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Abstract. Belowground autotrophic respiration (RA) is one of the largest but most highly uncertain carbon
flux components in terrestrial ecosystems. However, RA has not been explored globally before and still acts
as a “black box” in global carbon cycling currently. Such progress and uncertainty motivate the development
of a global RA dataset and understanding its spatial and temporal patterns, causes, and responses to future cli-
mate change. We applied the random forest (RF) algorithm to upscale an updated dataset from the Global Soil
Respiration Database (v4) – covering all major ecosystem types and climate zones with 449 field observations,
using globally gridded temperature, precipitation, soil and other environmental variables. We used a 10-fold
cross validation to evaluate the performance of RF in predicting the spatial and temporal pattern of RA. Finally,
a globally gridded RA dataset from 1980 to 2012 was produced with a spatial resolution of 0.5◦× 0.5◦ (lon-
gitude× latitude) and a temporal resolution of 1 year (expressed in g C m−2 yr−1; grams of carbon per square
meter per year).

Globally, mean RA was 43.8± 0.4 Pg C yr−1, with a temporally increasing trend of 0.025± 0.006 Pg C yr−2

from 1980 to 2012. Such an incremental trend was widespread, representing 58 % of global land. For each
1 ◦C increase in annual mean temperature, global RA increased by 0.85± 0.13 Pg C yr−2, and it was 0.17±
0.03 Pg C yr−2 for a 10 mm increase in annual mean precipitation, indicating positive feedback of RA to fu-
ture climate change. Precipitation was the main dominant climatic driver controlling RA, accounting for 56 %
of global land, and was the most widely spread globally, particularly in dry or semi-arid areas, followed by
shortwave radiation (25 %) and temperature (19 %). Different temporal patterns for varying climate zones and
biomes indicated uneven responses of RA to future climate change, challenging the perspective that the param-
eters of global carbon stimulation are independent of climate zones and biomes. The developed RA dataset, the
missing carbon flux component that is not constrained and validated in terrestrial ecosystem models and Earth
system models, will provide insights into understanding mechanisms underlying the spatial and temporal vari-
ability in belowground vegetation carbon dynamics. The developed RA dataset also has great potential to serve
as a benchmark for future data–model comparisons. The developed RA dataset in a common NetCDF format is
freely available at https://doi.org/10.6084/m9.figshare.7636193 (Tang et al., 2019).
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1 Introduction

Belowground autotrophic respiration (RA) mainly originated
from plant roots, mycorrhizae, and other microorganisms in
the rhizosphere directly relying on the labile carbon com-
ponent leaked from roots (Hanson et al., 2000; Tang et5

al., 2016; Wang and Yang, 2007). Thus, RA reflects the
photosynthesis-derived carbon respired back to the atmo-
sphere by roots and regulates the net photosynthetic produc-
tion allocation to belowground tissues (Högberg et al., 2002).
RA is one main component of soil respiration (Hanson et10

al., 2000), and soil respiration represents the second largest
source of carbon fluxes from soil to the atmosphere (after
gross primary production – GPP) in the global carbon cycle
(Raich and Schlesinger, 1992). Globally, RA could amount
to roughly 54 Pg C yr−1 (1 Pg= 1015 g, calculating RA as15

an approximate ratio of 0.5 of soil respiration; more details
in Hanson et al., 2000) according to different estimates of
global soil respiration (Bond-Lamberty, 2018), which is al-
most 5 times the carbon release from human activities (Le
Quéré et al., 2018). However, the contribution of RA to soil20

respiration varied greatly, from 10 % to 90 % across biomes,
across climate zones and among years (Hanson et al., 2000),
leading to the strong spatial and temporal variability in RA.
Thus, whether RA varies with ecosystem types or climate
zones remains an open question at the global scale (Ballan-25

tyne et al., 2017). Consequently, an accurate estimate of RA
and its spatio-temporal dynamics are critical in understand-
ing the response of terrestrial ecosystems to climate change.

Due to the difficulties in separation and measurement
of RA at varying spatial scales and its diurnal, seasonal30

and annual variabilities, RA becomes one of the largest but
most highly uncertain carbon flux components in terrestrial
ecosystems. Although individual site measurements of RA
have been widely conducted across ecosystem types and
biomes, the globally spatial and temporal patterns of RA35

have not been explored and still act as a black box in global
carbon cycling (Ballantyne et al., 2017). This black box is
not well constrained and validated because most terrestrial
ecosystem models and Earth system models were commonly
calibrated and validated against eddy covariance measure-40

ments of net ecosystem carbon exchange (Yang et al., 2013).
Such progress and uncertainty motivate the development of
a global RA dataset from observations and understanding its
spatial and temporal patterns, causes, and responses to future
climate change. Despite the general agreement that global45

soil respiration increased during last several decades (Bond-
Lamberty et al., 2018; Bond-Lamberty and Thomson, 2010;
Zhao et al., 2017), how global RA responds to climate change
is far from certain because of different temperature sensitiv-
ities of RA across terrestrial ecosystems (Liu et al., 2016;50

Wang et al., 2014). Therefore, reducing RA uncertainty and
clarifying its response to climate change, particularly to tem-

perature and precipitation, is essential for global carbon allo-
cation and future projection of the impact of climate change
on global terrestrial carbon cycling. 55

