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REVIEWER COMMENT: This paper presents a 15 km annual-average soil moisture product that is 
generated by machine-learning the relation between 0.25 degree ESA CCI soil moisture estimates and 6 
topographic indices derived from a higher-resolution DEM. 
I have several major concerns regarding the hypothesis/assumptions on which the 
methodology is based as well as the employed validation methodology, and consequently also the 9 
conclusions drawn from the presented analysis: 
 
AUTHORS RESPONSE: We appreciate the reviewer comments as they provide valuable feedback to 12 
increase the impact of our work. We have revised our work and provided new analyzes to clarify our 
framework and improve the validation methodology. We have updated our work with new datasets 
(e.g., eco-climatic and soil type classes) and updated our results with the recently released version of 15 
the ESA-CCI soil moisture product (4.5, up to 2018). These results have been uploaded as an updated 
version of our data repository. We clarify that the original data-product has not substantially changed, 
but we have added new model outputs and further analyzes to address the concerns from the reviewers. 18 
 To increase reproducibility and transparency of our prediction framework we compiled a set of 
R functions (link available with the new version of the manuscript). This compilation is useful to 
predict soil moisture based on remote sensing and machine learning, from the global to country-21 
specific scales. Furthermore, we now include a bootstrapping approach given a user defined sample 
size (if not specified, it will use 1/3 of available data/pixels for each year) to analyze the variance of 
model predictions as a function of variations in training data. Thus, in the revised version of the 24 
manuscript we report a spatial explicit metric of model-based uncertainty for the fusion of soil moisture 
satellite estimates and topographic constraints. We believe that these advances (including new model 
estimates and uncertainty estimates) constitute a substantial improvement from the previous version of 27 
the manuscript. 
 
 30 
REVIEWER COMMENT: The methodology is based on the hypothesis that topography is a main 
driving factor for soil moisture patterns. However, the reference used to support this claim (Mason et 
al., 2016) presents only a very local analysis of differences between soil moisture values at low-slope 33 
and high-slope areas over grasslands only, and only in a small region over the UK. The observed 
relation is relatively low (Rˆ2 = 0.21) and the authors conclude "[...] a topographic signal can be seen in 
high resolution remotely sensed surface soil moisture data [...]. Unfortunately this signal is relatively 36 
weak." Moreover, Mason et al. (2016) uses 1 km SAR data for which topographic corrections are 
applied in the pre-processing, which likely induces a sensitivity of the measurements to topography 
parameters. These topography corrections are usually not applied to coarse resolution measurements 39 
such as the sensors used within the ESA CCI SM, because topographic effects average out at these 
scales. 
 42 
AUTHORS RESPONSE: We have improved the introduction with more references and examples. We 
also clarified the main hypothesis driving this effort (i.e., that topographic terrain parameters are good 
predictors for downscaling satellite-derived soil moisture). 45 
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We argue that satellite-derived soil moisture data is retrieved by a direct measurement of the 
dielectric constant of soils that is representing specific vegetation types and climate conditions (within 
each pixel) that are intrinsically influenced by topographic patterns. We highlight that there is a high 48 
correlation (Table 1) between topographic patterns and the ESA-CCI soil moisture product, which 
provides evidence that topography has information that could be used for downscaling satellite soil 
moisture. Our machine learning approach is able to reproduce non-linearities between satellite-derived 51 
soil moisture and topographic variables, and generate predictions of soil moisture across higher 
resolution spatial grids. 

In the new version we compared the prediction capacity of multiple prediction factors of soil 54 
moisture (topographic terrain parameters, bioclimatic features and soil types) to identify the value of 
terrain parameters predicting soil moisture. We highlight that our main purpose was to generate a soil 
moisture downscaled product that is independent of climate or vegetation variables and that provides 57 
cross validated hypothesis of a more local (nearly 50% improvement) spatial resolution compared with 
the original satellite soil moisture signal. In the updated version of our soil moisture datasets, we 
explicitly account for the spatial relationships of soil moisture available data and the geographical 60 
space following a digital soil mapping spatial prediction framework (McBratney et al., 2003, Hengl et 
al., 2018, Møller et al., 2019) to increase the reliability of our predictions. Finally, we clarify that the 
use of a soil moisture product where vegetation or climate data are not used as predictors could be 63 
relevant for decreasing potential spurious correlations in the further use of our soil moisture data-
product.  
 66 
 
 REVIEWER COMMENT: The presented paper itself also does not analyze the predictive power of the 
used topographic indices for soil moisture (e.g., the godness-of-fit for the obtained regression, variable 69 
importance, etc.). Hence, there is no evidence supporting the reliability of topographic indices as 
predictor for soil moisture, especially on a global scale. 
 72 
AUTHORS RESPONSE: We highlight that we have provided information about the predictive power 
of our models. In Table 1 we reported indicators of accuracy and predictive power including the 
correlation between observed and predicted, the root mean squared error, the number of pixels with soil 75 
moisture data available for each year and the best parameters (kernel and k) for each kknn model/year. 
In the revised version, the predictive power of our modeling approach increased thanks to the use of a 
more extensive set of prediction factors. We have also bootstrapped our statistical models and now they 78 
provide uncertainty estimates associated with the number of available data for modeling soil moisture 
patterns.   

