from the standardised dataset sequentially.  illustrates the four major working packages to 

derive the desired eco-hydrological parameters. The subsequent four sections are structured accordingly: Section 2.2 represents 
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step A (Textural properties); step B (Additional topographic variables as predictor variables) in section 2.3, section 2.4 

describes step C (SOC RF model and BD); and step D (Hydrological parameters) is described in section 2.5.   

 

Figure 1: Flowchart for executed processing steps grouped into the four major work packages 

 5 

2.2 Extraction of texture classes, soil reference groups, and deriving basic physical and textural valuesThe main 

implementation of this program is based on the Python library “Arpeggio” (Dejanović et al., 2016; 

https://pypi.org/project/Arpeggio/), which is a recursive-descent parser based on parsing expression grammars (also 

known as the Packrat parser; http://bford.info/packrat/). This let us express rules and symbols (i.e., the grammar) in 

such a way that our software could parse arbitrary text and find the various definitions of the texture in the same way 10 

as the rules are described in the map legend handout. 

Listing 1 provides an example of a parsing grammar. At the start of the program, the basic elements are defined, 

starting with the 9 main fine-textured soil types: “plsl, pl, tsl, tls, dk, sl, ls, s, l”. The parser honours the order of their 
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definition. Without these ordered rules, the parser will never find the more complex expression “plsl”, because it would 

stop as soon as it encounters the “pl” part of the name. We also defined the coarse fragments types, and peat land soils. 

The function “def fine_textured(): return Optional(kPlus), fine-textured_list, Optional(amplifiers), 

Optional(depth_range)” demonstrates the flexibility of how a parsing expression grammar parser can be configured. 

The function can find even optional (0 or 1) elements such as prefixes or suffixes within an arbitrary text stream. 5 

Subsequently, several separators and special indicators must be defined that can precede or be appended in 

combinations to the abovementioned soil type elements. These were often formatted as subscripts or using special 

characters. This proved to be a major source of data-entry errors, encoding mistakes, and ambiguities, which had to 

be handled via additional error-checking code, e.g., lookup tables which are provided in the supplemental materials 

(Kmoch et al., 2019b; "soil_lib/LoimisLookups.py"). 10 

The mapped soil units also encode variations in the soil profile within a given soil unit. Thus, we must differentiate 

between a vertical separator for the observed soil layers, and a horizontal separator. However, we only considered the 

vertical component (soil horizons). In addition, these discrete vertical layers are only based the description in the 

original texture code. To capture and fully evaluate the possible texture codes, it was necessary to capture the meaning 

of any additional (rare) horizontal separators. 15 

Because there are various data-entry errors and other ambiguities in the actual codes in the soil map dataset, we 

manually analysed all codes that could not be successfully evaluated by the grammar. Manual inspection was 

particularly required for codes that did not conform to the general rules described in the original soil legend handout. 

A full list of non-logical expressions, data-entry errors, and other grammar expressions that could not be easily or 

usefully standardised is provided as a supplemental Excel spreadsheet (Kmoch et al., 2019a; 20 

“texture_error_lookup.xlsx”). 

The parser for the defined grammar builds a data structure that can be evaluated for physical numerical parameters 

such as layers, depth, and the sand, silt, clay, and rock contents. This data structure is a Python dictionary object, i.e. 

a lookup table with nested key-value pairs that hold the parameters and the found values. In the example in Listing 2, 

it becomes apparent that there is a “/” vertical layer separator (at the bottom, the “code” parameter shows the original 25 

texture code for this soil unit), and that depths and fine fractions are accessible separately from the data structure. If 

a coarse fraction were defined in the texture code, then additional to the fine earth information, an additional 

“constituent” (the coarse fraction type) would be part of the respective layer (i.e. the “soilparts” object).  

 

There are detailed studies on reference soil profiles in Estonia, Latvia and Lithuania that relate original soil texture, 30 

so called Katchinsky texture system (Kachinsky, 1965) to USDA soil system (Calhoun et al., 1998) and erosion modelling 

case studies where based on laboratory analyses transfer functions from Katchinsky to USDA texture classes were developed 

(Laas and Kull, 2003). The relationship between the Katchinsky and Atterberg systems were provided by R. Kask (2001). 

The USDA soil taxonomy and World Reference Base soil classification systems use 12 textural classes, which are 

defined based on the sand, silt, and clay fractions (Ditzler et al., 2017). However, the USDA system defines fine particles as 35 

having a diameter ≤ 2 mm, whereas the Soviet-era maps use a diameter of ≤1 mm. The Soviet soil classification also mostly 

ignores the silt fractions, and focuses on the clay fraction (Ø ≤ 0.001 mm).  

The Soil Map of Estonia’s “texture” field encodes the texture and general soil layer structure for each mapped soil 

unit in a structured, rule-based format (based on old Soviet-era paper maps). The original observations were classified into the 
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Estonian texture code system based on Katchinsky (1965) soil particle size standards at the time of observation (not by us). 

