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Abstract. We present Sval_Imp, a high resolution gridded dataset designed for forcing models of terrestrial surface processes

on Svalbard. The dataset is defined on a 1km grid covering the archipelago of Svalbard, located in the Norwegian Arctic

(74-82◦N). Using a hybrid methodology combining multi-dimensional interpolation with simple dynamical modelling, the

atmospheric reanalyses ERA-40 and ERA-interim by the European Centre for Medium-Range Weather Forecasting have been

downscaled to cover the period 1957-2017 at steps of 6h. The dataset is publicly available from a data repository. In this paper,5

we describe the methodology used to construct the dataset, present the organization of the data in the repository and discuss the

performance of the downscaling procedure. In doing so, the dataset is compared to a wealth of data available from operational

as well as project-based measurements. The quality of the downscaled dataset is found to vary in space and time, but generally

represents an improvement compared to unscaled values, especially for precipitation. Whereas operational records are biased to

low-elevations around the fringes, we stress the hitherto under-used potential of project-based measurements at higher elevation10

and in the interior of the archipelago for evaluating atmospheric models. For instance, records of snow accumulation on large

ice masses may represent measures of seasonally-integrated precipitation in regions sensitive to the downscaling procedure,

thus providing added value.

Sval_Imp (Schuler, 2018) is publicly available from the Norwegian Research Data Archive NIRD, a data repository (https:

//doi.org/10.11582/2018.00006).15

Copyright statement. Sval_Imp is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). In essence you

are free to copy, distribute, and adapt the work, as long as you attribute the work to its origin and abide by the other license terms.

1 Introduction

The non-linearity of many surface processes poses challenges on appropriateness of atmospheric forcing for impact studies

in terms of accuracy and precision (e.g., Liston and Elder, 2006). Especially in mountainous areas, the variability of surface20

systems is typically governed by spatial scales not resolved in regional climate models and adjustments have to be made to

overcome this (e.g., Fiddes and Gruber, 2014). A variety of methods has been developed for this purpose, differing in terms of
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data requirements and computational cost. While empirical-statistical scaling requires reference data for training and assumes

a temporal robustness of the employed statistical relations (e.g., Ehret et al., 2012; Maraun, 2013), dynamic downscaling by

means of high-resolution atmospheric modelling has high computational costs (e.g., Gutmann et al., 2016).25

In this paper, we present Sval_Imp (Schuler, 2018), a high resolution gridded dataset obtained using a hybrid methodology

combining multi-dimensional interpolation with simple dynamical modelling. The dataset is defined on a 1km grid covering

the archipelago of Svalbard, located in the Norwegian Arctic (74-82◦N, 10-35◦E). The atmospheric reanalyses ERA-40 and

ERA-interim by the European Centre for Medium-Range Weather Forecasting have been downscaled to cover the period 1957-

2017 at 6 hours temporal resolution. The dataset comprises the near-surface variables required to compute the surface energy30

balance, namely air temperature, precipitation, relative humidity, wind speed, and downwelling components of shortwave

(solar) and longwave (thermal) radiation. Sval_Imp is publicly available from the Norwegian Research Data Archive NIRD,

a data repository (https://doi.org/10.11582/2018.00006). In the following, we describe the methodology used to derive the

dataset, present the organization of the data in the repository and discuss the performance of the downscaling procedure. For

the latter, the dataset is compared to a wealth of data available from long-term operational as well as short-term scientific35

records of meteorological and glaciological measurements. Operational records are biased to low-elevations around the fringes

of the archipelago. Therefore, we stress the hitherto under-used potential of project-based measurements in the interior, high-

elevation regions for evaluating atmospheric models. For instance, records of snow accumulation on large ice masses may

represent measures of seasonally-integrated precipitation in regions sensitive to the downscaling procedure, thus providing

added-value. Sval_Imp has been employed entirely or in parts by a range of projects for forcing process models of the surface40

energy and mass balances of glaciers (Østby et al., 2017), precipitation patterns and meltwater production in the Kongsfjord

area (Pramanik et al., 2018), for assimilation of remotely-sensed snow cover using a snow distribution model (Aalstad et al.,

2018) as well as for assessing growing conditions for fungi (Botnen et al., in prep.). Further, the dataset has been used to assess

changes and trends in climate conditions of Svalbard (Hanssen-Bauer et al., 2019).