In the revised version we include a simple variable importance analysis (by permutation) to 81 
support/generate new hypothesis about the spatial variability of soil moisture, in relation to land surface 
characteristics represented by multiple sources of environmental information. In addition, we provide a 
bootstrapping approach to estimate uncertainty associated with the number of available data and 84 
predictors for modeling soil moisture patterns.   
 
 87 
REVIEWER COMMENT: Even more doubtable is the assumption that the developed regression 
function can be used to extrapolate soil moisture to regions not covered by the ESA CCI SM, which are 
mainly the arctic ice sheet and tropical forests. Tropical rainforests, for example, have a quite unique 90 
moisture regime that is expected to be largely rainfall dependent. It is very questionable to use a soil 
moisture - topography relation that is trained over non-tropical regions to predict soil 
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moisture there. Moreover, no in situ measurements are available in these regions to 93 
verify the validity of these predictions. 
 
AUTHORS RESPONSE: We agree that soil moisture estimates across the arctic ice sheet are not 96 
informative; therefore, these areas have been removed from our analysis and the model outputs in the 
revised version. 

We recognize that in-situ global soil moisture field datasets are limited for validating our soil 99 
moisture predictions across tropical areas, but we have done efforts to bring more available in-situ 
measurements in this revised version. That said, we demonstrate the reliability of our predictions by 
comparing the original satellite and our predictions against in-situ records of rainfall patterns across the 102 
tropical areas of the world (171 sites across tropical areas of the world for the years 2008 to 2018). We 
now report and improvement with our predictions and in-situ precipitation records across multiple 
biomes of the world (e.g., r=031 to r=0.38 across tropical biomes and r=40 to r=51 across temperate 105 
biomes) using information from previous studies.   
 We argue that our approach can be used for predicting soil moisture (and associated 
uncertainty) across tropical forests. We highlight that our framework is an empirical approach using 108 
machine learning algorithms that are able to reproduce patterns extracted from a multivariate space. We 
highlight that there are pixels with satellite soil moisture values across the tropical rain forests of the 
world, including the Amazon and Congo regions that could be used for prediction within our 111 
framework (Figure R1_1).  

In the revised version we compare a model using terrain parameters as prediction factors of soil 
moisture and a model including information on bioclimatic features (FAO, 2010, Fick and Hijmans, 114 
2017) and soil type variability (Wieder et al., 2014). We use geo-spatial information of available 
data/pixels in order to explicitly account for soil moisture spatial relationships between soil moisture 
available values for training the models. Finally, we report uncertainty estimates to provide spatial 117 
information about model performance and to identify regions with high model uncertainty. We belive 
that this new addition (reporting uncertainty) is a much needed effort in local-to-global predictions. 
 120 
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Figure R1_1Soil moisture across Tropical Rain Forests of the world based on the data available in the 
ESA-CCI soil moisture product (4.5) for the year 2018 (a). We show the soil moisture prediction (b), 123 
the soil moisture prediction variance using only the data available for Tropical Rain Forests (c). Note 
that the correlation between observed and predicted decreased to 0.62, most likely due to the limited 
information for modeling these ecosystems, however the root mean squared error is comparable with a 126 
model using all global data (e.g., <0.04). 
 
In the revised version we compare a model using terrain parameters as prediction factors of soil 129 
moisture and a model including information on bioclimatic features (FAO, 2010, Fick and Hijmans, 
2017) and soil type variability (Wieder et al., 2014). We use in our modeling approach geo-spatial 
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information of available data/pixels in order to explicitly account for soil moisture spatial relationships 132 
between soil moisture available values for training the models.  
 
