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REVIEWER COMMENT: OVERVIEW 6 
The study has developed a gap-filled, and downscaled with topography-derived information, long-term 
annual (15 km) global soil moisture dataset based on the ESA CCI satellite soil moisture products. The 
assessment of the dataset with respect to in situ observations has been carried out through annual 9 
comparisons as well as in terms of long-term trends (1991-2016). 
 
 12 
REVIEWER COMMENT: GENERAL COMMENTS 
The paper is mostly well written and clear. The topic of the paper is interesting for the 
readership of Earth System Science Data as a global scale gap-filled annual soil moisture dataset is 15 
surely useful for many applications. However, I believe the paper needs 
major changes before the publication as several parts are not properly described and 
other sections need to be improved or summarized. I have listed below my comments 18 
with the indication of their relevance. 
 
AUTHORS RESPONSE: We appreciate the reviewer comments, the recognition of the importance of 21 
this dataset, and support for the possible publication of this manuscript. We have clarified and 
improved the description of methods and improved the manuscript following these comments and those 
from other reviewers.  24 
 
 
REVIEWER COMMENT:1) MAJOR: The factors used in the downscaling and gap-filling algorithm 27 
should be described in details. Two figures (Figures 2 and 3) are not mentioned in the text. It 
seems a part is missing. The reader needs to know the details on the methodology 
employed and which factors have been found to be more important. Which Digital Elevation Model is 30 
used?  
 
AUTHORS RESPONSE: In a revised version we have included more information about the prediction 33 
factors used in our prediction framework and the source elevation data. The source of the DEM is 
mentioned in the datasets section of the manuscript.   
 36 
 
REVIEWER COMMENT: Additionally, other static factors such as vegetation and soil 
types are not considered. Why?  39 
 
AUTHORS RESPONSE: Our initial objective was to test the predictive capacity of topographic terrain 
parameters derived from a single source of information (elevation), considering that a satellite soil 42 
moisture pixel is representative of soil moisture of the spatial configuration of climate and ecological 
conditions (within each pixel) for a specific period of time.  

In the revised version we have included in our prediction framework (as prediction factors) 45 
bioclimatic and soil classes static information. We compare the predictive capacity of topographic 
patterns in relation to these bioclimatic and soil type classes, but we found no significant differences in 
model performance. Therefore, we conclude that a parsimonious model based on topographic terrain 48 



parameters is an alternative approach for downscaling soil moisture while preventing potential spurious 
correlations (in subsequent analyzes) by adding bioclimatic and soil classes information as prediction 
factors. 51 
 

 
Figure R2_1 Soil moisture across Tropical Rain Forests of the world based on the data available in the  54 
ESA-CCI soil moisture product (4.5) for the year 2018 (a). We show the soil moisture prediction (b), 
the soil moisture prediction variance using only the data available for Tropical Rain Forests (c). Note 
that the correlation between observed and predicted decreased to 0.62, most likely due to the limited 57 
information for modeling these ecosystems, however the root mean squared error is comparable with a 
model using all global data (e.g., <0.04). 
 60 
 



REVIEWER COMMENT: The discussion on the approach employed for downscaling and gap-filling 
needs to be included in the paper. Why do the authors select such approach? 63 
 
AUTHORS RESPONSE: We included more information on model selection in the revised version of 
our manuscript. We used a kknn algorithm because it is fast in comparison with other modeling 66 
approaches that are computationally more expensive (i.e., deep learning). We do not focus in finding 
the “best method” for predicting soil moisture, but highlight that the machine (computer-assisted 
statistical) learning between topographic constraints and satellite soil moisture could benefit the spatial 69 
representation of soil moisture grids. Algorithms such as Random Forests or Support Vector Machines 
are examples of conventional machine learning methods that can also be used as regressors for satellite 
soil moisture gridded surfaces. We decided to use ‘fast and effective’ kknn to generate a baseline of 72 
predictions that can be reproduced in hours (annual 1991-2018) using conventional laptops (i.e., 6GB 
of RAM) and a flexible framework across multiple users of soil moisture information. We recognize 
that other forms of statistical learning such as deep learning or ensemble learning could increase the 75 
accuracy our predictions. Increasing the accuracy of the kknn predictions combining multiple forms of 
statistical learning (e.g., ensemble learning) could be an emergent objective for future work.  
 78 
  