Regarding uncertainties related to that process - as we take these as observed data - achieving 5% accuracy in organoleptic 

determination of clay content for lower value classes while possible error increased in case of heavy texture classes. 

We developed a computer program that converts the encoded texture codes into an intermediate data structure, which 

extracts again Estonian texture classes, coarse fragment classes, into separate layers including depth information. 5 

Subsequently, we derived all defined numerical texture values using a lookup table (Table 1) that represents our best efforts 

to account for the size difference between the USDA and Soviet systems and lack of silt data in the Soviet system. The 

foundational numerical values for fine earth and coarse fragments fractions of soil are solely derived from the extracted 

processed and translatedEstonian texture classes as demonstrated in Table 1. 

In additional we introduced two more classes beyond the well-known USDA textures classes, i.e. “PEAT” and 10 

“GRAVELS”. The former states that this soil unit is a peatland, where the peat layer thickness is at least 30 cm. For 

hydrological modelling reasons we decided to still assign sand, silt and clay fractions to these units in order to provide a 

continuous hydrological soil surface. To soil units with the class “PEAT” a high clay content was assigned in order to represent 

the low vertical conductivity at the bottom theses peat bogs. However, for applications that critically evaluate clay content for 

soil units, the additional “PEAT” texture class can be used to apply additional rules to mask these soil units accordingly. The 15 

latter class “GRAVELS” is intended to demark soil units or discrete layers therein, where only a coarse fragment type but no 

fine textures have been coded in the original texture codes. In these cases, depending on the type of the coarse fragment the 

layer can consist of gravels, large rocks or massive rock. 

  

Table 1: Example of the basic rules for deriving numerical values for texture (sand, silt, and clay contents) from the 20 

Estonian texture codes and assigned new English and USDA texture classes. These rules were selected by the authors. 

The full table is provided as a supplemental Excel spreadsheet (“texture_rules_lookup.xlsx”) 

Estonian 

texture 

code 

Estonian name English name USDA texture code 

Proportion (%) of total weight 

Sand Silt Clay 

l Liiv sand S 90 5 5 

l1 sõre liiv coarse sand S 95 5 0 

l2 sidus liiv fine sand S 90 3 7 

sl saviliiv loamy sand LS 82 9 9 

sl1 saviliiv loamy sand LS 82 9 9 

ls liivsavi loam L 55 30 15 

ls1 kerge liivsavi sandy loam SL 65 20 15 

ls2 keskmine liivsavi loam L 55 30 15 

s Savi clay C 25 30 45 
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Similar to the Estonian texture classes there exist Estonian stoniness classes that describe a certain type of coarse 

fragments within the soil profile. An additional number in connection with this rock type identifier indicates the 

amount/volume of these rocks in 1kg of soil. We used this indicator number to designate numerical values for the coarse 

fragments. Table 2 shows how we derived the rock content from the coarse fragments indicator that we obtained from the soil 5 

map encoding.  

A base assumption is that most soils in Estonia were sampled to a depth of 1 m, as this is the case for a default soil 

profile. There is only one vertical profile defined per mapped soil unit. If larger or smaller depth information was encoded in 

the original soil texture code, then this would be used for the overall depth of that soil sample. For each of the layers, we 

collated depth from the soil surface to the bottom of each layer. The data model is relational and each soil unit is represented 10 

as one row, with its polygon geometry, identifier and all collected parameters as attributes. The maximum number of distinctly 

defined layers was 4, and layer dependent parameter values (at different depths) are only meaningful where the variable’s 

number suffix is smaller or equal the number of defined layers.  

 

Table 2: The relationship between the coarse fragments (rock content and shape) indicator from the soil map encoding 15 

and the rock content as a % of the total volume. We used the average of each defined range. 

 Scale of conversion for rock content 

“Skeleton” indicator number 1 2 3 4 5 6 

Inferred rock content (% of volume) 6 15 25 40 60 85 

 

We in Python to find the best match from the soil type reference list (Kmoch et al., 2019b; 

"01_soilmap_soiltypes_textures_layers.ipynb"). The algorithm progressively shortens the name from the right andcompared 

the encoded results Estonianwith the soil type from the original soil map in order to find the most appropriate soil type from 20 

the main Estonian soil types from the soil reference list. The soil types and the Estonian soil names were then related to the 

FAO World Reference Base (WRB) soil reference groups (FAO, 2015) after the data have been corrected and standardised for 

each map unit in the extended soil dataset based on expert input (Hiederer et al., 2011). The full table that relates the Estonian 

and WRB soil reference groups is provided with the supplemental materials. 