 135 
REVIEWER COMMENT: Also, the presented validation does not support the conclusions. First, the 
statement (L234) "In all cases, the evaluation statistics are equal or better for the downscaled 
soil moisture predictions based on digital terrain analysis (Table 3) than the original 138 
ESA-CCI soil moisture product (Table 2)" is wrong. In fact, results are quite balanced, 
sometimes the downscaled product is "better", sometimes the original is "better", but 
most likely results are not actually distinguishable within reasonable confidence limits (which should 141 
be estimated). The authors do indeed acknowledge (L252): "The downscaled predictions based on 
digital terrain analysis are not significantly different compared with the ESA-CCI soil moisture product 
[...]", but the subsequent conclusions are not supported. Specifically, "[...] but they provide (1) gap free 144 
soil moisture-related information ": while they are provided, there is no evidence that they are of any 
reasonable accuracy (for the earlier discussed regions), and "(2) higher resolution (from 27 to 
15 km grids)": This is a mix-up of resolution and sampling. 147 
 
AUTHORS RESPONSE: We highlight that this is an empirical model (i.e., a statistical learning 
process driven by a machine learning algorithm) and we used a cross validation to show the correlation 150 
of the change of resolution between the original satellite estimate and the prediction; thus it is not only 
a spatial re-sampling exercise. It is an empirical model that relies on satellite soil moisture data and its 
spatial relationships with topographic data. Then, independent in-situ data is used to validate the model 153 
output. 

The reviewer is correct to point that the validation against filed information are balanced 
between the CCI-ESA product and our downscaled product. There are no significant differences in the 156 
relationship between the downscaled estimate and the original product; therefore, this demonstrates that 
the downscaled product is preserving the statistical properties of the ESA-CCI soil moisture product. 
This is expected as the information that was used for building predictions of soil moisture were the 159 
pixel/values of the ESA-CCI soil moisture product without adding any in-situ information (again, the 
in-situ data was only used for independent validation). In the revised version we have improved the 
narrative and the explanation on this comparison for clarity. 162 

Our results comparing the predictive capacity of terrain parameters on soil moisture (in relation 
to bioclimatic and soil type features), suggest that terrain parameters are useful to fill-gaps in the ESA-
CCI and maintain its accuracy against field observations. We now include a full model (including 165 
bioclimatic and soil type information) that suggests a slightly improvement (but not significant) in all 
model evaluation metrics (Figure R1_2). However, we highlight that our main purpose was to generate 
a parsimonious product independent of climate, biological and other sources of information with the 168 
main motivation of minimizing spurious correlations in the further use of soil moisture data (in Earth 
models and other ecological or geo-scientific analysis). Therefore, we conclude that a parsimonious 
model based only on terrain parameters performs similarly to a more complex model for predicting soil 171 
moisture at 15Km resolution. 
 
 174 
REVIEWER COMMENT: Improved resolution would imply that there is different / more information 
in the downscaled product, but the indistinguishability of performance metrics (see above) suggests that 
this is not the case.  177 
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AUTHORS RESPONSE: We argue that the ‘indistinguishability of performance metrics’ is a proof of 
the reliability of our prediction framework. Please note that we are using a data driven model were the 180 
selection of best parameters (e.g., distances, kernels, neighbors, predictors) is made by cross validation. 
Cross validation allows to generate unbiased residuals and identify the linear relationship between 
observed and predicted data. Therefore, it is expected that our predictions maintain the general pattern 183 
(i.e., the similar mean and standard deviation) of the ESA-CCI product (Figure R1_2). No significant 
differences were observed between a model based on terrain parameters or the full model (using 
bioclimatic and soil type classes), but both of these models were better correlated against field data. 186 
 

 
 189 
Figure R1_2 Evaluation of soil moisture predictions based on quantiles. The relationship between the 
ESA-CCI and the ISMN in an annual basis (a). We show the relationship between the ISMN field soil 
moisture and our predictions based on terrain parameters (b) in relation with a model using bioclimatic 192 
and soil type classes as prediction factors (c). Blue line is a perfect model. Blue histogram is from 
training data and gray histogram are from model predictions.  
 195 
 

The soil moisture variability estimated within each 15km pixel is meant to maintain the 
numerical integrity of the ESA-CCI product at the global scale. We highlight that the gain of 198 
information between the original satellite and the downscaled predictions when visualizing soil 
moisture predictions across smaller areas (i.e., countries). We believe that the value of our downscaled 
product will be better recognized when the user sees the detail gained within a smaller region of the 201 
world (i.e., a country) (Figure R1_3). 
 