Although several studies have globally estimated soil
respiration and its response to climate variables (Bond-
Lamberty and Thomson, 2010; Hursh et al., 2017; Zhao et
al., 2017), such efforts have not been conducted for global
RA directly. Hashimoto et al. (2015) indirectly derived RA 60

via the difference between total soil respiration and het-
erotrophic respiration; however, it might lead to uncertain-
ties due to the inclusion of the temperature and precipita-
tion as the only model drivers and a low model efficiency
(32 %). Besides temperature and precipitation, other vari- 65

ables, e.g., soil water, carbon and nitrogen content, are addi-
tionally critical factors regulating RA, and those factors gen-
erally varied with biomes and climate zones. Consequently,
Hashimoto et al. (2015) may not reflect the key processes
affecting RA, such as soil nutrient constraints. 70

On the other hand, the climate-derived models usually ex-
plain < 50 % variability in soil respiration (Bond-Lamberty
and Thomson, 2010; Hashimoto et al., 2015; Hursh et al.,
2017), which might be another uncertainty source. Recent
studies have included more variables and field observations 75

to improve the prediction ability of linear and nonlinear mod-
els (Jian et al., 2018b; Zhao et al., 2017); however, this may
propagate error because of the overfitting and autocorrelation
among these variables (Long and Freese, 2006). The random
forest (RF; Breiman, 2001) algorithm, a machine-learning 80

approach, could overcome these issues based on the hierar-
chical structure and be insensitive to outliers and noise com-
pared to single classifiers (Breiman, 2001; Tian et al., 2017).
RF uses a large number of ensemble regression trees but a
random selection of predictive variables (Breiman, 2001). RF 85

only requires two free parameter settings: the number of vari-
ables sampled as candidates for each split and the number of
trees. The performance of the RF model is usually not sen-
sitive to the number of trees and number of variables. More-
over, RF regression can deal with a large number of features, 90

which could help feature selection based on the variable im-
portance and can avoid overfitting (Jian et al., 2018b). Con-
sequently, it has been widely used for carbon flux modeling
in recent years (Bodesheim et al., 2018; Jung et al., 2017).

Therefore, we applied the RF algorithm to retrieve global 95

RA based on the updated RA field observations from the
most updated Global Soil Respiration Database (SRDB v4;
Bond-Lamberty and Thomson, 2018) with the linkage of
other global variables (see Materials and methods) for the
first time, aiming to (1) develop a globally gridded RA 100

dataset using field observations (named RF-RA), (2) esti-
mate the spatial and temporal patterns of RA at the global
scale, (3) identify the dominant driving factors of the spatial
and temporal variabilities in RA, and (4) compare the RF-
RA dataset with the previous RA estimates from Hashimoto 105
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et al. (2015). The developed RF-RA dataset will advance our
understanding of global RA and its spatial and temporal vari-
abilities. The RF-RA is expected to serve as a benchmark
for global vegetation models and future data–model compar-
ison, which further advance our knowledge of the covariation5

of RA with climate, soil and vegetation factors, linking the
empirical observations temporally and spatially to bridge the
knowledge gap on local, regional and global scales.

2 Material and methods

2.1 Development of RA observational dataset10

First, the RA observational dataset was developed based
on SRDB (v4) across the globe, which is publicly avail-
able at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578
(last access: 18 November 2018; Bond-Lamberty and Thom-
son, 2018). Then, we further updated the dataset using obser-15

vations collected from Chinese peer-reviewed literature from
the China Knowledge Resource Integrated Database (CNKI:
https://www.cnki.net/, last access: 1 December 2017) up to
March 2018, which followed the identical criteria applied
in SRDB development. To control the data quality, annual20

RA observations were filtered in that (1) annual RA was
directly reported in publications indicated by the “years of
data” of SRDB; (2) the start and end years were recorded
in literature or expanded from the years of data of SRDB;
(3) soil respiration measurements with alkali absorption and25

soda lime were not included due to the potential underes-
timate of respiration rate with the increasing pressure inside
chamber (Pumpanen et al., 2004); (4) observations with treat-
ments of nitrogen addition, air and soil warming, and rain
and litter exclusion were not included, except cropland; and30

(5) potential problems observations labeled as Q10 (potential
problem with data), Q11 (suspected problem with data), Q12
(known problem with data), Q13 (duplicate) and Q14 (incon-
sistency) were excluded. Finally, this study included a total
of 449 field observations (Fig. 1), including 68 observations35

from CNKI. RA observations were absolutely dominated by
forest ecosystems (379 observations) that are globally un-
evenly distributed, mainly from China, America and Europe.
Although there was a lack of RA observations in Australia,
Russia, Africa, and South America, our dataset covered all40

major ecosystem types and climate zones across the globe.

2.2 Vegetation, climate and soil data

A total of 11 environmental variables were used to
model global RA (Table 1). Specifically, global land cover
with a half-degree resolution was obtained from MODIS45

Land Cover (MCD12Q1 v5; Friedl et al., 2010). The
monthly gridded temperature, precipitation, diurnal temper-
ature range, potential evapotranspiration and self-calibrated
Palmer drought severity index (PDSI) at the 0.5◦ resolution
were obtained from Climatic Research Unit (CRU) Time Se-50

Figure 1. Distribution of observational sites used to develop the
globally gridded RF-RA dataset.