2 Methodology45

To generate fields of near-surface air temperature, precipitation, relative humidity, wind and downwelling shortwave and long-

wave radiation, we have downscaled the ERA-40 and ERA-interim reanalyses of the European Centre for Medium-Range

Weather Forecasts (Uppala et al., 2005; Dee et al., 2011). The reanalysis data is provided at 6-hour intervals and has been

retrieved on a 0.75◦×0.75◦ spatial grid covering the periods 1957-2002 (ERA-40) and 1979-2017 (ERA-interim). These data

have been downscaled to a 1km grid covering the region of interest (Fig. 1) using the scheme described in the following50

to produce Sval_Imp, a high-resolution, 6-hour dataset of precipitation, temperature, relative humidity, windspeed as well as

downwelling shortwave and longwave radiation fluxes.
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Figure 1. The map shows the Svalbard archipelago, shading indicates surface elevation, glacierized areas are outlined in blue. The locations

of meteorological stations are represented by red diamonds, the numbers refer to the station names: 1 - Etonbreen, 2 - Janssonhaugen, 3 -

Gruvefjellet, 4 - Kapp Heuglin, 5 - Rijpfjorden, 6 - Svalbard Airport, 7 - Isfjord Radio, 8 - Verlegenhuken, 9 - Hornsund, 10 - Kvitøya, 11 -

Holtedahlfonna, 12 - Ny-Ålesund, 13 - Hopen. The black crosses indicate the grid points of the ERA reanalyses, and the grey countourlines

indicate the topography of Svalbard in the ERA reanalyses at 0, 100, 200 and 300 m asl.
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2.1 Downscaling

Precipitation is often heavily biased in coarsely-resolved reanalyses, especially in environments with pronounced topography,

where it typically is too low and lacks spatial detail (Schuler et al., 2008). This is associated with the smoothed representation55

of the actual topography in the large-scale model used for the reanalysis (Fig. 1), leading to an underestimate of orographic

precipitation. Figure 1 shows that ERA greatly generalizes the high resolution topography, representing Svalbard as a wide and

flat bump, that exceeds sea-level far off the actual coastlines, while surface elevation in the interior does not exceed 400 m asl.

In contrast, the highest elevation in our gridded topography map is 1600 m asl. The roughness of the actual topography that

gave rise to the name of the main island ’Spitsbergen’ (sharp tops) is not represented by the smoothed topography used for the60

ERA reanalyses. We assume that this is the main reason for the poor performance of reanalyzed precipitation. To account for

orographic enhancement, we use a linear theory (LT) of orographic precipitation (Smith and Barstad, 2004).

The other required climate variables are downscaled to the 1 km grid largely following the TopoSCALE methodology

(Fiddes and Gruber, 2014) which also builds on the assumption that weaknesses in the representation of topography at the

coarse scale are mainly responsible for the misfit between coarse scale and point observations. TopoSCALE exploits the65

relatively high vertical resolution of the reanalysis data to downscale variables to the elevation of the actual topography, based

on the properties of the vertical structure in the reanalysis. The downscaled fields preserve the horizontal gradients present in

ERA, but include additional features caused by the real topography which were not present in the ERA products. In doing so,

we add spatial detail to the reanalysis fields that is consistent with the temporal evolution of atmospheric conditions of the

reanalysis. This approach is assumed to outperform simpler bias corrections, since transient properties of the atmosphere are70

accounted for. For example, transient lapse rates including inversions in the reanalysis data will be preserved in the downscaled

product.

In our application, we modified the TopoSCALE methodology regarding downscaling of direct shortwave radiation and air

temperature, as described in Sections2.3 and 2.4.

2.2 Precipitation75

The LT-model describes an air parcel as it moves across a prescribed surface topography. The air parcel is characterized by

its temperature, stability, wind direction and speed. Terrain induced uplift of the air parcel results in condensation and eventu-

ally precipitation of moisture downstream of the uplift. This model has been successfully evaluated using precipitation gauges

(Barstad and Smith, 2005) and snow measurements (Schuler et al., 2008; Østby et al., 2017) and applied for downscaling pre-

cipitation (e.g. Crochet et al., 2007; Jarosch et al., 2012; Roth et al., 2018). The linear theory utilizes a Boussinesq description80

of mountain wave to derive a transfer function that, for given wind conditions, relates the orographically enhanced precipitation

to terrain topography.