This first and fundamental step concluded with a set of variables for each mapped soil unit that include now separate 25 

standardised Estonian and English/USDA texture classes per soil layer, number and depths of layers of the mapped soil unit 

and numerical values for fine earth and coarse fragments fractions per layer, and a WRB soil designation group. 
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2.3 Adding topographic variables as predictor variables 

For the subsequent step of SOC prediction via the Random Forest machine-learning model, we calculated mean, 

median and standard deviation of several topographic and environmental variables as additional predictor variables. 

Topographic variables slope, Topographic Wetness Index (TWI), Terrain Ruggedness Index (TRI), and LS-factor were all 

calculated by using SAGA-GIS software based on a digital elevation model (Conrad et al., 2015). The LiDAR-based Digital 5 

Elevation Model with resolution 15 m was obtained from Estonian Land Board. 

2.3.1 Topographic Wetness Index (TWI) 

The TWI is a topo-hydrological factor proposed by Beven and Kirkby (Beven and Kirkby, 1979) and is often used to 

quantify topographic control on hydrological processes (Michielsen et al., 2016; Uuemaa et al., 2018) which also are relevant 

in the soil evolution. TWI controls the spatial pattern of saturated areas which directly affect hydrological processes at the 10 

watershed scale. Manual mapping of soil moisture patterns is often labour-intensive, costly, and not feasible at large scales. 

TWI provides an alternative for understanding the spatial pattern of wetness of the soil (Mokarram et al., 2015). It is a function 

of both the slope and the upstream contributing area: 

 𝑇𝑊𝐼 = ln (𝑎
tan𝑏⁄ )         (1)  

where a is the specific upslope area draining through a certain point per unit contour length (m2 m- 1), and b is the slope gradient 

(in degrees).  15 

2.3.2 Terrain Ruggedness Index (TRI)  

TRI reflects the soil erosion processes and surface storage capacity which again is relevant from a soil evolution 

perspective. The TRI expresses the amount of elevation difference between neighbouring cells, where the differences between 

the focal cell and eight neighbouring cells are calculated: 

𝑇𝑅𝐼 = 𝑌[∑(𝑥𝑖𝑗 −  𝑥00)
2

]
1

2⁄          (2)  

where xij is the elevation of each neighbour cell to cell (0,0). Flat areas have a value of zero, while mountain areas with steep 20 

ridges have positive values.  

2.3.3 LS-factor 

The potential erosion in catchments can be evaluated using LS factor as used by the Universal Soil Loss Equation 

(USLE). The LS factor is length-slope factor that accounts for the effects of topography on erosion and is based on slope and 

specific catchment area (as substitute for slope length). In SAGA-GIS the calculation is based on (Moore et al., 1991): 25 

 

𝐿𝑆 = (𝑛 + 1)(
𝐴𝑠

22.13⁄ )𝑛(
sin 𝛽

0.0896⁄ )𝑚         (3) 

 

where n=0.4 and m=1.3. 

https://en.wikipedia.org/wiki/Contour_line
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2.3.4 Drainage area per mapped soil unit  

In addition, we calculated the area per mapped soil unit in m2 and in percent of area, which is under drainage. The 

drainage regimen considered both underground tile drainage and ditch based drainage systems. Analogously, we summarised 

land use/land cover proportions into arable land, forest, grasslands, wetland, urban areas, water and other also as area per 

mapped soil unit in m2 and in percent of area. The drainage and land use/land cover information used for this was compiled 5 

based on thewas derived from the  Estonian Topographic Data Setbase (ETAK) and the official register of drainage systems 

by the Agricultural Board of Ministry of Rural Affairs of Estonia.All the variables were calculated using the GIS software 

packages QGIS and SAGA. 

2.4 Predicting Soil Organic Carbon (SOC) and Bulk Density (BD) 

The main information retrievable from the Soil Map of Estonia are only the soil type and the soil texture. However, soil 10 

hydraulic properties and SOC data are needed for many different applications in soil hydrology, ecology and eco system 

services modelling. Pedotransfer functions (PTFs) have proven to be useful to indirectly estimate these parameters from more 

easily obtainable soil data (Van Looy et al., 2017). Therefore, several soil parameters like soil organic carbon, bulk density 

and saturated hydraulic conductivity must be derived via PTFs and other data assimilation methods. To apply PTFs and other 

data-assimilation methods, third-party datasets can be used as secondary sources. In the previous steps we have prepared a 15 

wide set of input variables, including the numerical fractions for the textural properties, standardised classes for soil type and 

soil textures, and additional topographic variables, which we can apply as predictor variables to model the value distribution 

for SOC and BD. We develop these two extended soil physical input parameters as organic carbon content in % soil weight 

(SOL_CBN# layer 1-4), and dry bulk density in Mg/m³ or g/cm³ (SOL_BD# layer 1-4). 

In order to map the spatial distribution of SOC in Estonia a machine learning model random forest (RF) was used to 20 

predict SOC based on parameters derived from the soil map. RF was preferred to more advanced ML algorithms (e.g., neural 

networks) because it has shown to be relatively resilient towards data noise and not require preliminary hyperparameter tuning 

(Breiman, 2001; Caruana and Niculescu-Mizil, 2006). In addition, feature importances can be extracted from the model to 

determine the most influential predictor variables. 