REVIEWER COMMENT: 2) MAJOR: I have found particularly challenging performing gap-filling 
over dense forest regions in the Amazon and in Congo. Satellite soil moisture data cannot be used in 81 
such regions due to dense forest that mask the soil moisture signal. How is it possible 
to extend the signal there only based on topography? 
 84 
AUTHORS RESPONSE: There are sparse pixels with soil moisture data across specific areas of the 
tropical rain forest such as the Amazon or Congo (Figure R2_1a) that are useful for modeling and 
training soil moisture predictions using our approach (Figure R2_1b). We highlight that our approach is 87 
a machine learning algorithm that finds relationships from the provided multivariate space to predict 
patterns (i.e., spatial gaps). Furthermore, in the revised version we include uncertainty estimates so 
model outputs could be interpreted based on their spatial uncertainty values. 90 

In the revised version we compare the accuracy of including new prediction factors to account 
for ecological and climate variability (e.g., presence or absence of bioclimatic features).  Soil type 
information (e.g., harmonized world soil database) was also included to account for the capacity of soil 93 
to retain water across these areas with low availability of soil moisture data in the ESA-CCI soil 
moisture product. Our models were replicated multiple times using different combinations for training 
and validating models and now we can report a surrogate of model based uncertainty (accounting for 96 
the variance of models to multiple data variations) (Figure R2_1c).  
 
 99 
REVIEWER COMMENT: I would suggest to perform a more detailed validation in these areas. I 
strongly suggest to perform a comparison with modelled datasets (e.g., ERA5 soil moisture) to have an 
assessment of the performance over dense vegetated areas. A similar comment can be done for high 102 
latitude areas in which frozen soils and snow completely mask the soil moisture signal. Please perform 
a detailed validation over these areas, too. 
 105 
AUTHORS RESPONSE: We have improved our validation exercise across these areas (e.g., tropical 
forests or high latitude areas) searching for available soil moisture data across the published literature. 
We find a few sites with available data in a tropical rain forest of southeast Mexico (Vargas et al., 108 
2012) and across tropical forests of Brazil (Saleska, et al., 2013) for a total of 9 new sites across 
tropical areas (in addition to the original sites available in the ISMN).  We found good agreement 



between our predictions and the ESA-CCI available pixels (only those recognized as pixels of high 111 
quality by the ESA-CCI), with field soil moisture estimates (in all cases the correlation between 
observed and predicted r=>0.8).  In addition, using in situ annual precipitation (Bond-Lamberty and 
Thomson, 2018), we report higher correlation between our soil moisture predictions and in-situ 114 
precipitation records, compared with the original ESA-CCI (e.g., from r=0.31 to r=0.38 in the tropics 
and r=0.40 to r=0.51 in temperate areas). We believe that this is good alternative comparison for 
validating and interpreting soil moisture predictions as previous studies have described the coupling 117 
between soil moisture and precipitation across multiples scales of available soil moisture and 
precipitation estimates (Koster, et al., 2004, McColl et al., 2017).  
 120 
 
REVIEWER COMMENT: 3) MAJOR: The trend analysis is very interesting. However, as above, we 
need more details on how trends are computed. For instance, in situ stations are available only 123 
at some points over the Earth, are the same locations used with the satellite-derived 
datasets? If not, the comparison is wrong.  
 126 
AUTHORS RESPONSE: We improved the description of the methods in the revised version of our 
manuscript. We clarify that the comparison was done at the annual scale (i.e., annual means) using only 
pixels where there was a spatial match with the sites available in the ISMN. 129 
 
