
Response to editor 

Dear editor – Dr. Heim, 

Great thanks for your really careful revision of our manuscript, and we strongly believe that your 

suggestion and comments will greatly increase the quality of our manuscript, which could be more 

fit to ESSD requirement.  

According to your suggestion and comments, we have revised our manuscript carefully and 

thoroughly. Please see, below, our point-to-point response.  

According to the journal requirement, we structured the response as: (1) comments from Referees, 

(2) authors’ response (two referees and one editor), and (3) authors’ changes in manuscript.  

 

Suggestion and comments from referees or editor are marked in Black. 

Responses to referee and editor’s comments are labelled in blue. 

Cited changes made in the manuscript are marked in red.  

 

Please do not hesitate to let us know if you have additional questions and/or comments. 

 

Sincerely, 

Xiaolu Tang, Wenjie Zhang and Sicong Gao, on behalf of all co-authors. 

 

  



Comments to the Author: 

The published global time series on belowground autotrophic respiration is of importance. As the 

data description and data publication do not yet fulfill the requirements of ESSD and improvements 

are needed a major revision of the manuscript and a minor revision and new publication of the dataset 

is needed.  

The manuscript provides a lot of detailed information and an interesting cross comparison with the 

Hashimoto et al. 2015 global data set on belowground respiration. However, the description of the 

data set, its data sources and the data generation is lost in the complexity of the paper. This happens 

because the article is not exclusively focused on the dataset but put also a focus on its application. 

Recommendations to the authors: for ESSD the focus of the manuscript should be on data sets and 

products. the word ‘study’ is frequently used and could sometimes be exchanged with ‘data set’.  

Response: great thanks to Dr. Birgit Heim, and your suggestion really improves the quality and 

qualification of our manuscript to ESSD. According to your suggestion and comments, we had a 

major revision our manuscript and focused more on the developed RH dataset, specifically:  

First, in abstract, we added more technical details on developing the RA dataset: 

“We applied Random Forest (RF) algorithm to upscale an updated dataset from Global Soil 

Respiration Database (v4) – covering all major ecosystem types and climate zones with 449 field 

observations, using globally gridded temperature, precipitation, soil and other environmental 

variables. We used a 10-fold cross-validation to evaluate the performance of RF to predict the spatial 

and temporal pattern of RA. Finally, a globally gridded RA dataset from 1980 to 2012 was produced 

with a spatial resolution of 0.5o  0.5o (longitude  latitude) and a temporal resolution of one year, 

expressed by g C m-2 yr-1 (gram carbon for per square meter per year).” 

Second, “study” was changed to dataset in many cases as suggested:  

For instance (just list some examples here):  

“the outcome of this study will advance  The developed RF-RA dataset will advance …...” 

“Figure 1 Observational sites used in this study  Figure 1 Distribution of observational sites used 

to develop the globally gridded RF-RA dataset” 

“this study compared other RA ….  the RF-RA dataset was compared with other RA” 

“RA estimates in this study fell in this range  The developed RF-RA dataset fell in this range” 

Third, we replace “this study” in figures by “RF-RA”, which was named by Random Forest method 

as suggested. E.g. Figure 3 and 7. 

Fourth, in chapter 5, we included more details on data availability as:  



“The developed RF-RA dataset is freely downloadable from 

https://doi.org/10.6084/m9.figshare.7636193 (Tang et al., 2019), named as 

“Respiration_autotrophic_belowgroud_glob_1980_2012_yr_half_dgree.nc”, which is a globally 

gridded RA dataset from 1980 to 2012 with a spatial resolution of 0.5 degree at an annual scale, 

expressed by g C m-2 yr-1 (gram carbon for per square meter per year). The RA dataset is provided in 

Netcdf format (Network Common Data Form).” 

Fifth, according to your suggestion, we also published a new version of dataset with more technical 

details and explanations. Please see: https://doi.org/10.6084/m9.figshare.7636193, and we revised as:  

This data repository contains (1) yearly global autotrophic respiration (RA) dataset from 1980 to 

2012 with a spatial resolution of 0.5°; (2) original field observations to develop Random Forest (RF) 

model; (3) main R codes to produce RA database.  

Model description: 

The globally gridded RA database was developed by Random Forest (RF) with 449 field observations 

(see “dataset.csv” in this repository, updated from Bond-Lamberty and Thomson, 2018) using 11 

global variables, including gridded temperature, precipitation, diurnal temperature range, potential 

evapotranspiration, Palmer Drought Severity Index, nitrogen deposition, downward shortwave 

radiation, soil carbon content, soil nitrogen density, soil water content, land cover.    

Dataset information:  

Dataset name: “Respiration_autotrophic_belowgroud_glob_1980_2012_yr_half_dgree.nc” 

Which means globally belowground autotrophic respiration from 1980 to 2012 with a spatial 

resolution of 0.5° at a yearly step.  

Units: g C m-2 yr-1 

Format: network Common Data Form (netCDF) 

Spatial coverage: 90S-90N, 180W-180E 

The “dataset.csv” file is the field observation from peer review publications combining Global Soil 

Respiration Database (SRDB v4, Bond-Lamberty and Thomson, 2018), which is publicly available 

at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578. Besides, The database was further updated 

using observations collected from the China Knowledge Resource Integrated Database 

(www.cnki.net) up to November 2018 according to the criteria of SRDB. This dataset is provided in 

format of “.csv”. 

R codes: 

10fold_CV_RA.txt: 10-fold CV for RA 

https://doi.org/10.6084/m9.figshare.7636193
https://doi.org/10.6084/m9.figshare.7636193
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578
http://www.cnki.net/


Annual_variability_RA.txt: annual variability for global RA 

CMP_RA.txt: comparing RF-RA and Hashimoto2015-RA using CMP approach 

Ra_DD_CC_plot.txt: plotting the comparing results from CMP 

RA_MAT_MAP_anomaly.txt: plotting and modelling the relationship between 

temperature/precipitation anomalies and RA 

RGB_plot.txt: deriving RGB plot to detecting the relative importance of temperature, precipitation 

and shortwave radiation.  

Requirements for publication: 

1) data sources need to be cited correctly 

I) It is not clear which version of the Global data base was used: in the Introduction it is cited as 

“from the most updated global soil respiration dataset (SRDB v4, doi: 10.5194/bg-7-1915-2010, 

Bond-Lamberty and Thomson, 2010a) “– a formally better citation would be: Global Database of 

Soil Respiration Data Version 4 (SRDB v4, Bond-Lamberty and Thomson, 2010a) However the 

manuscript states on p.18, L407… this study used an up-to-date field observational database 

developed from SRDB up to the end 2018. Does this refer to this current version (2018)? Bond-

Lamberty, and Thomson. 2018. A Global Database of Soil Respiration Data, Version 4.0. ORNL 

DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1578 

Response: sorry for the inconsistent citations. We used the most updated SRDB dataset up to 

November 2018, so we cited “Bond-Lamberty, and Thomson. 2018. A Global Database of Soil 

Respiration Data, Version 4.0. ORNL DAAC, Oak Ridge, Tennessee, USA. 

https://doi.org/10.3334/ORNLDAAC/1578” though the manuscript.  

