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REVIEWER COMMENT: General comments: While seeking a higher resolution global
soil moisture product is certainly a laudable goal, I find the methods used in this paper
lack a credible connection between ground measurements and the remotely sensed
data. The authors use machine learning to generate regressions between multiple
topographic variables thought to be related to soil moisture that are available at higher
resolution with coarse resolution satellite data. It is difficult for the reader to discern
if actual new information results from the downscaling because there is not a clear
connection made between insitu soil moisture measurements, their physical connection
to the chosen topographic variables used, and resultant satellite measurements.
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AUTHOR RESPONSE: We will improve the clarity of our methodological approach in a
revised version of our manuscript to highlight why topographic terrain parameters are
hydrologically meaningful. We would like to clarify that in situ observations are used for
validating purposes only. In this study, the main purpose was to compare if the fusion of
satellite soil moisture records and elevation-derived terrain parameters (by the means
of an empirical modeling approach, not physical) was useful to fill gaps of satellite
estimates. The physical connection between soil moisture and terrain attributes is that
these attributes regulate the overland flow and the potential solar radiation income.
Both process are controlled by topography and therefore should show a direct influence
on soil moisture patterns. We will also include more information supporting the use of
these hydrologically meaningful terrain parameters for predicting soil moisture patterns,
an emergent research opportunity on Geomorphometry.

REVIEWER COMMENT: To do so, requires first demonstrating the rigor of the method-
ology over a much smaller and better measured area, such as the area of the Interna-
tional Soil Moisture Network.

AUTHOR RESPONSE: Our approach has already been tested across the contiguous
United States (Guevara and Vargas, 2019). Thus, this study is an extension of that
demonstrated methodology and now is applied to the global scale.

In a revised version of our paper, we will compare and test the accuracy of soil moisture
predictions using country specific and global models to demonstrate the consistency
of this approach across multiples scales of data availability. Using the North American
Soil Moisture Database (Quiring, 2016) across the state of Oklahoma, in the Great
Plains of the US (one of the areas with highest in situ soil moisture records for validating
purposes, Llamas et al., 2019).

REVIEWER COMMENT: Extending the algorithm to areas that are hydrogeomorphi-
cally and climatically distinct from the existing soil moisture measurement networks
cannot be result in credible data. I do not recommend publication of this work.
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AUTHOR RESPONSE: As explained in previous work (i.e., Gessler et al., 2009, Florin-
sky, 2012, MacMillan et al., 2016), terrain parameters (such as those we used for
predicting soil moisture) both influence the accumulation of surface geological materi-
als and reflect this spatial distribution. Terrain parameters such as the wetness index
or the relative slope position both influence the flow and accumulation of moisture and
reflect it. Terrain parameters both influence the spatial patterns of distribution of veg-
etation/land use and reflect these patterns (MacMillan et al., 2016). Our methods are
based on geomorphometry which differs from a purely physical hydrological model.
That said the novelty of our study is that it takes the variables to a machine learning
approach in the covariate space using as training data the satellite soil moisture pixels
in the latest version of the ESA-CCI, which are soil moisture values representative of a
mosaic of ecological and environmental conditions (for a specific time) within an area
(pixel) of around 27km of spatial resolution. The strength of a machine learning model
as kknn is to find non-linear relationships in complex spaces to recreate patterns.

These patterns are dependent of training data and there are sparse pixels with valid
soil moisture data across dense vegetation areas or high latitudes that are useful to
support the reliability of our soil moisture predictions (Fig 1). Replicating our models
can give us information about modeling variance across areas with sparse training
data . We re-analyzed our datasets and updated soil moisture predictions based on
the most recent version of the ESA-CCI soil moisture product (to 2018) and included
multiple sources of prediction factors (e.g., bioclimatic, soil type information) in order
to maximize the reliability of our prediction framework and highlight the importance of
terrain parameters modeling soil moisture.

In a revised version we will use data from the ISMN and other published values of
soil moisture to expand our validation dataset. These new validation analyses can be
performed across different biomes rather than at the global scale.

REVIEWER COMMENT: Major comment: Much more information is needed about the
regression methods and parameter selection.
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AUTHOR RESPONSE: We will improve the narrative of the kernel based machine
learning algorithm we used to perform regression. The main parameters of this method
(kknn) are the kernel type (used to convert distances between neighbors points in the
statistical space, to weights) and the k parameter (the number of neighbors used to
calculate a weighted average in regression). These parameters are selected in our
modeling approach automatically using repeated cross validation (Table 1 of submit-
ted paper). The terrain parameters derived by the means of Geomorphometry from
the digital elevation model are another component of our modeling framework, used
prediction factors (soil moisture covariates) in the kknn approach.