 
REVIEWER COMMENT: Similarly, in situ stations are not available every year, and for the full year. 132 
How are the data aggregated in time and space? These details are needed. I expect the results are 
strongly impacted to these choices. 
 135 
AUTHORS RESPONSE: We aggregated all available records of the ESA-CCI in an annual basis and 
the resulting yearly means were used to train a model for each year (Table 1 of submitted paper shows 
the number of pixels for each year). We recognize that there is limited soil moisture field information 138 
for validating models and satellite soil moisture estimates across large areas of the world. We used all 
information within each ISMN station aggregated in an annual basis (> 8000 tables containing several 
gigabytes of soil moisture information) and each data/year was used to validate the soil moisture 141 
predictions also in a yearly basis. We argue that the effect of missing data across in situ measurements 
is diluted when aggregating all available data at the global scale (i.e., calculating a global mean). We 
clarify that the comparison was done at the annual scale (i.e., annual means) using only pixels where 144 
there was a spatial match with the sites available in the ISMN. 
 
 147 
REVIEWER COMMENT: 4) MODERATE: The machine learning downscaling approach provides soil 
moisture data with a resolution higher than the original ESA CCI product. However, I am always 
doubtful on these downscaling approaches as instead of resolution it should be higher 150 
spatial sampling. The higher spatial resolution should be tested, but I am aware it is 
very hard to do (I have this comment for all downscaling studies).  
 153 
AUTHORS RESPONSE: We recognize that there is a compromise between where and when to sample 
across scales. We also recognize that all global studies are limited with the available information of 
global networks, and local studies (across multiple ecosystems and regions of the world) are needed to 156 
better test satellite soil moisture downscaling approaches. We highlight that our main focus is to 
provide a downscaled soil moisture product that improves the spatial representation of the ESA-CCI 
and that is independent of climate- or vegetation-related variables (to avoid potential spurious 159 



correlations in further analyzes). That said, the the ESA-CCI satellite soil moisture product showed the 
lower slightly lower accuracy against field data in the ISMN; thus, supporting the applicability of this 
approach to downscale satellite-derived soil moisture.  In addition, using in situ annual precipitation 162 
(Bond-Lamberty and Thomson, 2018), we report higher correlation between our soil moisture 
predictions and in-situ precipitation records, compared with the original ESA-CCI (e.g., from r=0.31 to 
r=0.38 in the tropics and r=0.40 to r=0.51 in temperate areas). We believe that this is good alternative 165 
comparison for validating and interpreting soil moisture predictions as previous studies have described 
the coupling between soil moisture and precipitation across multiples scales of available soil moisture 
and precipitation estimates (Koster, et al., 2004, McColl et al., 2017).  168 
 
 
REVIEWER COMMENT: The authors should demonstrate that the downscaled product is able to 171 
reproduce features at higher resolutions with respect to the parent ESA CCI product. It is not done in 
the paper, that’s why I believe higher spatial sampling, and not spatial resolution, is more appropriate. 
 174 
AUTHORS RESPONSE: We found a larger range of soil moisture predicted values compared with the 
original ESA-CCI soil moisture product. We found a temporal trend at the places of field stations that 
is more similar between the field data and our predictions compared with the ESA-CCI soil moisture 177 
product. Please note that the main purpose of the model is to reproduce the signal of satellite soil 
moisture using as reference the relationship that it maintains with topographic data. This is a regression 
problem were the satellite soil moisture measurements (for a specific time across an area, a pixel under 180 
a approximately the same vegetation type or general climate condition) are statistically related to 
multiple quantitative topography surrogates.  

We believe that a spatial resampling (e.g., Figure R2_2a) is just a change of spatial resolution 183 
by using simple algorithmic approaches across the orthogonal relationship of the variable itself with the 
latitude and longitude plane. In contrast, our soil moisture predictions (e.g., Figure R2_2b) are 
replicated and there is a learning process on each iteration in order to maximize the selection of optimal 186 
parameters and maximizing the prediction error given a specific spatial resolution defined by the 
topographic prediction factors. We understand that this represents a conceptual and semantic debate 
and we believe that we have improved the description of this empirical modeling approach applied to 189 
soil moisture in the new version of our manuscript. 
 