In chapter 2.1, p.5 L121, details on “Q10”, “Q11”, “Q12”, “Q13” and “Q14” should be given 

Response: more details were given according to the original SRDB (Bond-Lamberty and Thomson, 

2018) as follows:  

“Q10” (potential problem with data), “Q11” (suspected problem with data), “Q12” (known problem 

with data), “Q13” (duplicate?) and “Q14” (inconsistency) 

II) the gridded input data sets are not correctly referenced 

Examples: p.6, L136 “soil nitrogen content was downloaded from Spatial Data Access Tool 

(https://webmap.ornl.gov/ogc/index.jsp)“ is referring to a web visualization and download service of 

this data set. However, the information needed for this input variable is it’s correct naming and the 

correct citation of Authors, or a Program. In this case the variable name is ‘Granule soil total nitrogen 

density’, the data set collection: ‘Global Soil Data Task’, the Program ‘International Geosphere-

https://doi.org/10.3334/ORNLDAAC/1578


Biosphere Programme (IGBP)’, the year of the first publication of this dataset: 2000.  

Response: as suggested, we first move the table S1 to the main text as “Table 1 Global variables used 

for producing the global RH dataset”.  

In the modified Table 1, we first provided the download link and the cite the references as “author + 

year”, or “program + year” as follows:  

Table 1 Global variables used for producing the global RH dataset 

A DOI was assigned in 2014 that should be shown in the reference list. 

Response: DOI was expressed in reference list, and we cited the most updated reference as suggested 

above.  

The authors should provide in 2.2. a table with more details as it is now displayed in the supplement, 

with correct references and units (e.g., weight% of total nitrogen).  

Response: we moved Table S1 from supplement to main text, see “Table 1 Global variables used for 

producing the global RH dataset” as Table 1 above. The units were given as well.  

Most probably all the gridded time series data used as input in this study are constrained onto the 

time period 1980 to 2012? 

Response: yes, all variables listed in Table 1 labelled by “Yearly” were constrained on the time period 

from 1980 to 2012.  

 Variables Type 
Type of 

variability 
Sources 

Climate 

 

Mean annual temperature (oC) Split Yearly 

https://crudata.uea.ac.uk/cru/data/hrg/cru

_ts_4.01/ (Harris et al., 2014)  

https://crudata.uea.ac.uk/cru/data/drough

t/ (van der Schrier et al., 2013) 

Mean annual precipitation (mm) Split Yearly 

Diurnal temperature range (oC) Split Yearly 

Potential evapotranspiration 

(mm) 
Split Yearly 

Palmer Drought Severity Index Split Yearly 

Nitrogen deposition  

(g N m-2 yr-1) 
Split Yearly 

https://www.isimip.org/gettingstarted/ava

ilability-input-data-isimip2b/ (Lamarque 

et al., 2013) 

Downward Shortwave radiation  

(W m-2) 

Split Yearly ftp://ftp.cdc.noaa.gov/Datasets/ncep.rean

alysis.derived/surface_gauss/dswrf.sfc.m

on.mean.nc (Kalnay et al., 1996) 

Soil 

Soil carbon content (g kg-1) - Static 
https://soilgrids.org/#!/?layer=TAXNWR

B_250m (Hengl et al., 2017) 

Soil nitrogen density (g m-2) - Static 
https://webmap.ornl.gov/ogc/dataset.jsp?

ds_id=569 (Global Soil Data, 2000) 

Soil water content (mm) Split Yearly 

https://www.esrl.noaa.gov/psd/data/gridd

ed/data.cpcsoil.html (van den Dool et al., 

2003) 

Land 

cover 
MODIS land cover - Static 

https://glcf.umd.edu/data/lc/ (Friedl et al., 

2010) 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
https://crudata.uea.ac.uk/cru/data/drought/
https://crudata.uea.ac.uk/cru/data/drought/
https://www.isimip.org/gettingstarted/availability-input-data-isimip2b/
https://www.isimip.org/gettingstarted/availability-input-data-isimip2b/
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/dswrf.sfc.mon.mean.nc
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/dswrf.sfc.mon.mean.nc
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/dswrf.sfc.mon.mean.nc
https://soilgrids.org/#!/?layer=TAXNWRB_250m
https://soilgrids.org/#!/?layer=TAXNWRB_250m
https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=569
https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=569
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://glcf.umd.edu/data/lc/


all abbreviations needed to be spelled out when they are used the first time in the text: e.g. CRU TS, 

NOAA/ESRL etc. 

Response: done! CRU TS means Climatic Research Unit time-series, while NOAA/ESRL stands for 

National Oceanic and Atmospheric Administration/Earth System Research Laboratory. Revised in 

the text as follows: 

“Monthly gridded temperature, precipitation, diurnal temperature range, potential evapotranspiration, 

and self-calibrated Palmer Drought Severity Index (PDSI) at 0.5o resolution were obtained from 

Climatic Research Unit (CRU) time-series (TS) Version 4.01 from 1901 to 2016 (Harris et al., 2014; 

van der Schrier et al., 2013). Monthly shortwave radiation (SWR, Kalnay et al., 1996),  and soil 

water content (van den Dool et al., 2003) at 0.5o resolution were from National Oceanic and 

Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) at Physical 

Sciences Division”  

2) Suggestion 2.6 to provide a more specific subtitle e.g. ‘cross comparison with Hashimoto 2015 

Soil Respiration’ The authors need to provide details on the Hashimoto et al 2015 product, a short 

overview on key points how it was produced (to avoid that the readers of this manuscript need to 

read Hashimoto et al. 2015 to understand the data set production and pelicularities) and how the data 

set was treated for further analyses.  

Example on the details of input data and the methods that Hashimoto et al 2015 used for the 

generation of their product are required, e.g, that gridded air temperature and precipitation data were 

taken from East Anglia Climatic Research Unit CRU, soil respiration data from SRDB, Bond-

Lamberty and Thomson, 2010  

How is the product autotrophic respiration from the Hashimoto et al 2015 product derived 

(Hashimoto et al product representing the total soil respiration) – this retrieval step is so far not 

described as a processing that it is undertaken by the author team. 

Response: first the subtitle was changed to “Cross comparison with Hashimoto2015-RA”. The details 

on how to develop Hashimoto RA, including variables, models, and calculating RA, were described 

in main text:  

“Hashimoto developed a climate-driven model by updating Raich’s model, which stimulated soil 

respiration as a function of temperature and water (precipitation) at a monthly time step (Hashimoto 

et al., 2015; Raich et al., 2002). Therefore, to get a global estimate to soil respiration at a monthly 

scale, the globally gridded air temperature and precipitation with a spatial resolution of 0.5o were 

derived from University of East Anglia CRU 3.21 (Harris et al., 2014), and 1638 field observations 

were taken from SRDB (v3) for model parameterization (Hashimoto et al., 2015). Monthly soil 



respiration was summed to a yearly scale. Furthermore, annual soil respiration was divided into 

autotrophic and heterotrophic respiration using a global relationship between soil respiration and 

heterotrophic respiration derived from a meta-analysis (Bond-Lamberty et al., 2004). This global 

relationship can be expressed by:  

ln(𝑅𝐻) = 1.22 + 1.73 × ln⁡(𝑅𝑆)   (1) 

Where RH means annual heterotrophic respiration, and RS stands for annual soil respiration, 

expressed by g C m-2 yr-1.  