 204 
 
 
 207 
 
 
 210 
 
 
 213 
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 231 
 
 
Figure R1_3 Example of soil moisture predictions based on the extent of countries with different sizes 234 
(e.g., Canada, Australia and Mexico) to show that there is a consistent increase in the range of soil 
moisture values in the predicted soil moisture maps of 15km grids compared with the original satellite 
estimate (~27km grids). The first column of maps contains the predictions, the second column the 237 
prediction variances and the third column the training data for each country specific model. The last 
column shows boxplots of the three maps for each country (note that in all cases our predictions reveal 
a larger range of values compared with the original estimates).  240 

 
 
 243 
REVIEWER COMMENT: Also the comparison in Figure 6 (b and c) shows that the original and the 
downscaled products exhibit the exact same behaviour with a slightly lower overall variability in the 
original product. It is, however, not clear whether this different overall magnitude reflects an actual 246 
improvement, because soil moisture varaibility and trends are actually supposed to be different at a 
point scale and at a satellite scale (see e.g. Famiglietti et al. 2008). 
 249 
AUTHORS RESPONSE: We would like to highlight that one clear improvement of our soil moisture 
predictions is that the soil moisture trend reported by our predictions is closer to the trend detected 
from soil moisture field stations, when compared with the trend from the ESA-CCI (Figure 6 of 252 
submitted manuscript version). We clarify that this comparison is made only with information at the 
places of field stations and associated pixels in the ESA-CCI and our downscaled product.  

Although these trends are different, they are all negative and significant (as the confidence 255 
intervals are not overlapping zero values) in the three datasets. We found that the ISMN is shows the 
strongest negative trend, followed by the trend of our downscaled predictions and then the ESA-CCI 
soil moisture product.  258 

In terms of spatial variability, the scale dependent variance of soil moisture analysis by 
Famiglietti (et al. 2008) is focused on shorter spatial scales, but we argue that there is no clear evidence 
of significant differences in soil moisture at the global scale when comparing the ESA-CCI and our 261 
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downscaled product. Famiglietti (et al. 2008) provide evidence of scale dependent variances of soil 
moisture across shorter distances and relatively smaller spatial extents compared with our global effort. 
Recent efforts also have described scale invariant properties of soil moisture across scales (Mascaro 264 
and Vivoni, 2019). Thus, multiscale predictions of soil moisture using multiple modeling approaches 
could be useful to strive to overcome the main limitations (i.e., spatial gaps) of current soil moisture 
spatial information and solve the multiscale variability of soil moisture patterns from the plot to the 267 
country and global scales. This important discussion is now included in a revised version of the 
manuscript. 

 270 
 

REVIEWER COMMENT: Also, the soil moisture mean is supposed to be different at different scales, 
hence the negative bias between point and satellite measurements cannot be reliably interpreted as 273 
error, and a reduction of this bias may as well be a going in the wrong direction with respect to the true 
areal-average mean. In other words, even though the generated product is sampled on a higher-
resolution grid, it can not be concluded that this product contains higher-resolution information. Given 276 
the low amount of evidence that topography (alone) is a go od predictor for soil moisture, observed 
differences may well be a result of the smoothing-nature of the KKNN approach, and any spatial-
window resampling approach may lead to a seemingly "higher-resolution" (which is truly only a 279 
higher-sampling) product with the same (or even better) performance, but this is not tested. 
 
AUTHORS RESPONSE: This is an important comment and we argue that is a science frontier that still 282 
needs active research. In the revised version we discuss the challenge of representing the scale-variance 
of soil moisture. We highlight that our analyzes between datasets have been done at the global scale 
and therefore any potential regional or country scale-variance are not included, but could be an 285 
important use of the dataset as a follow-up study. 

To address the reviewer’s comments we have done a reanalysis of our approach using the 
recently released ESA-CCI soil moisture version 4.5 and we can confirm a large correlation between 288 
the ESA-CCI and our soil moisture predictions (>0.92) at the global scale. Continental to global scales 
may be consistent in the overall range of values and spatial patterns, however smaller regions may 
highlight potential larger differences (Figure R1_3).  291 

 
 
REVIEWER COMMENT: Therefore, I recommend to reject this publication. However, I do believe 294 
that topography may well be an imprtant complementary predictor for soil moisture at higher-
resolution when combined with other dominant factors. I therefore encourage the authors to pursue this 
approach addressing the concerns outlined above.  297 
 
AUTHORS RESPONSE: We believe that our revised version addresses most of the concerns of this 
reviewer. We have included new model outputs (i.e., full model including soil and bioclimatic factors), 300 
developed uncertainty estimates, and revised the analyses to improve clarity. We now clarify several 
sections of the main text, use the recently released version 4.5 of the ESA-CCI, and demonstrate the 
applicability of our methods across smaller areas and spatial extents. Please note that our previous work 303 
has demonstrated the effectiveness of our approach at the continental scale of CONUS using 1km grids 
(Guevara and Vargas, 2019).  
 306 
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