ries (TS) Version 4.01 from 1901 to 2016 (Harris et al., 2014;
van der Schrier et al., 2013). Monthly shortwave radiation
(SWR; Kalnay et al., 1996) and soil water content (van den
Dool et al., 2003) at the 0.5◦ resolution were from the Na-
tional Oceanic and Atmospheric Administration Earth Sys- 55

tem Research Laboratory (NOAA ESRL) Physical Sciences
Division. Soil organic carbon content with a resolution of
250 m was downloaded from soil grid data (Hengl et al.,
2017), and soil nitrogen density was from the Global Soil
Data Task of the International Geosphere-Biosphere Pro- 60

gramme (IGBP; Global Soil Data, 2000), while monthly ni-
trogen deposition data with a resolution of 0.5◦ were down-
loaded from the Earth system models of GISS-E2-R, CCSM-
CAM3.5 and GFDL-AM3, providing coverage since 1850s
(Lamarque et al., 2013). The monthly global variables were 65

first aggregated to the year scale and then resampled to a
0.5◦ resolution using bilinear interpolation for those vari-
ables without a 0.5◦ resolution. These variables could rep-
resent different aspects controlling RA variability. For in-
stance, temperature, precipitation and soil water content are 70

the most important variables controlling plant photosynthe-
sis, which is the primary carbon source of RA (Högberg et
al., 2002, 2001). Finally, global variables of each given site
extracted by coordinates correspond to annual RA estimates
from the SRDB. 75

2.3 Random forest-based RA modeling

A RF model was trained with the 11 variables listed in
Table 1 by caret by linking RandomForest package in R
3.4.4 (Kabacoff, 2015); then the trained model was imple-
mented to estimate grid RA at the 0.5◦× 0.5◦ resolution 80

over 1980–2012. The performance of RF was assessed by a
10-fold cross validation (CV). A 10-fold CV suggested that
the whole dataset was subdivided into 10 parts with an ap-
proximately equal number of samples. The target values for
each of these 10 parts were predicted on the training using 85

the remaining nine parts. Two statistics were employed in
model assessment: modeling efficiency (R2) and root-mean-
square error (RMSE; Yao et al., 2018). The 10-fold CV result
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Table 1. Global variables used for producing the global RH dataset.

Type of
Variables Type variability Sources

Climate Mean annual temperature (◦C)
Mean annual precipitation (mm)
Diurnal temperature range (◦C)
Potential evapotranspiration (mm)
Palmer drought severity index

Split
Split
Split
Split
Split

Yearly
Yearly
Yearly
Yearly
Yearly

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
(last access: September 2017; Harris et al., 2014)
https://crudata.uea.ac.uk/cru/data/drought/
(last access: October 2017; van der Schrier et al., 2013)

Nitrogen deposition
(g N m−2 yr−1)

Split Yearly https://www.isimip.org/gettingstarted/
availability-input-data-isimip2b/ (last access: August
2013; Lamarque et al., 2013)

Downward shortwave radiation
(W m−2)

Split Yearly ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/
surface_gauss/dswrf.sfc.mon.mean.nc (last access: Octo-
ber 2019; Kalnay et al., 1996)

Soil Soil carbon content (g kg−1) – Static https://soilgrids.org/#!/?layer=TAXNWRB_250m
(last access: June 2016; Hengl et al., 2017)

Soil nitrogen density (g m−2) – Static https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=569
(last access: 24 August 2018; Global Soil Data, 2000)

Soil water content (mm) Split Yearly https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.
html (last access: September 2019; van den Dool et al.,
2003)

Land cover MODIS land cover – Static https://search.earthdata.nasa.gov/search/granules?p=
C203669657-LPDAAC_ECS&q=modislandcover&tl=
1556377353!4!! (last access: July 2019;
Friedl et al., 2010)

showed that RF performed well and could capture the spatial
and temporal pattern of RA (Fig. S1 in the Supplement).

2.4 Temporal trend analysis

We applied Theil–Sen linear regression to estimate tempo-
ral trend analysis of RA and its driving variables for each5

grid cell. The Theil–Sen estimator is a median-based non-
parametric slope estimator which has been widely used for
spatial analysis of time series carbon flux analysis (Forkel
et al., 2016; Zhang et al., 2017). The Mann–Kendall non-
parametric test was applied for the significant change trend10

in RA and its driving factors for each grid cell (p < 0.05).

2.5 Relationships between RA and climate variables

Mean annual temperature, precipitation and shortwave radi-
ation were considered to be the most important proxies driv-
ing RA. The relationships between RA and temperature, pre-15

cipitation and shortwave radiation were analyzed by partial
correlation for each grid cell. The absolute value of the cor-
relation coefficient of these three variables was used in an
RGB (red, green, blue) combination to indicate the dominant
factors of RA.20

2.6 Cross comparisons with Hashimoto2015-RA

To further compare the differences between the RF-RA
dataset and RA developed by Hashimoto et al. (2015; named
Hashimoto2015-RA), the comparison map profile (CMP)
method was applied. Hashimoto developed a climate-driven 25

model by updating Raich’s model, which stimulated soil res-
piration as a function of temperature and water (precipita-
tion) at a monthly time step (Hashimoto et al., 2015; Raich
et al., 2002). Therefore, to get a global estimate to soil res-
piration at a monthly scale, the globally gridded air temper- 30

ature and precipitation with a spatial resolution of 0.5◦ were
derived from University of East Anglia CRU 3.21 (Harris et
al., 2014), and 1638 field observations were taken from the
SRDB (v3) for the model parameterization (Hashimoto et
al., 2015). Monthly soil respiration was summed to a yearly 35

scale. Furthermore, annual soil respiration was divided into
autotrophic and heterotrophic respiration using a global re-
lationship between soil respiration and heterotrophic respi-
ration derived from a meta-analysis (Bond-Lamberty et al.,
2004). This global relationship can be expressed as 40

ln (RH)= 1.22+ 1.73× ln(RS), (1)
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TS1where RH means annual heterotrophic respiration,
and RS stands for annual soil respiration (expressed in
g C m−2 yr−1).

Therefore, global Hashimoto2015-RA was derived by the
difference between soil respiration and heterotrophic respira-5

tion. The monthly or annual Hashimoto2015-RA dataset can
be freely accessed from (http://cse.ffpri.affrc.go.jp/shojih/
data/index.html, last access: February 2016; Hashimoto et
al., 2015).