For training, we used measurements of soil organic matter (SOM) or soil organic carbon (SOC) from forest areas 25 

(samples sizes: n=100), 4 datasets of samples from Estonian open and overgrown alvars and grasslands (n: 94, 137, 146, 69), 

peatlands (n=175) and from arable soils transects (n=8964) resulting in 3373 distinct point locations (Kriiska et al., 2019; 

Noreika et al., 2019; Suuster et al., 2011). Where necessary, the SOM values were translated into SOC via: SOC = SOM / 

1.724. Many samples from peatlands and arable fields were often sampled within the same mapped soil unit. For these soil 

units (polygons) the respective soil measurement data was averaged and joined to the respective soil units to reduce the bias 30 

of the prediction. After joining the sample size reduced to the 397 distinct training samples for machine learning (Figure 2).  



13 

 

This data was then randomly split into training (60%) and test (40%) sets and the model was evaluated by predicting 

SOC based on the predictor variables of the test set. Finally, the model was applied to soil map polygons without available 

SOC measurements to predict SOC content in Estonian soils.  

 5 

 

Subsequently, we calculated soil bulk density based on texture values and predicted soil organic carbon for each layer 

in each mapped soil unit polygon, with following PTF (Adams, 1973; Kauer et al., 2019), which has been successfully applied 

in Estonia: 

BD = 1 / ( 0.03476 × SOM + 0.6098 )   (4) 10 

where: SOM = SOC × 1.724 

The conversion factor of 1.72 is a widely used universal value. However, we acknowledge that the real value varies slightly 

between soils. 

Figure 2: Distinct soil unit polygons including all sampling locations for the ML training sample. 
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2.5 Assimilation of additional hydrological variables 

In order for this dataset to be more useful in eco-hydrological modelling we developed and added two additional hydrological 

variables. Saturated hydraulic conductivity (Ksat) relates soil texture to a hydraulic gradient and is quantitative measure of 

water movement through a saturated soil. In addition to the ability of transmitting water along a hydraulic gradient we also 

add available water capacity (AWC) as a variable. AWC describes the soil’s ability to hold water and quantifies how much of 5 

that water is available for plants to grow. We develop two variables saturated hydraulic conductivity (mm/hr), and available 

water capacity of the soil layer (mm H₂O/mm soil). We calculated Ksat using the improved Rosetta3 software, which 

implements a pedotransfer model with improved estimates of hydraulic parameter distributions (Zhang and Schaap, 2017). It 

is based on an artificial neural network (ANN) for the estimation of water retention parameters, saturated hydraulic 

conductivity, and their uncertainties. For each standardised texture class, we used the numerical fine earth fractions for sand, 10 

silt and clay as inputs for the Rosetta3 software and calculated Ksat for each layer in each mapped soil unit polygon. Table 3 

demonstrates the predicted values for several texture classes. 

 

Table 3: Predicted K sat values and reported standard deviation from Rosetta3 

texture class sand silt clay k_sat k_sat_std 

GRAVELS 100 0 0 645.68 1.29 

S (coarse sand) 95 5 0 362.25 1.19 

S (sand) 90 5 5 133.21 1.13 

S (fine sand) 90 3 7 113.71 1.17 

LS (Estonian 'sl1-3' classes) 82 9 9 37.54 1.15 

LS (Estonian 'tsl1' class) 80 14 6 40.2 1.18 

SL 65 20 15 11.02 1.18 

L (Estonian 'ls2' class) 55 30 15 9.04 1.21 

CL 50 15 35 3.67 1.3 

L (Estonian 'tls1' class) 40 45 15 8.16 1.37 

SiL 35 50 15 8.89 1.35 

SiCL 30 40 30 3.97 1.34 

PEAT (Estonian 't1' class) 25 25 50 5.09 1.53 

HUMUS 25 25 50 5.09 1.53 

HC 25 30 45 4.29 1.43 

C 25 30 45 4.29 1.43 

PEAT (Estonian 't2' class) 20 20 60 7.24 1.81 

PEAT (Estonian 't3' class) 15 15 70 9.2 2.45 

 (Kmoch et al., 2019b; "Rosetta-3.0"). 15 

In order to calculate available water capacity, we summarized the field capacity (FC, at −330 cm matric potential 

−0.03 MPa) and wilting point (WP, at −15,848 cm matric potential −1.5 MPa) variables of the 7 soil depths of the EU‐
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SoilHydroGrids 250m resolution raster datasets (Tóth et al., 2017) for each mapped soil unit for the provided depths of 0, 5, 

15, 30, 60, 100, and 200 cm. The available water capacity is then calculated for each of the 7 depths by a raster calculation: 

AWC = FC - WP (Dipak and Abhijit, 2005). The resulting 7 AWC raster layers are then averaged into the respective depth 

ranges for each of the discrete layers of the Estonian mapped soil units. The Python code of the process for the extraction of 

FC and WP from the EU‐SoilHydroGrids is provided with the supplemental materials (Kmoch et al., 2019b; 5 

"05_hydrogrids_extents_and_awc_extract.ipynb"). 