By spectral decomposition and algebraic manipulation, Smith and Barstad (2004) derived the following transfer function

P̂ (k, l) =
Cwiσĥ(k, l)

(1− imHw)(1 + iστf )(1 + iστc)
. (1)
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relating P̂ (k, l), the Fourier-transform of the precipitation enhancement, to the Fourier-transform of terrain elevation ĥ(k, l),85

with k and l being the horizontal wave numbers. This relation depends on the uplift sensitivity factorCw, thickness of the moist

layer Hw, the intrinsic frequency σ(k, l) = Uk+V l (U and V being the east and north components of the wind vector), and

the conversion and fallout time scales τc and τf , respectively. In Equation (1), the vertical wave number m controls the depth

and tilt of the forced air uplift and is a function of the moist Brunt-Väisälä frequency, Nm, a quantity describing atmospheric

stability.90

Precipitation rates are obtained by retransforming P̂ and adding it to the background precipitation P∞, that accounts for

large-scale frontal and convective precipitation separate from orographic precipitation Poro. P∞ has been corrected for the

orographic effect already present in the ERA reanalyses Poro(hERA) by estimating this effect applying Equation 1 to the large-

scale topography hERA and removing the result from the ERA precipitation P∞ = PERA−Poro(hERA) (Schuler et al., 2008).

Total precipitation, Ptotal, is then95

Ptotal(x,y) = max

[
f

∫ ∫
P̂ (k, l)ei(kx+yl)dkdl+P∞,0

]
. (2)

Since the theory assumes saturated conditions, we account for reduced orographic enhancement at lower humidity by adopting

a correction factor f proposed by Sinclair (1994)

f =


(
RH−0.8

0.2

)1/4
: RH ≥ 0.8

0 : otherwise
(3)

which suppresses orographic enhancement when RH < 0.8.100

Instead of treating Nm, τf and τc as adjustable, constant parameters, we exploit the evolution of the moisture bearing layer

of the atmosphere, described in the reanalyses to derive transient values. In doing so, we remove calibration parameters from

our method and enable weather dependent variation of Nm, τf and τc. Values of Nm are calculated following

N2
m =

g

T
(Γm −Γe) (4)

where g is gravitational acceleration and T is vertically averaged air temperature weighted by the moisture content at several105

pressure levels (Jarosch et al., 2012). Environmental lapse-rates Γe are derived from air temperature at 700 hPa and 850 hPa

and corresponding geopotential heights. Γm is the moist adiabatic lapse rate, calculated according to Stone and Carlson (1979)

using vertically averaged values of atmospheric properties from the reanalyses weighted by moisture content. This follows

the convention that a positive lapse rate represents cooling with increasing elevation. Barstad and Smith (2005) report that

typical values of Nm range between 0 s−1, representing an atmosphere with no stratification, and 0.01 s−1 representing a110

stably stratified atmosphere. To avoid conditions inconsistent with the assumptions of the theory, we limit Nm to this range .

The quantities Hw, Cw and m are derived from Nm (Smith and Barstad, 2004).

Advection time scales τc and τf are assumed equal and τ = τc = τf =Hw/v is derived from the thickness of the moist

layer Hw and accounting for a typical hydrometeor fall speed v, which is taken as constant but allowed to take different

values for solid and liquid hydrometeors. This phase transition is determined by a threshold temperature of 273 K, hence115
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Figure 2. Example plot of longterm mean annual precipitation (m) over 1979-2017, downscaled from ERA-interim.

v(T ≤ 273K) = 1ms−1 for solid and v(T >= 273K) = 2ms−1 for liquid precipitation. In Equation 1, terrain elevation h is

the only gridded variable, the other variables represent averages over the volume of the described air parcel. To characterize

this air parcel, we first vertically average the values defined at the nodes of the horizontal domain over the 700 hPa and 850 hPa

pressure-levels weighted by the moisture content of the individual layers. These vertically averaged values are then horizontally

averaged over an area defined by a 200 km buffer around the 200 m contour of the reanalysis topography, the latter roughly120

outlining the extend of the archipelago (Fig. 1).