The CMP was developed based on absolute distance (D)10

and the cross-correlation coefficient (CC) on multiple scales
(Gaucherel et al., 2008). D and CC reflect the similarity of
data values and spatial structure of two images with the same
size, respectively (Gaucherel et al., 2008). LowD and higher
CC reflect goodness between the compared images, while15

high D and low CC suggest badness. The D among moving
windows of two compared images was calculated by Eq. (2)
(Gaucherel et al., 2008):

D = abs(x− y). (2)

x and y are averages calculated over two moving windows20

(3 pixels×3 pixels to 41 pixels×41 pixels in this study). Fi-
nally, the mean D was averaged for different scales.

The CC was calculated by Eq. (3) (Gaucherel et al., 2008):

CC=
1
N2

N∑
i=1

N∑
j=1

(xij − x)× (yij − y)
σx × σy

, (3)

with σ 2
x =

1
N2− 1

N∑
i=1

N∑
j=1

(xij − x)2, (4)25

where xij and yij are the pixel values at row i and column j
of two moving windows of the two compared images, respec-
tively. N represents the number of pixels for each moving
window, while σx and σy are the standard deviation calcu-
lated from the two moving windows. Finally, like D calcula-30

tions, CC was calculated as the mean of different scales.

3 Results

3.1 Spatial patterns of RA

The RF-RA dataset presented a great globally spatial vari-
ability during 1980–2012 (Figs. 2a and 3). The largest RA35

fluxes commenced from tropical regions, particularly in the
tropical Amazon and southeastern areas, which generally
have a high RA that is more than 700 g C m−2 yr−1 (grams of
carbon per square meter per year). Following the tropical ar-
eas, the subtropics, e.g., southern China and eastern America,40

and humid temperate areas, e.g., North America and western
and central Europe, had typical moderate RA fluxes of 400–
600 g C m−2 yr−1. By contrast, the relative low RA fluxes oc-
curred in the areas with sparse vegetation cover and cold and
dry climate, e.g., boreal and tundra, which had low tempera-45

tures and a short growing season. Besides this, dry or semi-
arid areas, e.g., northwestern China and the Middle East, also

Figure 2. Spatial patterns of annual mean and standard deviation
for RF-RA (a, c) and Hashimoto2015-RA (b, d) from 1980 to 2012.
The standard deviation was applied to characterize the inter-annual
variability following Yao et al. (2018).

Figure 3. Latitudinal pattern for RF-RA and Hashimoto2015-RA.
The grey area indicates 2.5th to 97.5th percentile ranges of the RF-
RA.

had typical low RA fluxes below 200 g C m−2 yr−1, which
were often limited by water availability.

The most significant RA inter-annual variability (ex- 50

pressed as standard deviation; Fig. 2c) was found in topical
or subtropical regions, with values above 80 g C m−2 yr−1,
while most areas remained less variable, with values less than
40 g C m−2 yr−1. Latitudinally, zonal mean RA increased
from cold and dry biomes (tundra and semi-arid) to warm 55

and humid biomes (temperate and tropical forest; Fig. 3),
reflecting more to fewer environmental limitations. RA var-
ied from 112± 21 g C m−2 yr−1 at about 70◦ N to 552±
101 g C m−2 yr−1 at the Equator. Between 10–25◦ S and 15–
20◦ N, due to the limitation of water, zonal mean RA experi- 60

enced a slight decrease. Therefore, with the increase in water
availability, RA led to a second peak in around 20◦ N and
40◦ S, respectively.

Compared to RF-RA, Hashimoto2015-RA presented a
similarly latitudinal pattern, with the highest RA fluxes in 65

tropical regions characterized by warm and humid climate,
followed by subtropical regions and the lowest RA in bo-
real areas featured by cold and dry climate (Fig. 2b). The
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Figure 4. Comparison of RF-RA with Hashimoto2015-RA based
on absolute distance (a) and cross correlation (b).

Figure 5. Spatial patterns of the temporal trend for RF-RA and
Hashimoto2015-RA during 1980–2012.

most significant change occurred in tropical areas and central
Australia. However, it is worth noting that some clear differ-
ences between data-derived RA and Hashimoto2015-RA ex-
isted (Fig. 4): specifically, there was a remarkable difference
of above 300 g C m−2 yr−1 for the southern Amazon and5

200 g C m−2 yr−1 for subtropical China. Although most areas
between RF-RA and Hashimoto2015-RA expressed high and
positive correlations, some areas, such as the Middle East,
western Russia, eastern America and northern Japan, showed
negative correlations.10

3.2 Spatial pattern of RA trend

The trend of RF-RA showed heterogeneous spatial patterns
(Fig. 5). A total of 58 % of global areas experienced an in-
creasing trend during 1980–2012 (calculating from cell ar-
eas), and 33 % of these areas showed a significant change15

(p < 0.05). Generally, the change trend for the majority ar-
eas was from −4 to 4 g C m−2 yr−2, while the most strik-
ing increasing change occurred in eastern Russia and trop-
ical and eastern regions in Africa, with an increasing trend
of above 5 g C m−2 yr−2. Similarly, 77 % of global areas of20

Hashimoto2015-RA had an increasing trend, 46 % of which
were statistically significant (p < 0.05).