Therefore, global Hashimoto2015-RA was derived by the difference between soil respiration and 

heterotrophic respiration. The monthly or annual Hashimoto2015-RA dataset can be freely accessed 

from (http://cse.ffpri.affrc.go.jp/shojih/data/index.html, Hashimoto et al., 2015).” 

the product from Hashimoto et al 2015 should always be named together with the publication year, 

or shorter for Figures etc. as Hashimoto 2015. The naming of the Random Forest driven data set as 

‘data driven product’ is still a very general description, one could construct a name using the Random 

Forest method, and also take this name instead of referring in figures to ‘this study’. 

Response: as suggested, “Hashimoto RA” was changed to “Hashimoto2015-RA”, while the 

developed RA dataset was named as “RF-RA” throughout the manuscript and figures, e.g. Figure 3 

and 7.  

3) For publication in ESSD the authors need to optimize the metadata of their product and publish 

the new version on figshare. 

I) -global attributes: should contain a meta data field with the name of the product;  

-variable: the long_name should contain the name of the variable, e.g. autotrophic respiration, the 

unit should contain ‘C m-2 y-1’;  

-z: the long_name should contain more details on z, the unit should contain ‘years since 1980’ 

file name is now Ra.10Fold.CV.720.360.1980.2012. Consider to change the file name to a less 

technically-focused file name, consider more explaining keywords, e.g. Respiration_autotroph_glob-

author_year. 

Response: we publish a new version of developed RA dataset with more details as follows (as well 

at https://doi.org/10.6084/m9.figshare.7636193):  

This data repository contains (1) yearly global autotrophic respiration (RA) dataset from 1980 to 

2012 with a spatial resolution of 0.5°; (2) original field observations to develop Random Forest (RF) 

model; (3) main R codes to produce RA database.  

Model description: 

https://doi.org/10.6084/m9.figshare.7636193


The globally gridded RA database was developed by Random Forest (RF) with 449 field observations 

(see “dataset.csv” in this repository, updated from Bond-Lamberty and Thomson, 2018) using 11 

global variables, including gridded temperature, precipitation, diurnal temperature range, potential 

evapotranspiration, Palmer Drought Severity Index, nitrogen deposition, downward shortwave 

radiation, soil carbon content, soil nitrogen density, soil water content, land cover.   

Dataset information:  

Dataset name: “Respiration_autotrophic_belowgroud_glob_1980_2012_yr_half_dgree.nc” 

Which means globally belowground autotrophic respiration from 1980 to 2012 with a spatial 

resolution of 0.5° (WGS84 ellipsoid) at an annual step.  

Units: g C m-2 yr-1 

Format: network Common Data Form (netCDF) 

Spatial coverage: 90S-90N, 180W-180E 

The “dataset.csv” file is the field observation from peer review publications combining Global Soil 

Respiration Database (SRDB v4, Bond-Lamberty and Thomson, 2018), which is publicly available 

at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578. Besides, The database was further updated 

using observations collected from the China Knowledge Resource Integrated Database 

(www.cnki.net) up to November 2018 according to the criteria of SRDB. This dataset is provided in 

format of “.csv”.  

R codes: 

10fold_CV_RA.txt: 10-fold CV for RA 

Annual_variability_RA.txt: annual variability for global RA 

CMP_RA.txt: comparing RF-RA and Hashimoto2015-RA using CMP approach 

Ra_DD_CC_plot.txt: plotting the comparing results from CMP 

RA_MAT_MAP_anomaly.txt: plotting and modelling the relationship between 

temperature/precipitation anomalies and RA 

RGB_plot.txt: deriving RGB plot to detecting the relative importance of temperature, precipitation 

and shortwave radiation. 

Additionally, the dataset title was changed to “A gridded dataset of belowground autotrophic 

respiration from 1980 to 2012 in global terrestrial ecosystems upscaling of field observations” 

to attract the readers and users.  

II) Abstract and title on figshare 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578
http://www.cnki.net/


Now it reads ‘Global variability of belowground autotrophic respiration in terrestrial 

ecosystems’ ..the netcdf file represent the global belowground autotrophic respiration from 1980 to 

2012 with a resolution of half degree. The unit is g C m-2 a-1 the product was produced by global 

published observations with the linkage of global climate soil and other environmental variables 

using random forest.’ 

Suggestion to change the title more towards a product (it does not need to be the same title as in 

ESSD) 

e.g. title: Global belowground autotrophic respiration from 1980 to 2012 

Response: we changed the title of dataset in Figshare to: “A gridded dataset of belowground 

autotrophic respiration from 1980 to 2012 in global terrestrial ecosystems upscaling of field 

observations”, see https://doi.org/10.6084/m9.figshare.7636193. 

abstract text – suggestion to put more technical details in, some suggestions what information in the 

figshare abstract can be provided below 

global belowground autotrophic respiration from 1980 to 2012 …. Global Database of Soil 

Respiration Data (Bond-Lamberty and Thomson…), …environmental climate and soil variables … 

random forest. …The unit is C m-2 y-1’. The spatial resolution is 0.5 degree latitude longitude on 

WGS84 ellipsoid (?), temporal resolution yearly … 

Response: in abstract, we added more technical details as: 

“We applied Random Forest (RF) algorithm to upscale an updated database of 449 field observations 

from Global Soil Respiration Database (v4) – covering all major ecosystem types and climate zones, 

using global gridded temperature, precipitation, soil and other environmental variables. The 

performance of RF was evaluated by a 10-fold cross-validation. Finally, a globally gridded RA 

dataset from 1980 to 2012 was produced with a spatial resolution of 0.5 degree and a temporal 

resolution of one year, expressed by g C m-2 yr-1 (gram carbon for per square meter per year).”  

In figshare, we added further details as suggested. Please see detailed response of comments “3)-II”  

4) chapter 5 data availability 

Describe here details of the data set taken from the figshare abstract, e.g. that it is a global data set 

with x bands the variable yearly autotrophic respiration unit C m-2 y-1’  

Response: done as suggested:  

“The developed dataset is freely downloadable from https://doi.org/10.6084/m9.figshare.7636193 

(Tang et al., 2019), named as 

“Respiration_autotrophic_belowgroud_glob_1980_2012_yr_half_dgree.nc”, which means a 

https://doi.org/10.6084/m9.figshare.7636193
https://doi.org/10.6084/m9.figshare.7636193


globally gridded RA dataset from 1980 to 2012 with a spatial resolution of 0.5 degree at an annual 

scale, expressed by g C m-2 yr-1 (gram carbon for per square meter per year)”. The RA dataset is 

provided in Netcdf format (Network Common Data Form).  

 

Non-public comments to the Author: 

you got a major revision. 

