1 Reviewer #1

2 Many thanks for your very helpful comments. We hope that we have made revisions in a satisfactory

3 way. Please note that we did consider updating the HadISDH.marine dataset to include 2019.

4 However, this would have involved substantial reprocessing of all of the figures in addition to

5 bringing in ERA5 for comparison and uncertainty assessment instead of ERA-Interim because ERA-

6 Interim does not continue to the end of 2019. This is not something that we felt we could achieve

7 within the time frame. We envisage future papers where we compare HadISDH.marine with ERA5 in

8 a comprehensive manner that would not be possible here.

9 Major issues:

10 1) The paper isn't sufficiently clear about whether data that is flagged for quality control issues like 11 the buddy check or supersaturation are actually included in the final results or removed. On pages

12 12-13 some QC issues lead to "failures removed" but many issues lead to "failures flagged" rather

13 than removal. It is later implied that the flagged values have been cleaned from the data (e.g. lines

14 718 and lines 966-968) but this doesn't seem to be explicitly written down as part of the process

15 earlier in the paper and it is not clear that all flagged data is removed (e.g. the whole number flag).

16 Please add a paragraph relatively early in the paper to explain in one place whether the flags and

17 which ones are used to remove data (and at which iteration). Also some issues on page 13 are listed

18 as "base qc" but the term "base qc" is never referred to again. In particular, state whether "raw

19 (noQC)" includes the "base qc".

20 We agree that this was difficult to follow in the text. We have rewritten this section and added a new

table (see below) that lists all of the quality control tests, whether they result in flags or removals and

22 in which iterations. We have also added a final percentage data removal. We hope that this is now

23 easier to follow.

Test	Description	1 st and 2 nd Iteration	3 rd Iteration and Bias Adjusted	% of Observations Removed
day / night	values likely to be affected by the solar heating of a ship where the sun was above the horizon an hour before the observation (based on the month, day, hour, latitude and longitude; Kent et al. (2013)) are flagged as 'day'	flagged	flagged	NA
climatology	T and T_d must be within a specified threshold of the nearest 1° by 1° pentad climatology	removed	removed	$T = 2.39$ and $T_d = 5.14$
supersaturation	T_d must not be greater than T (only T_d removed)	removed	removed	0.54
track	The distance and direction travelled by the ship must be plausible and consistent with the time between observations, normal ship speeds and observation locations before and after.	removed	removed	0.86
repeated value	A <i>T</i> or T_d value must not appear in more than 70 % of a ship track where there are at least 20 observations.	removed	removed	$T = 0.04$ and $T_d = 0.06$
repeated saturation	Saturation ($T_d = T$) must not persist for more than 48 hours within a ship track where there are at least 4 observations (only T_d removed).	removed	removed	0.54

24 Table 1. Description of quality control tests.

buddy	T and T_d must be within a specified threshold of the average of nearest neighbours in space and time.	not applied	removed	$T = 7.16$ and $T_d = 9.47$
whole number	A <i>T</i> or T_d value must not appear as a whole number in more than 50 % of a ship track where there are at least 20 observations.	flagged	flagged	$T = 11.73$ and $T_d = 8.20$

2) A central feature of the dataset is that it involves three iterations. The iterations are mentioned
throughout the paper but do not seem to be properly introduced (unless I've missed it). Please add a
paragraph early on in the paper where you introduce the iterations, how they differ from each

29 other, and why you use three iterations (rather than say 2 or 4).

30 This was also noted by the other reviewer. We have now swapped Figures 5 and 6 so that the flow

31 chart can be introduced and discussed earlier – at the beginning of Section 3. We have also explained

32 that we use three iterations to allow us to remove any artefacts from the ERA-Interim climatology by

33 incrementally improving our own climatologies. Each iteration is computationally expensive and the

34 *3rd iteration made only small changes compared to the 2nd iteration so we felt that three was*

35 sufficient. The new text is as below:

36 "The construction process, including the three iterations and all outputs, is visualised in Figure 5. 37 Firstly, humidity variables are calculated. For the 1st iteration the hourly temperature and dew point 38 temperature data are quality controlled (section 3.1) using an ERA-Interim based climatology. The 39 data are then gridded, merged and a 1° by 1° pentad climatology produced for each variable (section 40 *3.5). These* 1st iteration climatologies are then used to quality control the original hourly data again: 41 these data are then gridded, merged and a 2nd iteration climatology produced. The 2nd iteration 42 climatology is then used to quality control the original hourly data for a third and final time. It is 43 during this 3rd iteration that bias adjustments are applied and uncertainties estimated. The bias 44 adjusted data and uncertainties are then gridded, merged and climatologies created. For future 45 annual updates the 2nd iteration climatologies will be used to apply quality control. Having three 46 iterations enables incremental improvements to the climatology used to quality control the data and 47 therefore the skill of the quality control tests. It means that we can ensure that no artefacts remain 48 from using ERA-Interim to quality control the data initially. Arguably more iterations could be done 49 but each one is computationally expensive and the difference between the 2^{nd} and 3^{rd} iteration is 50 already very small."

51

3) The paper seems to conclude that whole number rounding is not causing the pre 1982 positive bias and thus the negative trend in relative humidity, but I don't find this very convincing given that there is a large change in frequency of whole numbers in Td around 1980 (Fig S1b). Please address this issue in two ways: i) Calculate the trend in relative humidity for 1982 onwards to see if it is significant and include it in the paper. ii) Remove the whole-number flagged data and check if the trend in relative humidity remains negative.

58 We have done as you ask and agree that this was missing from the paper. The RH trends 1982 to

59 2018 are now shown in Figure 9 along with the full period trends. Although still negative these trends

are now weaker (closer to 0) and generally not significant. Interestingly, ERA-Interim trends are only

61 very slightly weaker and significant. We have added discussion on this in the text with some

62 *highlighted below:*

63 Section 4 64 "Despite careful quality control and bias-adjustment the previously noted moist humidity bias pre-65 1982 is still apparent in the bias-adjusted (BA) data. The linear trend in relative humidity from 1982 to 2018 is -0.03 \pm 0.13 %rh decade ⁻¹, and therefore not significantly decreasing which is more 66 67 consistent with expectation." 68 69 "Relative humidity is very sensitive to any differences in the data but even these differences are fairly 70 small and do not change the overall conclusion of decreasing full-period trends and no significant 71 trend over the 1982-2018 period." 72 "To explore whether the presence of whole numbers in the record has contributed to the pre-1982 73 bias we have processed a bias adjusted version with all whole number flagged data (Table 1) 74 removed (BA_no_whole) which is shown against the noQC and BA versions in Fig. 9d. The resulting 75 global average trend is largest in the BA no whole version, even over the 1982-2018 period, and the 76 pre-1982 bias still clear. We conclude that the pre-1982 moist bias remains apparent in 77 HadISDH.marine, and as yet not well understood, and quality control of the pre-1982 data is an area 78 for more research in future versions." 79 80 Section 6 81 "The pre-1982 data have previously been noted as having a moist bias and our processing steps do 82 not appear to have removed this feature. The trend excluding this earlier period (1982-2019) is no longer a significant decreasing trend and therefore more consistent with expectation. Removal of 83 whole number flagged data appeared to exacerbate the pre-1982 bias and make the negative trends 84 85 larger." 86 87 4) line 768-769: You don't mention correcting for serial correlation when calculating the uncertainty 88 of the linear trends. Correcting for serial correlation could substantially increase the size of the 90th 89 percentile confidence interval. Therefore, you should correct this estimate for serial correlation (or 90 mention it if you are already doing so). 91 We have changed all trend fitting to OLS with AR(1) correction applied when fitting confidence 92 intervals, following the Santer et al., (2008) paper which is now referenced. This has increased the 93 confidence intervals but not changed the main conclusions. 94 5) Equation 3: Does the sqrt(9) result from the Gaussian distribution rather than assuming a uniform

distribution (which would give sqrt(3))? Note 1 on page 14 of the cited BIPM document seems to
suggest sqrt(9) would be correct for a 3 sigma range rather than a 1 sigma range as used here, so this
could be an error.

98 Many thanks for pointing this out. We realise that we had assumed our estimated ranges covered 99 99.73% of possible values hence the sqrt(9) – using the methodology for a normal distribution. The 100 range is based on 1sigma in the estimated height and so in fact covers 68.4% of possibilities so we 101 realise that we should be using the 'two out of three' rule where u = (xHmax – xHmin)/2. This makes 102 the height uncertainty larger. We have now redone the height uncertainty gridding, combined 103 uncertainties and regional average uncertainties (Figure 12). This has made the height uncertainties 104 larger and therefore expanded the total observation uncertainty and full uncertainty a little.

105 Minor issues:

- 106 line 49: "In these regions": Does this mean the region outside the northern mid latitudes or does it 107 mean the northern mid latitudes?
- 108 We are referring to the northern mid-latitudes and so have changed this to 'In this region'.
- 109 lines 210-211: NOCS is not always lower in specific humidity over 1973-1981 correct?
- 110 You are right that NOCSv2.0 is not always lower so we have removed this sentence.
- 111 line 225: It would be clearer to say "conversions between different units (e.g....) and between
- different variables" (currently it reads as a conversion between a unit and a variable which does notmake sense)
- 114 We agree that this was not very clear and have changed as recommended.
- line 270: Please clarify in the paper whether the absence of metadata from 2015 onwards is atemporary issue or something that is expected to persist.
- 117 We have added the following, based on the ICOADS website:
- "It is likely that digitised metadata updates will be available periodically, depending on resource
 availability."
- line 281: "pentad gridbox" is used without pentad being introduced. Please move the explanation forpentad from line 290 to here (i.e. that you mean pentad in time).
- 122 Done
- Table S1: Introduce what Pmst is (not sure what mst stands for, Ps is used in the text). Also it is said in the table that e/es can be replaced by q/qs but these are clearly not equivalent. Clarify if you use e/es or q/qs.
- 126 We have changed this to Ps in Table S1 for consistency. This came about because we are using the
- 127 climatological pentad mean surface pressure (from ERA-Interim nearest gridbox) but we agree that
- the notation is confusing. We use e/es to calculate RH and cannot recall why q/qs was listed in Table
 S1 and so have removed it.
- 130 line 356-357: Add a sentence to say how you determine if the track is 'plausible'
- 131 We have added the following to the new Table 1:
- "The distance and direction travelled by the ship must be plausible and consistent with the time
 between observations, normal ship speeds and observation locations before and after."
- line 481-482: I assume 'f' is being used here as a symbol for a generic function. Please instead
 explain (in words if necessary) what the function is.
- 136 We hope that the following is clearer:
- 137 *"HOHest* μ = 16 m + the linear trend in mean HOP/HOB/HOT height to the date of observation, σ =
- **138** *4.6 m + the linear trend in standard deviation HOP/HOB/HOT height to the date of observation"*

140 141	line 501-502: Is 'f' being used as a generic function? If so, writing 'a function of f(10/L)' doesn't make sense and should be 'a function of 10/L'.
142	The f()s have now been removed as we agree that they do not make sense.
143	line 508-509: Why does using T for SST mean that T is not adjusted?
144 145	When the SST is missing and T is used as a substitute there is no difference between the SST and T so the resulting adjustment to T will be zero.
146 147	lines 516-524: Multiple units are missing for temperatures and lengths in this section of the text (0.2, 50 etc. should all have units)
148	Now added.
149	line 532: 0.001 should have a unit
150	Done
151	line 538: Introduce that 'x' could be 'T, q, etc.'
152	Done
153	line 565: "and uncertainty"->"an uncertainty"
154	Done
155	line 587: Why is Nobs=10 the worst case scenario?
156 157 158	The climatology calculation requires there to be a minimum of 10 years of data present over the 30 year climatology period so Nobs=10 is the lowest number of observations possible. We have added that to the text.
159 160	line 616: Say how the gridding is done. Is it just a simple average of all data inside the grid box for those 3 hours?
161 162	It is just a simple mean. We have changed 'means from' to 'means of' in the text to try and make this clearer.
163 164	line 721-: I don't understand why you are showing results for the 2nd iteration rather than the 3rd iteration.
165 166 167	It is the 2 nd iteration climatologies that are used to create anomalies and quality control the 3 rd iteration data so we use that version to understand the difference between using the observation based climatology instead of ERA-Interim. We have added some text to explain this:
168 169 170 171	"To compare the use of ERA-Interim versus the observation based climatology to calculate anomalies and quality control the data we show difference maps of the 2 nd iteration minus ERA-Interim pentad 1° by 1° grid climatologies and climatological standard deviations in Figs. S9 to S14 for a selection of pentads and variables."
	5

line 772-773: Explain the abbreviations noQC, NBC, BClocal. I can guess the first two. I don't knowwhy BClocal is "local".

We have now changed these in the text and figures to noQC, noBA and BA and hopefully theamended text below makes this easier to understand:

176 "For all variables, there are only small differences in the global average timeseries between the

various processing steps – from the raw data (noQC) to the 3rd iteration quality-controlled (noBA [no
 bias adjustment]) and then the bias-adjusted data (BA)."

line 783: A little more care is needed to discuss and cite expectations from theory and models. The first cited paper Byrne and O'Gorman 2013 indeed does shows results for weak positive changes in marine relative humidity. However, it doesn't seem to give a theory for changes in marine relative humidity; it instead cites for theory the papers by Held and Soden 2010 and Schneider et al 2013 which could be cited here. The cited Byrne and O'Gorman 2018 paper does seem relevant in that it shows that the land changes in temperature and humidity are broadly consistent with simple theory and no changes in marine relative humidity.

186 We agree this was a little weak and in fact we had missed the Byrne and O'Gorman 2016 reference

which shows modelled future changes in ocean relative humidity explicitly. This has now been added.
We have also added the Held and Soden (2006) and Schneider et al., (2013) references. The text

- 189 *around this is now as follows:*
- 190 Section 4.2

"This differs from theoretical expectation where changes in relative humidity over ocean are strongly
 energetically constrained to be small, of the order of 1% K⁻¹ or less, and generally positive (Held and
 Soden, 2006; Schneider et al., 2010). Model-based expectations also suggest small positive changes

- 194 (Byrne and O'Gorman, 2013, 2016, 2018)."
- 195 Section 6

"Theoretical and model-based analysis of changes in relative humidity over ocean under a warming
climate suggest negligible or small positive changes (Held and Soden, 2006; Schneider et al., 2010;
Byrne and O'Gorman, 2013, 2016, 2018)."

line 801-804: BClocal etc. include the quality-control step and the bias adjustment so they should be
 compared to the quality-controlled data but not the raw data when seeking to determine the effect
 of the bias adjustment.

- This is a good point and we now only compare the BA (was BClocal etc) versions to the noBA (was
 NBC) versions.
- line 818-819: I support the authors wise choice to focus on the ship data for the final product.
- 205 Thank you.

line 845: "compares well" Be more specific here about what aspect compares well. For example, thetrends are quite different in magnitude.

209	little vague so have made it more explicit:
210 211	"In terms of linear trend direction, HadISDH.marine compares well with other monitoring estimates from NOCSv2.0 and ERA-Interim and to other reanalyses and older products (Fig. 1)."
212 213 214 215 216	line 868: The decreasing trend in relative humidity over ocean is said to be consistent with the decreasing trend over land. I don't see why this is "consistent" rather than just "similar". The papers cited earlier on models and theory suggest that land relative humidity can decrease even if marine relative humidity stays constant or increases slightly. Also, it would be helpful to give a value for the trend over land to compare with the trend over ocean to see how similar they are in magnitude.
217 218	We agree that this was misleading and have amended this to 'are similar to' and added the land trends in the text.
219 220	"; land linear trends are 0.03 %rh more negative at -0.12 (-027 to -0.03) %rh 10 yr 1 over the same 1973 to 2018 period"
221 222	fig 1: Why does JRA have values before 1980 for land but not marine relative humidity? How is missing data dealt with in this figure?
223	This was an error in plotting and has now been corrected.
224	fig 5: Might be less confusing if you use the same y axis range for both panels
225	Done.
226 227 228	fig 6: The blue path goes through the Quality Control box but then it later is labelled "no QC" which seems to be contradictory. Also "noQC" and "bias adjusted" are labelled for blue and yellow but not red.
229 230 231	We agree that this was confusing and have spotted a couple of errors in this figure which we have now corrected. We have also added text in the figure caption to help explain it. The 'no QC' boxes are now coloured gray to identify them as not being part of the 1 st iteration.
232 233 234	fig 7: Annual mean climatologies are deemed acceptable if 9 months of the year are present. Couldn't this lead to a very large bias if for example November and December were missing given the large seasonal cycle?
235 236 237 238	We agree that this is true. These annual climatologies are produced just for this figure and not made available as part of the HadISDH.marine product. We chose 9 months to balance data coverage over data accuracy. We would expect users to want monthly or seasonal climatologies and compute their own seasonal and annual climatologies if required.
239 240	fig 8: It is probably less confusing to keep the same vertical order for the legend and the trends (currently they seem to be reversed).
241	Agreed, and now changed accordingly.
242	
	7

We had already mentioned that this was in reference to the trend direction but agree that it was a

243 Reveiwer #2

Many thanks for your very helpful comments. We hope that we have made revisions in a satisfactory
way. Please note that we did consider updating the HadISDH.marine dataset to include 2019.
However, this would have involved substantial reprocessing of all of the figures in addition to
bringing in ERA5 for comparison plots and uncertainty estimation instead of ERA-Interim because
ERA-Interim does not continue to the end of 2019. This is not something that we felt we could
achieve within the timeframe. We envisage future papers where we compare HadISDH.marine with

250 ERA5 in a comprehensive manner that would not be possible here.

251 "Specific comments"

252 P1, L13: Please provide definition for "SDH" of "HadISDH".

253 This is a little tricky to do because the name HadISDH was chosen originally for the land dataset

254 many years ago and so is essentially a slightly random legacy. It utilised NOAA NCEI's Integrated

255 Surface Dataset, hence the ISD. The H stands for humidity. The marine data uses ICOADS rather than

256 ISD but I felt that it was important to keep the HadISDH name because the land and marine products

are related and intended to be used together. So, I'm not quite sure how to logically explain all of

258 that in the paper. I could say: It is a Met Office **Had**ley Centre led Integrated **S**urface **D**ataset of

Humidity as this does make sense but doesn't explicitly refer to the NCEI ISD dataset. I have added
 that sentence to the Introduction (4th paragraph) rather than the Abstract.

261 P2, L43: Please provide citation for GCOS Essential Climate Variables (ECVs).

We have added the following: (Bojinski et al., 2014; <u>https://qcos.wmo.int/en/essential-climate-</u>
 <u>variables</u>)

264 P2, L54: Please provide definition of "CRUH" of "HadICRUH".

265 Done – Met Office Hadley Centre and Climatic Research Unit Humidity dataset.

P9, L265: "Processing the hourly data into a gridded product"... Is this title appropriate for this
 section? (A possible alternative might be "Construction of the gridded dataset and uncertainty
 estimates", for example.)