3.3 Total RA and its temporal trend

Mean global RA was 43.8±0.4 Pg C yr−1 during 1980–2012,
varying from 42.9 Pg C yr−1 in 1992 to 44.9 Pg C yr−1 in25

2010, with a significant trend of 0.025± 0.006 Pg C yr−2

despite high annual variabilities (0.06 % yr−1, p < 0.001;
Fig. 6a). Similarly, a rising trend was also observed for
Hashimoto2015-RA (0.073± 0.009 Pg C yr−2, p < 0.001;
Fig. 6b), which was higher than that of RF-RA. The annual30

mean of Hashimoto2015-RA was 40.5± 0.9 Pg C yr−1.
RA and its trend were also evaluated for three cli-

mate zones (boreal, temporal and tropical areas based on

Figure 6. Annual variability in RF-RA (a) and Hashimoto2015-RA
(b) from 1980 to 2012. The grey area represents 95 % confidence
interval.

Figure 7. Total amount of RF-RA and Hashimoto2015-RA for
three climate zones and eight biomes during 1980–2012. Three cli-
mate zones defined as boreal, temperature and tropical regions ac-
cording to Peel et al. (2007), while eight biomes include boreal
forest, cropland, grassland, savannas, shrubland, temperate forest,
tropical forest and wetland. The error bars indicated standard devi-
ation.

the Köppen–Geiger climate classification) and eight major
biomes (boreal forest, cropland, grassland, savannas, shrub- 35

land, temperate forest, tropical forest and wetland; Fig. 7).
The tropics had the highest RA, 15.6± 0.2 Pg C yr−1, fol-
lowed by temperate regions, with 9.3± 0.1 Pg C yr−1, and
boreal areas represented the lowest RA, 6.7± 0.1 Pg C yr−1.
These three climate zones were the main contributors of 40

global RA, accounting for 72 %. Temporally, considerable
RA inter-annual variability in these three climate zones
existed (Fig. S2). Specifically, RA in tropical and boreal
zones showed a significantly increasing trend from 1980 to
2012, with an increasing rate of 0.013± 0.003 and 0.008± 45

0.002 Pg C yr−2, respectively. However, RA in temperate
zones presented a slightly decreasing trend of −0.003±
0.001 Pg C yr−2 (p = 0.048), although strong variability was
observed.

In terms of biomes, tropical forest had the highest RA, 50

followed by the widely distributed cropland and savannas
(Fig. 7), while wetland had the lowest RA due to its lim-
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Figure 8. The correlation between RA and temperature and pre-
cipitation: (a, b) for RF-RA and (c, d) for Hashimoto2015-RA.
The anomaly was calculated as the difference between temperature
or precipitation of corresponding year and the mean of 1980–2012.
*** means significant level at 0.001.

ited land cover. RA showed a significantly increasing trend
during 1980–2012 (ps < 0.01) in the majority of biomes, ex-
cept for temperate forest, savannas and wetland. RA in trop-
ical forest, boreal forest and cropland increased by 0.0076±
0.0015, 0.0047± 0.0016 and 0.0036± 0.0014 Pg C yr−2, re-5

spectively. Compared to RF-RA, Hashimoto2015-RA for the
three climate zones and eight biomes generally produced
similar change patterns, although the magnitude difference
existed (Figs. 7, S2 and S3). However, there were significant
increasing trends of total RA in temperate zones, temperate10

forest, savannas and wetland of Hashimoto2015-RA which
were not observed in RF-RA.

RA was significantly correlated with the temperature
anomaly (R2

= 0.59, p < 0.001) and precipitation anomaly
(R2
= 0.50, p < 0.001; Fig. 8). On average, RA increased by15

0.85± 0.13 Pg C yr−2 for a 1 ◦C increment in mean annual
temperature and 0.17± 0.03 Pg C yr−2 for a 10 mm increase
in mean annual precipitation. However, different biomes and
climate zones showed uneven responses to the temperature
and precipitation changes (Figs. S4 and S5). For example, no20

significant correlations were found between RA in the tem-
perate zone, savannas, wetland and the temperature anomaly,
while other climate zones and biomes were significantly cor-
related with the temperature and precipitation anomaly.

4 Dominant factors for RA variability25

The dominant environmental factor was examined with par-
tial regression coefficients when regressing RA against an-
nual mean temperature, precipitation and shortwave radia-
tion. Latitudinally, higher mean annual temperature, precip-

itation and shortwave radiation were associated with higher 30

RA in the major latitudinal gradients (positive partial cor-
relations; Fig. S6). Spatially, the dominant environmental
factor varied greatly globally (Fig. 9). Precipitation was the
most important dominant factor for the spatial pattern of RA
among the three environmental controls, covering about 56 % 35

of global land (Fig. 10), and it was widely distributed glob-
ally, particularly in dry or semi-arid areas such as northwest-
ern China, southern Africa, central Australia and America.
Temperature dominated about 19 % of global land, which
mainly occurred in tropical Africa, southern Amazon rain- 40

forest and Siberia, and partly in the tundra. The rest of the
land (25 %) was dominated by shortwave radiation, primar-
ily covering boreal areas above 50◦ N in eastern America and
central and eastern Russia. Similarly, precipitation was also
the most important dominant factor for Hashimoto2015-RA, 45

dominating about 77 % of land, while temperature and short-
wave radiation dominated 13 % and 10 % of land. However,
their spatial patterns varied greatly compared to RF-RA. For
example, temperature was the main dominant factor for most
areas in Australia for Hashimoto2015-RA, while RF-RA in- 50

dicated that precipitation and shortwave radiation dominated
such areas (Fig. 9).