The major editorial request is to provide throughout information on all the data sources and to edit 

the data product and its publication on figshare  

One interesting component of your manuscript is the comparison of spatiotemporal patterns with 

Hashimoto 2015 

Please enlarge Figures 2, 4, 5 

Response: done, and see changes in text.  

Enlarge figures 9 so that both a and b figures are displayed across the full paragraph width 

Response: done, and see changes in text. 

Since the figure quality was reduced when convert word to pdf, we will attach the original figures, 

which are in pdf format, once the manuscript is accepted.  

Discussion 

Despite the major drivers are MAT, MAP, SWR that are all atmospheric variables your input into the 

random forest are also the gridded data on land cover and soil units and this is visible in the spatial 

patterns of your output product autotrophic respiration, e.g. there are some relative sharp boundaries 

visible, major land cover units are outlined. Do you recognize some major spatial patterns in the 

spatial pattern of the gridded input land cover and soil variables? do land cover and soil gridded data 

display similar spatial patterns? 

Response: to represent ecosystem type as an important variable driving RA, we include ecosystem 

type to develop RF model. Figure 1 shows the dominant driving factors for RF-RA and the 

distribution of MODIS global land cover. Comparing the figure 1a, 1b, 1c and 1d, we did not see 

sharp boundaries for major land covers. Soil gridded data and land cover data did not show similar 

patterns.  



 

Figure 1 The dominant driving factors for RF-RA (a), the global distribution of land cover types (b) 

and soil carbon content (c).  

 

Supplement  

Table 1: Please move the overview on input data into the main manuscript providing correct citation 

of the sources, see also public comment 

Response: we have moved to Table S1 to main text (Table 1) and provided more details with 

download link and citations by (author + years) as suggested.  

Fig S7 would also fit in the main manuscript 

Response: Fig. S7 was moved to the main manuscript as: 

“Figure 10 The percentage of land areas (calculated from cell areas) dominated by mean annual 

temperature (MAT), precipitation (MAP) and shortwave radiation (SWR) for RF-RA and 

Hashimoto2015-RA.” 

Since the figure quality was reduced when convert word to pdf, we will attach the original figures, 

which are in pdf format, once the manuscript is accepted.  

Fig S8 not needed, citation of values in the main manuscript 

Response: this figure was removed.  
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Response to Reviewer #1 

Dear editor and reviewer, 

Thank you very much for your great efforts, comments and suggestion again! Based on the first version 

of “the response to reviewer”, the editor evaluated our manuscript carefully and proposed some good 

suggestion and comments. Combining editor and reviewers’ suggestion and comment, we revised our 

manuscript carefully and thoroughly. 

Therefore, I am kindly to remind you that it would be much more efficient to work on the updated “the 

response to reviewer” and discard the old version that uploaded on July 17, 2019. Thank you for your 

understanding. 

 

Suggestion and comments from referees or editor are marked in Black. 

Responses to referee and editor’s comments are labelled in blue. 

Cited changes made in the manuscript are marked in red.  

 

Please do not hesitate to let us know if you have further questions and/or comments. 

 

Sincerely, 

Xiaolu Tang, Wenjie Zhang and Sicong Gao, on behalf of all co-authors. 
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Response to reviewer #1 

This manuscript deals with estimation of global belowground autotrophic respiration (RA) in terrestrial 

ecosystems. I have some questions in this study. 1) Authors compared global RA by data-derived with 

that by Hashimto et al.(2015). However, authors did not refer the data of Hashimoto et al. (2015) in the 

manuscript. How did authors get the data from Hashimoto? Please explain the difference between 

Random forest model and methods of Hashimoto et al. (2015). 

Response: we apologize for the unclear statement of Hashimoto RH. To avoid that the readers of this 

manuscript need to read Hashimoto et al. 2015 to understand the RA dataset, we first added a short 

summary about the details of input data, the method used and how soil respiration and RA derived. Then 

we provided details on how to get Hashimoto2015-RA (renamed as suggested by editor to fit ESSD better).  

Detailed in text as:  

“Hashimoto developed a climate-driven model by updating Raich’s model, which stimulated soil 

respiration as a function of temperature and water (precipitation) at a monthly time step (Hashimoto et 

al., 2015; Raich et al., 2002). Therefore, to get a global estimate to soil respiration at a monthly scale, the 

globally gridded air temperature and precipitation with a spatial resolution of 0.5o were derived from 

University of East Anglia CRU 3.21 (Harris et al., 2014), and 1638 field observations were taken from 

SRDB (v3) for model parameterization (Hashimoto et al., 2015). Monthly soil respiration was summed 

to a yearly scale. Furthermore, annual soil respiration was divided into autotrophic and heterotrophic 

respiration using a global relationship between soil respiration and heterotrophic respiration derived from 

a meta-analysis (Bond-Lamberty et al., 2004). This global relationship can be expressed by:  

ln(𝑅𝐻) = 1.22 + 1.73 × ln⁡(𝑅𝑆)   (1) 

Where RH means annual heterotrophic respiration, and RS stands for annual soil respiration, expressed 

by g C m-2 yr-1.  

Therefore, global Hashimoto2015-RA was derived by the difference between soil respiration and 

heterotrophic respiration. The monthly or annual Hashimoto2015-RA dataset can be freely accessed from 

(http://cse.ffpri.affrc.go.jp/shojih/data/index.html, Hashimoto et al., 2015).”   

Therefore, the main differences between Random Forest based RA (RF-RA) and Hashimoto20105-RA 

included: (1) variables used to develop models. To develop RF-RA, we applied 11 variables, including 

temperature, precipitation, soil nitrogen, soil carbon and other environmental variables, while on 
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temperature and precipitation were applied in develop Hashimoto2015-RA; (2) modelling approaches. 

We used Random Forest algorithm to model RA, while a simple climate-driven model by temperature 

and precipitation was applied to develop Hashimoto2015-RA. Consequently, we obtained a much higher 

model efficiency (52%) compared to Hashimoto2015-RA (32%). Furthermore, Random Forest algorithm 

have great potentials to address the non-linear correlation between RA and environmental variables, and 

remove auto-correlations among environmental variables. 

2) Authors used PgC a-1 or gC m-2 a-1for the unit of RA, but I guess that a-1 should be yr-1. Please 

correct all unit in the manuscript and figures.  

Response: yes, it means Pg C per year. Corrected to “Pg C yr-1” or “g C m-2 yr-1” throughout the 

manuscript and figures!  

3) Authors discussed about importance of the dominant environmental factors for estimate spatio-

temporal variation in RA. I think that it is important not only environmental factors for plant production 

but also plant biomass because root respiration would have positive correlation with plant biomass. Why 

did authors ignore the global pattern of plant biomass??  

Response: thank you for the good comments. We agree with you that plant biomass, particularly root 

biomass, would have positive correlations with RA. However, selecting variables is constrained by the 

fact that a variable must be available at all sites and at the corresponding global product simultaneously. 

For instance, if a variable is measured accurately at sites, but with large uncertainties in the corresponding 

global product, it may be advantageous to exclude this variable from the analysis (Jung et al., 2011).  