269 That is a much better title, thank you.

P11, L302: It turned out later (section 4.1) that buoy data were eventually excluded from the current
 version. I would suggest that this treatment (exclusion of buoy data) should be mentioned in the

early part of this section. For example, the overall strategy might be summarized first using Figure 6.

We have made it much clearer that the buoys are used for the climatologies and the final version isship only with the following statement:

275 *"We include moored buoys to produce climatologies because spatial coverage is of high importance."*

- 276 Our final version recommended to users is a ship-only (SHIP) product but we have produced a
- 277 combined (ALL) product for comparison."
- 278 We have also now added a paragraph explaining the overall process see below.

P13, L362: "3rd iteration" is referred without prior explanation. I think it would be helpful for thereader if the idea of the entire processing is presented first using Figure 6.

We agree that this is not clearly explained. We have swapped Figures 5 and 6 around and added a
 paragraph describing the flow of the dataset build in the beginning of section 3:

283 "The construction process, including the three iterations and all outputs, is visualised in Figure 5. 284 Firstly, humidity variables are calculated. For the 1st iteration the hourly temperature and dew point 285 temperature data are quality controlled (section 3.1) using an ERA-Interim based climatology. The 286 data are then gridded, merged and a 1° by 1° pentad climatology produced for each variable (section 287 *3.5). These* 1st *iteration climatologies are then used to quality control the original hourly data again;* these data are then gridded, merged and a 2^{nd} iteration climatology produced. The 2^{nd} iteration 288 289 climatology is then used to quality control the original hourly data for a third and final time. It is 290 during this 3rd iteration that bias adjustments are applied and uncertainties estimated. The bias 291 adjusted data and uncertainties are then gridded, merged and climatologies created. For future annual updates the 2^{nd} iteration climatologies will be used to apply quality control. Having three 292 293 iterations enables incremental improvements to the climatology used to quality control the data and 294 therefore the skill of the quality control tests. It means that we can ensure that no artefacts remain 295 from using ERA-Interim to quality control the data initially. Arguably more iterations could be done 296 but each one is computationally expensive and the difference between the 2nd and 3rd iteration is already very small." 297 298

P14, L398 (Fig. S7): Looking at Fig. S7 and its inset legend, "repeated saturation check" (pink, solid
line) seems to be making only minor contributions.

Thank you for pointing this out. We realise we had mistaken the repeated saturation check for the
 track check which is the pink dotted line. We have corrected this in the text.

While looking at the figures in more detail we noticed that the has been an increase in failures for
 repeated saturation and supersaturation towards the end of the record which is also when many
 more electronic and capacitance sensors are in use instead of psychrometers. We have now pointed
 this out in the text too:

"There is an increase in removals from repeated saturation and supersaturation events over time,
 particularly the late 2000s. This may be related to the decrease in psychrometer deployment over
 time and increase in electric and capacitance sensors as shown in Fig. 4. The latter have increased
 significantly since the mid-2000s."

312 P16, L456-458: It would be helpful if formulae are used to describe the procedures explained here.

We would prefer not to add formulae here as we think that this is covered by Table 1. Table 1 hadn't
yet been referenced at this point but we have now pointed the reader to it at the beginning of section
3.3. We have also tried to improve the text of the paragraph you refer to so that it is easier to

316 understand:

317 *"To carry these adjustments and uncertainties to all other humidity variables we start with q and*

318 then propagate the adjusted quantity and adjusted quantity plus uncertainty using the equations in 319 Table S1. Using the original T (which does not need to be adjusted for poor ventilation) and ERA-

1319 Table 31. Osing the original P (which does not need to be adjusted for poor ventilation) and \mathbb{R}^{2} 320 Interim climatological surface pressure, e can be calculated from q. T_d and RH can be calculated from

e and T. From these, the T_w and DPD can be calculated. The uncertainty is then obtained by

subtracting the adjusted quantity from the adjusted quantity plus uncertainty for each variable."

323

325 326 327 328 329 330	We think that the text was not clear that Ugb is just a generic variable name when in fact the equation given is used for each of the five uncertainty sources (Ui, Um, Uw, Uc and Uh). We have modified the text to make this clearer. It was particularly misleading that we stated that all five quantities are combined to produce the total observation uncertainty for the gridbox before equations 7 and 8 which deal with the individual uncertainty sources. This sentence has now been removed. It is largely repeated later anyway.
331 332 333	P24, L700: Buoy products are excluded from the current version. I think this should be described earlier, for example, in section 3. Or the overall strategy along with the procedures (visualized in Fig, 6) could be presented earlier.
334 335	We think that we have now addressed this as described in our responses to your revisions listed above.
336 337	P27, L776-777, L798-799: How will the decadal trend for relative humidity look like when the pre- 1982 period is excluded from the analysis?
338 339	We have now added trends for the 1982-2018 period to the annual time series comparison plots in Figure 9 and added some text in several places discussing this.
340 341 342 343 344 345	Section 4 "Despite careful quality control and bias-adjustment the previously noted moist humidity bias pre- 1982 is still apparent in the bias-adjusted (BA) data. The linear trend in relative humidity from 1982 to 2018 is -0.03 ± 0.13 %rh decade ⁻¹ , and therefore not significantly decreasing which is more consistent with expectation."
346 347 348	"Relative humidity is very sensitive to any differences in the data but even these differences are fairly small and do not change the overall conclusion of decreasing full-period trends and no significant trend over the 1982-2018 period."
349 350 351 352	Section 6 "The pre-1982 data have previously been noted as having a moist bias and our processing steps do not appear to have removed this feature. The trend excluding this earlier period (1982-2019) is no longer a significant decreasing trend and therefore more consistent with expectation."
353 354	P30, L890: It would be worth briefly mentioning again here what comprise the total observation uncertainty.
355 356	We have done this by specifying the five observation uncertainty components in the paragraph before (old line 876).
357 358	"This includes the total observation uncertainty, which covers uncertainty components for instrument adjustment, height adjustment, measurement, climatology and whole number uncertainty (Table 1)."
359	
360	"Technical corrections"
361	P10, L289: Remove right parenthesis ")" after "temperature".

324 P22, L650 (Eq.7) and L655 (Eq.8): Where and how was Ugb woven into the uncertainty estimate?

362	Done.
363	P14, L398: Put periods "." after "Fig. S7".
364	Done.
365	P22, L644: "has" should perhaps read "as".
366	Yes – thanks. Done.
367	P33, L971: Put periods "." after "averaging".
368	Done.
369	P35, L1037: "over estimate" should read "overestimate".
370	
371	Additional changes:
372 373	In response to reviewer 1 several other changes have been made to the paper. I hope you are able to see our response to reviewer 1 but we have summarised the major changes below.
374 375 376	We have changed all trend fits from median of pairwise slopes to ordinary least squares. The confidence intervals shown are now 90% confidence intervals corrected for AR(1) correlation following the Santer et al., 2008 paper.
377 378 379 380 381	We have now created a gridded dataset where the whole number flagged data are removed to check the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions to the text to note this.
378 379 380	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382 383	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382 383 383	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382 383 384 385 386 387	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382 383 384 385 386 387 388	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382 383 384 385 386 387 388 389	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382 383 384 385 386 387 388 389 389	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions
378 379 380 381 382 383 384 385 386 387 388 389	the trends. This data is shown in Figure 9 as an additional panel comparing the raw data, the bias adjusted data and the bias adjusted data where all whole number flagged data are removed. This does not remove the pre-1982 issue and in fact appears to exacerbate it. There are several additions

393	Development of the HadISDH marine humidity climate monitoring dataset
394	Kate M. Willett ¹ , Robert J. H. Dunn ¹ , John J. Kennedy ¹ and David I. Berry ²
395	
396	¹ Met Office Hadley Centre, Exeter, UK
397	² National Oceanography Centre, Southampton, UK
398	
399	Correspondence to: Kate Willett <u>kate.willett@metoffice.gov.uk</u>
400	
401	Abstract
402	
403	Atmospheric humidity plays an important role in climate analyses. Here we describe the production and key
404	characteristics of a new quasi-global marine humidity product intended for climate monitoring,
405	HadISDH.marine. It is an in-situ based multi-variable marine humidity product, gridded monthly at a 5° by 5°
406	spatial resolution from January 1973 to December 2018 with annual updates planned. Currently, only reanalyses
407	provide up to date estimates of marine surface humidity but there are concerns over their long-term stability. As
408	a result, this new product makes a valuable addition to the climate record and will help address some of the
409	uncertainties around recent changes (e.g. contrasting land and sea trends, relative humidity drying). Efforts have
410	been made to quality control the data, ensure spatial and temporal homogeneity as far as possible, adjust for
411	known biases in non-aspirated instruments and ship heights, and also estimate uncertainty in the data.
412	Uncertainty estimates for whole-number reporting and for other measurement errors have not been quantified
413	before for marine humidity. This is a companion product to HadISDH.land, which, when combined will provide
414	methodologically consistent land and marine estimates of surface humidity.
415	
416	The spatial coverage of HadISDH.marine is good over the Northern Hemisphere outside of the high latitudes but
417	poor over the Southern Hemisphere, especially south of 20° S. The trends and variability shown are in line with
418	overall signals of increasing moisture and warmth over oceans from theoretical expectations and other products.
419	Uncertainty in the global average is larger over periods where digital ship metadata are fewer or unavailable but
420	not large enough to cast doubt over trends in specific humidity or air temperature. Hence, we conclude that
421	HadISDH.marine is a useful contribution to our understanding of climate change. However, we note that our

422	ability to monitor surface humidity with any degree of confidence depends on the continued availability of ship	
423	data and provision of digitised metadata.	
424		
425	HadISDH.marine data, derived diagnostics and plots are available at	
426	www.metoffice.gov.uk/hadobs/hadisdh/indexMARINE.html (Willett et al., 20202019).	Commented [WK1]: 1 once I have it – prior to pu
427		· · ·
428	1 Introduction	
429		
430	Water vapour plays a key role as a greenhouse gas, in the dynamical development of weather systems, and	
431	impacts society through precipitation and heat stress. Over land, all these aspects are important and recent	
432	changes have been assessed by Willett et al. (2014). Over the oceans, a major source of moisture over land, a	
433	similar analysis is essential to enhance our understanding of the observed changes generally and as a basis for	
434	worldwide evaluation of climate models. In recognition of its importance, the surface atmospheric humidity has	
435	been recognised as one of the Global Climate Observing System (GCOS) Essential Climate Variables (ECVs)	
436	(Bojinski et al., 2014; https://gcos.wmo.int/en/essential-climate-variables).	
437		
438	Observational sources of humidity over the ocean are limited. The NOCSv2.0 (Berry and Kent, 2011) is the	
439	only recently updated (January 1971 to December 2015) marine surface humidity monitoring product based on	
440	in-situ observations, but it only includes specific humidity (q). Satellite based humidity products exist (e.g.	
441	HOAPS, Fennig et al., 2012) but these rely on the in-situ observations for calibration. Whilst quasi-global, the	
442	uncertainties in the NOCv2.0 product are large outside the northern, mid_{-} latitudes. In this regions the	
443	NOCSv2.0 product shows a reasonably steadily rising trend over the period of record, similar to that seen over	
444	land but with slightly different year-to-year variability. Most notably, 2010, a peak year over land in specific	
445	humidity, does not stand out over ocean. Figure 1 and Willett et al. (2019) show global land and ocean specific	
446	humidity and relative humidity (RH) series from available in-situ and reanalyses products. Older, static	
447	products for the ocean (HadCRUH - Met Office Hadley Centre and Climatic Research Unit Humidity dataset:	
448	Willett et al., 2008; Dai: Dai 2006) show increasing specific humidity to 2003 with similar variability to	
449	NOCSv2.0, and near-constant relative humidity. Both HadCRUH and Dai show a positive relative humidity bias	
450	pre-1982 and slightly higher specific humidity over_1978-1984 compared to NOCSv2.0. There is broad	
451	similarity between the reanalysis products and the in-situ products but with notable differences for specific	

Commented [WK1]: TO be changed to the CEDA archive link once I have it – prior to publication.

452	humidity in the scale of the 1998 peak and the overall trend magnitude. Differences are to be expected given
453	that the reanalyses are spatially complete in coverage, albeit derived only from their underlying dynamical
454	models over data sparse regions. The reanalyses exhibit near-constant to decreasing relative humidity over
455	oceans but with poorer agreement between both the reanalyses themselves and compared to the in-situ products
456	over land. This is to be expected given the larger sources of bias and error over ocean (Sect. 2) and sparse data
457	coverage. Importantly, land and marine specific humidity appear broadly similar whereas for relative humidity,
458	the distinct drying since 2000 over land is not apparent over ocean in reanalyses and the previously available in-
459	situ products finish too early to be informative. Note that the HadISDH.marine described herein is shown here
460	for comparison and will be discussed below.

- 461
- 462 A positive bias in global marine average relative humidity pre-1982 is apparent in Dai and HadCRUH, and has
- 463 previously been attributed to high frequencies of whole numbers in the dew point temperature observations prior
- 464 to January 1982 (Willett et al., 2008). This is less clear in the global average specific humidity timeseries.
- 465 ICOADS (International Comprehensive Ocean-Atmosphere Dataset) documentation
- 466 (http://icoads.noaa.gov/corrections.html) notes issues with the pre-1982 data especially mixed-precision
- 467 observations, where the air temperature has been recorded to decimal precision but the dew point temperature is
- 468 only available as a whole number. Such reporting was in accordance with the WMO Ship Code before 1982.
- 469 The documentation notes a truncation error in the dew point depression which would lead to a positive bias in
- 470 relative humidity. Alternatively, Berry (2009) show that patterns in the North Atlantic Oscillation coincide with
- 471 this time period and could have played a role. The NOCSv2.0 product is based on reported wet bulb temperature
- 472 rather than dew point temperature, where decimal precision is usually present. Hence, the NOCSv2.0 product is
- 473 expected to be unaffected by these rounding issues. Our analysis shows that changes to the code in January 1982
- 474 did not eliminate whole number reporting and high frequencies of whole numbers can be found throughout the
- 475 record in both air temperature and dew point temperature (Sect. 2.4 and Sect. 3.4).
- 476
- 477 Clearly, there is a need for more and up to date in-situ monitoring of humidity over ocean, especially for RH.
- 478 The structural uncertainty in estimates can only be explored if there are multiple available estimates so a new
- 479 product that explores different methodological choices, and extends the record, is complementary to the existing
- 480 NOCSv2.0 product and reanalyses estimates. Here we report the development of a multi-variable marine
- 481 humidity analysis HadISDH.marine.1.0.0.2018f (Willett et al., 2020Met Office Hadley Centre; National

482	Oceanography Centre, 2019 FINALISED AFTER REVIEW). HadISDH.marine is a Met Office Hadley Centre
483	led Integrated Surface Dataset of Humidity, This formings a companion product to the HadISDH.land
484	monitoring product, and enabling the production of a blended global land and ocean product. We use existing
485	methods where possible from the systems used for building the long running HadSST dataset (Kennedy et al.,
486	2011a, 2011b, 2019), and also use some of the bias adjustment methods employed for NOCSv2.0 (Berry and
487	Kent 2011). We have explored the data to design new humidity specific processes where appropriate,
488	particularly in terms of quality control and gridding.
489	
490	HadISDH.marine is a climate-quality 5° by 5° gridded monthly mean product from 1973 to present (December
491	2018 at time of writing) with annual updates envisaged. Fields will be presented for surface (~10 m) specific
492	humidity, relative humidity, vapour pressure, dew point temperature, wet bulb temperature and dew point
493	depression. Air temperature will also be made available as a by-product but less attention has been given to
494	addressing temperature specific biases. The product is intended for investigating long-term changes over large
495	scales and so efforts have been made to quality control the data, ensure spatial and temporal homogeneity, adjust
496	for known biases and also estimate remaining uncertainty in the data. In particular, we estimate uncertainties
497	from whole-number reporting and other measurement errors that have not been quantified before for marine
498	humidity.
499	
500	Section 2 discusses known issues with marine humidity data. Section 3 describes the source data and all
501	processing steps. Section 4 presents the gridded product and explores the different methodological choices and
502	comparison with NOCSv2.0 specific humidity and ERA-Interim marine humidity. This section also includes a
503	first look at the blended land and marine HadISDH product for each variable. Section 5 covers data availability
504	and Section 6 concludes with a discussion of the strengths and weaknesses of the product.
505	
506	2 Known issues affecting the marine humidity data
507	
508	2.1 Daytime solar-biases
509	
510	Marine air temperature measurements on board ships during the daytime are known to be affected by the heating
511	of the ship or platform by the sun. This results in a positive bias during daylight and early night time hours. The

512	bias varies with sunlight strength/cloudiness (and thus also latitude), relative wind speed, size and material of
513	the ship. This solar heating bias affects both the wet bulb and dry bulb temperature measurements but, as noted
514	by Kent and Taylor (1996), the ships do not act as a source of humidity or change the humidity content of the
515	air. As a result, biases in the specific humidity and dew point temperature due to the solar heating errors will be
516	negligible. However, care needs to be taken with relative humidity because estimates of the saturation vapour
517	pressure from the uncorrected dry bulb air temperature will be too high, leading to an underestimate in relative
518	humidity. Ideally, relative humidity should be estimated using the corrected dry-bulb temperature to calculate
519	the saturation vapour pressure and uncorrected wet and dry bulb temperature or dew point temperature to
520	calculate the vapour pressure.
521	

- 522 Previously, efforts have been made to bias-adjust the air temperature observations for solar heating by
- 523 modelling the extra heating over the superstructure of the ship, taking account of the relative wind speed,
- 524 cloudiness, time of day, time of year and latitude (Kent et al, 1993; Berry et al., 2004; Berry and Kent, 2011).
- 525 These adjustments are complex and so we have decided not to attempt to implement them for our first version of
- a marine humidity product given the wide variety of other issues we have accounted for. We have, however,
- 527 produced daytime, night time and combined products to investigate differences that may be caused by the solar
- 528 heating bias. Later versions of HadISDH.marine that apply bias corrections for solar heating may reduce the
- 529 amount of daytime data removed.
- 530

531 2.2 Un-aspirated psychrometer bias

- 532
- 533 Humidity measurements can be made in a variety of ways. Instruments can be housed in a screen with
- 534 ventilation slats, with or without additional artificial aspiration, or handheld in a sling or whirling psychrometer.
- 535 There is information on instrument ventilation provided up to 2014. Approximately 30 % of ship observations
- 536 have information in 1973, peaking at ~75 % by the mid-1990s, as summarised in Fig. 2. Initially, slings were
- 537 more common for the hygrometer and thermometer, but by 1982 a screen was more common. There is a
- 538 tendency for the screened instruments, in the absence of artificial aspiration, to give a wet bulb reading that is
- 539 higher relative to the slings/whirling instruments where airflow is ensured by the whirling motion. Bias
- 540 adjustments have been applied to un-aspirated humidity observations by Berry and Kent (2011), building on
- 541 previous bias adjustments of Josey et al. (1999) and Kent et al. (1993). They have also estimated the uncertainty