This setup is then applied to each 6h timestep and the resulting timeslices are progressively added to the record.

2.3 Air temperature

The downscaling for near-surface air temperature at 2 m level (T2) closely follows the TopoSCALE procedure Fiddes and

Gruber (2014), thereby we assume that the vertical structure of the free atmosphere determines the distribution of T2 with125

terrain elevation. For each 6h-time step, T2 is derived from a three-dimensional interpolation of the vertical air temperature
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structure of the large-scale reanalysis to the location of the grid nodes representing the high-resolution terrain elevation. We

notice, that for a melting snow or ice surface, skin temperature is bounded to 273 K, influencing the near surface air temperature

and resulting in reduced along-surface air temperature lapse-rates (e.g., Marshall et al., 2007). To account for this effect, we

apply a simple horizontal interpolation of the two-dimensional T2ERA field where T2> 273 K, instead of interpolating a130

three-dimensional data volume to the surface elevation of the high resolution topography. This strategy is motivated by the

discovery of unrealistic warm air temperatures at higher elevations in a test application. The occurrence of this unphysical

temperature inversion was restricted to the melting period, caused by extrapolation of surface inversions close to a snow/ ice

surface the temperature of which is capped at 273 K. To avoid this effect, we assume that where T2> 273 K, the T2 of the

reanalysis is consistent with a melting surface and hence more realistic than a free-atmosphere interpolation.135

Figure 3. Example plot of mean air temperature (2 m) in ◦C, over the period 1979-2017, downscaled from ERA-interim.

2.4 Radiation

Downscaling of shortwave and longwave downwelling radiative fluxes (SW and LW , respectively) was conducted by adopt-

ing the TopoSCALE methodology (Fiddes and Gruber, 2014) with a few adjustments. The shortwave radiation at surface level
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Figure 4. a) Example plot of 1979-2017 incident shortwave radiation (Wm−2), downscaled from ERA-interim; b) comparison between

measured (Maturilli et al., 2013) and downscaled daily values of SW at Ny-Ålesund. The color indicates the density of points from red (high)

to green (low).

of the reanalysis is projected to the high-resolution topography in a three-step procedure: first the surface SW flux is sepa-

rated into direct and diffuse components; second, the direct component is corrected for the elevation difference between the140

reanalysis surface and the high-resolution topography considering an effective atmospheric transmissivity that is derived from

top-of-atmosphere and surface fluxes; third a topographic correction is applied to account for effects of slope and aspect of

the high-resolution topography, as well as shading by surrounding topography. To compute direct solar radiation we apply

the relationship of Kumar et al. (1997) for atmospheric attenuation rather than the one given by Fiddes and Gruber (2014).

Solar geometry variables such as solar zenith and azimuth, and topographic shading due to local slope and aspect are cal-145

culated following Reda and Andreas (2004). Cast shadow and hemispherical obstructions caused by surrounding topography

are calculated following Ratti (2001). The longwave surface flux is downscaled by correcting for the elevation difference be-

tween reanalysis and high-resolution grids using an atmospheric emmissivity. This emissivity is estimated by accounting for

a clear-sky component that depends on humidity and air temparature and a cloud component that is estimated from the dif-

ference between the clear-sky component and the reanalysis longwave flux. Further terrain effects are incorporated through150

multiplication with the sky-view factor.

2.5 Relative humidity and windspeed

Similar to our assumption about T2 over a melting surface, we suggest that windspeed and RH in the boundary layer are more

affected by surface rather than by free-atmosphere conditions and we hence apply a simple two-dimensional interpolation of
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Figure 5. a) Example plot of 1979-2017 downwelling longwave radiation (Wm−2), downscaled from ERA-interim; b) comparison between

measured (Maturilli et al., 2013) and downscaled daily values of LW at Ny-Ålesund. The color indicates the density of points from red (high)

to green (low).

the near-surface values of the reanalysis, instead of interpolating a three-dimensional data volume to the surface elevation of155

the high resolution topography.

3 Performance evaluation

Østby et al. (2017) and Vikhamar-Schuler et al. (2019) have conducted thorough evaluations of the Sval_Imp dataset using data

from meteorological stations. Here, we summarize their main results in the subsequent subsections and refer to Østby et al.