Although we tried to include global plant or root biomass as a driving variable, we found such product 

was only available for a single year, or mean values of several years (Huang et al., 2017), or forests 

(Hengeveld et al., 2015), and there was a lack of time-series global biomass product covering all land 

covers. Given the fact that plant biomass was highly dynamic due to annual accumulation, using a global 

biomass for a given year or particularly ecosystem type to represent the biomass dynamics covering all 

terrestrial ecosystems would cause a great uncertainty to RA estimation. Therefore, the lack of global 

biomass product constrained the use of plant biomass as a driving variable for RA in this study. Instead, 

we used MODIS land cover as one of driving variables, which could indirectly reflect the biotic or 

biomass control on RA to some extent.  

Finally, please considering my specific comments and get some English proofreading. In addition, please 
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reconsider carefully about all figures, because I feel that some figures are not important in this manuscript. 

If authors resolve these questions, I think that this manuscript would be better for global data science.  

Response: we answered each of your specific comment carefully, and we improved the English carefully.  

As you suggested, see specific comments below, Figure 6c was not important and removed.  

 

Specific comments 

Page 3, line 54, “which is almost 5 times of: : :.”: I cannot understand relationship between this sentence 

and preceding sentence. Page 3, line 56, “Therefore, an accurate estimate of : : :”: I think that authors did 

not enough explain the reasons before the sentences. Please add more explanation.  

Response: Since the two comments link with each other, we answer the two comments together.  

We apologize for the unclear statement. We revised and added more explanation for it as follows:  

“Globally, RA could amount roughly up to 54 Pg C yr-1 (1 Pg = 1015 g, calculating RA as an approximate 

ratio of 0.5 of soil respiration, more details in Hanson et al., 2000) according to different estimates of 

global soil respiration (Bond-Lamberty, 2018), which is almost 5 times of the carbon release from human 

activities (Le Quéré et al., 2018). However, the contribution of RA to soil respiration varied greatly from 

10% to 90% across biomes, climate zones and among years (Hanson et al., 2000), leading to the strong 

spatial and temporal variability in RA. Thus, whether RA varies with ecosystem types or climate zones 

remains an open question at the global scale (Ballantyne et al., 2017). Consequently, an accurate estimate 

of RA and its spatial-temporal dynamics are critical to understand the response of terrestrial ecosystems 

to climate change.” 

Page 8, Figure 2: I cannot understand the meaning of the figure 2c and 2b. Why did authors indicate the 

standard deviation of temporal variation in RA??  

Response: Fig. 2b is the mean value of Hashimoto RA over 1980-2012, while Fig. 2c represents the 

standard deviation of predicted RA in this study. The figure caption was revised combining the other and 

editor suggestion and comments: 

“Figure 2 Spatial patterns of annual mean and standard deviation for RF-RA (a, c) and Hashimoto2015-

RA (b, d) from 1980 to 2012, respectively. The standard deviation was applied to characterize the inter-

annual variability following Yao et al. (2018).”  
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Due to the inter-annual variability of environmental controls on RA, RA varied annually. Although Fig. 

6 describes the annual variability of total RA, the spatial pattern of annual variability of RA is lacking. To 

characterize the spatial pattern of annual variability of RA, the standard deviation of RA from 1980-2012 

was employed. Such analysis was also conducted in other studies, e.g. Yao et al. (2018). Therefore, we 

used standard deviation to represent the temporal pattern of RA.  

Page 11, Figure6: what the difference of Fig.6a and Fig.6b? Please add more explanation. And, please 

make the same value of yaxis in both of Fig.6a and Fig.6b. And I think that Fig6c is not needed.  

Response: Fig. 6a represents the annual variability of predicted RA in this study, while Fig. 6b represents 

the annual variability of Hashimoto RA. The same value of yaxis from 39 – 45 Pg C yr-1 was applied.  

Fig. 6c was not important and removed.  

We corrected the figure description more clearly: 

“Annual variability of RF-RA (a) and Hashimoto2015-RA (b) from 1980 to 2012. The grey area 

represents 95% confidence interval.” 

Page 12, Line 254 to 227, “All the biomes, except: : :, respectively”: please rewrite these sentences. 

Grammatical subject is RA, I think.  

Response: we rewrite these sentences: 

“RA showed a significantly increasing trend during 1980-2012 (ps < 0.01) in majority biomes, except 

temperate forests, savannas and wetland. RA in tropical forests, boreal forests and cropland increased by 

0.0076±0.0015, 0.0047±0.0016, 0.0036±0.0014 Pg C yr-2, respectively.” 

Page 12, Line 259, “a significant increasing trend of: : :”: is this “a significant increasing trend of total 

RA in temperate zones,: : :.”?? 

Response: thank you for your careful revision. Yes, we mean “a significant increasing trend of total RA 

in temperate zones….”. We revised the text: 

“However, there were significant increasing trends of total RA in temperate zones, temperate forests, 

savannas and wetland of Hashimoto2015-RA, which were not observed in RF-RA”. 

Page13, Figure 9: I cannot understand the importance of this figure.  

Response: We appreciate your question. Figure 9 showed the relative importance of three main 
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environmental drivers – MAT, MAP and SWR, by colors with RGB plot.  

Due to different ecosystem types, or plant functional types or climate zones, the dominant factors may 

vary. As indicated by Fig. 10, 56% of land area was dominated by precipitation, while temperature and 

shortwave radiation dominated 19% and 25% of global land areas, which indicated an uneven control of 

environmental factors on RA. Therefore, Figure 9 showed the spatial variability of dominance of MAT, 

MAP and SWR on RA. It was found that the dominance of precipitation on RA was globally distributed, 

particularly dry or semi-arid areas, such as Northwest China, Southern Africa, Middle Australia and 

America, while temperature controlled RA mainly in in tropical Africa, Southern Amazon rainforests, 

Siberia and partly tundra, and shortwave radiation dominated high latitudinal areas, e.g. Eastern America 

and middle and Eastern Russian. Such analysis have been widely used in other studies, e.g. gross primary 

production (Yao et al., 2018), earth greening (Zhu et al., 2016), vegetation productivity (Seddon et al., 

2016). 

RGB synthesis (Fig. 9) was performed on stretched values of partial correlation coefficients, an effective 

way to illustrate the spatial distribution of dominant driving factors of RA (Yao et al., 2018), which could 

increase our understanding the mechanisms and spatial variability of environmental controls on RA at the 

global scale.  

Page 14, Line 290 “For example, temperature was the: : :Australia” is that the result of Hashimoto et 

al.(2015)? 

Response: thank you for your careful revision again. Yes, we mean “Hashimoto2015-RA”, and revised in 

text:  

“temperature was the main dominant factor for most areas in Australia for Hashimoto2015-RA”. 
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Response to Reviewer #2 

Dear editor and reviewer, 

Thank you very much for your great efforts, comments and suggestion again! Based on the first version 

of “the response to reviewer”, the editor evaluated our manuscript carefully and proposed some very good 

suggestion and comments. Combining editor and reviewers’ suggestion and comments, we revised our 

manuscript carefully and thoroughly. 

Therefore, I am kindly to remind you that it would be much more efficient to work on the updated “the 

response to reviewer” and discard the old version that uploaded on July 17, 2019. Thank you for your 

understanding. 