542 in the bias adjustments. We implement a modified version of their method of bias adjustment for the un543 aspirated observation types (Sect. 3.3.1) and uncertainty estimation. Uncertainties from instrument bias
544 adjustments will have some spatial and temporal correlation structure as the ships move around (Kennedy et al.,
545 2011a).
546
547 2.3 Ship height inhomogeneity
548

549 Over time there has been a general trend for ship heights to increase. Kent et al. (2007; 2013) quantified the 550 increase from an average of ~ 16m in 1973 to ~24m by the end of 2006. Instrument height information is available for some ships between the period of 1973 and 2014, providing heights for the barometer (HOB), 551 552 thermometer (HOT), anemometer (HOA) and visual observing platform (HOP). Figure 3 shows the availability 553 of height information and the mean and standard deviation of heights per year in each category for the ship 554 observations selected here. Similar to the ventilation metadata, height information availability is low in 1973, 555 peaking mid-1990s to 2000 and then declining slightly. Prior to 1994 only the platform height was available 556 from WMO Publication 47. This was replaced in 1994 by the barometer height and augmented with the 557 thermometer and visual observing heights from 2002 onwards (Kent et al., 2007). Anemometer heights have 558 been available from WMO 47 since 1970. All four types of heights increase over time. We conclude that the 559 mean height based on HOP/HOB/HOT increases from 17 m in 1973 to 23 m by 2014, which differs slightly to 560 that in Kent et al., (2007). If uncorrected, this likely leads to a small artificial decreasing trend in air temperature 561 and specific humidity, as, in general, these variables decrease with height away from the surface. The effect on 562 relative humidity is less clear and depends on the relative effects on air temperature and specific humidity. 563 564 Prior studies (e.g. Berry and Kent, 2011; Berry 2009; Josey et al., 1999; Rayner et al., 2003; Kent et al., 2013) 565 have applied height adjustments to the air temperature, specific humidity and wind speed measurements to

adjust the measurements to a common reference height and minimise the impact of the changing observing

567 heights on the climate record. These have been based on boundary layer theory and the bulk formulae, using the

568 parameterisations of Smith (1980, 1988). In the absence of high-frequency observations of meteorological

569 parameters for each observation location, allowing direct estimation of the surface fluxes, parameterisations

570 have to be made and an iterative approach is necessary to estimate a height adjustment (Sect. 3.3.2). We have

571 followed these previous approaches and estimated height adjustments for all observations and variables of

572	interest. Where observing heights are unavailable we have made new estimates (Sect. 3.3.2). We have also
573	provided an estimate of uncertainty on these height adjustments, which are larger where we have also estimated
574	the height of the observation. The uncertainties from height adjustments will have some spatial and temporal
575	correlation structure.
576	
577	2.4 Whole-number reporting biases
578	
579	Recording and reporting formats and practices have changed many times over the 20th century, affecting the
580	climate record. Some formats required the wet bulb temperature to be reported, others the dew point temperature
581	and some allowed either or both (https://www.wmo.int/pages/prog/amp/mmop/documents/publications-
582	history/history/SHIP.html). Some earlier formats restricted space to reporting temperature to whole numbers
583	only and this practice has continued with some ships continuing to report the dew point (or wet bulb)
584	temperature and sometimes even the dry bulb temperature to whole numbers. A practice of truncation of the
585	dew point depression has been noted for the pre-1982 data (http://icoads.noaa.gov/corrections.html) which
586	would result in spuriously high humidity (both in relative and actual terms). It is clear from the
587	ICOADS3.0.0/3.0.1 data that there has been a practice of reporting values to whole numbers rather than decimal
588	places, both for air temperature and dew point temperature. Rounding dew point temperature and air
589	temperature could result in a +/- 0.5° C error individually or a just less than +/- 1° C error in dew point
590	depression for a worst-case scenario combination.
591	
592	Whole-number reporting is an issue throughout the record for both variables – a breakdown of air and dew point
593	temperature by decimal place over time is shown in Fig. S1. Air temperature also shows a disproportionate
594	frequency of half degrees (5s). The percentagerevalence of whole numbers (0s) declines over time, dramatically
595	in the mid- to late 1990s for air temperature and from 2008 for both air and dew point temperature. This decline
596	in the 1990s, and in part also the general decline, appears to be linked to an increase in numbers of moored
597	buoys (see Fig. 5), a similar analysis without the moored buoys (not shown) shows greater consistency over
598	time. The dew point temperature has two distinct peaks in whole number frequency in the 1970s and mid-1990
599	to early 2010s. The latter peak is more pronounced when moored buoys are not included. The early peak is
600	somewhat consistent with the restriction in transmission space prior to January 1982. This was previously
601	thought to have been a possible cause of higher relative humidity over the period 1973-1981 compared to the

602	rest of the record in the HadCRUH marine relative humidity product (Willett et al., 2008). The pre-1982 moist
603	bias was also apparent in the global marine relative humidity product of Dai (2006), which like HadCRUH used
604	dew point temperatures. The NOCSv2.0 product preferentially utilises the wet bulb temperatures from ICOADS
605	which are not affected by whole number reporting to the same extent. This could be part of the reason why
606	NOCSv2.0 has a lower estimate of specific humidity anomalies over the 1973-1981 period than HadCRUH or
607	Dai, which use the dew point temperatures (Fig. 1).
608	
609	Rounding of temperature alone should not affect the mean dew point temperature, specific humidity or vapour
610	pressure. However, as with the solar bias issue, it is sensitive to at what point the reported dew point
611	temperature was derived from the measured wet bulb temperature or relative humidity. Most likely, this would
612	be done prior to any rounding or truncating for reporting but during later conversion of various sources into
613	digital archives, or corrections, the dew point temperature may have been reconstructed
614	(https://icoads.noaa.gov/e-doc/other/dupelim_1980). The effect of rounding on a monthly mean gridbox average
615	should be small as these errors are random and should reduce with averaging. However, there is a risk of
616	removing very high humidity observations when a rounded dew point temperature then exceeds a non-rounded
617	air temperature. Such values are removed by our supersaturation check (Sect. 3.2). We do not feel able to
618	correct for this issue but instead include an uncertainty estimate for it. Overly frequent whole numbers are
619	identified both during quality control track analysis and deck analysis. This will be discussed in more detail in
620	Sect. 3.4. Clearly, there are various issues that can arise linked to the precision of measured and reported data in
621	addition to conversion between <u>different</u> units (e.g., Fahrenheit, Celsius and Kelvin, Fig. S1) and <u>between</u>
622	different variables.
623	
624	2.5 Measurement errors
625	
626	All observations are subject to some level of measurement error and, outside of precision laboratory
627	experiments, the errors can be significant. The BIPM Guide to the Expression of Uncertainty in Measurement
628	(BIPM, 2008) describes two categories of measurement uncertainty evaluation. A Type A evaluation estimates
629	the uncertainty from repeated observations. A Type B evaluation of the uncertainty is based on prior knowledge
630	of the instrument and observing conditions. Within this study we use a Type B evaluation, adjusting for
631	systematic errors and inhomogeneities due to inadequate ventilation and changing observing heights (screen and

systematic errors and inhomogeneities due to inadequate ventilation and changing observing heights (screen and

632	height adjustments) and estimate the residual uncertainty For the random components, we make the conservative	
633	assumption that all measurements were taken using a psychrometer (wet bulb and dry bulb thermometers),	
634	which allows us to follow the HadISDH.land methodology of Willett et al. (2013, 2014) as described in Sect.	
635	3.4.7 An assessment of the frequency of hygrometer types (TOH) within our selected ICOADS3.0.0/3.0.1 data	
636	shows this to be a fair assumption as the vast majority of ships (where metadata is available: ~30 % increasing	
637	to ~70 % 1973 to 1995 then decreasing to 60 % by 2014) are listed as being from a psychrometer (Fig. 4).	
638	Electric sensors are becoming more common and made up ~ 30 % of observations by 2014 (the end of the	
639	metadata information). There are no instrument type metadata for ocean platforms or moored buoys. As it is	
640	likely that most buoy observations are made using RH sensors, we plan to develop an RH sensor specific	
641	measurement uncertainty in future versions.	
642		
643	2.6 Other sources of error	
644		
645	There are other issues specific to humidity measurements that may be further sources of error. Hygrometers that	
646	require a wetted wick (i.e., psychrometers), and thus a source of water, are vulnerable to the wick drying out or	
647	contamination, especially by salt in the marine environment. The wick drying results in erroneous relative	
648	humidity readings of 100 %rh where the wet bulb essentially behaves identically to the dry bulb thermometer.	
649	There can also be issues when the air temperature is close to freezing depending on whether the wet bulb has	
650	become an ice bulb or not and whether wet bulb or ice bulb calculations are used in any conversions. Humidity	
651	observing in low temperature can be generally problematic. For radiosondes, there has previously been a	
652	practice of recording a set low value when the humidity observation falls below a certain value (Wade 1994,	
653	Elliott et al. 1998). It is debateable how likely such low humidity values are over oceans and this practice has	
654	not been documented for ship observations. However, the set value issue is something to look out for. Wet bulb	
655	thermometers (and other instruments) can experience some hysteresis at high humidity where it takes some time	
656	to return to a lower reading. The wet bulb also requires adequate ventilation which has been discussed above.	
657		
658	These can be accounted for to a large extent through quality control but some error will inevitably remain. We	
659	can increase our confidence in the data by comparison with other available products and general expectation	
660	from theory.	

662	3 Processing the hourly data into a gridded product Construction of the gridded dataset and uncertainty
663	estimates
664	
665	ICOADS Release 3.0 (Freeman et al., 2017) forms the base dataset for the HadISDH.marine humidity products.
666	From January 1973 to December 2014 we use ICOADS.3.0.0 from http://rda.ucar.edu/datasets/ds540.0/. These
667	data include a unique identifier (UID) for each observation, a station identifier/ship callsign (ID), metadata on
668	instrument type, exposure and height in many cases. From January 2015 onwards we use ICOADS.3.0.1 from
669	the same source. These data include an ID and UID but no instrument metadata. It is likely that digitised
670	metadata updates will be available periodically, depending on resource availability. Each observation is
671	associated with a deck number. These are identifiers for ICOADS national and trans-national sub-sets of data
672	relating to source e.g., deck 926 is the International Maritime Meteorological (IMM) data
673	(https://icoads.noaa.gov/translation.html). We utilise the reported air temperature (T) and reported dew point
674	temperature (T_d) as the source for our humidity products. Sea surface temperature (SST) and wind speed (u) are
675	used for estimating height adjustments.
676	
677	We calculate the specific humidity (q) , relative humidity (RH), vapour pressure (e) , wet bulb temperature $(T_w,$
678	not the thermodynamic wet bulb but a close approximation to it) and dew point depression (DPD) for each point
679	observation. All humidity variables are derived from reported air and dew point temperature and ERA-Interim
680	climatological (from the nearest 1° by 1° $\frac{5 \text{ day mean [pentad]}}{5 \text{ day mean [pentad]}}$ gridbox) surface pressure P_s , using the set of
681	equations from Willett et al., (2014) which can be found in Table S1. This provides consistency with
682	HadISDH.land for later merging. FNote that for consistency we also use a fixed psychrometric coefficient that is
683	identical for all observations, when estimating the approximate thermodynamic wet bulb temperature rather the
684	observed value which depends on the type of psychrometer used. minimising the impact of changing instrument
685	types (e.g. whirling sling / ventilated measurement vs screen) on the wet bulb temperature record. This is also
686	consistent with what is done for HadISDH.land.
687	
688	Additionally, we use ERA-Interim (Dee et al., 2011) reanalysis data to provide initial marine climatologies and
689	climatological standard deviations for all variables to complete a $\frac{1^{st}}{1}$ first iteration climatological outlier test. We
690	extract 1° by 1° gridded 6 hourly 2 m air and dew point temperature) and surface pressure to create 6 hourly
691	humidity variables and then pentad-(5 day mean) climatologies and standard deviations over the 1981-2010
I	

692	period. Note that <u>3several</u> iterations are passed before finalising the product. Only the <u>1st initial</u> iteration uses
693	ERA-Interim climatologies, later iterations use climatologies built from the previous iteration's quality-
694	controlled observations (Sects. 3.2, 3.5, 4.1).
695	
696	The construction process, including the three iterations and all outputs, is visualised in Figure 5. Firstly,
697	humidity variables are calculated. For the 1st iteration the hourly temperature and dew point temperature data are
698	quality controlled (section 3.1) using an ERA-Interim based climatology. The data are then gridded, merged and
699	a 1° by 1° pentad climatology produced for each variable (section 3.5). These 1st iteration climatologies are then
700	used to quality control the original hourly data again; these data are then gridded, merged and a 2 nd iteration
701	climatology produced. The 2 nd iteration climatology is then used to quality control the original hourly data for a
702	third and final time. It is during this 3 rd iteration that bias adjustments are applied and uncertainties estimated.
703	The bias adjusted data and uncertainties are then gridded, merged and climatologies created. For future annual
704	updates the 2 nd iteration climatologies will be used to apply quality control. Having three iterations enables
705	incremental improvements to the climatology used to quality control the data and therefore the skill of the
706	quality control tests. It means that we can ensure that no artefacts remain from using ERA-Interim to quality
707	control the data initially. Arguably more iterations could be done but each one is computationally expensive and
708	the difference between the 2 nd and 3 rd iteration is already very small.
709	
710	3.1 Data selection
711	
712	We screen all ICOADS data to sub-select only those observations passing the following criteria:
713	- there must be a non-missing T and T_d value;
714	- the platform type (PT) must be in one of the following categories: a ship (a US Navy or unknown
715	vessel, a merchant ship or foreign military ship, an ocean station vessel off station /at an unknown
716	location, an ocean station vessel on station, a lightship, an unspecified ship - PT = 0, 1, 2, 3, 4, 5);
717	or a stationary buoy (moored or ice buoy - $PT = 6, 8$);
718	- the observation must have a climatology and standard deviation available for its closest 1° by 1°
719	pentad;

720	the observation must pass the gross error checks: calculated RH must be between 0 and 150 %rh
721	(supersaturated values are flagged during quality control); both T and T_d must be between -80 and
722	65 °C; and calculated q must be greater than 0.0 g kg ⁻¹ :
723	- position check (failures removed): latitudes must be between -90° and 90° and longitudes must be
724	between -180° and 360° (later converted to -180° to 180°);
725	- <u>the date check (failures removed)</u> : hour, day, month and year must be valid quantities;
726	
727	region is blacklisted (Rayner et al., 2006, Kennedy et al, 2011a, Table S2).;
728	
729	Other marine products (e.g., NOCSv2.0; Berry and Kent, 2011) solely use ship observations due to the lack of
730	buoy metadata available. WIn contrast, we include moored buoys for this version and to produce climatologies
731	because spatial coverage is of high importance. OHowever, ur final version recommended to users is a we
732	provide-ship-only (SHIP) and combined-product but we have produced a combined (ALL) product for
733	comparisons. This will be reassessed for future versions. Figure <u>65a</u> shows the number of observations included
734	in the initial selection per year, broken down by platform type. The breakdown for day and night time
735	observations individually is near identical (not shown). Ship ($PT = 5$) observations make up almost the entire
736	dataset until the 1990s. After this the number of moored buoys grows significantly to make up around ~ 50 % of
737	observations from 2000 onwards. The ship-only product (removal of moored buoys) significantly reduces the
738	number of observations in the recent period but gives a more consistent number of observations throughout the
739	record. Our use of climate anomalies should mitigate biasing due to uneven sampling to some extent. Note that
740	the number of gridboxes containing data may be a more relevant measure and that the vast increase in the
741	number of buoys has not actually resulted in the same level of increase in spatial coverage in terms of gridboxes
742	(compare 2018 annual average maps for ship-only and combined HadISDH.marine in Fig. S2).
743	
744	3.2 Quality control processing
745	
746	We have not used any of the pre-set flags from ICOADS processing to ensure methodological independence of
747	HadISDH and a process that allows for exploration and analysis of different methodological choices. The
748	quality control processing employed here largely follows the methodology for HadSST4 (Kennedy et al., 2019)

749 with some changes to the climatology check and buddy check thresholds to increase regional sensitivity and

750	additional humidity specific checks. A flag for whole number prevalence has also been added but this is used for
751	uncertainty estimation and not to remove fail an observation. All observations have their nearest 1° by 1° pentad
752	mean climatology (source depends on iteration - Sect. 3.5) subtracted to create a climate anomaly.
753	
754	Each observation is passed through a suite of basic-quality control tests (base-qc)-which are summarised in
755	Table 1 along with whether the quality control tests are usedy to-are removed or just to flagged the observations,
756	and the stage of processing at which they are applied. consist of:
757	climatology check (failures flagged): T and T_d must be within a specified threshold of the nearest 1° by 1°
758	pentad climatology;
759	supersaturation check (failures flagged T_d only): T_d must not be greater than T . The climatology check differs
760	from the static HadSST3 threshold of climatology for air temperature of +/- 840° C. We have allowed for a
761	variable threshold depending on the nearest 1° by 1° pentad climatology standard deviation σ . This is set at 5.5
762	$\boldsymbol{\sigma}.$ It accounts for the lower variability in the tropics and greater variability in the mid-latitudes. We have set
763	minimum and maximum σ values of 1 $^{\circ}$ C and 4 $^{\circ}$ C respectively resulting in a minimum range of +/- 5.5 $^{\circ}$ C and
764	a maximum range of +/- 22° C. Several thresholds were tested with the selected threshold balancing avoiding
765	acute cut-offs in the data distribution while still removing obviously bad data (Figs. S3 to S6). Given that
766	outliers are assessed by comparing a point observation with a 1° by 1° pentad mean the thresholds have to be
767	relatively large.
768	
769	Five additional checks are then applied at the ship track level where possible:
770	- track check (failures flagged): the distance and direction travelled by the ship must be plausible
771	and consistent;
772	- repeated value check (failures flagged): a T or T_d value must not appear in more than 70 % of a
773	ship track where there are at least 20 observations;
774	- repeated saturation check (failures flagged $-T_{d}$ only): saturation ($T_{d} = T$) must not persist for more
775	than 48 hours where there are at least 4 observations;
776	- buddy check (failures flagged 3 rd -iteration only): T and T _d must be within a specified threshold of
777	the average of its nearest neighbours in space and time;
778	- whole number flag (whole numbers flagged): a T or T _d value must not appear as a whole number in
779	more than 50 % of a ship track where there are at least 20 observations.
1	

/80	
781	The buddy check compares each observation's climate anomaly with the average of the climate anomalies of its
782	nearest neighbours in space and time, expanding the search area in space and time as necessary until at least one
783	neighbour observation is found. The permitted difference is set by the climatological standard deviation of the
784	candidate 1° by 1° pentad gridbox multiplied by an amount dependent on the number of neighbours present.
785	There are five levels of searches:
786	1. $\pm 1^{\circ}$ latitude and longitude and ± 2 pentads: the climatological standard deviation is multiplied by
787	5.5, 5.0, 4.5 and 4.0 for 1-5, 6-15, 16-100 and >100 neighbouring observations respectively;
788	2. $\pm 2^{\circ}$ latitude and longitude and ± 2 pentads: the climatological standard deviation is multiplied by
789	5.5 for >1 neighbouring observation;
790	3. $\pm 1^{\circ}$ latitude and longitude and ± 4 pentads: the climatological standard deviation is multiplied by
791	5.5, 5.0, 4.5 and 4.0 for 1-5, 6-15, 16-100 and >100 neighbouring observations respectively;
792	4. $\pm 2^{\circ}$ latitude and longitude and ± 4 pentads: the climatological standard deviation is multiplied by
793	5.5 for >1 neighbouring observation;
794	5. no neighbour $\pm 2^{\circ}$ latitude and longitude and ± 4 pentads: the threshold is set at 500.
795	The thresholds used for the buddy check are wider than those previously used in HadSST3. This is to account
796	for the greater variability of air and dew point temperature, and sparser observation coverage. It is only applied
797	in the 3 rd iteration of the quality control (Sect. 3.5).
798	
799	Figure <u>65</u> shows the final number of observations passing through initial selection and then 3 rd iteration quality
800	control by platform (PT) type. The quality control does not significantly affect one platform over another. The
801	performance of these tests is demonstrated for 4 example months in Figs. S3 to S6. These reveal a slight positive
802	bias in the removed air temperature observations and negative bias in removed dew point temperature.
803	Removals in terms of relative humidity and specific humidity similarly tend to have a negative bias. It is clear
804	that the majority of grossly erroneous observations are removed. The change in climatology between iterations
805	of the quality control process (Sect. 3.5) also makes a difference to removals. This is both because the
806	observation driven climatologies do not provide complete spatial coverage and because the ERA-Interim
807	climatologies are cooler and drier than the observations (Sect. 4.1). Removals are dense in the Northern
808	Hemisphere and especially sparse around the tropics. The addition of the buddy check in the 3 rd iteration
809	considerably increases the removal rate, noticeably over the Southern Hemisphere and Tropics.