(2017) for details. Furthermore, we present additional evaluation of the precipitation using snow measurements. Typically,160

meteorological records are available as daily mean values and 6-hourly, downscaled variables have been temporally aggregated

to match the time step of measurements. Precipitation in reanalysis is not constrained by data assimilation, giving rise to

uncertainty in timing as well as amount. Our downscaling aims for reducing the bias in precipitation amount but does not treat

the timing. For a performance evaluation, we therefore use monthly precipitation sums which are regarded as robust against

timing mismatches, whereas a higher temporal resolution could penalize a method that otherwise is successful in reducing the165

underestimation of the reanalysis.

3.1 Precipitation

At the operational weather stations (Fig. 1), downscaled precipitation (Fig. 2) is overestimated by 5 to 25 mm per month at

the weather stations, with a slightly higher bias during winter (Table 1). This is also consistent with the findings of Vikhamar-

Schuler et al. (2019) who evaluated the performance at 6 weather stations for several 30-year reference periods (1961-1990,170
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1971-2000, and 1988-2017). These biases are partly caused by too low precipitation measurements, the values of which are

heavily affected by wind-induced undercatch, especially for solid precipitation. Førland and Hanssen-Bauer (2000) suggest

that for solid precipitation, the actual precipitation at wind-exposed sites may be up to 80% higher than the gauge record. A

newly developed correction scheme for Norwegian mountain environments (Wolff et al., 2015) supports the finding of large

undercatch for solid precipitation, however, this corrections has not yet been applied for arctic conditions in Svalbard.175

In addition to gauge measurements from low-elevation stations along the coast, we also used snow survey transects across

Austfonna, a large ice cap in NE Svalbard (Fig. 1) to evaluate the Sval_Imp precipitation. We suggest that snow deposition on

large glacier areas, measured at the end of the winter, represents seasonally integrated precipitation. While these measurements

do not allow temporal resolution below one snow season (typically Oct-May), they provide useful information about spatial

precipitation patterns, in areas and elevations not covered by the operational meteorological stations. This approach builds180

on the implicit assumption of negligible sublimation, such that accumulated snow water equivalent represents the sum of

precipitation over the winter season. Svalbard has high air humidity throughout the year, limiting the potential for sublimation.

In an energy-balance study, Østby et al. (2017) estimated sublimation to about 0.016 m w.e year−1, which is 1-2 orders of

magnitude smaller than typical annual precipitation sums. There is generally good agreement concerning the spatial pattern

across the Austfonna ice cap (Fig. 6), where snow accumulation reveals a distinctive SE-NW asymmetry (Taurisano et al., 2007;185

Schuler et al., 2007; Dunse et al., 2009) caused by orographic enhancement of precipitation coming from the SE sector (i.e.,

the Barents Sea), although in individual years the downscaled values underestimate the measured accumulation, especially

in 2007 (Fig. 6). Even though, there is considerable scatter between observed and downscaled winter precipitation, there is

positive correlation, indicating that the spatial pattern is matched and in most years there is no systematic bias, showing that

the overall precipitation amount is adequately represented. On the other hand, the unscaled ERA-interim winter precipitation190

shows almost no spatial variation and considerably underestimates observed values (Fig. 2).

Østby et al. (2017) found that the winter mass balance of Hansbreen was not well reproduced both in terms of spatial pattern

as well as accumulation amount. Aas et al. (2016) similarly reported the lowest performance for Hansbreen although they

had used a much more complex precipitation scheme than the one presented here. The generally low performance of several

precipitation distribution schemes compared to the Hansbreen record has been interpreted to result from local conditions at195

Hansbreen where the spatial distribution of snow is caused by wind redistribution rather than by the spatial precipitation

pattern (Grabiec et al., 2006).