5 Discussion

5.1 Global RA

Despite great efforts to quantify global soil carbon fluxes 55

and their spatial and temporal patterns (Bond-Lamberty and
Thomson, 2010; Hursh et al., 2017; Jian et al., 2018b), to our
knowledge, no attempt tried to assess RA using the machine-
learning approach by linking a large number of empirical
measurements, and RA’s spatial and temporal patterns re- 60

main large uncertainties. Such uncertainties justify the devel-
opment of a global RA dataset derived from observations to
understand its spatial and temporal patterns, causes, and re-
sponses to future climate change. Based on the most updated
observations from the SRDB (Bond-Lamberty and Thomson, 65

2018) and Chinese peer-reviewed literature, we, for the first
time, applied the RF algorithm to develop the RF-RA dataset
and estimate the temporal and spatial variability in global
RA and its response to environmental variables, which can
indeed contribute to reduce RA uncertainties. 70

Globally, mean annual RA amounted to 43.8±
0.4 Pg C yr−1 from 1980 to 2012 (Fig. 6). It was slightly
higher than Hashimoto2015-RA (40.5± 0.9 Pg C yr−1), and
there was great divergence of spatial and temporal patterns
(see discussion part in Comparison with Hashimoto2015- 75

RA). Due to there being no direct estimate on global RA,
the RF-RA dataset was compared with other RA estimates
using total soil respiration multiplied by the proportion
of RA or heterotrophic respiration. The global average
proportion of RA ranged from 0.37 to 0.46 over 1990– 80

2014 (calculated from Bond-Lamberty et al., 2018), while
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Figure 9. Dominant driving factors for RF-RA (a) and Hashimoto2015-RA (b). MAT is mean annual temperature, MAP is mean annual
precipitation and SWR is shortwave radiation.

Figure 10. The percentage of land (calculated from cell areas) dom-
inated by mean annual temperature (MAT), precipitation (MAP)
and shortwave radiation (SWR) for RF-RA and Hashimoto2015-
RA.

global soil respiration was 67 to 108 Pg C yr−1 according
to different estimates; thus global RA varied from 25 to
51 Pg C yr−1. The developed RF-RA dataset fell into this
range. Similarly, RA increased by 0.025± 0.006 Pg C yr−2

during 1980–2012. Such an increase may be related to the5

increasing photosynthesis due to global warming and CO2
fertilization effects, which could increase carbon availability
in plant-derived substrate inputs into the soil (e.g., root
exudates and biomass) for both root metabolisms (Piñeiro et
al., 2017; Zhou et al., 2016). This annual increase accounted10

for about 25 % of the global soil respiration increase (0.09
and 0.1 Pg C yr−2; Bond-Lamberty and Thomson, 2010;
Hashimoto et al., 2015), suggesting that about one-quarter
of the total soil respiration increment due to climate change
came from RA.15

With a 1 ◦C increase in global mean temperature, RA will
increase by 0.85± 0.13 Pg C yr−2 and 0.17± 0.03 Pg C yr−2

for a 10 mm increase in precipitation, indicating that carbon
fluxes from RA might positively feedback to future climate
change, which was typically characterized by increasing tem-20

perature and changes in precipitation (IPCC, 2013). How-
ever, the RA increment varied with climate zones and ecosys-

tem types (Figs. S2 and S3), which was similar to previous
findings in which total soil respiration or RA varied with cli-
mate zones or ecosystem types (Ballantyne et al., 2017; Jian 25

et al., 2018a). These differences may be related to regional
heterogeneity and the plant functional trait. For example, re-
gional temperature significantly differed from global aver-
ages (Huang et al., 2012), with much faster change in high-
latitude regions (Hartmann et al., 2014), and semi-arid cli- 30

mates dominated the trend and variability in global land CO2
sink (Ahlström et al., 2015). Therefore, the regionally un-
even responses of RA to climatic variables highlight the ur-
gent need to account for regional heterogeneity when study-
ing the effects of climate change on ecosystem carbon dy- 35

namics in future.
RF-RA also has important indications of carbon alloca-

tion from photosynthesis. The immediate carbon substrates
for RA were primarily derived from recent photosynthesis
(Högberg et al., 2001; Subke et al., 2011). Strong correla- 40

tion between photosynthesis and RA demonstrated the ev-
idence for their close coupling relationships (Chen et al.,
2014; Kuzyakov and Gavrichkova, 2010). Globally, GPP was
about 125 Pg C yr−1 during last few decades (Bodesheim et
al., 2018; Zhang et al., 2017). Thus, roots respired more than 45

one-third of carbon from GPP, suggesting that except the car-
bon used for constructing belowground tissues, a large pro-
portion of carbon will be returned back to the atmosphere
respired by roots. However, it should be noted that through
root respiration, soil nutrients for vegetation growth will be 50

required, which may affect the RA flux.

5.2 Dominant factors

Spatially, the dominant driving factors for RA varied greatly.
Temperature and shortwave radiation were the main driving
factors for high-latitude areas above 50◦ N (Fig. 9a). This re- 55

sult was not surprising because RA was positively correlated
with temperature or photosynthesis (indirectly reflecting the
solar radiation) (Chen et al., 2014; Tang et al., 2016), and
high-latitude regions was always limited by temperature or
energy, leading to low RA as well (Fig. 3a). 60
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Globally, precipitation was the most important factor, cov-
ering about 56 % of land (Figs. 9a and 10). Precipitation
was always considered to be a proxy for soil water content
(Hursh et al., 2017; Yao et al., 2018), and such wide domi-
nance of precipitation on RA was related to the mechanisms5

of soil water availability driving RA. First, soil water ex-
ists in the form of ice when temperature is below zero. In
this case, plant and soil microbes cannot directly use it for
growth or respiration. This could be observed in some bo-
real areas where precipitation was the dominant factor of RA10