811 The quality-control flagging rate for the 3rd iteration reduces over time from ~25 % to ~18 %, as shown in Fig. 812 S7. This is driven by the buddy check and trackrepeated saturation check. Proportionally more observations are 813 flagged during the daytime than night time but the interannual behaviour is very similar. The daytime increase is 814 driven by the larger number of air temperature buddy and climatology check failures. This could be due to the 815 issue of solar heating of the ship structure during the daytime. The main source of test fails by a large margin is 816 the buddy check, followed by the climatology check and trackrepeated saturation check. There doesn't appear to 817 be a strong difference in the distribution of removals from each test between the 1973-1981 and 1982-1990 818 periods that might explain the pre-1982 moist bias (Fig. S8, Sect. 4.2). There is an increase in removals from 819 repeated saturation and supersaturation events over time, particularly the late 2000s. This may be related to the 820 decrease in psychrometer deployment over time and increase in electric and capacitance sensors as shown in 821 Fig. 4. The latter have increased significantly since the mid-2000s. 822 823 The whole number flags show very different behaviour to the other checks and to each other over time in Fig. 824 S7. These depend on the ability to assign each observation to a track/voyage and the frequency of whole number 825 observations on that voyage, hence, these flags are not a true reflection of the whole number frequency. 826 Compared to the actual proportion of whole numbers shown in Fig. S1, these tend to exaggerate the annual 827 patterns but the shape is broadly similar. This method of identifying problematic whole numbers appears to 828 under-sample the true distribution, especially for air temperature pre-1982. An additional deck-based check is 829 applied later for estimating uncertainty from whole numbers (Sect. 3.4). 830 831 Note that the NOCSv2.0 dataset, with which we compare our specific humidity data, includes an outlier check 832 that removes data greater than 4.5 standard deviations from the climatological mean. This test has already been 833 applied within the ICOADS format and so the NOCSv2.0 excludes any data with ICOADS trimming flags set 834 (Wolter 1997). We do not use the trimming flags to select data. They also apply a track check based on Kent and

835

Challenor (2006).

836

810

837 3.3 Bias adjustments and associated uncertainties

839	Given the issues raised in Sect. 2, it is desirable to attempt to adjust the observations to improve the spatial and
840	temporal homogeneity and accuracy of the data. As discussed in Sect. 2.1, we have not attempted to adjust for
841	solar biases in this first version product. We have made adjustments for instrument and height biases and
842	estimated uncertainties (summarised in Table 1) in these adjustments.
843	
844	3.3.1 Application of adjustments for biases from un-aspirated instruments
845	
846	We have shown that the majority of humidity observations have been made with a psychrometer (Fig. 4) and
847	that 30-70 % of instruments with metadata available have been housed within a non-aspirated screen (Fig. 2).
848	Berry and Kent (2011) found that applying a 3.4 % reduction to specific humidity observations from non-
849	aspirated screens was a reasonable adjustment to remove the bias relative to aspirated/well ventilated
850	observations (e.g., slings, whirled hygrometers or artificially aspirated instruments). Some uncertainty remains
851	after adjustment which they estimated to be ~0.2 g kg ⁻¹ . We have used the hygrometer exposure metadata
852	(EOH) or the thermometer exposure (EOT) if EOH does not exist. We assume good ventilation for any
853	instruments that are aspirated (A), from a sling (SL) or ship's sling (SG) or from a whirling instrument (W). We
854	assume poorer ventilation for instruments that are from a screen (S), ship's screen (SN) or are unscreened (US)
855	and apply a bias adjustment. The reported exposure type of Ventilated Screens (VS) does not appear to mean
856	that the screen is artificially ventilated and so bias adjustments are also applied to these. We do not apply
857	adjustments to buoys and other non-ship data based on the assumption that these generally measure relative
858	humidity directly. For any ship observations with no exposure information we apply 55 $\%$ of the 3.4 $\%$
859	adjustment based on the mean percentage of observations with EOH metadata that require an adjustment over
860	the 1973-2014 (metadata) period). This partial adjustment factor follows the method of Berry and Kent (2011)
861	and Josey et al. (1999) but differs in quantity. They assessed this over a shorter time period and found then that
862	~30 % of observations were from poorly ventilated instruments.
863	
864	To estimate the uncertainty in the non-aspirated instrument adjustment applied U_i , we use the Berry and Kent
865	(2011) and Josey et al. (1999) uncertainty estimate of 0.2 g kg ⁻¹ and apply this in all cases where an adjustment
866	or partial adjustment has been applied. This is treated as a standard uncertainty (1 σ). In the case of partial

867 adjustments for the ship observations with no metadata there is large uncertainty in both the adjustment and

868	adjusted value. To account for this we use the amount of what would have been a full 3.4 % adjustment in
869	addition to the 0.2 g kg ⁻¹ as the 1 σ uncertainty.
870	
871	To carry these adjustments and uncertainties to all other humidity variables we start with q and then propagate
872	the adjusted quantityment and adjusted quantity plus uncertainty amounts using the equations in Table S1.
873	Using the original T (which does not need to be adjusted for poor ventilation) and ERA-Interim climatological
874	surface pressure, e can be calculated from q. T_d and RH can be calculated from e and T. From these, the T_w and
875	DPD can be calculated. The uncertainty is <u>then</u> obtained by subtracting the new-adjusted quantityies from the an
876	adjusted quantity plus uncertainty for each variable, beginning again from the adjusted q plus the 0.2 g kg ⁻¹
877	uncertainty and full adjustment magnitude in the case of ships without metadata.
878	
879	3.3.2 Application of adjustments for biases from ship heights
880	
881	After bias adjustment for poor ventilation, all variables are adjusted to approximately 10 m elevation. This
882	serves to account for the inhomogeneity from the systematic increase in ship height over time and for spatial
883	inhomogeneity between observations made at different heights. In the absence of height adjustments, increasing
884	ship heights likely lead to a small decrease in air temperature and specific humidity over time (Berry and Kent,
885	2011) because these quantities generally decrease with height. As Fig. 3 shows, the standard deviations in ships'
886	instrument heights exceed 5 m in most cases. Also, we have included buoys in the processing so far and these
887	can be very low (~4 m, e.g. Gilhousen, 1987) relative to ship observing heights.
888	
889	The height of the hygrometer (HOH) must be estimated (HOHest) as no metadata is available. In the case of
890	psychrometers, which are the most common instruments listed in the ship metadata, the wet and dry bulb
891	thermometers are co-located. Figure 3 shows that the visual observation height (HOP) is the most commonly
892	available information, followed by the barometer height (HOB) and then thermometer height (HOT). It also
893	shows the mean and standard deviation of all observing heights including the anemometer (HOA). Hence,
894	HOHest is obtained using the following methods in preference order:
895	
896	1. HOP present and >2 m: HOHest μ = HOP, σ = 1 m
807	2. HOP present and ≥ 2 m: HOH st $\mu = HOP$, $\sigma = 1$ m

897 2. HOB present and >2 m: HOHest μ = HOB, σ = 1 m

898	3. HOT present and >2 m: HOHest μ = HOT, σ = 1 m
899	4. HOA present and >12 m: HOHest μ = HOA – 10, σ = 9 m
900	5. No height metadata: HOHest $\mu = 16 \text{ m} + \text{fthe}$ linear trend in mean HOP/HOB/HOT height to the,
901	date <u>of observation</u> , $\sigma = 4.6 \text{ m} + 4.1 \text{ m}$ linear trend in standard deviation HOP/HOB/HOT height to
902	the, date of observation)
903	
904	The μ and σ of the combined HOP, HOB and HOT increases from 16 m and 4.6 m respectively in January 1973
905	to 23 m and 11 m respectively in December 2014. Kent et al. (2007) and Berry and Kent (2011) used 16 m to 24
906	m between 1971 and 2007 so our estimate is very similar. The anemometer height is also required for the
907	adjustments. We either use the provided HOA as long as it is greater than 2 m or set it to 10m above the
908	HOHest. All buoys are assumed to be observing at 4 m, with anemometers at 5 m
909	(http://www.ndbc.noaa.gov/bht.shtml).
910	
911	Once HOHest has been obtained for each observation, the air temperature and specific humidity are adjusted to
912	10 m using bulk flux formulae. The methodology, assumptions and parameterisations largely follow that of
913	Berry and Kent (2011), Berry (2009), Smith (1980, 1988) and Stull (1988). Essentially, the quantity of interest x
914	can be adjusted to a reference height of 10 m as follows:
915	
916	$x_{10} = x - \frac{x_*}{\kappa} \left(\ln \left(\frac{z_X}{10} \right) - \psi_X + \psi_{X10} \right) $ (1)
917	
918	where x_* is the scaling parameter specific to that variable (e.g., friction velocity in the case of u , characteristic
919	temperature or specific humidity in the case of T or q respectively), κ is the von Karman constant (0.41 used
920	here), z_x is the observation height of the variable of interest, ψ_x is the stability correction for the variable of
921	interest and is a function of $f(z_x/L)$, ψ_{x10} is the stability correction for the variable of interest at a reference height
922	of 10m and is a function of $f(10/L)$ and L is the Monin-Obukov Length.
923	
924	An iterative approach (as done for Berry and Kent 2011) is required to resolve Eq. (1) because we only have
925	basic meteorological variables available at a single height for each observation. We start from T , q , u , sea
926	surface temperature (SST), the co-located 1° by 1° gridbox pentad climatological surface pressure from ERA-
~~-	
927	Interim (climP), HOHest which becomes both z_q and z_t and our estimated anemometer height which becomes z_u .

928	For some observations the SST or u is missing. If SST is missing it is given the same value as T so in effect, no
929	adjustment to T is applied. Either way, the SST is set to a minimum of -2° C and a maximum of 40° C. If u is <
930	0.5 m s ⁻¹ it is given a light wind speed of 0.5 m s ⁻¹ . If u is missing or >100 m s ⁻¹ it is assumed to be erroneous but
931	given a moderate wind speed of 6 m s ⁻¹ . We also approximate surface values T_0 , q_0 and u_0 where $T_0 = SST$, $q_0 =$
932	$q_{sat}(SST)$ **0.98 and $u_0 = 0$. Clearly, with so many necessary approximations there are many different plausible
933	methodological choices, hence the need for multiple independent analyses that explore these different choices in
934	order to quantify the structural uncertainty.
935	
936	We begin the iteration by assuming a value for L depending on assumed stability:
937	- if (SST - T) > 0.2 <u>°C</u> : L = -50 <u>m</u> , unstable conditions are assumed;
938	- if (SST - T) < -0.2 <u>°C</u> : $L = 50$ <u>m</u> , stable conditions assumed;
939	- if $(SST = T) + 0.2 \stackrel{\circ}{\underline{\circ}C} : L = 5000 \underline{m}$, neutral conditions assumed where L tends to ∞ .
940	We also start with an assumption that the 10 m wind speed in neutral conditions $u_{10n} = u$. The iteration is
941	continued until L converges to within 0.1 m , which it generally does. If after 100 iterations there is no
942	convergence we either apply no adjustment or if absolute L is large (> $500 \underline{m}$) we assume neutral conditions and
943	take L (and all other parameters) as they are. In cases where u_* is very large (it should be $< 0.5 \text{ m s}^{-1}$ [Stull,
944	1988]) we also apply no adjustment. The iteration involves 21 steps as described in the Supplementary Material.
945	
946	For most observations we arrive at a plausible L, friction velocity u_* , ψ_x and ψ_{xl0} . We then calculate the scaling
947	parameters T_* and q_* :
948	
949	$T_* = \kappa \left(\ln \left(\frac{z_t}{z_{t0}} \right) - \psi_t \right)^{-1} (T - T_0) $ (2a)
950	$q_* = \kappa \left(\ln \left(\frac{z_q}{z_{q_0}} \right) - \psi_q \right)^{-1} (q - q_0) $ (2b)
951	
952	where the neutral stability heat transfer coefficient $z_{s0} = 0.001 \text{ m}$ and the neutral stability moisture transfer
953	coefficient $z_{q0} = 0.0012$ m (Smith 1988). The adjusted values for T_{10} and q_{10} can then be calculated from Eq. (1).

- 954 From these we recalculate the other humidity variables using the equations in Table S1.

956 There is uncertainty in the obtained HOHest. Given that this is a best estimate we assume that the uncertainty in 957 the height is normally distributed and use the standard deviation in the height estimate used HOHest to calculate 958 an uncertainty range in the height adjusted value x (where x is any of T, q etc.) of xH_{min} to xH_{max} . Following the 959 'two out of three chance' rule in the BIPM Guide to the Expression of Uncertainty in Measurement (BIPM, 960 2008), the standard uncertainty (1 σ) for the height adjusted value (U_h) is then given by: 961 $U_h = \frac{xH_{max} - xH_{min}}{2}$ 962 (3) 963 964 The range xH_{min} to xH_{max} depends on the source of HOHest and associated σ , as listed above. There are several 965 scenarios where estimating the uncertainty in this way is not possible or calculation of an adjustment is not 966 possible. Also, U_h for buoys is highly uncertain given the lack of height information available. These alternative 967 scenarios are documented in Table 24. 968 969 3.4 Estimating residual uncertainty at the observation level 970 971 Three other sources of uncertainty affect the marine humidity data at the observation level. These are 972 measurement uncertainty U_m , climatology uncertainty U_c and whole number uncertainty U_w . These are all 973 assessed as 1 σ standard uncertainties. 974 975 We have estimated U_m for each observation following the method used for HadISDH.land (Willett et al., 2013, 976 2014). This assumes that humidity was measured using a pyschrometer which is a reasonable assumption for the 977 marine ship data (Fig. 4). The HadISDH.land measurement uncertainty is based on an estimated standard (1 σ) 978 uncertainty in the wet bulb and dry bulb instruments of 0.15° C and 0.2° C respectively. As shown in Table S3, 979 the equivalent uncertainty for the other variables depends on the temperature. The uncertainty is applied as a 980 standard uncertainty in RH depending on which bin the air temperature falls in. This is then propagated through 981 the other variables starting with vapour pressure, using the equations in Table S1. 982 983 Whole numbers of air and/or dew point temperature that have either been flagged as such during quality control 984 (Sect. 3.2), or that belong to a source deck/year where whole numbers make up more than two times the 985 frequency of other decimal places (Table S4), are given and uncertainty U_w . These decks and years where whole

986	numbers are very common differ for air and/or dew point temperature. Clearly with so many decks affected, the
987	removal of entire decks to remove any whole number biasing could easily reduce sampling to critically low
988	levels. We cannot distinguish between observations that have been rounded versus those that have been
989	truncated so we assume that all offending whole numbers have been rounded. This means that the value could
990	be anywhere between \pm 0.5° C, with a uniform distribution. Hence, where only air or dew point temperature is
991	an offending whole number the standard 1 σ uncertainty expressed in air or dew point temperature (° C) is:
992	
993	$U_w = \frac{0.5}{\sqrt{3}} \tag{4}$
994	
995	Where both air and dew point temperature are offending whole numbers the standard 1 σ uncertainty expressed
996	in air or dew point temperature (° C) for dew point depression, relative humidity and wet bulb temperature is:
997	
998	$U_w = \frac{1}{\sqrt{3}} \tag{5}$

999	
1000	There is uncertainty U_c in the climatological values used to calculate climate anomalies because of missing data
1001	over time, uneven and sparse sampling in space and also the inevitable mismatch between a point observation
1002	and a 1° by 1° gridded pentad climatology. This uncertainty reduces with the number of observations
1003	contributing to the climatology N_{obs} and with the variability of the region σ_{clim} . The climatologies used to create
1004	the anomalies have undergone spatial and temporal interpolation to move from 5° by 5° gridded monthly
1005	climatologies and climatological standard deviations σ_{clim} to maximise coverage and so it is not straightforward
1006	to assess the number of observations contributing to each 1° by 1° gridded pentad climatology and the true σ_{clim}
1007	is likely greater. The minimum number of years required to be present over the 30 year climatology period is 10.
1008	Therefore, we assume a worst case scenario of $N_{obs} = 10$. Hence, for a standard 1σ uncertainty:
1009	
1010	$U_c = \frac{\sigma_{clim}}{\sqrt{N_{obs}}} \tag{6}$

3.5 Gridding of actual and anomaly values and uncertainty

1014 To create a quasi-global monitoring product the raw observations need to be gridded. The spatial density is too 1015 low for high resolution grids and the intended purpose is for this marine product to be blended with the 1016 HadISDH.land humidity product which is on a 5° by 5° grid at monthly resolution. Hence, the pointraw hourly 1017 observations must be averaged to monthly mean gridded values. 1018 1019 The sparsity of the data means that there is a risk of bias due to poor sampling. A 5° by 5° gridbox covers an 1020 area greater than 500 km² by 500 km² which, despite the large correlation decay distances of both temperature 1021 and humidity, can include considerable variability. Furthermore, a monthly mean can be made up of a strong diurnal cycle and considerable synoptic variability. This is minimised by the use of climate anomalies but 1022 1023 regardless, care should be taken to ensure sufficient sampling density while maximising coverage where 1024 possible. 1025 1026 Several data-density criteria were trialled to balance spatial coverage and poor representativeness (high 1027 variance) of the gridbox averages. Climate anomalies are created at the raw observation level by subtracting the 1028 nearest 1° by 1° pentad climatology (1981-2010) and so we can grid both the actual values and the anomalies. 1029 Gridding of the anomalies is safer than gridding actual values in terms of biasing through poor sampling density 1030 because the correlation length scales of anomalies are higher than for actual temperatures. Initially, ERA-1031 Interim is used to provide a climatology. This then requires an iterative approach to produce an initial 1032 observation-based climatology and improve the climatology through quality control. To reduce biasing further 1033 we grid the data in six stages to create an average at each stage. The entire process including quality control, 1034 bias adjustment, gridding and three iterations, is shown diagrammatically in Fig. 56 and each gridding stage 1035 described below. 1036 1037 1. Create 1° by 1° 3-hourly gridded means offrom thethe hourly observations of actuals and 1038 anomalies; there must be at least one observation. 1039 2. Create separate 1° by 1° daytime and night_time gridded means of the from the 1° by 1° 3-hourly 1040 gridded mean actuals and anomalies; there must be at least one 1° by 1° 3-hourly grid. 1041 3. Create 5° by 5° monthly daytime and night_time gridded means offrom the 1° by 1° daytime and 1042 night_time gridded mean actuals and anomalies; there must be at least 0.3*days in the month of 1° 1043 by 1° daily grids.