3.2 Air temperature

Downscaled air temparatures (Fig. 3) are compared to observations at the meteorological stations listed in Table 1 mostly for the

period after 2004. Despite altitude differences of up to 100 m between measuring site and corresponding grid node in the model,200

no altitude correction is performed, due to unknown lapse rates. In general the agreement is good between downscaled ERA and

observed air temperatures, with biases mostly below 1.5 K (Tab. 1). Despite a small bias for mean annual temperatures, there

is a clear seasonal bias, with ERA temperatures too warm during winter and too cold during summer (Table 1). Although the

biases are negative during summer, ERA is too warm over the glaciers during summer, when 2-m air temperatures are above

10



Figure 6. a) Map view of Sval_Imp precipitation accumulated over Oct 1998 to Mar 1999, overlaid by coloured circles, indicating the

measured snow water equivalent (SWE) by Sand et al. (2003). b) scatterplot comparing the 1999 measurements to winter precipitation

according to Sval_Imp (crosses) and to ERA-interim (dots). c) similar scatterplot as in b) but only for the Austfonna dataset that provides

multi-temporal coverage (Taurisano et al., 2007; Dunse et al., 2009).

freezing. These findings are consistent with those of Vikhamar-Schuler et al. (2019) who evaluated differences in seasonal205

mean values for different 30-year periods 1961-1990, 1971-2000 and 1988-2017.

At Svalbard Airport, the performances of downscaled ERA-40 and ERA-interim are investigated for the entire model period.

Over 1957-1979 only monthly measured air temparatures are available at Svalbard Airport, where downscaled ERA-40 has a

monthly root mean square error (RMSE) of 2.3 ◦C. For the 1979-2002 period the reanalysis products overlap with monthly

RMSE of 1.8 ◦C and 1.5 ◦C at Svalbard Airport for ERA-40 and ERA-interim, respectively. We attribute the lower performance210

prior to 1979 to the lack of satellite observations to constrain sea surface temperatures and sea ice cover in the reanalysis. Since

the Svalbard Airport air temperature record and other sites at the west coast are likely incorporated into the reanalysis, the

quality of the reanalysis in the pre-satellite era is possibly even lower in remote areas with no observations. Due to sparsity of

available data in the overlap period 1979-2002, we have not evaluated the performance of Sval_Imp for other variables than

air temperature. However, Østby et al. (2017) have evaluated the effect of this dataset discontinuity by simulating glacier mass215

balance using both, ERA-40 and ERA-interim to investigate whether this discontinuity could be responsible for a notable drop
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in simulated mass balance around year 1980. They found that the ERA-40 based simulation yields an about 0.13 m w.e. higher

mass balance than the one based on ERA-interim, but ERA-40 based simulations still show a 0.2 m drop of mass balance

between 1970 and 1990, larger than that caused by the data set discontinuity. This suggests that the change in mass balance

regime was not caused by the heterogeneity of our composite forcing. Nevertheless, we cannot rule out the possibility that this220

change was caused by the discontinuity inherent in both reanalyses due to the availability of satellite observations after 1979.

The annual observed air temperature trend for the period 1957-2013 at Svalbard Airport is 0.70±0.22 ◦C decade−1, while the

downscaled ERA data has an insignificantly lower warming trend of 0.67±0.19 ◦C decade−1 at Svalbard Airport.

3.3 Radiation

To evaluate the quality of Sval_Imp radiation components, we use available records from two stations, roughly 300 km apart225

from each other. The record from Ny-Ålesund is from a daily serviced Baseline Surface Radiation Network station (Maturilli

et al., 2013) whereas the Austfonna measurements are collected by an autonomously recording weather station (Schuler et al.,

2014).

In Ny-Ålesund the model largely reproduces observations both for short and longwave radiation (Figs. 5 and 4, Tab. 1).

During winter, downwelling longwave radiation is slightly underestimated, while there is no bias during summer. Since there230

is no air temparature bias in Ny-Ålesund during winter, the underestimation of longwave radiation is indicative of a too thin

cloud cover in the reanalysis. In general, the representation of clouds are among the major issues of the reanalysis (Aas et al.,

2016). Downwelling shortwave radiation is overestimated by 7 W m−2 over the summer season in Ny-Ålesund. There is

a much better agreement with radiation observations in Ny-Ålesund than on Etonbreen (Fig. 1), in northeastern Svalbard.

This is to be expected, since radio soundings and other observation data from Ny-Ålesund are assimilated into ERA-interim.235

Therefore, cloud cover at Ny-Ålesund is much better represented by the reanalysis than at Austfonna. On Etonbreen during

summer, Sval_Imp underestimates downwelling shortwave radiation by 40 W m−2 while downwelling longwave radiation is

overestimated by 12 W m−2, both indicative of a too thick atmosphere or too many clouds in the reanalysis. However, these

biases could also be partly explained by measurement uncertainty caused by rime on the sensor or by sensor tilt. The latter

issue is caused by the fact that the ice foundation of an autonomous weather stations may melt and deform causing tilt and240

thereby large errors, especially at high solar zenith angles (Bogren et al., 2016).