 

Suggestion and comments from referees or editor are marked in Black. 

Responses to referee and editor’s comments are labelled in blue. 

Cited changes made in the manuscript are marked in red.  

 

Please do not hesitate to let us know if you have further questions and/or comments. 

 

Sincerely, 

Xiaolu Tang, Wenjie Zhang and Sicong Gao, on behalf of all co-authors. 
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Response to Reviewer #2 

I have read "Global variability of belowground autotrophic respiration in terrestrial ecosystems". In the 

manuscript, the authors estimated global belowground autotrophic respiration from 1980-2012, analyzed 

the temporal trend, and explored the dominant factors for autotrophic variability. Global autotrophic 

respiration is a big carbon exchange between the atmosphere and terrestrial, but was rarely studies in the 

past years. Global temporal and spatial variability of autotrophic respiration is clearly a timely and 

interesting topic. Generally, this manuscript is well organized and easy to follow. The results and 

conclusions are reasonable. The production (Global belowground autotrophic respiration shared in the 

figShare) is a contribution to the community and potentially can serve as a benchmark for ecosystem 

models, it will be useful also make the analysis (include the codes) public available to make the analysis 

reproducible. But I think the authors have to better address the limitation, weakness, and uncertainty of 

this study. In my opinion, some major limitation including: 1) The sample size of RA: there are much less 

annual RA comparing with annual Rs (less than 10%), even though the authors extended the RA dataset 

by new papers from China Knowledge Resource Integrated (CNKI) Database, the total samples is only 

449. And the majority of the samples are from the forest, samples from wetland and shrubland are 

extremely lacking (only 5 observations).  

Response: we also attached the dataset and the R codes to generate the main results to figshare at 

https://doi.org/10.6084/m9.figshare.7636193.  

Based on SRDB v4, including new observations from CNKI, we got a total of 4276 observations for soil 

respiration, however, there were 697 observations for RA. According to our selecting criteria: e.g. RA 

measurement lasting for one year; excluding measurements with Alkali absorption and soda lime; no site 

management, we got a RA dataset of 449 observations. Our observational dataset is mainly from forests, 

but a lack of observations in wetland and shrubland, which could be the limitation in this study. However, 

our dataset covered all major ecosystem types and climate zones across the globe.  

We have discussed the limitation in “4.4 Advantages, limitations and uncertainties” section as follows: 

“Finally, uneven coverage of observations in the updated dataset would be another source of uncertainties. 

Although our dataset had a wide range of land cover, the observational sites mainly distributed in China, 

Europe and North America and were dominated by forests. There was a lack of observations in areas, 

such as Africa, Austria and Russia, and biomes, such as tropical forest, shrubland, wetland and cropland. 

However, our dataset covered all major ecosystem types and climate zones across the globe. RA 
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observations caused bias of RF model toward the regions with more observations. Therefore, including 

more observations in these areas and biomes without observations should largely increase our capability 

to assess the spatial and temporal patterns of global RA and contribute to improve the global carbon 

cycling modelling to future climate change.” 

2) How can you evaluate the quality of the RA data? Even though the authors conducted quality control 

on the RA data, but it does not guarantee the reliability of the RA data. We lack reliable methods to 

separate RA and RH, current ways (e.g., trend, gap, girdling, clip, and isotope) have their own problem. 

Further, usually RH is measured, and RA was calculated as the difference between RS and RH, which 

also bring uncertainties. All those issues were not addressed and discussed in the manuscript. If the data 

reliability cannot be guaranteed, the estimates, trend, and dominant factors should also be questioned. 

Despite the above problems, I still think this study tend to address an important topic and may inspire 

more research in the future. 

Response: we evaluate the quality of RA from different aspects to guarantee the reliability of RA: (1) 

measuring approaches: Alkali absorption and soda lime were not included due to the potential 

underestimate of respiration rate with the increasing pressure inside chamber (Pumpanen et al., 2004); (2) 

data quality control by quality flag: Q01 (estimated from figure), Q02 (data from another study), Q03 

(data estimated-other), Q04 (potentially useful future data), Q10 (potential problem with data), Q11 

(suspected problem with data), Q12 (known problem with data), Q13 (duplicate?), Q14 (inconsistency). 

Therefore, RA or total soil respiration observations labelled by “Q10”, “Q11”, “Q12”, “Q13” and “Q14” 

were removed in this study. More details on data quality controls can be found in Bond-Lamberty and 

Thomson (2010a).  

We agree with you that there was a lack reliable method to separate RA and RH, and current ways (e.g., 

trend, gap, girdling, clip, and isotope) have their own problems.  

We have discussed the data quality and limitation of unreliable method to separate RA and RH in “4.4 

Advantages, limitations and uncertainties” as follows: 

“First, although we conducted a data quality control to develop the RF-RA dataset, a lack of reliable 

approach to separate RA and heterotrophic respiration may lead to an important uncertainty of RA 

estimates. There are several approaches, e.g. trenching, stable or radioactive isotope, gridding, to partition 

soil respiration (Bond-Lamberty et al., 2004; Högberg et al., 2001; Hanson et al., 2000), however, each 

of these approaches has its own limitations. For example, trenching has been widely applied to partition 
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RA and heterotrophic respiration due to easy operation and low cost, on the other hand, heterotrophic 

respiration may be increased due to the termination of water uptake by roots and the decomposition of 

remaining dead roots in trenching plots (Hanson et al., 2000; Tang et al., 2016). Commonly, RA was 

calculated from the difference between total soil respiration and heterotrophic respiration, thus the 

trenching approach might lead to an underestimation of RA. In our dataset, a total of 254 RA observations 

were estimated by trenching approach, while the rest RA observations were estimated by other separation 

approaches, e.g. isotope, radiocarbon, mass balance. Thus, inconsistent separation approaches could also 

be another source of uncertainty of RA values. ” 

Specific comments Abstract 

Line 22: (srdb v4) but later (line 97) you used (srdb version 4), be consistent. 

Response: done! 

Line 24: the unit for RA increasing trend should be Pg C a-2? Please see this paper: Ballantyne, A., Smith, 

W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P., Shevliakova, E., et al. (2017). the warming hiatus 

due to reduced respiration. Nature Climate Change, 7(2), 148. https://doi.org/10.1038/NCLIMATE3204 

– 152. 

Response: thank you for your kind recommendation, and we corrected the increasing unit to Pg a yr-2 or 

g C m-2 yr-2 throughout the text and figures, e.g. Figure 5. 

Line 31-32: “the perspective that the parameters of global carbon stimulation independent on climate 

zones and biomes”. But already some studies said that the response of respiration to climate change differs 

in different regions. Huang, Jian-ping, Xiao-dan Guan, and Fei Ji. "Enhanced cold-season warming in 

semi-arid regions." Atmospheric Chemistry and Physics 12.12 (2012): 5391-5398. Jian, Jinshi, et al. 