1044	4. Create combined 5° by 5° monthly gridded means <u>of</u> from the 5° by 5° monthly daytime and night
1045	time gridded mean actuals and anomalies; there must be at least 1 5° by 5° monthly daytime or
1046	night_time gridded mean.
1047	5. Create 1981-2010 5° by 5° monthly mean climatologies and standard deviations from the 5° by 5°
1048	monthly gridded means of actuals and anomalies; there must be at least 10 5° by 5° monthly
1049	gridded means.
1050	6. Renormalise the gridded anomalies by subtracting the monthly anomaly 1981-2010 climatology to
1051	remove biases from use of the previous iteration climatology (Sect. 4.1).
1052	
1053	At each iteration the gridded observation based climatologies are infilled linearly over small gaps in space and
1054	time and then interpolated down to 1° by 1° pentad resolution. The observations are too sparse to create such
1055	high-resolution grids directly.
1056	
1057	The observation uncertainties also need to be gridded and the total observation uncertainty U_o calculated. Ships
1058	move around, and so their uncertainties also track around the globe. This means that the uncertainty in any one
1059	point / gridbox bears some relationship to nearby points / gridboxes over time and space and cannot be treated
1060	independently. Correlation needs to be accounted for both in gridding and subsequently creating regional
1061	averages from gridboxes to avoid underestimation. The five sources of observation uncertainty are summarised
1062	in Table 24. The non-aspirated instrument adjustment uncertainty U_i , height adjustment uncertainty U_h and
1063	climatology uncertainty U_c persist over time and space as ships move around. These are accordingly treated as
1064	correlating completely within one gridbox month. The measurement uncertainty U_m , and whole number
1065	uncertainty U_w are likely to differ observation to observation and so treated has having no correlation within one
1066	gridbox month. Hence, observation uncertainty sources are first gridded individually, following the first four
1067	steps outlined above and taking into account correlation where necessary. The gridded uncertainty sources are
1068	then combined to give a total observation uncertainty for each gridbox. For those that do not correlate (U_m and
1069	U_w) the gridbox mean uncertainties U_{gb} for each source are combined over N points in time and space as
1070	follows:
1071	

1072
$$U_{gb} = \frac{\sqrt{a^2 + b^2 \dots + n^2}}{N}$$

(7)

For those sources that do correlate (U_c , U_i and U_h), assuming r = 1, the gridbox mean uncertainties U_{gb} for each source are combined over N points in time and space as follows:

$$U_{gb} = \frac{a+b\dots+n}{N} \tag{8}$$

To create the total observational uncertainty for each gridbox the gridbox quantities of the five uncertainty sources can then be combined in quadrature:

(9)

1082
$$U_o = \sqrt{U_c^2 + U_m^2 + U_w^2 + U_h^2 + U_i^2}$$

Given the general sparsity of observations across each gridbox month and the uneven distribution of observations across each gridbox and over time there is also a gridbox sampling uncertainty component, U_s . This is estimated directly at the 5° by 5° monthly gridbox level and follows the methodology applied for HadISDH.land (Willett et al., 2013, 2014), denoted SE², which is based on station-based observations from Jones et al (1997):

1090
$$U_{s} = \frac{\left(\tilde{s}_{l}^{2} \bar{r}(1-\bar{r})\right)}{(1+(N_{s}-1)\bar{r})}$$
(10)

1092	where \bar{s}_i^2 is the mean variance of individual stations within gridbox, \bar{r} is the mean inter-site correlation and N_s is
1093	the number of stations contributing to the gridbox mean in each month. The mean variance of individual stations
1094	within the gridbox is estimated as:

1096
$$\bar{s}_i^2 = \frac{(\hat{s}^2 N_{SC})}{(1 + (N_{SC} - 1)\bar{r})}$$
(11)

where \hat{S}^2 is the variance of the gridbox monthly anomalies over the 1982-2010 climatology period and N_{SC} is the mean number of stations contributing to the gridbox over the climatology period. The mean inter-site correlation is estimated by:

1102
$$\bar{r} = \frac{x_0}{x} \left(1 - exp\left(-\frac{x_0}{x}\right) \right)$$
(12)

1103	
1104	where X is the diagonal distance across the gridbox and x_0 is the correlation decay length between gridbox
1105	means. We calculate x_0 as the distance (gridbox midpoint to midpoint) at which correlation reduces to 1/e. To
1106	account for the fact that marine observations generally move around at each time point we use the concept of
1107	pseudo-stations to modify this methodology. For any one day there could be 25 1° by 1° gridboxes and so we
1108	assume that the maximum number of pseudo-stations per gridbox is 25 which is broadly consistent with the
1109	number of stations per gridbox in HadISDH.land. Over a month then, there could be a maximum of 775 1° by 1°
1110	daily gridboxes contributing to each 5° by 5° monthly gridbox. Given ubiquitous missing data and sparse
1111	sampling the maximum in practice is closer to 600. Using these values we then scale the actual number of 1° by
1112	1° daily gridboxes contributing to each 5° by 5° monthly gridbox to provide a pseudo-station number between 1
1113	and 25 for each month (N_s) and then the average over the climatology period (N_{SC}) .
1114	
1115	The gridbox U_o and U_s uncertainties are then combined in quadrature, assuming no correlation between the two
1116	sources. This gives the full gridbox uncertainty U_{f} . Calculation of regional average uncertainty and spatial
1117	coverage uncertainty is covered in Sect. 4.
1118	
1118 1119	4 Analysis and validity of the gridded product
	4 Analysis and validity of the gridded product
1119	4 Analysis and validity of the gridded product The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of
1119 1120	
1119 1120 1121	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of
1119 1120 1121 1122	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3 rd iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded
1119 1120 1121 1122 1123	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3^{rd} iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded monthly means (Fig. 56). There are four reasons for only using the ship observations. Firstly, the increase in
1119 1120 1121 1122 1123 1124	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3 rd iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded monthly means (Fig. <u>56</u>). There are four reasons for only using the ship observations. Firstly, the increase in spatial coverage in the combined ship and buoy product is actually fairly small (Fig. S2) and only during the
1119 1120 1121 1122 1123 1124 1125	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3 rd iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded monthly means (Fig. <u>56</u>). There are four reasons for only using the ship observations. Firstly, the increase in spatial coverage in the combined ship and buoy product is actually fairly small (Fig. S2) and only during the latter part of the record. Secondly, a dataset intended for detecting long-term changes in climate should have
1119 1120 1121 1122 1123 1124 1125 1126	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3 rd iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded monthly means (Fig. <u>56</u>). There are four reasons for only using the ship observations. Firstly, the increase in spatial coverage in the combined ship and buoy product is actually fairly small (Fig. S2) and only during the latter part of the record. Secondly, a dataset intended for detecting long-term changes in climate should have reasonably consistent input data and coverage over time. Thirdly, we believe that the buoy data are less reliable
1119 1120 1121 1122 1123 1124 1125 1126 1127	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3 rd iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded monthly means (Fig. <u>56</u>). There are four reasons for only using the ship observations. Firstly, the increase in spatial coverage in the combined ship and buoy product is actually fairly small (Fig. S2) and only during the latter part of the record. Secondly, a dataset intended for detecting long-term changes in climate should have reasonably consistent input data and coverage over time. Thirdly, we believe that the buoy data are less reliable given their proximity to the sea surface and exposure to sea spray contamination in addition to the lower
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3 rd iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded monthly means (Fig. <u>56</u>). There are four reasons for only using the ship observations. Firstly, the increase in spatial coverage in the combined ship and buoy product is actually fairly small (Fig. S2) and only during the latter part of the record. Secondly, a dataset intended for detecting long-term changes in climate should have reasonably consistent input data and coverage over time. Thirdly, we believe that the buoy data are less reliable given their proximity to the sea surface and exposure to sea spray contamination in addition to the lower maintenance frequency compared to ship data. Fourthly, there are no metadata available for buoy observations
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129	The final gridded marine humidity monitoring product presented as HadISDH.marine.1.0.0.2018f is the result of the 3 rd iteration quality-control and bias-adjustment of ship-only observations average into 5° by 5° gridded monthly means (Fig. <u>56</u>). There are four reasons for only using the ship observations. Firstly, the increase in spatial coverage in the combined ship and buoy product is actually fairly small (Fig. S2) and only during the latter part of the record. Secondly, a dataset intended for detecting long-term changes in climate should have reasonably consistent input data and coverage over time. Thirdly, we believe that the buoy data are less reliable given their proximity to the sea surface and exposure to sea spray contamination in addition to the lower maintenance frequency compared to ship data. Fourthly, there are no metadata available for buoy observations which makes it difficult to apply necessary bias adjustments or estimate uncertainties. Actual monthly means,

1134 4.1 Comparison of climatologies between HadISDH.marine and ERA-Interim 1135 1136 At the end of each iteration (Fig. 56), observation-based climatology fields are created at both the monthly 5° by 1137 5° grid and, by interpolation, pentad 1° by 1° grid (Sect. 3.5). These are then used to quality control and create 1138 anomaly values for the next iteration. Hence, the 2^{nd} iteration quality-controlled data are used to build the final 1139 3rd iteration and therefore, there should be no lasting effect from having used the ERA-Interim fields initially. 1140 The quality-controlled, buddy-checked and bias-adjusted 3rd iteration is used to create the final climatology 1141 provided to users. 1142 1143 To compare the use of ERA-Interim versus the observation based climatology to calculate anomalies and quality 1144 control the data we show Specific humidity, relative humidity and air temperature difference maps of the 2nd 1145 iteration minus ERA-Interim pentad 1° by 1° grid climatologies and climatological standard deviations are 1146 shown in Figs. S9 to S14 for a selection of pentads and variables. Note that ERA-Interim fields are for 2 m 1147 above the ocean surface whereas the raw observations range between approximately 10 m to 30 m above the 1148 surface. In normal conditions we may therefore expect ERA-Interim to provide climatologies that are warmer 1149 and moister than the observations. However, overall, ERA-Interim appears drier (both in absolute and relative 1150 terms) and cooler than the observation based climatologies. For humidity this is consistent with the results of 1151 Kent et al. (2014). For the majority of gridboxes these differences are within ± 2 g kg ⁻¹, %rh and °C. However, 1152 differences are especially strong around coastlines with magnitudes exceeding ± 10 g kg ⁻¹, %rh and °C. This is 1153 to be expected given that ERA-Interim coastal gridboxes will include effects from land, especially at the 1154 relatively coarse 1° by 1° grid resolution. For relative humidity there are more regions where ERA-Interim is 1155 more saturated and there is more seasonality in the differences. Relative humidity is less stable spatially and on 1156 synoptic time scales and also more susceptible to biases and errors than specific humidity and air temperature, 1157 largely because it is affected by errors in both air temperature and dew point temperature. For temperature, the 1158 coastal difference can be positive or negative depending on the season. 1159 The climatological standard deviations are generally lower in the 2nd iteration observations compared to ERA-1160 1161 Interim. Differences are generally between ± 2 g kg⁻¹, %rh and °C but for relative humidity there are expansive

1133

1162 regions in the extratropics to mid-latitudes, especially in the Northern Hemisphere where climatological

1163	standard deviations are up to 5 %rh lower in the observations. The generally lower variability in the
1164	observation-based climatology is to be expected given the interpolation from monthly mean resolution and
1165	interpolation over neighbouring gridboxes where data coverage is limited. However, much of the tropics,
1166	particularly in the Southern Hemisphere tends to show more variability in the observations. Similarly, many of
1167	the peripheral gridboxes (those at the edge of the spatial coverage and therefore more likely to be interpolated
1168	from nearby gridboxes rather than based on actual data) show higher variability for specific and relative
1169	humidity and lower variability for air temperature. All of these gridboxes are in data sparse regions which likely
1170	contributes to the higher variability. Ideally, observation based climatologies would be created directly at the
1171	pentad 1° by 1° grid but this severely reduces spatial coverage of the climatology fields and any product based
1172	on them. A balance has to be made between coverage and quality.

1174 Annual mean 5° by 5° climatologies (no interpolation) from the 3rd iteration quality-controlled, bias-adjusted 1175 ship-only product are shown in Fig. 7 for specific humidity, relative humidity, air temperature and dew point 1176 temperature. These have a minimum data presence threshold of 10 years for each month over the climatology 1177 period and at least 9 climatological months present for the annual climatology. Data coverage is virtually non-1178 existent in the Southern Hemisphere below 40° S and Northern Hemisphere coverage diminishes drastically 1179 above 60° N. These climatologies are as expected for these variables and compare well in terms of broad spatial 1180 patterns with ERA-Interim (not shown). There is good spatial consistency considering that no interpolation has 1181 been conducted meaning that any erroneous gridboxes should stand out. We conclude that as a first version 1182 product, these climatologies look reasonable.

1183

1185

1184 4.2 Analyses of global averages for various processing stages and with other products

1186Global average quantities are key measures of climate change and so we focus here on the differences arising1187from the various processing steps of HadISDH.marine along with the NOCSv2.0 specific humidity and ERA-1188Interim reanalysis products. Global averages (70° S to 70° N) have been created by weighting each gridbox by1189the cosine of its latitude at gridbox centre. All timeseries shown are the renormalised anomalies with a zero-1190mean over the 1981-2010 period. Figs. 8 to 11 show timeseries for specific humidity, relative humidity, dew1191point temperature and air temperature respectively. Decadal linear trends (shown) are computed using ordinary

1192	least squares regression with the median of pairwise slopes with ranges representing the 90th percentile	
1193	confidence interval <u>calculated using AR(1) correction (Santer et al., 2008)</u> .	
1194		
1195	For all variables, there are only small differences in the global average timeseries between the various	
1196	processing steps – from the raw data (noQC) to the 3 rd iteration quality-controlled (noNBAC no bias	
1197	adjustment]) and then the bias-adjusted data (BClocalBA). They are smallest for air temperature and largest for	
1198	relative humidity but all steps result in global average trends that are significant and in the same direction, and	
1199	have similar interannual variability. We consider these trends to be significant because the 90th percentile	
1200	confidence intervals around the trend are not large enough to bring the direction of the trends into question. Both	
1201	the interannual variability and long-term linear trends are very similar <u>T</u> , and the trends in the global average are	
1202	positive over the 1973-2018 period for specific humidity, dew point temperature and air temperature, and	
1203	negative for relative humidity. We consider these trends to be significant because the 90th percentile confidence	
1204	intervals around the trend are not large enough to bring the direction of the trends into question. The linear	
1205	trends for the final HadISDH.marine.1.0.0.2018f version are 0.07 ± 0.024 g kg ⁻¹ decade ⁻¹ , -0.09 ± 0.082 %rh	
1206	decade ⁻¹ , 0.0 $\frac{9}{28} \pm 0.0$ $\frac{2}{24}$ ° C decade ⁻¹ and 0.11 ± 0.0 $\frac{3}{24}$ ° C decade ⁻¹ for specific humidity, relative humidity, dew	
1207	point temperature and air temperature respectively. Hence, we conclude that HadISDH.marine shows	
1208	moistening and warming since the 1970s globally in actual terms but that the air above the oceans appears to	
1209	havehas become less saturated and drier in relative terms. This differs from theoretical expectation where	
1210	changes in relative humidity over ocean are strongly energetically constrained to be small, of the order of 1% K-	
1211	¹ or less, and generally positive (Held and Soden, 2006; Schneider et al., 2010). and mModel-based expectations	
1212	also suggestof a small positive changesor no change in relative humidity over ocean (Byrne and O'Gorman,	
1213	2013, 2016, 2018). Despite careful quality control and bias-adjustment the previously noted moist humidity bias	
1214	pre-1982 is still apparent in the bias-adjusted (BA) data. The linear trend in relative humidity from 1982 to 2018	
1215	is -0.03 \pm 0.13 %rh decade ⁻¹ , and therefore not significantly decreasing which is more consistent with	
1216	expectation.	
 1217		
1218	Since there are considerable known issues affecting the marine humidity data, and because there are large	
1219	outliers (Figs. S3 to S6), the effect of quality (noQC compared to noBANBC), might be expected to be large.	
1220	Furthermore, approximately 25 %, dropping steadily over time to 18 % of the initial selection of data have been	
1221	removed by the quality control (Fig. 56), so there is a considerable difference in the amount of data contributing	

1222 to the quality-controlled version compared to the raw version. Despite all of this, differences are relatively 1223 small. Overall, the quality control makes the positive trends smaller (specific humidity, dew point temperature 1224 and air temperature) and negative trends larger (relative humidity). The effect of quality control, including 1225 buddy checking, is largest in the 1970s to early 1980s, when the largest amount of data was removed by quality 1226 control. This is especially noticeable for relative humidity and dew point temperature, and the same period as 1227 the previously noted moist relative humidity bias, suggesting that the pre-1982 bias, although present to some 1228 extent in the raw (noQC) data, could be an artefact of exacerbated by the quality control. This could be due to 1229 erroneous removal of good data but investigation (Figs. S3 to S8) suggests that much of the data removal was 1230 appropriate - many very low relative humidity values were removed. It could also be an artefact of the reduced 1231 number of observations after quality control, reducing the chance of averaging out random error. To explore 1232 whether the presence of whole numbers in the record has contributed to the pre-1982 bias we have processed a 1233 bias adjusted version with all whole number flagged data (Table 1) removed (BA_no_whole) which is shown 1234 against the noQC and BA versions in Fig. 9d. The resulting global average trend is largest in the BA_no_whole 1235 version, even over the 1982-2018 period, and the pre-1982 bias is still clear. Either way, We conclude that the 1236 pre-1982 moist bias remainsis apparent in HadISDH.marine, and is as yet not yet well understood, and quality 1237 control of the pre-1982 data is an area for more research in future versions. 1238 1239

The bias adjustment (BAClocal, BClocalHGTBA_HGT, BClocalINSTBA_INST) reduces the negative trends in 1240 relative humidity both compared to the raw (noQC) and quality-controlled (noNBAC) data.-It and increases the 1241 positive trends in specific humidity and dew point temperature relative to the quality-controlled data-but reduces 1242 the trends compared to the raw data. The effect of bias adjustment is negligible for air temperature, which only 1243 has adjustment for ship height applied. For the humidity variables the height adjustment has a far larger effect 1244 than the non-aspirated instrument adjustment. The non-aspirated instrument adjustment makes the positive 1245 trends in specific humidity and dew point temperature slightly smaller and the negative trends in relative 1246 humidity slightly larger. The height adjustment has the opposite effect. For relative humidity, the bias 1247 adjustments appear to have introduced greater intra-decadal scale variability but retained the interannual 1248 patterns, again highlighting the sensitivity of relative humidity compared to the other variables. Given that these biases exist we do have to try and mitigate their impact. However, this is a focus area for investigation and 1249 1250 improvements in future versions of HadISDH.marine.