3 Results 

In this study, we developed the EstSoil-EH database, which includes standardised soil type and soil texture data from 

the official Soil Map of Estonia, related to the World Reference Base and FAO soil classes and USDA texture descriptions. 

Figure 3 shows a map of the classified topsoil texture classes derived from the original Estonian texture codes. In addition, it 10 

shows the peat soils that cover up to 20% of Estonia, and are an important soil type in such northern countries. 
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Figure 3: EstSoil-EH dataset: USDA topsoil textures derived from the original Estonian texture codes by the software 

developed in the present study, including additional classes “PEAT” and “GRAVELS”. Lower image is a zoom-in to a 

small region to visualize the high-level of detail. 

 5 

We synthesised additional information usable in an eco-hydrological modelling context for each of the soil units. 

These values include the number of discretized soil layers – up to a maximum of 4 separate vertical distinct soil layers where 

described in the original texture codes –the depth of each layer, and the maximum depth of the sampled profile for each mapped 

soil unit. Based on the layer information and the extract texture classes we defined the percent fractions per volume of sand, 

silt, clay, and coarse fragments per layer. We also added topographical and land use/land cover information and used these as 10 

predictors for soil organic carbon. Subsequently, we predicted bulk density and hydraulic conductivity and for each soil 

polygon’s defined layers and assimilated available water capacity using inputs from EU-HydroSoilGrids. Table 4 contains the 

full list of variable and parameters per mapped soil unit contained in the EstSoil-EH dataset. 
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Table 4: Description of variables and parameters available in the EstSoil-EH dataset 

name of variable per 

mapped soil unit data_type description 

est_soiltype string Estonian soil type 

wrb_code string FAO WRB soil type reference group (1st and 2nd 

level) 

wrb_main string FAO WRB main soil type reference group (1st 

level) 

est_txcode string reconstructed error-free interpretation of Estonian 

texture encoding description 

nlayers number number of recognized layers/horizons 

zmx float64 depth in mm: max depth of the sample analysed 

soil profile in the mapped soil unit 

z1-4 float64 depth in mm: the bottom of layer # (if nlayers 

indicates defined) 

est_txt1-4 string Estonian texture class per layer # 

lxtype1-4 string USDA texture class  

est_crs1-4 string Estonian coarse fragment type 

sand1-4 int64 % mass of Sand in  fine earth fraction 

silt1-4 int64 % mass of Silt in fine earth fraction 

clay1-4 int64 % mass of Clay in fine earth fraction 

rock1-4 int64 % volumetric in kg soil 

soc1-4 float64 % soil weight 

bd1-4 float64 g/cm³ 

k1-4 float64 mm/hr 

awc1-4 float64 mm H₂O/mm soil 

slp_mean float64 mean slope, from DEM (also median and stddev) 

twi_mean float64 mean terrain wetness index (also median and 

stddev) 

ls_mean float64 ls-factor, (also median and stddev) 

tri_mean float64 terrain roughness index, (also median and stddev) 

area_drain float64 area per unit under a (e.g. tile-)drainage regimen 

drain_pct float64 percent of the area of the soil unit under drainage 

area_arable float64 area m2 of LULC arable (6 add. LULC types) 

arable_pct float64 % of area is LULC arable (6 add. LULC types) 

geometry geometry polygon, EPSG:3301 Estonian National Grid 

 

3.1 Validation of soil type and texture classes extraction and standardisation 

For the main soil types, we achieved 97.7% agreement between the software’s result and the manual classification. 

The manual verification of the validation revealed several re-labelling issues from the error lookup table. A visual assessment 5 

by two soil sciences senior research staff asserted that the level of similarity of the soil types that were selected by the automated 
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process were closely related. However, the mismatches (1943 records, equivalent to 2.3% of the total records) indicated that 

the soil experts tended to interpret “errors” based on personal knowledge that may not be reproducible in a strictly automated 

fashion. For example, some landforms (e.g. eroded material filling low slopes or collapsed cliffs) were originally classified as 

exceptions to the general classification rule based on the local knowledge of the landscape. When standardising these expert 

interpretations with the same more general soil type, we reduced the number of mismatched soil type identifiers to 0. 5 

Furthermore, it should be emphasised that humans tend to make mistakes when performing repetitive procedures. Therefore, 

we consider the high accuracy (97.7%) to be a very good result. 