"Future global soil respiration rates will swell despite regional decreases in temperature sensitivity caused 

by rising temperature." Earth’s Future 6.11 (2018): 1539-1554. The response of respiration to climate 

differs in different periods: Ballantyne, A., Smith, W., Anderegg, W., Kauppi, P., Sarmiento, J., Tans, P., 

Shevliakova, E., et al. (2017). the warming hiatus due to reduced respiration. Nature Climate Change, 

7(2), 148. https://doi.org/10.1038/NCLIMATE3204 –152.  

Response: thank you for your kind recommendation. Huang et al. (2012) mainly discussed the uneven 

changes of temperature, not RA.  

Jian et al. (2018) found uneven changes of soil respiration in different areas, and Ballantyne et al. (2017) 

https://doi.org/10.1038/NCLIMATE3204%20–%20152
https://doi.org/10.1038/NCLIMATE3204%20–%20152
https://doi.org/10.1038/NCLIMATE3204%20–152
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also proposed that belowground autotrophic respiration may be varied among ecosystem types. These 

references have been cited to support our conclusions, and revised in the text as follows:  

“However, RA increment varied with climate zones and ecosystem types (Figs. S2 and S3), which was 

similar to previous findings that total soil respiration or RA varied with climate zones or ecosystem types 

(Ballantyne et al., 2017; Jian et al., 2018a). These differences may be related to regional heterogeneity 

and plant functional trait. For example, regional temperature significantly differed from global averages 

(Huang et al., 2012), with much faster change in high-latitude regions (Hartmann et al., 2014), and semi-

arid dominated the trend and variability of global land CO2 sink (Ahlström et al., 2015).” 

Introduction 

Line 48: It is not accurate to say RA is the second largest source of carbon fluxes from soil because we 

don’t know whether Ra is larger than Rh. And does the (Raich and Schlesinger 192) paper really say that? 

And in line 309 you said Rh account for 0.54-0.63, means RH > RA. 

Response: we apologize for the improper statement. We mean soil respiration is the second largest carbon 

flux. We revise the text: 

“RA is one main component of soil respiration (Hanson et al., 2000), and soil respiration represents the 

second largest source of carbon fluxes from soil to the atmosphere (after gross primary production, GPP) 

in the global carbon cycle (Raich and Schlesinger, 1992).” 

Line 54: there is a new study summarized global Rs estimates: Bond-Lamberty, Ben. "New techniques 

and data for understanding the global soil respiration flux." Earth’s Future 6.9 (2018): 1176-1180. 

Response: thank you for your recommendation. We cited the global estimates of soil respiration 

summarized by Bond-Lamberty (2018) to support our study:  

“RA could amount roughly up to 54 Pg C yr-1 (1 Pg = 1015 g, calculating RA as an approximate ratio of 

0.5 of soil respiration, more details in Hanson et al., 2000) according to different estimates of global soil 

respiration (Bond-Lamberty, 2018), which is almost 5 times of the carbon release from human activities 

(Le Quéré et al., 2018).” 

Line 62-63: a citation needs to support this statement. 

Response: done! We revised the text as follows: 

“Although individual site measurements of RA have been widely conducted across ecosystem types and 
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biomes, the globally spatial and temporal patterns of RA have not been explored and still act as a “black 

box” in global carbon cycling (Ballantyne et al., 2017).”  

Line 63-64: need a citation. 

Response: Revised as follows in the text: 

“This “black box” is not well constrained and validated, because most terrestrial ecosystem models and 

earth system models were commonly calibrated and validated against eddy covariance measurements of 

net ecosystem carbon exchange (Yang et al., 2013).” 

Line 85: “linear of non-linear models” change to “linear and non-linear models”. 

Response: done! 

Line 86: But in line 94, you said RF model can avoid overfitting. Zhao et al 2017 used ANN models; and 

Jian et al 2018 also include RF models. So you need to be concise to avoid inconsistent. 

Response: Zhao et al 2017 was appropriate and removed in L94! 

Line 95: Zhao et al. 2017 used ANN models, it is not appropriate to cite here. 

Response: Zhao et al. 2017 was removed, while Bodesheim et al., 2018 and Jung et al. 2017 were cited 

here.  

Line 96: It is better also include the GitHub commit number of SRDB.  

Response: as suggested the editor, we cited a more updated citation, which is from 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578 (Bond-Lamberty and Thomson, 2018). Therefore, 

we included version number here. 

“First, RA observational dataset was developed based on SRDB (v4) across the globe, which is publicly 

available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578 (Bond-Lamberty and Thomson, 2018).” 

Line 105: other environmental factors is too broad, please to be more specific. 

Response: revised! We specified the soil and vegetation factors. 

“which further advance our knowledge of the co-variation of RA with climate, soil and vegetation factors” 

Material and methods 

A big point in this study is you compared your results with that from Hashimoto (2015), you need to talk 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578
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about how you get the RA data of Hashimoto (2015). You directly used their data or you reproduced their 

estimates. If you reproduced, how and whether you used the same climate data as Hashimoto? 

Response: we apologize for the misleading of Hashimoto RA. We first added a short summary about the 

details of input data, the method used and how soil respiration and RA were derived to avoid that the 

readers of this manuscript need to read Hashimoto et al. 2015 to understand the RA dataset. Then we 

provided details on how to get Hashimoto2015-RA (renamed as suggested by editor to fit ESSD better).  

Detailed in text as:  

“Hashimoto developed a climate-driven model by updating Raich’s model, which stimulated soil 

respiration as a function of temperature and water (precipitation) at a monthly time step (Hashimoto et 

al., 2015; Raich et al., 2002). Therefore, to get a global estimate to soil respiration at a monthly scale, the 

globally gridded air temperature and precipitation with a spatial resolution of 0.5o were derived from 

University of East Anglia CRU 3.21 (Harris et al., 2014), and 1638 field observations were taken from 

SRDB (v3) for model parameterization (Hashimoto et al., 2015). Monthly soil respiration was summed 

to a yearly scale. Furthermore, annual soil respiration was divided into autotrophic and heterotrophic 

respiration using a global relationship between soil respiration and heterotrophic respiration derived from 

a meta-analysis (Bond-Lamberty et al., 2004). This global relationship can be expressed by:  

ln(𝑅𝐻) = 1.22 + 1.73 × ln⁡(𝑅𝑆)   (1) 

Where RH means annual heterotrophic respiration, and RS stands for annual soil respiration, expressed 

by g C m-2 yr-1.  

Therefore, global Hashimoto2015-RA was derived by the difference between soil respiration and 

heterotrophic respiration. The monthly or annual Hashimoto2015-RA dataset can be freely accessed from 

(http://cse.ffpri.affrc.go.jp/shojih/data/index.html, Hashimoto et al., 2015).” 

Line 110-112: are those papers from CNKI all in Chinese? How many studies and how many more data 

records you got from that? Please clarify that. 

Response: yes, those papers from CNKI are all in Chinese with English abstract. We added 68 more RA 

observations and revised in the text: 

“Finally, this study included a total of 449 field observations (Fig. 1), including 68 observations from 

CNKI.”  
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Line 122: Australia, Russia, Africa, and South America. 

Response: done!  

Line 145: The srdb v4 covered 1960-2017, why your study only covered 1980-2012? 