1252	The timeseries that include data from moored buoys compared to those from ships only ('all' versus 'ship')
1253	show smaller positive trends for specific humidity, dew point temperature and air temperature and larger
1254	negative trends for relative humidity. Moored buoys begin to play a role from the late 1980s, increasing in
1255	number dramatically to make up over 50 $\%$ of the observations by 2015. The 'all' timeseries can be seen to
1256	diverge slightly from the 'ship' timeseries in the latter part of the record. Therefore, it is more consistent to
1257	produce the final HadISDH.marine version without inclusion of moored buoy data.

1259 Before quality control there are more daytime ship observations than night time ship observations in the early 1260 record (~1_000_000 compared to ~800_000 per year) but this evens out by the end of the record to ~900_000 per 1261 year. However, the quality control removes more daytime observations than night time observations, especially 1262 in the 1970s and 1980s such that both contribute ~700_000 observations per year, dipping in the middle of the 1263 record. There has been no bias adjustment for solar heating of ships applied in this version of HadISDH.marine 1264 so the daytime data may contain some artefacts of solar heating. If this is a problem it should affect the air 1265 temperature and relative humidity but not the dew point temperature or specific humidity (Sect. 2.1). While the 1266 full dataset (both) combines both daytime and night time data, for various gridboxes and seasons there is only 1267 either a daytime or night time value present. As such, the 'both' timeseries and its linear trend may not be a 1268 straightforward average of the 'day' and 'night' timeseries and trends. In the case of specific humidity, the 1269 daytime and night time global average timeseries have slightly larger positive trends than the combined 1270 timeseries and for relative humidity they have smaller negative trends than the combined series. For specific 1271 humidity, dew point temperature and air temperature the 'day' and 'night' trend differences are essentially 1272 negligible, with linear trends identical or differences within 0.01 g kg ⁻¹ decade ⁻¹ or 0.01° C decade ⁻⁴. Even for 1273 relative humidity the differences are small. The 'day' timeseries gives the largest negative trend followed by 1274 'both' which is 0.01 %rh decade ⁻¹ smaller and then 'night' which is 0.02 %rh decade ⁻¹ smaller again. The 1275 negligible differences in air temperature suggest that solar heating is not a significant concern at least at the 1276 global average scale. Relative humidity is very sensitive to any differences in the data but even these differences 1277 are fairly small and do not change the overall conclusion of decreasing <u>full-periodlong-term</u> trends and no 1278 significant trend over the 1982-2018 period. 'Night' trends are often thought to provide a better signal of change 1279 because they are generally free from convective and shortwave radiative processes and more a measure of 1280 outgoing longwave radiation. The main conclusion here is that trends and variability are very similar in the

daytime, night_time and combined timeseries which adds confidence in their representativeness of real-world
 trends and variability.

1283

1284 IOverall, at least in terms of linear trend direction, HadISDH.marine compares well with other monitoring 1285 estimates from NOCSv2.0 and ERA-Interim and to other reanalyses and older products (Fig. 1). ERA-Interim in 1286 Figs. 8 to 11 is from analysis fields of 2 m air temperature and dew point temperature and has been masked to 1287 ocean coverage using a 1° by 1° land-sea mask and also to HadISDH.marine coverage for comparison. Note that 1288 the ERA-Interim timeseries shown in Figs. 8 to 11 are from analysis fields of 2 m air temperature and dew point 1289 temperature, whereas the timeseries shown in Fig. 1 are from background forecast values to avoid biases 1290 introduced from ship data and ocean-only points over open sea. They are very similar at least in terms of the 1291 global average. Both NOCSv2.0 and HadISDH.marine are estimates of 10 m quantities and the NOCSv2.0 1292 coverage is similar to that of HadISDH.marine but it only extends to 2015. NOCSv2.0 shows the largest trends 1293 in specific humidity over the 1979-2015 common period, 0.043 g kg⁻¹ decade ⁻¹ greater than HadISDH.marine. 1294 The interannual patterns are broadly similar but with some differences showing that methodological choices do 1295 make a difference, given that the underlying observations are from the same source. ERA-Interim shows very 1296 weak moistening compared to HadISDH.marine for specific humidity and dew point temperature and slightly 1297 weaker warming for air temperature. Over the longer 1979-2018 period ERA-Interim trends are slightly larger 1298 for specific humidity but still weaker than in HadISDH.marine. The decreasing saturation in relative humidity is 1299 very strong in ERA-Interim at more than 23 times the HadISDH.marine trend over the common period. The 1300 masking to HadISDH.marine coverage surprisingly makes very little difference in the linear trends, they are 1301 slightly more negative, and only small year-to-year differences. Interannual behaviour does differ, especially for 1302 relative humidity and especially in the period up to the early 1990s where ERA-Interim is warmer and wetter 1303 generally, thus moderating the long-term trends in specific humidity, dew point temperature and air temperature. 1304 Note that the ERA-Interim background field relative humidity shown in Fig, 1 also shows a decrease but to a 1305 lesser extent than the analysis fields (Fig. 9) which include ship data. Agreement is closest for air temperature in 1306 both trends and variability. 1307 1308 The decreasing relative humidity trends over ocean are similar to consistent with the drying seen in

HadISDH.land and ERA-Interim land relative humidity (Fig. 1); land linear trends are 0.03 %rh more negative
 at -0.12 (-027 to -0.03) %rh 10 yr⁻¹ over the same 1973 to 2018 period. The timeseries pattern is quite different

1311	though with marine relative humidity decreasing throughout the period around large variability and land relative
1312	humidity clearly decreasing from 2000. The greater sensitivity of relative humidity to observation errors, biases
1313	and sampling issues makes the conclusion of long-term drying an uncertain one but agreement with ERA-
1314	Interim adds some weight to this conclusion.
1315	
1316	For the final HadISDH.marine.1.0.0.2018f product the regional average uncertainty is also computed and shown
1317	for the global average (70° S to 70° N) in Fig. 12. This includes the total observation uncertainty, which covers
1318	uncertainty components for instrument adjustment, height adjustment, measurement, climatology and whole
1319	number uncertainty (Table 2). In addition, the regional average uncertainty includes the gridbox sampling
1320	uncertainty and also a spatial coverage uncertainty, following the method applied for HadISDH.land (Willett et
1321	al., 2014). The coverage uncertainty essentially uses the variability between ERA-Interim full coverage
1322	compared to ERA-Interim with HadISDH.marine coverage to estimate uncertainty. To obtain uncertainty in the
1323	global average from the gridbox uncertainties correlation in time and space should be taken into account. It is
1324	not trivial to assess the true spatial and temporal correlation of the various uncertainty sources. In reality,
1325	although ships move around over space and time, implying some correlation, the contributing sources to each
1326	\sim 500 km ² gridbox monthly mean differ widely. Therefore, for this first version product we assume no
1327	correlation between gridboxes in time or space and take the simple approach of the quadrature combination of
1328	uncertainty sources, noting that this is a lower limit on uncertainties.
1329	
1330	The uncertainty in the global averages (Fig. 12) isare larger than the equivalent time-series for land (see Fig. 12
1331	in Willett et al., 2014). The coverage uncertainty (accounting for observation gaps in space and time) is
1332	generally the largest source of uncertainty with the exception of relative humidity and dew point depression. For
1333	the latter two, the total observation uncertainty makes up the greatest contribution. In all cases the total
1334	observation uncertainty is larger at the beginning and especially the end of the records, where there are fewer/no
1335	metadata with which to apply bias adjustments. The contribution from sampling uncertainty (gridbox spatial and
1336	temporal coverage) is generally very small except for relative humidity. This is as expected given that the
1337	correlation decay distance of humidity should generally be larger over ocean than over land given the
1338	homogeneous surface altitude and composition. Overall, the magnitudes of the uncertainties are small relative to
1339	the magnitudes of long-term trends and variability in all variables except for relative humidity and dew point
1340	depression. This suggests that there is good confidence in changes in absolute measures of humidity over ocean

1341	(e.g., specific humidity), and also air temperature, but lower confidence in changes in the relative humidity. The
1342	warming and moistening are further corroborated by strong theoretical reasoning based on laws of physics
1343	governing the expectation that specific humidity should have increased over the period of record given the
1344	warming of the oceans and atmosphere that has occurred (Hartmann et al., 2013). The uncertainty model makes
1345	many assumptions over correlation of uncertainty in space and time. It is likely that we have overestimated the
1346	uncertainty at the gridbox scale by assuming complete correlation for height adjustment uncertainty, instrument
1347	adjustment uncertainty and climatological uncertainty. Conversely, we have likely underestimated the
1348	uncertainty at the regional average level by assuming no correlation. This is certainly an area for improvement
1349	in future versions.
1350	4.3 Decadal trends across the globe presented by HadISDH.marine
1351	
1352	Figure 13 shows the decadal linear trends for specific humidity, relative humidity, dew point temperature and air
1353	temperature for HadISDH.marine.1.0.0.2018f. The completeness criteria for trend fitting is 70 %, more strict
1354	than for the climatologies (Fig. 7). This results in poorer spatial coverage especially in the Southern
1355	Hemisphere. Clearly, there are no data points outside 70° S to 70° N, hence the restriction of the global average
1356	timeseries to this region is sensible. The tropical and Southern Hemisphere Pacific Ocean, and Southern
1357	Hemisphere Atlantic Ocean have virtually no data coverage. Overall, the appearance of the trends shows good
1358	spatial consistency, with few gridboxes standing out as obviously erroneous. There has been no interpolation
1359	across gridboxes that would have smoothed out any outliers, and so the lack of these outlying gridboxes
1360	suggests that the data are of reasonable quality for this long-term analysis at least. Trends are as expected from
1361	the global average timeseries - generally moistening and warming but becoming less saturated. The same is true
1362	over land (Willett et al., 2014).
1363	
1364	The moistening shown in specific humidity and dew point temperature (Fig. 13 panels a, b and e, f) is
1365	widespread. The majority of gridboxes are considered to be statistically significant in that the 90 th percentile
1366	confidence interval around the trend magnitude is the same sign as the trend and does not encompass zero. The
1367	largest increases in specific humidity are in the lower latitudes where-as the largest increases in dew point
1368	temperature are more spread out with a tendency towards the extratropics and mid-latitudes. There are a few
1369	regions where there are clusters of gridboxes with drying trends. These are generally consistent between the

1370 specific humidity and dew point temperature, especially in the few cases where these negative trends are

1371	significant such as the central Pacific, the east coast of Brazil, the southern coast of Australia and around New	
1372	Zealand.	
1373		
1374	Marine air temperature shows widespread and significant warming, in agreement with HadNMAT $_{=}^{2}$ (Kent et al.,	
1375	2013). Very few of the gridboxes with a negative trend are significant. In some cases they are in similar	
1376	locations to the drying trends seen in specific humidity and/or dew point temperature e.g., the coast south of	
1377	Australia around Tasmania, the east coast of Brazil. The warming is stronger in the northern mid_latitudes with	
1378	the Baltic, Mediterranean and Red Seas showing particularly strong warming consistent with strongly increasing	
1379	dew point temperature and specific humidity.	
1380		
1381	Whilst relative humidity is more sensitive to methodological choices and observational errors, the broad	
1382	spatially coherent structures to the regions of increasing and decreasing saturation, with broadscale significance,	
1383	are very encouraging in terms of data quality. Furthermore, the drying trends tend to be around the mid-latitudes	
1384	while the increasing saturation trends are more around the tropics, as seen over land. We still urge caution in the	
1385	use of marine relative humidity but these results collectively suggest that decreasing saturation might be a real	
1386	feature.	
1387		
1388	5 Code and data availability	
1389		
1390	HadISDH.marine is available as 5° by 5° gridded fields of monthly means and anomalies along with a 1981-	
1391	2010 climatology and uncertainty estimates at the gridbox scale. The data begin in January 1973 and continue to	
1392	December 2018 (at time of writingprint) and will be updated annually. HadISDH.marine is publicly available	
1393	from www.metoffice.gov.uk/hadobs/hadisdh/under an Open Government license	Commented [WK2]: To be updated with the CEDA archiv
1394	(http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/) as netCDF and text files.	prior to publication.
1395	Processing code (Python) can also be made available on request. HadISDH.marine data, derived diagnostics and	
1396	plots can be found at <u>www.metoffice.gov.uk/hadobs/hadisdh/indexMARINE.html</u> (Willett et al., 202019). It	
1397	should be cited using this paper and the following: Willett, K. M., Dunn, R. J. H., Kennedy, J. J. and Berry, D.	
1398	L: HadISDH.marine: gridded global monthly marine surface humidity data (version 1.0.0.2018f) [Data set]. Met	
1399	Office Hadley Centre HadOBS Datasets, www.metoffice.gov.uk/hadobs/hadisdh/indexMARINE.html, 202019.	Commented [WK3]: This should actually be Centre for
		Environmental Data Analysis, CEDA-link-to-DOIdata but this is ready yet – it will be prior to publication.

1401	This product forms one of the HadOBS (www.metoffice.gov.uk/hadobs) climate monitoring products and will
1402	be blended with the HadISDH.land product to create a global land and marine humidity monitoring product.
1403	Updates and exploratory analyses are documented at http://hadisdh.blogspot.co.uk and through the Met Office
1404	HadOBS twitter account @metofficeHadOBS.
1405	
1406	6 Discussion and conclusions
1407	
1408	Marine humidity data are susceptible to a considerable number of biases and sources of error that can be large in
1409	magnitude. We have cleaned the data where possible by applying quality control for outliers, supersaturation,
1410	repeated values and neighbour inconsistency which has removed up to 25 % of our initial selection in some
1411	years. We have also applied adjustments to account for biases arising from un-aspirated instrument types and
1412	differing observation heights over space and time. Care has also been taken to avoid diurnal and seasonal
1413	sampling biases as far as possible when building the gridded fields and the use of gridbox mean climate
1414	anomalies reduces remaining random error through averaging.
1415	
1416	Spatial coverage of HadISDH.marine differs year to year. The coverage is generally poorer than seen for
1417	variables such as SST which benefit significantly from drifting buoy observations. Any further decline in
1418	observation and transmission of humidity from ships is of concern to our ability to robustly monitor surface
1419	humidity over oceans. Future versions may be able to make more use of humidity data from buoys but their
1420	proximity to the sea surface and difficulty of regular maintenance can lead to poor quality observations. The
1421	provision of digital metadata significantly improves our ability to quantify and account for biases in the data.
1422	Hence, the continuity of this metadata beyond 2014, and ideally an increase in quantity, also strongly affects our
1423	ability to robustly monitor ocean surface humidity. Given the current availability of ship data and metadata, and
1424	necessarily strict selection criteria and quality control, the resulting spatial coverage is good over the Northern
1425	Hemisphere outside of the high latitudes. There is very poor coverage over the Southern Hemisphere, especially
1426	south of 20° S. This means that our 'global' analyses are biased to the Northern Hemisphere. Care should be
1427	taken to account for different spatial coverage when comparing products. However, when comparing HadISDH
1428	to masked and unmasked ERA-Interim fields differences were surprisingly small.

1430	We have shown that the observations are warm and moist relative to ERA-Interim reanalysis for the majority of
1431	the observed globe apart from the northwestern Pacific. This is despite ERA-Interim fields representing 2 m
1432	above the surface compared to the general observation heights of 10-30 m above the surface. Differences are
1433	largest around coastlines, particularly in the Red Sea and Persian Gulf. There is insufficient spatial coverage to
1434	produce a high resolution climatology from the data themselves, hence our use of ERA-Interim initially and then
1435	interpolated observation based fields. However, the lower resolution (5° by 5°) monthly mean climatologies
1436	from the final HadISDH.marine.1.0.0.2018f version show expected spatial patterns and have good spatial
1437	consistency, providing evidence that our data selection methods have resulted in reasonably high quality data.
1438	
1439	The quality control and bias adjustment procedures have made small differences to the global average anomaly
1439 1440	The quality control and bias adjustment procedures have made small differences to the global average anomaly timeseries for specific humidity, dew point temperature and air temperature. This overall agreement in the
1440	timeseries for specific humidity, dew point temperature and air temperature. This overall agreement in the
1440 1441	timeseries for specific humidity, dew point temperature and air temperature. This overall agreement in the global average timeseries between versions, and also between the daytime, night time and combined versions,
1440 1441 1442	timeseries for specific humidity, dew point temperature and air temperature. This overall agreement in the global average timeseries between versions, and also between the daytime, night time and combined versions, increases confidence in the overall signal of increased moisture and warmth over oceans. These features show
1440 1441 1442 1443	timeseries for specific humidity, dew point temperature and air temperature. This overall agreement in the global average timeseries between versions, and also between the daytime, night time and combined versions, increases confidence in the overall signal of increased moisture and warmth over oceans. These features show widespread spatial consistency in the HadISDH.marine.1.0.0.2018f gridbox decadal trends which also adds

1447 differences year to year, with ERA-Interim showing warmer and moister anomalies prior to the early 1990s, and 1448 hence, smaller trends overall.