For the validation of textures, we used several steps. First, given the high agreement between the software-generated 

codes and the human-generated codes, we accepted the software’s texture codes for use in our subsequent evaluations. Next, 

we compared the extracted main texture for each layer with the manually coded value: 10 

 77 870 of 83 364 records (93.4%) showed identical parsing of the full texture code 

 71 635 of the records (85.9%) showed identical interpretation of the first layer’s texture type (10 312 records were 

differently coded, and 1417 produced “no value” errors, in which either the source or validation dataset contained no 

value, preventing a comparison with the other dataset’s value) 

 65 000 of the records (78.0%) showed identical interpretation of the second layer’s texture (with 2325 differently 15 

coded textures, and 16 038 “no value” errors, of which 15 461 occurred in the automated processed new dataset, and 

only 577 occurred in the validation dataset)  

 82 507 of the records (99.0%) showed identical interpretation of the third layer’s texture (with most errors caused by 

a non-existent third layer, 334 differently coded, and 523 with a “no value” error) 

For sand, silt and clay fractions we could obtain laboratory analysis only for forest soil samples. We calculated the root 20 

mean squared error (RMSE) and chose the Normalized Median Absolute Deviation (nMAD) as an additional measure of 

dispersion of error for non-gaussian distributed data: 

 RMSE for sand: 13.1 % 

 nMAD for sand: 9.68 

 RMSE for silt: 10.7 % 25 

 nMAD for silt: 7.0 

 RMSE for clay: 6.5 % 

 nMAD for clay: 3.9 

Our manual assessment of the mismatches indicated the same problem that occurred with the soil types. The expert 

assessments aimed to keep as much information as possible available in their decoded classification, and this did not always 30 

agree with the automated processing rules. It is not possible to retrospectively redefine minor differences in boundaries between 

different classes between texture systems, but we consider natural variation of texture within the soil mapping unit in scale 

1:10 000 more significant than that of different texture systems. Furthermore, the complexity of the Estonian texture rules and 
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the reliance on human judgement creates high uncertainty in some cases, even for human interpretation. In addition, to derive 

the grammar rules, we added a few simplifying elements, such as omitting some rarely used additional information in the soil 

texture descriptions. For example, the Estonian rules allow specification of several soil parts, but as a horizontal distribution 

within the same mapped soil unit rather than as vertical layers. This is understandably complex, making it difficult to classify 

this variable soil as a single soil unit. Consequently, it is inevitable that some of these descriptions will not agree with the 5 

software’s classification. 

3.2 SOC prediction and validation of Random Forest model 

We also calculated several extended soil properties, i.e. SOC content and BD. The RF regression model was implemented with 

the RandomForestRegressor function from the Scikit-learn Python library. The model was evaluated by predicting SOC based 

on the predictor variables of the test set for the 60:40 split. Figure 4 illustrates the cross-validation scatterplots of observed vs. 10 

predicted SOC values for the test/validation sample splits. Following characteristics are reported for the chosen RF model: 

 coefficient of determination (R2) score: 0.69 

 score of the training dataset with out-of-bag estimate (oob score): 0.58 

 Pearsons r correlation coefficient, training: 0.90, validation: 0.83 

RF feature importances, top 6: 15 

 Clay content (SOL_CLAY1): 0.65 

 Terrain Roughness Index, standard deviation (tri_stdev): 0.04 

 Sand content (SOL_SAND1): 0.03 

 LS-factor, median (ls_median): 0.028 

 Area under drainage in percent (drain_prct): 0.027 20 

 Coarse fragments rock content (SOL_ROCK1): 0.024 

 

 

Figure 4: Random Forest model cross-validation scatterplot of observed vs. predicted SOC values for the test/validation 

sample splits: a) training subsample and b) validation subsample 25 
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 Figure 5 shows the predicted values of SOC for the top layer. On visual inspection the spatial distribution for the 

SOC content matches comparatively well with known agricultural areas, where low carbon content prevails, as well as with 

the peat land areas, which have a very high carbon content. 

For further description and guidance on errors in the predictions for SOC and BD we calculated the RMSE and nMAD 

as an additional measure of dispersion of error for non-gaussian distributed data. BD observed data was only available for 5 

arable lands and forest soil samples, and should be treated accordingly. 

 RMSE for SOC predictions: 2.95 % 

 nMAD for SOC: 1.44 

 RMSE for the subsequent BD predictions with PTF: 0.33 g/cm³ 

 Normalized Median Absolute Deviation (nMAD) for BD: 0.15 10 

However, due to the small number and distribution of input samples over four distinct land cover types, namely arable 

lands, wetlands, forests and open/grass lands, we broke down the error distribution for these for land forms in Table 5. The 

prediction error characteristics differ, with the smallest errors for arable lands, then wetlands and the largest errors for open 

grasslands and forest. 