(Fig. 9a). Second, soil water content that is too high or too
low (e.g., flooding and drought) could limit the mobility of
substrates and carbon input to below the ground, which could
affect RA. Yan et al. (2014) found that soil respiration de-
creased once soil water content was below a lower (14.8 %)15

or above an upper (26.2 %) threshold in a poplar plantation.
Similarly, Gomez-Casanovas et al. (2012) also found that RA
decreased when soil water content was above 30 %. These
results seemed to support our findings. Third, the relation-
ship between soil water content and RA or total soil respira-20

tion is more complex than the relationship between tempera-
ture and soil respiration. Numerous formulas, such as linear
(Tang et al., 2016), polynomial (Moyano et al., 2012), log-
arithmic (Schaefer et al., 2009) or quadratic (Hursh et al.,
2017) models, have been widely applied to describe the rela-25

tionship between soil water content and soil respiration. The
multifarious relationships between soil water content and RA
may occur because soil water content affects RA in multiple
ways. Meanwhile, seasonal variability in precipitation and
soil water content is often correlated with temperature (Feng30

and Liu, 2015), making the relationship between soil water
content and RA more complex.

Similarly, the dominance of precipitation in Hashimoto
was also widely observed (Fig. 8), dominating 77 % of land
(Fig. 10). Although this percentage was 17 % higher than35

RF-RA, both results demonstrated that the global RA in the
majority of land was dominated by precipitation. However,
it is noticeable that the dominant environmental factor con-
trolling spatial carbon fluxes gradient differs among different
years (Reichstein et al., 2007), e.g., for extreme climates and40

climatic disturbance.

5.3 Comparison with Hashimoto2015-RA

Globally, total RF-RA was slightly higher than
Hashimoto2015-RA; however, great divergence was
observed both spatially and temporally (Fig. 6), particularly45

in tropical regions, where RF-RA was much lower than
Hashimoto2015-RA (Fig. 3). These differences could
be attributed to several reasons. First, two RA datasets
had different land cover areas, especially in desert ar-
eas in North Africa, where very sparse or no vegetation50

existed. If RF-RA was masked by Hashimoto2015-RA,
global RA was 39.6± 0.4 Pg C yr−1, which was pretty
close to Hashimoto2015-RA (Fig. S8). Second, different

predictors and algorithms were applied for RF-RA and
Hashimoto2015-RA prediction. Besides temperature and 55

precipitation, RA was also affected by soil nutrients,
carbon substrate supply, belowground carbon allocation,
site disturbance and other variables (Chen et al., 2014;
Hashimoto et al., 2015; Tang et al., 2016; Zhou et al., 2016).
Hashimoto2015-RA was calculated from the difference 60

between total soil respiration and heterotrophic respiration,
which were predicted by a simple climate-driven model
using temperature and precipitation only (Hashimoto et al.,
2015). Thus, Hashimoto2015-RA could not reflect its soil
nutrient and other environmental constraints. To overcome 65

such limitations, besides temperature and precipitation, we
included soil water content, soil nitrogen and soil organic
carbon as proxies for environmental and nutrient constraints
of RA and considered the interactions among these variables
using RF, achieving a model efficiency of 0.52 for RA pre- 70

diction (Fig. S1), which was higher than that for Hashimoto
soil respiration, with a model efficiency of 0.32 (Hashimoto
et al., 2015). The simple climate model for Hashimoto
soil respiration has advantages and limitations (Hashimoto
et al., 2015). Third, the empirical model (the relationship 75

between total soil respiration and heterotrophic respiration)
from which Hashimoto2015-RA is derived originated from
forest ecosystems (Bond-Lamberty et al., 2004; Hashimoto
et al., 2015), which may bring uncertainties to other
ecosystems. For example, the difference between RF-RA 80

and Hashimoto2015-RA varied by up to 350 g C yr−1 in
southern and northern Amazon areas and in Madagascar,
where the savannas were widely distributed (Fig. 4); thus
Hashimoto2015-RA might not capture the spatial and
temporal pattern of RA for non-forest ecosystems. Including 85

more environmental variables and improving the algorithm
could be a great advantage to reduce the uncertainty in
modeling RA.

5.4 Advantages, limitations and uncertainties

Generally, the developed RF-RA dataset had four main ad- 90

vantages in estimating global RA: first, the RF-RA dataset,
to our knowledge, was the first attempt to model RA using
a large number of empirical field observations, and the spa-
tial and temporal patterns of RA were investigated globally.
In contrast, most previous studies mainly focused on global 95

soil respiration, which was not partitioned into RA and het-
erotrophic respiration globally (Hursh et al., 2017; Jian et
al., 2018b; Zhao et al., 2017). Second, we used an up-to-
date field observational dataset developed from the SRDB
up to November 2018 (Bond-Lamberty and Thomson, 2018) 100

and updated it by including 68 observations from Chinese
peer-reviewed literature. This new updated dataset included
a total of 449 field observations (Fig. 1). These observations
had a wide coverage range of global terrestrial ecosystems
and represented all major biomes and climate zones. Third, 105

the global terrestrial ecosystems were separated into eight
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biomes, including boreal forest, cropland, grassland, savan-
nas, shrubland, temperate forest, tropical forest and wetland.
The total RA and its inter-annual variability were evaluated
for each of the eight biomes (Figs. S3 and S4). Besides, to-
tal RA and its inter-annual variability were also assessed for5

three climate zones – boreal, temperate and tropical zones
(Figs. S2 and S5) – according to the Köppen–Geiger cli-
mate classification system (Peel et al., 2007). Different tem-
poral change trends across biomes and climate zones also
further indicated uneven responses of RA to climate change10

across the globe. Fourth, we used a RF algorithm to model
and map global RA with the linkage of climate, soil and
other environmental predictors. The results showed that RF
could capture the spatial and temporal variability well in
RA (Fig. S1). Compared to linear regressions for soil res-15

piration prediction (because there was no global RA predic-
tion before this study) with a model efficiency of less than
35 % (Bond-Lamberty and Thomson, 2010; Hashimoto et al.,
2015; Hursh et al., 2017), the RF algorithm achieved a much
higher model efficiency, at 52 %, which indeed improved the20