1449

1450 For relative humidity, differences between the versions can be large for any one year but the overall decreasing 1451 saturation trend appears to be robust. We conclude this because the trend is consistent across all processing 1452 steps, apparent in ERA-Interim fields and also has spatial consistency across the extratropics and mid-latitudes. 1453 This is a somewhat surprising result and one that should be treated cautiously. Theoretical and mModel-based 1454 analysis of changes in relative humidity over ocean under a warming climate suggest negligible or small 1455 positive changes (Held and Soden, 2006; Schneider et al., 2010; Byrne and O'Gorman, 2013, 2016, 2018). The 1456 temporal patterns in global average relative humidity are quite different to those over land whereas specific 1457 humidity shows similarity with the HadISDH.land timeseries, largely driven by the El Niño related peaks. The 1458 pre-1982 data have previously been noted as having a moist bias and our processing steps do not appear to have 1459 removed this feature. The trend excluding this earlier period (1982-2018) is no longer a significant decreasing

1460	trend and therefore more consistent with expectation. Removal of whole number flagged data appeared to
1461	exacerbate the pre-1982 bias and make the negative trends larger. Further work to assess the physical
1462	mechanisms that might lead to such trends is needed.
1463	
1464	There are known issues with ERA-Interim in terms of its stability. For example, sea surface temperatures cooled
1465	around mid-2001 due to a change in the SST analysis product used (Simmons et al., 2014). This is very likely to
1466	affect humidity over the ocean surface in ERA-Interim. Similarly, changes in satellite streams over time can also
1467	affect the long-term stability of ERA-Interim, even in the surface fields. Also, the assimilated ship data are not
1468	adjusted for biases in the ERA-Interim assimilation. Clearly, there are various issues affecting both in-situ based
1469	monitoring products and reanalysis products such that neither one can be easily identified as the more accurate
1470	estimate. Analyses should take into account all available estimates and their strengths and weaknesses.
1471	Comparison of HadISDH.marine with satellite-based estimates of humidity over ocean will be an important next
1472	step.
1473	
1474	We have attempted to quantify uncertainty in HadISDH.marine. The uncertainty analysis comprises observation
1475	uncertainty at the point of measurement which is then propagated through to gridbox averages taking correlation
1476	in space and time into account where relevant. Sampling uncertainty at the gridbox level due to uneven
1477	sampling across the gridbox in space and time is assessed. We have also provided uncertainty estimates in
1478	regional and global averages including coverage uncertainty. The propagation of gridbox observation and
1479	sampling uncertainty to large scale averages does not explicitly take into account correlation in these uncertainty
1480	quantities in space and time. As this is a first version monitoring product this simple method is seen as an
1481	appropriate first attempt to assess uncertainty. The ranges presented should be seen as a lower limit on the
1482	uncertainty. Overall, uncertainty in the global average is dominated by the coverage uncertainty for all variables
1483	except relative humidity and dew point depression. The total observation uncertainty is larger at the beginning,
1484	and especially the end of the record, where digital metadata are fewer or non-existent (post-2014). Overall, the
1485	uncertainty is small relative to the magnitude of long-term trends with the exception of relative humidity. We
1486	suspect that this is an over-estimate at the gridbox level owing to assumptions of complete correlation in the
1487	height adjustment, instrument adjustment and climatology uncertainty components, and an underestimate at the
1488	regional average level given assumptions of no correlation. This is a first attempt to comprehensively quantify
1489	marine humidity uncertainty and future methodological improvements are envisaged.

1	4	9	0

1491	We conclude that this first version marine humidity monitoring product is a reasonable estimate of large-scale
1492	trends and variability and contributes to our understanding of climate changes as a new and methodologically-
1493	independent analysis. The trends and variability shown are mostly in concert with expectation; widespread
1494	moistening and warming is observed over the oceans (excluding the mostly data-free Southern Hemisphere)
1495	from 1973 to present. These are also large relative to the magnitude of our uncertainty estimates. Our key
1496	finding is that the marine relative humidity appears to be decreasing (the air is becoming less saturated). We
1497	have explored various processes for ensuring high quality data and shown that these do not make large
1498	differences for large scale analyses of specific humidity, dew point temperature and air temperature but that
1499	there is greater sensitivity to methodological choices for relative humidity.
1500	
1501	The spatial coverage of surface humidity data is very low outside of the Northern Hemisphere. If only those data
1502	with digitised metadata are included then this coverage deteriorates further. Although moored buoy numbers
1503	have increased dramatically since the 1990s, their measurements are more prone to error through proximity to
1504	the water, and hence, contamination, in addition to less frequent manual checking and maintenance. Hence, our
1505	ability to monitor surface humidity with any degree of confidence depends on the continued availability of ship
1506	data and provision of digitised metadata.

1508 **Author Contributions** 1509

1510 Kate Willett undertook the majority of the methodology, coding, writing and plotting. John Kennedy designed 1511 and coded the quality control methodology and software with some contribution from Kate Willett. Robert 1511 1512 1513 1514 1515 1516 Dunn designed and coded the gridding methodology and software with some contribution from Kate Willett. David Berry designed and reviewed the height adjustment methodology and provided guidance on marine humidity data biases, inhomogeneities and issues. All authors have contributed text and edits to the main paper.

Competing Interests 1517

1518 The authors declare that they have no conflict of interest.

1520 Acknowledgements 1521

1522 Kate Willett, Robert Dunn and John Kennedy were supported by the Met Office Hadley Centre Climate 1523 Programme funded by BEIS and Defra. (GA01101). 1524

1525 References

1527 Berry, D., 2009: Surface forcing of the North Atlantic: accuracy and variability, University of Southampton, 1528 176pp.

1529 Berry, D. I., Kent, E. C. and Taylor, P. K. : An analytical model of heating errors in marine air temperatures 1530 1531 from ships, J. Atmospheric and Oceanic Technology, 21(8), 1198-1215, 2004.

1507

1519

1532 Berry, D. I. and Kent, E. C. : A new air-sea interaction gridded dataset from ICOADS with uncertainty 1533 estimates, Bulletin of the American Meteorological Society, 90, 645-656, 2009. 1534 1535 Berry, D. I. and Kent, E. C.: Air-Sea fluxes from ICOADS: the construction of a new gridded dataset with 1536 uncertainty estimates, Int. J. Climatol., 31, 987-1001, 2011. 1537 1538 BIPM, 2008: Evaluation of measurement data - Guide to the expression of uncertainty in measurement. JCGM 1539 100:2008. https://www.bipm.org/en/publications/guides/gum.html 1540 1541 Bojinski, S., M. Verstraete, T.C. Peterson, C. Richter, A. Simmons, and M. Zemp, 2014: The Concept of 1542 Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bull. Amer. Meteor. 1543 Soc., 95, 1431-1443, https://doi.org/10.1175/BAMS-D-13-00047.1 1544 1545 Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., 1546 1547 Labow, G., Partyka, G., Pawson, S., Reale, O., Schubert, S. D. and Suarez, M. : MERRA-2: Initial Evaluation of 1548 the Climate, Technical Report Series on Global Modeling and Data Assimilation, Volume 43, NASA/TM-2015-1549 104606/Vol. 43, pp. 136. http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/, 2015. 1550 1551 Buck, A. L. : New equations for computing vapor pressure and enhancement factor, J. Appl. Meteor., 20, 1527-1552 1532, 1981. 1553 1554 Byrne, M. P. and P. A. O'Gorman, 2013: Link between land-ocean warming contrast and surface relative 1555 humidities in simulations with coupled climate models. Geophysical Ressearch Letters, 40 (19), 5223-5227, 1556 1557 https://doi.org/10.1002/grl.50971. 1558 1559 Byrne, M. P. and P. A. O'Gorman, 2016: Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. Journal of Climate, 29, 9045-9061, DOI: 10.1175/JCLI-D-1560 16-0351.1. 1561 1562 Byrne, M. P. and O'Gorman, P. A.: Trends in continental temperature and humidity directly linked to ocean 1563 warming, Procedings of the National Academy of Sciences USA. 115(19), 4863-4868. doi: 1564 10.1073/pnas.1722312115, 2018. 1565 Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses 1566 1567 of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), February 2019. 1568 https://cds.climate.copernicus.eu/cdsapp#!/home 1569 1570 Dai, A. : Recent climatology, variability, and trends in global surface humidity, J. Climate., 19, 3589-3606, 1571 2006. 1572 1573 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. 1574 A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L. J., Bidlot, L., Bormann, N., Delsol, 1575 C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., 1576 Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., 1577 Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: 1578 configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553-597, 1579 doi:10.1002/qj.828, 2011. 1580 1581 Ebita, A., and co-authors, : The Japanese 55-year reanalysis "JRA-55": An interim report. SOLA, 7, 149-152, 1582 doi:10.2151/sola.2011-038, 2011. 1583 1584 Elliott, W. P., Ross, R. J. and Schwartz, B. : Effects on climate records of changes in National Weather Service 1585 humidity processing procedures, Journal of Climate, 11, 2424-2436, 1998. 1586

 1587
 Freeman, E., & Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., Berry, D. I., Brohan,

 1588
 P., Eastman, R., Gates, L., Gloeden, W., J. Zaihua, Lawrimor, J., Rayner, N. A., Rosenhagen, G., Smith,

1589 S. R., : ICOADS Release 3.0: a major update to the historical marine climate record, International Journal of 1590 Climatology, 37 (5). 2211-2232.10.1002/joc.4775, 2017. 1591 1592 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., 1593 Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, 1594 A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., 1595 Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M. and Zhao, B., : The Modern-Era 1596 Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419-1597 5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. 1598 1599 Gilhousen, D., : A Field evaluation of NDBC Moored Buoy Winds, Journal of Atmospheric and Oceanic 1600 Technology, 4, 94 - 104, 1987. 1601 1602 Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., 1603 Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M. and 1604 Zhai, P. M.: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 1605 1606 Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1607 1608 pp. 159 - 254, doi:10.1017/CBO9781107415324.008, 2013. 1609 1610 Held, I. M. and Soden, B. J., : Robust responses of the hydrological cycle to global warming. Journal of 1611 Climate, 19, 5686-5699, 2006. 1612 1613 Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Alonso Balmaseda, M., 1614 Balsamo, G., Bechtold, P., Berrisford, P., Bidlot, J., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R., 1615 Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes, R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan, R., Horányi, A., Janisková, M., Laloyaux, P., Lopez, P., Muñoz-Sabater, J., Peubey, C., 1616 Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F., Yang, X., Zsótér, E. and Zuo, H.: Operational global reanalysis: progress, future directions and synergies with NWP, ERA Report 27, 63pp. Available from 1617 1618 1619 www.ecmwf.int, 2018. 1620 1621 Jensen, M. E., Burman, R. D. and Allen, R. G.: Evapotranspiration and Irrigation Water Requirements: A 1622 Manual. American Society of Civil Engineers, 332 pp, 1990 1623 1624 Jones, P. D., Osborn, T. J., and Briffa, K. R. : Estimating sampling errors in large-scale temperature averages, 1625 Journal of Climate, 10, 2548-2568, 1997. 1626 1627 Josey, S. A., Kent, E. C. and Taylor, P. K.: New insights into the ocean heat budget closure problem from 1628 analysis of the SOC air-sea flux climatology, J. Climate, 12, 2685-2718, 1999. 1629 1630 Kennedy, J. J., Ravner, N. A., Smith, R. O., Saunby, M. and Parker, D. E. ; Reassessing biases and other 1631 uncertainties in sea-surface temperature observations since 1850 part 1: measurement and sampling errors, J. 1632 Geophys. Res., 116, D14103, doi:10.1029/2010JD015218, 2011a. 1633 1634 Kennedy, J. J., Rayner, N. A., Smith, R. O., Saunby, M. and Parker, D. E. : Reassessing biases and other 1635 uncertainties in sea-surface temperature observations since 1850 part 2: biases and homogenisation, J. Geophys. 1636 Res., 116, D14104, doi:10.1029/2010JD015220, 2011b. 1637 1638 Kennedy, J. J., Rayner, N. A., Atkinson, C. P., & Killick, R. E. : An ensemble data set of sea-surface 1639 temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set, Journal of Geophysical 1640 Research: Atmospheres, 124. https://doi.org/10.1029/2018JD029867, 2019. 1641 1642 Kent, E. C. and Challenor, P. G. : Towards estimating climatic trends in SST. Part II: random errors, Journal of 1643 Atmospheric and Oceanic Technology. 23, 476-486. DOI: 10.1175/JTECH1844.1, 2006. 1644 1645 Kent, E. C., and Taylor, P. K. : Accuracy of humidity measurement on ships: Consideration of solar radiation 1646 effects, J. Atmos. Oceanic Technol., 13, 1317-1321, 1996. 1647

1648	Kent, E. C., Tiddy, R. J. and Taylor, P. K.: Correction of marine air temperature observations for solar radiation
1649 1650	effects, J. Atmos. Oceanic Technol., 10, 900–906, 1993.
1651	Kent, E. C., Woodruff, S. D. and Berry D. I. : Metadata from WMO Publication No. 47 and an Assessment of
1652	Voluntary Observing Ship Observation Heights in ICOADS, J. Atmospheric and Oceanic Technology 2007
1653	24:2, 214-234, doi: http://dx.doi.org/10.1175/JTECH1949.1, 2007.
1654	24.2, 214-254, doi: <u>intp://dx.doi.org/10.1175/3112-111242.1</u> , 2007.
1655	Kent, E. C., Rayner, N. A., Berry, D. I., Saunby, M., Moat, B. I., Kennedy, J. J. and Parker, D. E. : Global
1656	analysis of night marine air temperature and its uncertainty since 1880: The HadNMAT2 data set, J. Geophys.
1657	Res. Atmos., 118, doi:10.1002/jgrd.50152, 2013.
1658	Res. Halos, 110, doi:10.1002/j.Ed.00102, 2015.
1659	Kent, E. C., Berry, D. I., Prytherch, J., Roberts, J. B. : , International Journal of Climatology, 34 (2). 355-
1660	376.https://doi.org/10.1002/joc.3691, 2014.
1661	570. <u>mps.//doi.org/10.1002/j0010011</u> 2011.
1662	Met Office Hadley Centre; National Oceanography Centre, 2019: HadISDH.marine: gridded global monthly
1663	marine surface humidity data version 1.0.0.2018f. Centre for Environmental Data Analysis, <i>date of citation</i> .
1664	doi:xx.xxxx/XXXXX. http://dx.doi.org/xx.xxxx/XXXXX (FINALISED AFTER REVIEW)
1665	
1666	Peixoto, J. P., and Oort, A. H. : The climatology of relative humidity in the atmosphere, J. Climate, 9, 3443-
1667	3463, 1996.
1668	
1669	Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., Kaplan,
1670	A. : Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late
1671	nineteenth century, Journal of Geophysical Research – Atmospheres, 108, No. D14, 4407.
1672	https://doi.org/10.1029/2002JD002670, 2003.
1673	
1674	Rayner, N., Brohan, P., Parker, D., Folland, C., Kennedy, J., Vanicek, M., Ansell, T. and Tett, S. : Improved
1675	analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth
1676	century: The HadSST2 data set, J. Clim., 19(3), 446–469, doi:10.1175/JCLI3637.1, 2006.
1677	contay. The fundoof 2 data set, of contar, 17(0), the for, doi:10.1117/set21005.11, 2000.
1678	Santer, B. D., Thorne, P. W., Haimberger, L., Taylor, K. E., Wigley, T. M. L., Lanzante, J. R., Solomon, S.,
1679	Free, M., Gleckler, P. J., Jones, P. D., Karl, T. R., Klein, S. A., Mears, C., Nychka, D., Schmidt, G. A.,
1680	Sherwood, S. C. and Wentz, F. J.: Consistency of modelled and observed temperature trends in the tropical
1681	troposphere. Int. J. Climatol., 28, 1703-1722. doi:10.1002/joc.1756, 2008.
1682	
1683	Schneider, T., O 'Gorman, P. A. and Levine, X. J.,: Water vapor and the dynamics of climate changes, Reviews
1684	in Geophysics, 48, RG3001, doi:10.1029/2009RG000302, 2010.
1685	
1686	Simmons, A., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D.: Low-frequency variations in surface
1687	atmospheric humidity, temperature and precipitation: inferences from reanalyses and monthly gridded
1688	observational datasets, J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442, 2010.
1689	
1690	Simmons, A. J., Poli, P., Dee, D. P., Berrisford, P., Hersbach, H., Kobayashi S. and Peubey, C. : Estimating
1691	low-frequency variability and trends in atmospheric temperature using ERA-Interim, Q.J.R. Meteorol. Soc.,
1692	140: 329-353. doi:10.1002/qj.2317, 2014.
1693	
1694	Smith, S. D.: Wind stress and heat flux over the ocean in gale force winds. J. Physical Oceanography, 10, 709-
1695	726, 1980.
1696	Smith, S. D. : Coefficients for sea surface wind stress, heat flux and wind profiles as a function of wind speed
1697	and temperature, J. Geophys. Res., 93, 15467-15472, 1988.
	· · · · · · · · · · · · · · · · · · ·
1698	Stull, R. B. : An Introduction to Boundary Layer Meteorology Klewer Academic Publishers, 666 pp, 1988.
1699	Wade, C. G.,: An evaluation of problems affecting the measurement of low relative humidity on the United
1700	States radiosonde, Journal of Atmospheric and Oceanic Technology, 11, 687-700, 1994.
1.	
1701	Willett, K. M., Jones, P. D., Gillett N. P. and Thorne, P. W: Recent changes in surface humidity: development
1702	of the HadCRUH dataset, J. Climate, 21, 5364–5383, 2008.

- Willett, K. M., Williams Jr., C. N., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D. and
 Parker, D. E. : HadISDH: An updated land surface specific humidity product for climate monitoring. Climate of
 the Past, 9, 657-677, doi:10.5194/cp-9-657-2013, 2013.
- Willett, K. M., Dunn, R. J. H., Thorne, P. W., Bell, S., de Podesta, M., Jones, P. D., Parker, D. E. and Williams
 Jr., C. N.-: HadISDH land surface multi-variable humidity and temperature record for climate monitoring,
 Climate of the Past, 10, 1983-2006, doi:10.5194/cp-10-1983-2014, 2014.
- Willett, K. M., Dunn, R. J. H., Kennedy, J. J. and Berry, D. L: HadISDH.marine: gridded global monthly marine
 surface humidity data (version 1.0.0.2018f) [Data set]. Met Office Hadley Centre HadOBS Datasets,
 www.metoffice.gov.uk/hadobs/hadisdh/indexMARINE.html, 202019.]
- 1716Willett, K. M., Berry, D., Bosilovich, M. and Simmons, A.-: [Global Climate] Surface Humidity [in "State of1717the Climate in 2018"], Bulletin of the American Meteorological Society, accepted, 2019.
- 1/718
 Wolter, K.,-: Trimming problems and remedies in COADS, Journal of climate. 10. 1980-1997. DOI:

 1719
 10.1175/1520-0442(1997)010<1980:TPARIC>2.0.CO;2, 1997.