REVIEWER COMMENT: It would be helpful to discuss what each parameter is math-
ematically and why it can be useful in a soil moisture prediction context.

AUTHOR RESPONSE: We will explain with more detail why the terrain parame-
ters derived from elevation data using Geomorphometry are hydrologically mean-
ingful, and will include also mathematical formulations to identify the main impacts
of topography in soil moisture. Detailed information on these terrain parameters is
reported in our previous study across the conterminous United States (see table:
https://doi.org/10.1371/journal.pone.0219639.s007).

REVIEWER COMMENT: Can it be demonstrated over smaller areas that there is a
valid argument for using these variables, some or all of them.

AUTHOR RESPONSE: We tested our approach across continental and state scales
and found consistent results. Across the conterminous US, we recently found an in-
crease of nearly 25% of accuracy validating our predictions against the North American
Soil Moisture Database (https://doi.org/10.1371/journal.pone.0219639.g005).

REVIEWER COMMENT: Explain in detail the cross validation process used and why.

AUTHOR RESPONSE: We will include more information and references about cross
validation strategies for re-sampling and bootstrapping prediction models. Cross val-
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idation is a family of re-sampling techniques that are used to analyze the sensitivity
of models (in this case) to variations of available data for training purposes. Multiple
models are generated using multiple proportions of available data and validating with
subsets of information that are leaved out of these models. This process is repeated
several times until capturing the magnitude of variance associated with the models
based on the data subsets.

REVIEWER COMMENT: It is unclear if there is a single model developed and applied
to all years or separate models for each year. Are all topographic parameters used in
the model in all years? What is their weighting?

AUTHOR RESPONSE: We generate and cross validate a model for each year of avail-
able data. Table 1 shows the results of cross validation and available data for each
model/year. All topographic parameters are used on each model/year. During the
cross validation, kknn uses a kernel form to convert distances in weights that are used
for prediction. These distances are different from one place to another as the pattern
recognition includes all the points and their k neighbors. Using the independent resid-
uals of each model realization during the cross validation strategy, the optimal weights
are selected using as indicators the root mean squared error and the correlation be-
tween observer and predicted (also included in Table 1 of submitted manuscript). After
all model realizations including all possible kernel combinations (e..g, "rectangular",
"triangular", "epanechnikov","gaussian", "rank", "optimal") and increasing the number
of neighbors (k) systematically (e.g., from 2 to 25, See Table 1) we find for each year
the optimal weights maximizing the correlation between observed and predicted and
minimizing the root mean squared error. In our reanalysis, we have included a novel
variable importance analysis (by permutation) for kknn, that allows to identify which are
the most important variables in the overall prediction using this kernel based algorithm.

REVIEWER COMMENT: Major comment: Extending the results to areas without soil
moisture measurements (whether in situ or remotely sensed values) without any vali-
dation is not an improvement over current spatial data. It is highly suspect and could
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lead to inappropriate applications using what is in effect non-data.

AUTHOR RESPONSE: We agree that any modeling output should be interpreted and
used carefully as it is not a direct measurement. However, we performed a robust
cross validation strategy including data available in the ESA-CCI representing all envi-
ronmental conditions and provide information about data-model agreement. Then we
validate with field data only at the places (pixels) containing in situ information in the
International Soil Moisture Network. It is clear that contiguous information on soil mois-
ture is challenging to obtain across large areas of the world such as polar or tropical
rain forest conditions. However there are limited and sparse but representative satellite
soil moisture records across these Polar (Fig 1a) or tropical areas (Fig 1b) that can be
used to improve the spatial representation of global soil moisture patterns.

We will include in our reanalysis more datasets (Fig 1c) and more validation information
to enrich the discussion about the reliability of our prediction framework for soil moisture
(e.g., Bond-Lamberty and Thomson). Please note that we are following a conceptual
and data-driven framework assuming that comparing and testing multiple modeling
approaches is still required to better understand the implications of soil moisture on
ecological patterns across areas where no soil moisture information is available. Thus,
our results provide some evidence that our soil moisture product is useful to better
understand ecological patterns in places with low availability of satellite soil moisture
estimates.

REVIEWER COMMENT: Moderate comment: I found the paper very repetitive and in
need of detailed editing.

AUTHOR RESPONSE: We will revise narrative and overall organization of the
manuscript.
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Fig. 1. Available information in the ESA-CCI (4.5, 2018) across Polar (a) and dense vegetated
areas and tropical rain forests (b). In situ dataset that we will use to improve our validation effort
(c).
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