 192 
 
 



 195 
 
 
Figure R2_2 Comparison between simple spatial resampling (bilinear) applied to the ESA-CCI product 198 
from 27 to 5 km grids (a) and a modeling output using our proposed framework using 5km grids across 
France (b). We present this example to highlight differences between resampling and prediction using 
our framework and also the applicability and flexibility across scales. See also Guevara and Vargas 201 
2019. 
 
 204 
REVIEWER COMMENT: 5) MODERATE: Several performance scores have been used in the paper. 
However, I don’t think it is necessary to use all of them. The authors should discuss what information 
each performance score is providing for the assessment of the dataset, not simply 207 
to list many numbers. Indeed, Tables 2 and 3 are hard to read and not informative. 
Please summarize only the more relevant scores in a figure. 
 210 
AUTHORS RESPONSE: We summarized the description in the accuracy numbers using a quantile 
plot. We believe that his new figure (Figure R2_3) is useful to visualize and compare differences and 
similarities between field soil moisture, original ESA-CCI soil moisture and modelled soil moisture. 213 
We highlight that in the revised version we include a comparison of the predictive capacity using only 
terrain parameters and another model including terrain parameters, bioclimatic features and soil type 
classes. These new results support our conclusion that a parsimonious model only using terrain 216 
parameters is a good alternative approach for downscaling satellite-derived soil moisture. 
 
 219 



 

 
Figure R2_3 Evaluation of soil moisture predictions based on quantiles. The relationship between the 222 
ESA-CCI and the ISMN in an annual basis (a). We show the relationship between the ISMN field soil 
moisture and our predictions based on terrain parameters (b) in relation with a model using bioclimatic 
and soil type classes as prediction factors (c). Blue line is a perfect model. Blue histogram is from 225 
training data and gray histogram are from model predictions.  
 
 228 
 
REVIEWER COMMENT: 6) MAJOR: The range of values of ESA CCI soil moisture products has 
little value, as the satellite products are rescaled to match the range of variability of modelled soil 231 
moisture from GLDAS. Therefore, the range of values is that obtained from GLDAS. For 
the analysis shown in Figure 4, and similarly for the trend analysis, the soil moisture 
datasets should be rescaled between the minimum and maximum of each time series 234 
and expressed as relative soil moisture (between 0 and 1). Then the data should be 
aggregated and the range of values and the trends can be assessed. 
 237 
AUTHORS RESPONSE: We agree with the reviewer and the pixel-wise soil moisture trends detected 
at the global scale used the downscaled soil moisture predictions are now provided in percentage of 
change to avoid issues associated with the dimensions of input data. We also report soil moisture trends 240 
in percentage of change comparing gridded and field based soil moisture estimates at the places of field 
stations in the ISMN.  
 243 
 
7) MODERATE: I believe the discussion section must be rewritten. General results 
are mostly discussed, whereas it should be closely related to the results shown in the 246 
paper. I believe it should be shorter and better focused. 
 
AUTHORS RESPONSE: We have improved the narrative of our discussion section and main findings 249 
in the revised version of our manuscript.  
 
 252 
REVIEWER COMMENT: SPECIFIC COMMENT (L: line or lines) 
L307: Why the “angle between satellite sensors and the earth surface” is useful for 
determining soil moisture? It has no sense and I believe it is wrong. 255 
 



 
AUTHORS RESPONSE: We meant to say that topography affect the distance between the satellite and 258 
the earth surface; therefore, it could be correlated with the satellite soil moisture signal (which is a 
hypothesis supported with the data analyzed in this study).  
 261 
 
REVIEWER COMMENT: RECOMMENDATION 
Based on the above comments, I suggest a major revision before the possible publication on Earth  264 
System Science Data. 
 
AUTHORS RESPONSE: We appreciate the comments of the reviewer as they have been very useful to 267 
improve the overall revised manuscript. 
 
 270 
 
 
 273 
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