RA modeling and reduced the uncertainties.
Although data-derived global RA could serve as a bench-

mark for global-carbon-cycle modeling, and the RF-RA
filled the data gaps of global RA, limitations and uncertain-
ties still remained in a few aspects. First, although we con-25

ducted a data quality control to develop the RF-RA dataset,
a lack of a reliable approach for separating RA and het-
erotrophic respiration may lead to an important uncertainty
of RA estimates. There are several approaches, e.g., trench-
ing, stable or radioactive isotopes, and gridding, to parti-30

tion soil respiration (Bond-Lamberty et al., 2004; Högberg
et al., 2001; Hanson et al., 2000); however, each of these
approaches has its own limitations. For example, trenching
has been widely applied in partitioning RA and heterotrophic
respiration due to its easy operation and low cost. On the35

other hand, heterotrophic respiration may be increased due
to the termination of water uptake by roots and the decom-
position of remaining dead roots in trenching plots (Han-
son et al., 2000; Tang et al., 2016). Commonly, RA was
calculated from the difference between total soil respiration40

and heterotrophic respiration; thus the trenching approach
might lead to an underestimation of RA. In our dataset, a
total of 254 RA observations were estimated by the trench-
ing approach, while the rest RA observations were estimated
by other separation approaches, e.g., isotope, radiocarbon45

and mass balance. Thus, inconsistent separation approaches
could also be another source of uncertainty of RA values.

Second, due to the limited observations of RA at a daily
or monthly scale, the RF-RA dataset was produced at an an-
nual scale. Although there was no direct study to compare50

the difference of RA upscaling from daily or monthly and
annual scale, substantial differences of soil respiration up-
scaling from daily or monthly and annual scales (Jian et al.,
2018b) indirectly illustrated the potential difference of RA
upscaling from different timescales.55

Third, the effects of rising atmospheric CO2 on root
growth were not explicitly represented when developing
the RF-RA dataset, although CO2 fertilization effects could
partly be represented in the increased temperatures. While
the magnitude of CO2 fertilization effects on photosynthesis 60

is still uncertain (Gray et al., 2016), RF or other machine-
learning approaches are encouraged for quantifying the un-
certainties due to CO2 fertilization.

Fourth, we did not consider the effects of human activities
and historical changes in biomes on RA. However, important 65

changes may occur in tropical forest, grassland and cropland
during last several decades due to human activities (Hansen
et al., 2013; Klein Goldewijk et al., 2011). Thus, changes in
biomes should be included in future global RA and carbon
cycling modeling. However, the lack of such data is the main 70

constrain of detecting the effects of biome change on RA.
Finally, uneven coverage of observations in the updated

dataset would be another source of uncertainties. Although
our dataset had a wide range of land cover, the observational
sites mainly distributed in China, Europe and North America 75

and were dominated by forest. There was a great lack of ob-
servations in areas such as Africa, Australia and Russia and
biomes such as tropical forest, shrubland, wetland and crop-
land. However, our dataset covered all major ecosystem types
and climate zones across the globe. RA observations caused 80

bias of RF model towards the regions with more observa-
tions. Therefore, including more observations in these ar-
eas and biomes without observations should largely increase
our capability to assess the spatial and temporal patterns of
global RA and contribute to improving the global-carbon- 85

cycle modeling to future climate change.

6 Data availability

The developed RF-RA dataset is freely downloadable from
https://doi.org/10.6084/m9.figshare.7636193 (Tang et al.,
2019), called ‘Respiration_autotrophic_belowgroud_ glob_ 90

1980_2012_yr_half_dgree_TangX.nc”, which is a globally
gridded RA dataset from 1980 to 2012 with a spatial reso-
lution of 0.5◦ at an annual scale (expressed in g C m−2 yr−1;
grams of carbon per square meter per year). The RA
dataset is provided in NetCDF format (Network Common 95

Data Form).

7 Conclusions

Although data-derived RA may serve as a benchmark for
ecosystem models, no such study has assessed the global
variability in RA with a large number of empirical obser- 100

vations that can help bridge the knowledge gap between lo-
cal, regional and global scales. The RF-RA dataset filled
this knowledge gap by linking field observations and glob-
ally gridded environmental variables using an RF algorithm,
providing a global RF-RA dataset at a spatial resolution of 105
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0.5◦× 0.5◦ (longitude× latitude) at an annual scale from
1980 to 2012. Currently, robust findings include the follow-
ing.

1. Annual mean RA was 43.8±0.4 Pg C yr−1, with a tem-
porally increasing trend of 0.025±0.006 Pg C yr−2 over5

1980–2012, indicating an increasing carbon return from
the roots to the atmosphere.

2. Unevenly temporal and spatial variabilities in varying
climate zones and biomes indicated their uneven re-
sponses to future climate change, challenging the per-10

spective that the parameters of global carbon stimula-
tion are independent of climate zones and biomes.

3. Precipitation dominated RA for most of the land glob-
ally.

4. The RF-RA dataset has great potential to serve as15

a benchmark for future data–model comparisons to
understand the mechanisms of belowground vegeta-
tion carbon allocation and its dynamics. However, fur-
ther improvements in modeling algorithms, including
more observations in areas without field measurements,20

should overcome shortcomings from reduced data avail-
ability and the mismatch in spatial resolution between
covariates and in situ RA.
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