Woodruff, S.,-: Archival of data other than in IMMT format: The International Maritime Meteorological
Archive (IMMA) format. NOAA Earth System Research Laboratory (ESRL), Boulder, CO, USA.
http://icoads.noaa.gov/e-doc/imma/R2.5-imma.pdf, 2010.

Commented [WK4]: This will actually be 'Centre of Environmental Data Analysis, link-to-ceda-DOldata. This hasn't been set up yet but will be prior to publication.

Tables

Table 1. Description of quality control tests.

Test	Description	1 st and 2 nd Iteration	3 rd Iteration and Bias Adjusted	<u>% of</u> Observations <u>Removed</u>
<u>day / night</u>	values likely to be affected by the solar heating of a ship where the sun was above the horizon an hour before the observation (based on the month, day, hour, latitude and longitude; Kent et al. (2013)) are flagged as 'day'	<u>flagged</u>	<u>flagged</u>	NA
<u>climatology</u>	$T \text{ and } T_d \text{ must be within a specified threshold}$ of the nearest 1° by 1° pentad climatology	removed	removed	$\frac{T = 2.39 \text{ and}}{T_d = 5.14}$
supersaturation	T_d must not be greater than T (only T_d removed)	removed	removed	<u>0.54</u>
<u>track</u>	The distance and direction travelled by the ship must be plausible and consistent with the time between observations, normal ship speeds and observation locations before and after.	<u>removed</u>	<u>removed</u>	<u>0.86</u>
repeated value	A <i>T</i> or T_d value must not appear in more than 70 % of a ship track where there are at least 20 observations.	removed	removed	$\underline{T = 0.04 \text{ and}}{\underline{T_d} = 0.06}$
repeated saturation	Saturation $(T_d = T)$ must not persist for more than 48 hours within a ship track where there are at least 4 observations (only T_d removed).	<u>removed</u>	removed	<u>0.54</u>
<u>buddy</u>	of the average of hearest heighbours in space in the applied removed		$\frac{T = 7.16 \text{ and}}{T_d = 9.47}$	
whole number	A <i>T</i> or T_d value must not appear as a whole number in more than 50 % of a ship track where there are at least 20 observations.	flagged	flagged	$\frac{T = 11.73 \text{ and}}{\underline{T_d} = 8.20}$

I

Table 24. Description of the uncertainty elements affecting marine humidity. All uncertainties are assessed as 1σ uncertainty.

Uncer	tainty Source	Description	Туре	Formula	Correlation
U_i	Non-aspirated instrument adjustment uncertainty. Expressed as q (g kg ⁻¹) and then propagated to other humidity variables	Adjusted poorly aspirated instrument: 0.2 g kg ⁻¹ in terms of q (following Berry and Kent, 2011 standard uncertainty assessment). Partially adjusted unknown instrument: 0.2 g kg ⁻¹ + the full adjustment amount in terms of q.	<u>s</u> Standard	0.2 $0.2 + 100 \left(\frac{abs(q - q_{adj})}{55}\right)$	Space and time, r = 1
U_h	Observation height adjustment	Height adjusted ship and valid SST:	<u>n</u> Normally distributed	$\frac{xH_{max} - xH_{min}}{2}$	Space and time, $r = 1$

	T	r	[1
	uncertainty. Expressed as T (°C) and q (g kg ⁻¹) and then propagated to other humidity variables	assessed using the range of adjustments from a 1σ uncertainty in the height estimate. Height adjusted ship and invalid			-
		SST or height adjusted buoy: the larger of the adjustment value or $0.1 ^{\circ}$ C in terms of <i>T</i> and $0.007q$.	normally distributed	x_{adj} Or 0.1 °C in terms of $T 0.007q_{adj}$	
		Height adjustment or uncertainty range not resolved, valid SST: half of the difference between the observation value and the surface value (SST or q _{sf}).	<u>standard</u>	$\frac{T_{(adj)} - SST}{2}$ $\frac{q_{(adj)} - q_{sf}}{2}$ $q_{sf} = 0.98q_{sat}f(SST)$	
		Height adjustment or uncertainty range not resolved, no valid SST: 0.1 $^{\circ}$ C in terms of <i>T</i> and 0.007 <i>q</i> .	standard	0.1 °C in terms of $T 0.007 q_{adj}$	
U_m	Measurement uncertainty. Expressed as T (°C), T_w (°C) and RH (°C) and then propagated to other humidity variables.	Standard uncertainty in the thermometer (T) and psychrometer (T_w) is 0.2 °C and 0.15 °C respectively. This equates in an uncertainty in RH dependent on T.	<u>s</u> Standard	0.2 °C in terms of T 0.15 °C in terms of T_w x %rh depending on the temperature and RH bins in Table S3	None, r = 0
U_w	Whole number uncertainty. Expressed as T (°C) and T_d (°C) and then propagated to other humidity variables.	Observation either has the Whole Number flag set or is a whole number and from a red listed source	<u>u</u> Uniformly distributed	$\frac{0.5}{\sqrt{3}}$	None, r = 0

I

I

l

I

		deck in Table S4. If both T and T_d are offending whole numbers then RH, T_w and DPD have a combined uncertainty. The 1° by 1° pentad gridbox climatological		$\frac{1}{\sqrt{3}}$	
Uc	Climatology uncertainty. Assessed for each variable independently.	standard deviation for the variable is divided by the square root of the number of observations used to create it.	<u>s</u> Standard	$rac{\sigma_{clim}}{\sqrt{N_{obs}}}$	Space an time, r =
U _{og}	Total observation uncertainty of the gridbox	All gridbox observation uncertainty sources are combined, assuming no correlation between sources.	<u>s</u> Standard	$\sqrt{U_i^2 + U_h^2 + U_m^2 + U_w^2 + U_c^2}$	Space an time to some extent, decreasi with spa and time
Usg	Temporal and spatial sampling uncertainty of the gridbox	Sampling uncertainty follows Jones et al., (1997) depending on the mean 'station' variance, the mean inter-site correlation and the number of 'stations' contributing to the gridbox.	<u>s</u> Standard	$\frac{\left(\bar{s}_{i}^{2}\bar{r}(1-\bar{r})\right)}{\left(1+\left(N_{s}-1\right)\bar{r}\right)}$	Space at time to some extent, decreasi with spa and time
U_{fg}	Full uncertainty of the gridbox	All gridbox uncertainty sources are combined, assuming no correlation between sources.	<u>s</u> Standard	$\sqrt{U_{og}^2 + U_{sg}^2}$	Space at time to some extent, decreasi with spa and time

I

I

I

Figures

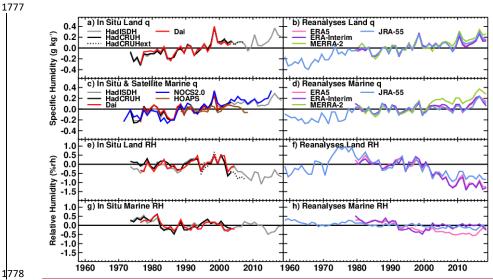
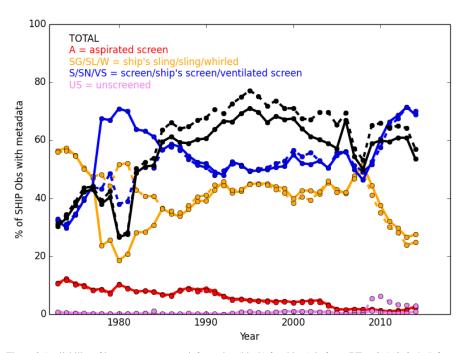
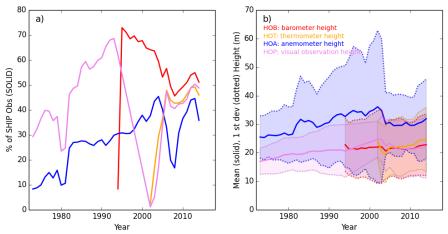
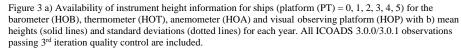





Figure 1 Global average surface humidity annual anomalies (base period: 1979-2003). For in-situ datasets, 2-m 1780 surface humidity is used over land and ~10-m over the oceans. For the reanalysis, 2-m humidity is used across 1781 the globe. For ERA-Interim and ERA5, ocean-only points over open sea are selected and background forecast 1782 values are used as opposed to analysis values to avoid incorporating biases from unadjusted ship data. All data 1783 have been given a mean of zero over the common period 1979-2003 to allow direct comparison, with HOAPS 1784 given a zero mean over the 1988-2003 period. [Sources: HadISDH (Willett et al., 2013, 2014); HadCRUH 1785 (Willett et al., 2008); Dai (Dai 2006); HadCRUHext (Simmons et al. 2010); NOCSv2.0 (Berry and Kent, 2009, 1786 2011); HOAPS (Fennig et al. 2012), ERA-Interim (Dee et al., 2011), ERA5 (C3S 2017, Hersbach et al., 2018), 1787 MERRA-2 (Gelaro et al. 2017; Bosilovich et al. 2015) and JRA-55 (Ebita et al. 2011). Adapted from Willett et 1788 al., 2019. 1789

Total179117921793179417941795179517961797179817991799179917901791179117921793179417941795179617971796179717971798179917991799179917901791179217931794179517961797179817991799179017911792

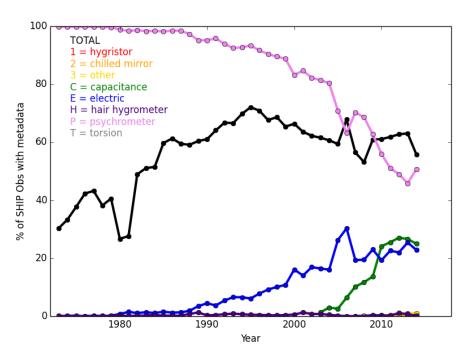
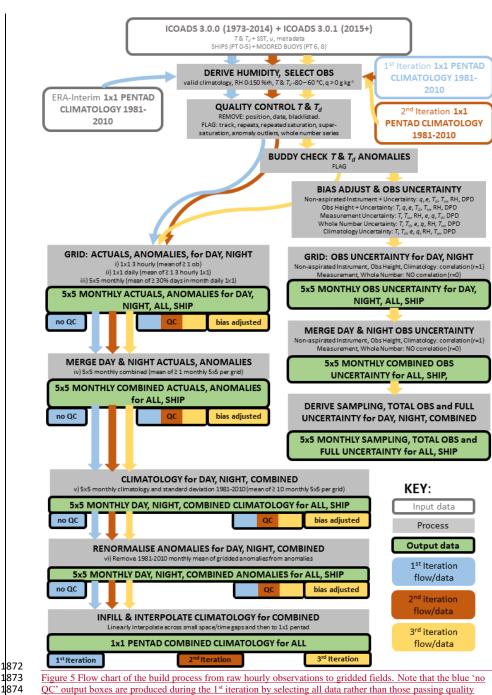



Figure 4 Availability of instrument type information (black) for ships (platform (PT) = 0, 1, 2, 3, 4, 5) for the hygrometer (TOH) for each year. All ICOADS 3.0.0/3.0.1 observations passing 3^{rd} iteration quality control are included. The percentage of TOHs in each type category is also shown.

control.

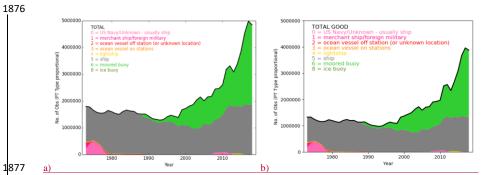


Figure 65 Annual observation count for the initial selection (a) and only those observations passing the final 3rd iteration quality control (b), broken down by platform (PT) type.

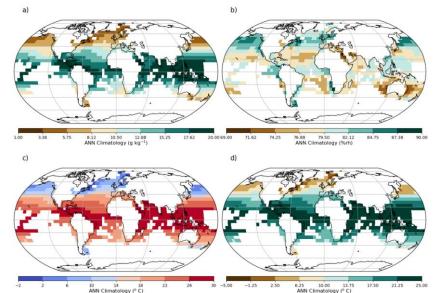


Figure 7 Annual mean climatological means are calculated for gridboxes and months with at least 10 years present over the climatology period. Annual mean climatologies require at least 9 months of the year to be represented climatologically.

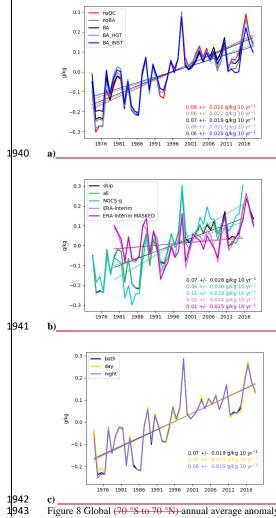


Figure 8 Global (70 °S to 70 °N) annual average anomaly timeseries and decadal trends (+/- 900 % confidence 1944 interval) for specific humidity. a) Processing comparison for ships only: raw data (noQC), 3rd iteration qualitycontrolled with no bias adjustment (<u>noNBAC</u>), 3rd iteration quality-controlled and bias-adjusted (BAClocal), 3rd 1945 1946 iteration quality-controlled and bias-adjusted for ship height only (BA_ClocalHGT), 3rd iteration quality-1947 controlled and bias-adjusted for instrument ventilation only (BA_ClocalINST). b) Platform and alternative 1948 product comparison: 3rd iteration quality-controlled and bias-adjusted ship-only (ship), 3rd iteration quality-1949 controlled and bias-adjusted for ships and moored buoys (all), NOCSv2.0 in-situ quality-controlled and bias-1950 adjusted product based on ships only (NOCS-q), ERA-Interim reanalysis 2m fields using complete ocean 1951 coverage at the 1° by 1° scale (ERA-Interim), ERA-Interim reanalyses 2m fields using complete ocean coverage 1952 at the 1° by 1° scale and masked to HadISDH marine spatio-temporal coverage (ERA-Interim MASKED). 1953 Trends cover the common 1979 to 2015 period. 1979 to 2018 trends for ERA-Interim are 0.034 ± 0.02898 and 1954 0.0329 ± 0.027098 for the full and masked versions respectively. c) Time of observation comparison for 3rd 1955 iteration quality-controlled and bias-adjusted ship-only: all times (both), daytime hours only (day), night time 1956 hours only (night). Linear trends were fitted using ordinary least squares regression with AR(1) correction 1957 applied when calculating confidence intervals (Santer et al., 2008)the median of pairwise slopes.

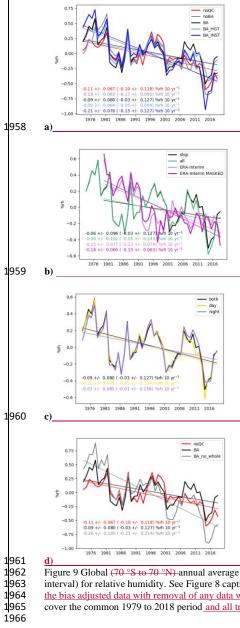
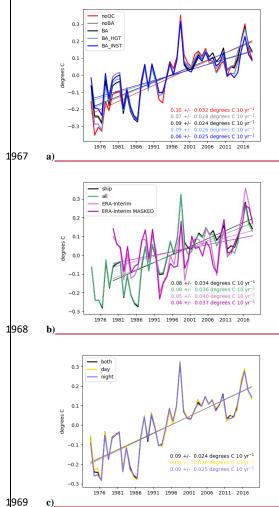
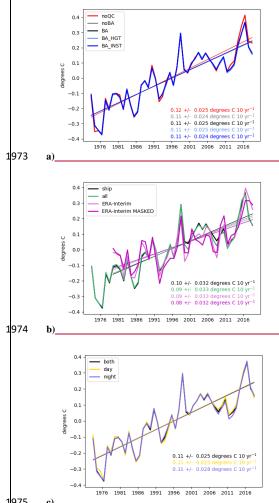




Figure 9 Global (70 °S to 70 °N) annual average anomaly timeseries and decadal trends (+/- 900 % confidence interval) for relative humidity. See Figure 8 caption for details. In addition, panel d) shows the timeseries from the bias adjusted data with removal of any data with a whole number flag set (BA_no_whole). Trends in b) cover the common 1979 to 2018 period and all trends in parentheses cover the 1982-2018 period.

1970 1971 1972

1976 1977 1978 1979 2018 period.

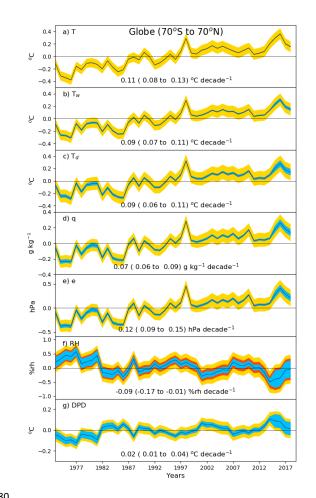


Figure 12 Global average timeseries of annual mean climate anomalies for all variables. The 2 sigma uncertainty ranges for total observation (blue), sampling (red) and coverage (gold) uncertainty contributions combined are shown. All series have been given a zero mean over the common 1981-2010 period. Decadal linear trends and 90^{th} percentile confidence intervals (in parentheses) were fitted using ordinary least squares regression with AR(1) correction applied when calculating the confidence intervals (Santer et al., 2008). Linear trends were fitted using the median of pairwise slopes with the range representing the 90^{th} % confidence interval in the trend.

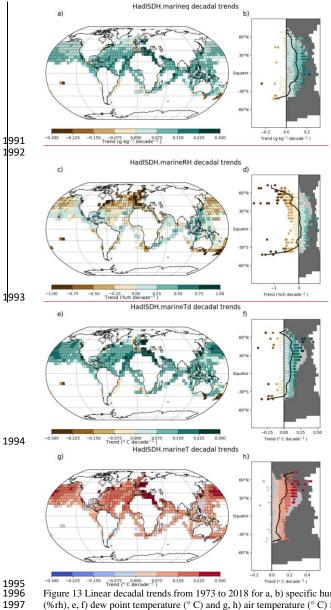


Figure 13 Linear decade^(*) Figure 13 Linear decade trends from 1973 to 2018 for a, b) specific humidity (g kg⁻¹), c, d) relative humidity (%rh), e, f) dew point temperature (° C) and g, h) air temperature (° C) for the 3rd iteration quality-controlled 1997 1998 1999 2000 2001 and bias-adjusted ships only. Decadal linear trends were fitted using ordinary least squares regression Trends have been fitted using the median of pairwise slopes when there are at least 70 % percent of months present over the trend period. Gridboxes with boundaries show significant trends in that the 90 % confidence interval (calculated with AR(1) correction following Santer et al., 2008) around the trend magnitude is the same sign as 2002 the trend and does not encompass zero. The right-hand panels (b, d, f, h) show the distribution of gridbox trends 2003 by latitude with the mean shown as a solid black line. The dark grey shading shows the proportion of the globe 2004 at that latitude which is ocean. The light grey shading shows the proportion of the globe that contains 2005 observations.