 15 

Table 5: Table 6: Statistical description of SOC prediction error per land form 

landform mean std min 25% 50% 75% 95% max median nMAD kurtosis skew RMSE 

wetland 1.74 2.73 -5.22 -0.05 1.71 3.51 6.66 8.09 1.71 2.15 -0.1 0.04 3.23 

arable -1.54 1.78 -21.2 -2.12 -1 -0.63 -0.12 6.82 -1 1.12 29.65 -4 2.35 

forest -2.08 4.46 -24.56 -3.07 -1.52 -0.09 3.44 25.65 -1.52 2.79 7.39 -0.44 4.92 

grassland 1.06 4.28 -8.47 -1.79 0.52 2.92 10.94 11.78 0.52 3.21 1.16 0.59 4.38 
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Figure 5: Extended physical soil parameters: a) predictedPredicted soil organic carbon (SOC) and b) bulk density (BD) 

of the first layer.of the top soil layer 

 

3.3 Extended Hydrological variables results 5 

Based on the variables derived in previous steps, we could also calculate soil hydraulic parameters, such saturated 

hydraulic conductivity (Ksat) based on the sand, silt and clay content.  and aRosetta reports the standard deviation for its internal 

prediction process, which draws many samples for the same input of sand, silt and clay content and then provides the mean as 

the predicted value for K. The summary of Tthe predicted Ksat values and the standard deviation were summarized in Table 3. 

fFor peat areas and wetlands the predicted values also corresponds with ranges reported in the literature for the sand-silt-clay 10 

ratios provided (Gafni et al., 2011). 

Available water capacity (AWC) was calculated solely by aggregating EU‐SoilHydroGrids data for field capacity and 

wilting point (Tóth et al., 2017). The USLE K erodibility factor for each soil unit was also calculated (Figure 8). We compiled 
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all parameters into a dataset that can now be easily used with SWAT or other eco-hydrological and land-use-change models. 

As we are not changing the general geometry or underlying spatial data model of the original soil map, all parameters are only 

added to the existing mapped soil units and thus, all original soil polygons remain discernible. The dataset (Kmoch et al., 

2019a; doi:10.5281/ZENODO.3473290) and the software codes (Kmoch et al., 2019b; https://zenodo.org/record/3473210) 

have been deposited online. 5 

4 Discussion and Future Work 

For EstSoil-EH, we derived numerical values for the following data in all of the mapped soil units in soil map: soil 

type (i.e. soil reference group), texture class, soil profiles (e.g., layers, depths), texture (clay, silt, sand components, and coarse 

fragments), rock content, and physical variables related to the water and carbon cycle (organic carbon content, bulk density, 

hydraulic conductivity, available water capacity). Before our analysis, a large amount of the  information of the high-resolution 10 

Soil Map of Estonian was not readily usable beyond the field or farm-scale because of the need to manually interpret the 

specialised soil types and the complexity of the rules that describe the texture or other characteristics of the soil units. We also 

describe the development of a reproducible method for deriving numerical values from a national survey-based soil map to 

support modelling and prediction of eco-hydrological processes, and ecosystem services, and we provide an extended ready-

to-use dataset containing additional parameters. It is widely used in Estonia. But beforeThe presenteddeveloped dataset is of 15 

very high spatial detail based on the original Estonian national soil map, which was created from directly surveying all of 

Estonia. Thus, our presented dataset holds to potential to further improve our understanding of eco-hydrological processes in 

the landscape through the use of advanced numerical statistical (e.g. machine learning) and process-based models. The derived 

information is much more spatially related to the landform/landuse observed there than any other dataset covering soil 

information for Estonia. Furthermore, the textures and SOC/BD values are directly derived from reliable observed data samples 20 

from Estonia, with a reproducible workflow, which is unique in the case of Estonian soil datasets, whereas this is not true for 

many other reported soil datasets that cover the area of Estonia. Furthermore, the open access availability and transparency of 

measurement data can provide a reliable building block for advancing studying soil and hydrological processes in Estonia into 

temporal aspects. tEspecially, properties such as SOC and BD will vary extensively depending on the land use and land cover. 

In combination which developments that capture also the dynamics of land use change and adaptations under climate change, 25 

the evolution of the soils in Estonia could more readily be investigated. 

One challenge in SOC modelling was that the number of field-based samples that was used for training the Random 

Forest model was relatively small for the whole country. Even though the samples covered four main land cover types 

(agricultural, forests, wetlands, grasslands), there was still significant spatial heterogeneity that might have not been captured.  

Moreover, in addition to field-based validation data, we used lower resolution modelled datasets, e.g.  SoilGrids and EU-30 

SoilHydroGrids, for a comparative validation. These datasets are not necessarily more accurate than the results of our 

classification. Although we accounted for this problem by providing additional comparisons, the scale mismatch between 



23 

 

continuous raster datasets and polygon-based data inevitably introduced errors and trade-offs into the comparison. One solution 

to these problems would be to perform supplemental field sampling to ground-truth the source data and confirm the accuracy 

of our model’s classification based on the field data.  

