Supporting information for

Global variability of belowground autotrophic respiration in terrestrial ecosystems

Xiaolu Tang^{1, 2}, Shaohui Fan³, Wenjie Zhang^{4, 5, *}, Sicong Gao^{5, *}, Guo Chen¹, Leilei Shi⁶

¹College of Earth Science, Chengdu University of Technology, Chengdu, P. R. China

²State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil

& Water Pollution, Chengdu University of Technology, Chengdu, P. R. China

³Key laboratory of Bamboo and Rattan, International Centre for Bamboo and Rattan, Beijing, P. R. China

⁴State Key Laboratory of Resources and Environmental Information System, Institute of Geographic

Sciences and Natural Resources Research, Beijing, P. R. China

Corresponding author: Wenjie.Zhang@uts.edu.au

⁵School of Life Science, University of Technology Sydney, NSW, Australia

Corresponding author: Sicong.Gao@student.uts.edu.au

⁶Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng, P. R. China

	Variables ¹	Туре	Type of variability	Sources
Climate	Mean annual temperature	Split	Yearly	https://crudata.uea.ac.uk/cru/data/
	Mean annual precipitation	Split	Yearly	<u>hrg/cru_ts_4.01/</u> , (Harris et al.
	Diurnal temperature range	Split	Yearly	2014)
	Potential evaportransporation	Split	Yearly	
				https://www.esrl.noaa.gov/psd/dat
	Palmer Drought Severity Index	Split	Yearly	<u>a/gridded/data.pdsi.html(</u> Dai et al. 2004)
	Downward Shortwave radiation	Split	Yearly	https://www.esrl.noaa.gov
	Nitrogen deposition	Split	Yearly	https://www.isimip.org/gettingstar ted/availability-input-data- isimip2b/
Soil	Soil carbon content	-	Static	https://soilgrids.org/#!/?layer=TA <u>XNWRB_250m(</u> Hengl et al. 2017)
	Soil nitrogen content	-	Static	https://webmap.ornl.gov/ogc/inde x.jsp
	Soil water content	Split	Yearly	https://www.esrl.noaa.gov/psd/dat a/gridded/data.cpcsoil.html
Vegetation	MODIS land cover	-	Static	https://glcf.umd.edu/data/lc/

Table S1 Global variables used for predicting the spatial and temporal RA

¹Although this study tried to link some variables relating to plant activities, such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), however, these variables could not help to improve the model efficiency. Due to the lack of fully land cover of these products, and the plant activities could be indirectly reflected by temperature, precipitation, potential evaportransporation, soil nutrients, etc., therefore, this study did not use NDVI or LAI for spatial and temporal modelling of RA.

Figures

Fig. S1. Comparison between data-derived belowground autotrophic respiration (RA) and observed RA using a 10-fold cross-validation.

Fig. S2. Inter-annual variability of belowground autotrophic respiration (RA) for this study (a) and Hashimoto RA (b) for boreal, temporal and tropical areas

Fig. S3. Inter-annual variability of belowground autotrophic respiration (RA) for this study (a) and Hashimoto RA (b) for boreal forest, cropland, grassland, savannas, shrubland, temperate forest, tropical forest and wetland.

Fig. S4. The relationships between total belowground autotrophic respiration (RA) and temperature/precipitation anomaly for this study (a) and Hashimoto RA (b) for boreal, temperate and tropical areas.

Fig. S5. The relationships between total belowground autotrophic respiration (RA) and temperature/precipitation anomaly for this study (a) and Hashimoto RA (b) for eight biomes

Fig. S6. Latitudinal patterns of partial correlation coefficient between RA and mean annual temperature (MAT), mean annual precipitation (MAP) and shortwave radiation (SWR).

Fig. S7. The percentage of dominant factor for global RA (calculated from cell areas).

Fig. S8. Total belowground autotrophic respiration (RA) for this study and Hashimoto after masking with a same land area.

References

- Dai, A., K. E. Trenberth, and T. Qian. 2004. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. Journal of Hydrometeorology 5:1117-1130.
- Harris, I., P. Jones, T. Osborn, and D. Lister. 2014. Updated high resolution grids of monthly climatic observations the CRU TS3. 10 Dataset. International Journal of Climatology 34:623-642.
- Hengl, T., J. Mendes de Jesus, G. B. Heuvelink, M. Ruiperez Gonzalez, M. Kilibarda, A. Blagotic, W. Shangguan, M. N. Wright, X. Geng, B. Bauer-Marschallinger, M. A. Guevara, R. Vargas, R. A. MacMillan, N. H. Batjes, J. G. Leenaars, E. Ribeiro, I. Wheeler, S. Mantel, and B. Kempen. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PloS One 12:e0169748.