3.4 Relative humidity and windspeed

For relative humidity the reanalysis represents the seasonality well, and in late summer both the humidity and the biases are of

largest magnitude. At the two coastal stations at Hopen and Rijpfjorden, the downscaled reanalysis is too dry whereas it is too

humid at the two higher elevation stations. The coarse land mask of the reanalysis and the poor representation of sea ice are245

most likely the main causes for these biases.

Wind speeds are reproduced reasonably well, including the seasonal cycle (Tab. 1). Biases are within ±1.5 m s−1 with no

clear seasonal trend. It is likely that the biases are caused by site specific effects, such as deceleration of air flow in the lee of a

topographic obstacle or acceleration due to channelizing through valleys.
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Table 1. Meteorological stations used for validation of the downscaled reanalysis and their elevation (second line). N indicates the number of

daily averages used in the validation, except for precipitation for which monthly sums have been evaluated. Seasonal biases in meteorological

variables (downscaled minus observational averages) at all sites are averaged over each site’s observation period. Shown are air temperature

T (K), relative humidity, RH (%), wind speed, WS (ms−1), shortwave radiation, SW, and longwave radiation, LW (both in Wm−2) and

precipitation, P (mm). Column headings S and W denote summer (Jun-Aug) and winter (Sep-May), respectively. Positive numbers indicate

that the model results are larger than the observations. The second row at each site is the bias between the raw ERA data and the observations.

Location
∆ T ∆RH ∆WS ∆SW ∆LW ∆P

S W NT S W NRH S W NWS S W Nrad S W S W NP

Etonbreen† 0.2 1.3 3295 -2.2 -5.4 2738 0.3 0.2 2913 -40 -10 3240 12 -14 – – 0

369 m asl 1.1 1.9 -2.2 -5.4 0.3 0.2 -37 -9 17 -16 – –

Janssonhaugen -1.1 0.3 910 – – 0 -1.8 -1.3 945 – – 0 – – – – 0

270 m asl -1.0 -0.6 – – -1.8 -1.3 – – – – – –

Gruvefjellet 0.2 0.8 2555 3.1 -2.9 2555 0.0 -0.2 2551 – – 0 – – – – 0

464 m asl 0.7 0.9 3.1 -2.9 0.0 -0.2 – – – – – –

Kapp Heuglin -0.0 0.7 2099 – – 0 -0.0 1.0 2112 – – 0 – – – – 0

18 m asl 0.3 1.0 – – -0.0 1.0 – – – – – –

Rijpfjorden -0.3 0.9 1495 5.7 2.6 1495 0.8 0.9 1304 – – 0 – – – – 0

10 m asl 0.0 0.6 5.7 2.6 0.8 0.9 – – – – – –

Svalbard Airport -2.4 -0.4 12777 – – 0 -1.3 -1.0 12724 – – 0 – – 25 26 199*

28 m asl -2.4 -2.2 – – -1.3 -1.0 – – – – – –

Isfjord Radio -1.6 -1.2 1666 – – 0 – – 0 – – 0 – – – – 0

13 m asl -1.5 -0.5 – – – – – – – – – –

Verlegenhuken -0.5 0.0 986 – – 0 -1.9 -1.7 1700 – – 0 – – – – 0

8 m asl -0.3 0.5 – – -1.9 -1.7 – – – – – –

Hornsund -0.2 0.4 4635 – – 0 -0.0 0.4 4473 – – 0 – – 5 19 95*

10 m asl -0.0 0.8 – – -0.0 0.4 – – – – – –

Kvitøya -0.1 -0.1 740 – – 0 -0.9 -1.3 702 – – 0 – – – – 0

10 m asl 0.3 0.6 – – -0.9 -1.3 – – – – – –

Holtedahlfonna† 1.3 – 317 – – 0 -0.7 – 265 – – 0 – – – – 0

688 m asl 3.2 – – – -0.7 – – – – – – –

Ny-Ålesund -1.7 -0.0 12666 7.6 3.2 12708 0.7 0.8 12349 -7 4 3652 2 9 23 18 212*

8 m asl -1.6 -1.2 7.6 3.2 0.7 0.8 -8 3 0 15 – –

Hopen 1.9 5.2 13178 – – 0 0.3 -0.1 13044 – – 0 – – 7 10 306*

*: Number of months
†:Station located on glacier.
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Table 2. Overview file structure of the Sval_Imp_v1 dataset