A direct interpretation on the derived discrete layer information as soil horizons needs should not be generalized but 

checked on per case basis. From the point of end-user, the first layer is not a default 30 cm deep top soil layer. A direct 5 

interpretation of the derived discrete layer information as soil horizons should not be generalized but checked on per case basis. 

All physical, chemical and hydraulic properties are based on the analysis of the original texture code per mapped soil units and 

the resulting discrete layers per unit. This is an important usage constraint, for example in sense of biological activity, as 30 

cm soil layer is most active, but for each soil unit it needs to be checked which layers extend into which actual depths. Also 

the SOC content and BD are not modelled in a vertical continuum but per discrete values per unit and layer. However, fertile 10 

soils, like Luvisols contain a lot of SOC also in deeper layers. But such additional expert knowledge is not encoded in original 

Soilmap of Estonia, nor in the processing algorithms that derived the extended parameters for this newly generated dataset. 

However, such additional knowledge, as well as more appropriate models for peatland areas, could be included as additional 

rules in a subsequent improvement of this dataset. 

Kõlli et al. (Kõlli et al., 2009) published estimates of the SOC stocks for forests, arable lands, and grasslands and for 15 

all of Estonia. Nevertheless, they constrained their finding by noting that their estimates were calculated based on the mean 

SOC stock for each soil type and the corresponding area in which the soil type was distributed. Putku (2016) used the large-

scale Soil Map of Estonia at the polygon level for SOC stock modelling for mineral soils in arable land of Tartu county. Carbon 

content calculations in Estonia have historically been predominantly made for soils in agricultural areas. Exisiting literature 

and our results in summary are in line with SOC distribution per soil type in mineral soils in arable lands (E. Suuster et al. 20 

2012). 

The original purpose of this dataset was to derive values for hydrological modelling purposes and at the same time to 

stay as close to the original data as possible. From that perspective peat soil units are currently modelled with assumptions to 

have a similar behaviour to clay hydrologically. Therefore, the spatial distribution of clay percentage in particular, but also the 

concurrent physical fractions of sand and silt do not make scientific sense for these areas where peat is prevalent. In order to 25 

make the dataset as useful as possible and to identify peatland areas, we introduced the additional class “PEAT” into the USDA 

classification. While sand, silt, clay and rock content are directly derived values from the original texture codes, SOC and Ksat 

are modelled via statistical machine-learning algorithms, which include additional uncertainty. This should be considered when 

evaluating BD and USLE K, which are calculated using SOC as an input variable. In addition, it would be possible to use BD 

as an additional predictor for Rosetta. However, we decided that this would introduce too much uncertainty as BD in EstSoil-30 

EH is based on a PTF function of SOC, which in return was also predicted via statistical modelling. 

The only variable which we did not model based in dependence of already modelled parameters was AWC. Here we 

summarised the EU-SoilHydroGrids 250m (Tóth et al., 2017) raster datasets for FC and WP as inputs an external data 
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integration. This is not ideal and can be considered a trade-off between introducing too much uncertainty and an external un-

related data source. 

In the future, we foresee step-wise improvement of our software by developing better PTFs to estimate parameters 

and to better integrate the presence of peat soils and other specific landscapes and environments in Estonia. Furthermore, 

statistical machine-learning or neural network and deep learning methods could be tested in order to improve soil classifications 5 

and express more complex relationships between soil types and textures. Currently, one specificity of the newly created 

EstSoil-EH dataset is its discrete nature, as we are only adding derived numerical variables to the existing mapped soil units 

(polygons). We do not predict a continuous surface in this study, thus, comparisons with continuous surface parameters 

predicitons such as in SoilGrids (Hengl et al., 2017) or EU-SoilHydroGrids (Tóth et al., 2017), are not directly possible. 

However, the workflow could potentially be extended also for creating continuous surface. With appropriate modification 10 

(e.g., to use the soil characteristic codes more consistently for a different country), our methodology could also be applied in 

other countries such as Lithuania or Latvia that share similar historical land- and soil surveying practices. 

Code and data availability.  

The described “EstSoil-EH” dataset including all supplemental tables and figures is deposited on Zenodo, 

doi:10.5281/ZENODO. 3473289 (Kmoch et al., 2019a). Supplemental software and codes that were used, e.g. the texture-code 15 

parsing scripts, the machine learning model and the parameter calculation Jupyter notebooks are maintained on GitHub 

(https://github.com/LandscapeGeoinformatics/EstSoil-EH_sw_supplement/releases) and were also deposited on Zenodo, doi: 

10.5281/zenodo.3473209 (Kmoch et al., 2019b). The original National Soil Map of Estonia 

(https://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/Mullastiku-kaart-p33.html ) was archived for reference on the 

DataCite- and OpenAire-enabled repository of the University of Tartu, DataDOI, doi:10.15155/re-72 (Estonian Landboard, 20 

2017). 
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