Sval_Imp_v1
Stationary fields Svalbard_DEM_mask_pcorr.nc

Variables T2 P WS RH SW LW

Reanalysis ERA40 ERAint ERA40 ERAint ERA40 ERAint ERA40 ERAint ERA40 ERAint ERA40 ERAint

Number of files 540 468 540 468 540 468 540 468 540 468 540 468

Size (GB) 22.8 19.8 33.1 28.8 34.1 29.8 25.6 22.6 21.7 19.0 31.3 27.5

4 Dataset structure250

The downloadable dataset comprises individual files for each of the variables precipitation, air temparature, relative humidity,

windspeed, incident shortwave and downwelling longwave radiation. The records are organized in one file per month for each

of the reanalysis periods; ERA-40: September 1957 to August 2002, and ERA-interim: January 1979 to December 2017.

Each file contains the discovery metadata, and the complete metadata to locate the stack of fields in space and time. The

grid is regular and rectangular in UTM33X projection, the coordinates of which are defined by the vectors X (m easting in255

UTM33X, 448 elements) and Y (m northing in UTM33X, 548 elements). In geographical coordinates the grid is non-regular

and therefore the location of each grid node is defined, rendering Latitude and Longitude (in decimal degrees) each a 448×548

matrix. The timestamp is given in days since 1 January 1900 using a standard Gregorian calendar having 365 days per year,

i.e. without accounting for leap years. In addition, there is one file containing the stationary fields, i.e. the surface topography

and land-ocean mask. The file format is netCDF according to the CF conventions (http://cfconventions.org/), with all required260

metadata included. The metadata adhere to ISO19115 geospatial metadata standards and the Directory Interchange Format

(DIF) requirements of the Global Change Master Directory GCMD (https://gcmd.nasa.gov/DocumentBuilder/defaultDif10/

guide/index.html), and global attributes comply to the Attribute Convention for Data Discovery ACDD (http://wiki.esipfed.

org/index.php/Attribute_Convention_for_Data_Discovery_1-3).

Table 2 gives an overview over the number of files and their sizes for the different epochs (ERA-40, ERA-interim) and265

variables contained in the dataset. The naming convention for the individual files is <EPOCH>_<VAR>_<YYYYMM>.nc,

where EPOCH is either "ERA40" or "ERAi", VAR is an abbreviation of the variable of interest (one of "precip", "temp", "RH",

"windspeed", "SWi" or "LWi") and YYYYMM identifies year and month, for instance ERAi_temp_200410.nc is the name of

the file containing air temparature from ERA-interim for October 2004.

5 Conclusions270

We present a gridded dataset of near-surface, meteorological variables at 1km resolution covering the Svalbard archipelago.

The set of variables enables application of energy balance models and comes at a time steps of 6 h. The high-resolution grids

are derived from coarse-scale reanalyses ERA-40 for the period 1957-2002 and from ERA-interim for 1979-2017. We describe
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the intermediate-complexity downscaling procedure used to generate this dataset. Furthermore, we evaluate the performance of

the downscaled data using a suite of different meteorological and glaciological measurements and refer to several applications275

of this dataset in different disciplines, all of them requiring longterm coverage at small spatial scales.

6 Data availability

The dataset is openly available from the National e-Infrastructure for Research Data (NIRD) archive at

https://doi.org/10.11582/2018.00006 and referred to as Svalbard impact assessment forcing dataset, version 1, (Schuler, 2018).

ERA-40 (Uppala et al., 2005) and ERA-interim (Dee et al., 2011) data were retrieved from the ECMWF Public Datasets280

web interface at https://apps.ecmwf.int/datasets/.

Weather station data are provided by the Norwegian Meteorological Institute and are available at https://eklima.met.no, and

by the University Centre of Svalbard at https://www.unis.no/resources/weather-stations/. Radiation from the BRSN-station in

Ny-Ålesund are provided by Maturilli et al. (2014).
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