Results: from 1960 to 1980, there are only 11 observations, which might bring uncertainties. Our study 

covered the period until 2012 for easily comparing with Hashimoto RA, which covered the period up to 

2012.  

Line 224: ‘-4 – 4’ change to ‘-4 to 4’. 

Response: done! 

Line 224-225: ‘East Russia and tropical and Eastern regions in Africa’ change to ‘East Russia, tropical, 

and Eastern regions in Africa’. 

Response: done! 

Line 264-265: Usually anomaly was the difference between temperature/precipitation of corresponding 

year to the mean of a period (e.g., 1980-2012 in this study). But this should not change the results, if 

previous studies calculate anomaly like yours, please provide a citation to support. 

Response: thank you for your suggestion, and we followed the suggestion. The anomaly of 

temperature/precipitation of corresponding year to the mean of 1980-2012, and the results did not change.  

Line 270-273: why in temperate zone/savannas/wetland there is no correlation between RA and 

temperature anomaly? That is interesting, usually, in tropical and subtropical regions, Rs is less correlated 

with temperature (and should be also true for the temperature anomaly). I think it worth to analyze in 

more details and try to explain the mechanism or maybe just because of the uncertainty. 

Response: the different responses of ecosystem types or climate zones to climatic variables may be related 

to regional heterogeneity and plant functional trait. For example, regional temperature significantly 

differed from global averages (Huang et al., 2012), with much faster change in high-latitude regions 

(Hartmann et al., 2014), and semi-arid dominated the trend and variability of global land CO2 sink 

(Ahlström et al., 2015). Similar studies were also found in other studies, e.g. total soil respiration or RA 

(Ballantyne et al., 2017; Jian et al., 2018a). Therefore, the regionally uneven responses of RA to climatic 

variables were unlikely due to model uncertainty.  
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These results have been discussed in “4.1 Global RA” section, and we revised the text as:  

“However, RA increment varied with climate zones and ecosystem types (Figs. S2 and S3), which was 

similar to previous findings that total soil respiration or RA varied with climate zones or ecosystem types 

(Ballantyne et al., 2017; Jian et al., 2018a). These differences may be related to regional heterogeneity 

and plant functional trait. For example, regional temperature significantly differed from global averages 

(Huang et al., 2012), with much faster change in high-latitude regions (Hartmann et al., 2014), and semi-

arid dominated the trend and variability of global land CO2 sink (Ahlström et al., 2015).” 

Line 310-311: See also Lamberty 2018 Earth’s Future paper. "New techniques and data for understanding 

the global soil respiration flux." Earth’s Future 6.9 (2018): 1176- 1180. 

Response: thank you for the recommendation, and we cited the global soil respiration estimates from 

Bond-Lamberty (2018): 

“Bond-Lamberty et al. (2018) proposed that the global average proportion of heterotrophic respiration 

ranged from 0.54 to 0.63 over 1990-2014 and global soil respiration was 67 to 108 Pg C yr-1 according to 

different estimates Bond-Lamberty (2018); (Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 

2015; Hursh et al., 2017; Jian et al., 2018b), thus global RA varied from 25 to 51 Pg C yr-1.” 

Discussion 

Dominant factors: all you talked were about driving factors of RA spatial variability, right? Did you also 

analyze the dominant factors of temporal variability? Limitation and uncertainty: see my previous overall 

comment. In addition, Jian et al. "Constraining estimates of global soil respiration by quantifying sources 

of variability." Global change biology 24.9 (2018): 4143-4159 talked about uncertainty related to time-

scaling and Rs upscaling. How about RA upscaling and timescale? 

Response: we analyzed the dominate factors at both spatial and temporal patterns. We used partial 

correlation analysis based on a timescale from 1980 to 2012 for each grid cell (see methodology section 

2.5), and the correlation coefficient was applied to derive the dominant factor map (Fig. 9). However, we 

did not analyze the dominant factors for each given year.  

We additionally discussed the potential variability of RA using different time scale variables in “4.4 

Advantages, limitations and uncertainties”. 

“Second, due to the limited observations of RA at a daily or monthly scale, the RF-RA dataset was 
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produced at an annual scale. Although there was no direct study to compare the difference of RA 

upscaling from daily or monthly and annual scale, substantial differences of soil respiration upscaling 

from daily or monthly and annual scales (Jian et al., 2018b) indirectly illustrated the potential difference 

of RA upscaling from different timescales.” 

Author contributions 

Line 445: ‘to the review the manuscript’ change to ‘to review the manuscript’. 

Response: done. 
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Abstract 15 

Belowground autotrophic respiration (RA) is one of the largest, but highly uncertain carbon flux components in terrestrial 

ecosystems. However, ItRA has not been explored globally before and still acted as a “black box” in global carbon cycling 

currently. Such progress and uncertainty motivate a development of global RA dataset and understand its spatial and temporal 

patterns, causes and responses to future climate change. This study We used applied Random Forest (RF) algorithm to upscale 

an updated dataset from Global Soil Respiration Database (v4) – covering all major ecosystem types and climate zones with 20 

449 field observations, using study RA’s spatial and temporal pattern at the global scale by linking the updated field 

observations from Global Soil Respiration Database (v4) with globally gridded temperature, precipitation, soil and other 

environmental variables. We used a 10-fold cross-validation to evaluate the performance of RF to predict the spatial and 

temporal pattern of RA. Finally, a globally gridded RA dataset from 1980 to 2012 was produced with a spatial resolution of 

0.5o  0.5o (longitude  latitude) and a temporal resolution of one year, expressed by g C m-2 yr-1 (gram carbon for per square 25 

meter per year).  

Globally, mean RA was 43.8±0.4 Pg C ayr-1 with a temporally increasing trend of 0.025±0.006 Pg C ayr-21 over from 1980- to 

2012. Such increment trend was widely spread with 58% global land areas. For each 1 oC increase in annual mean temperature, 

global RA increased by 0.85±0.13 Pg C ayr-12, and it was 0.17±0.03 Pg C ayr-21 for 10 mm increase in annual mean precipitation, 

indicating a positive feedback of RA to future climate change. At a global scale, pPrecipitation was the main dominant climatic 30 

drivers of the spatial pattern of controlling RA, accounting for 56% of global land areas with widely spread globally, 

particularly in dry or semi-arid areas, followed by shortwave radiation (25%) and temperature (19%). Different temporal 

patterns for varying climate zones and biomes indicated uneven responses of RA to future climate change, challenging the 

perspective that the parameters of global carbon stimulation independent on climate zones and biomes. The developed RA 

databasedataset, the missing carbon flux component that is not constrained and validated in terrestrial ecosystem models and 35 

earth system models, will provide insights into understanding mechanisms underlying the spatial and temporal variability of 

belowground vegetation carbon dynamics. The developed RA databasedataset  also has great potentials to serve as a 

benchmark for future data-model comparisons. The developed RA productdataset in a common netCDF format is freely 

available at https://doi.org/10.6084/m9.figshare.7636193 (Tang et al., 2019).  

 40 
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1 Introduction 

Belowground autotrophic respiration (RA) mainly originated from plant roots, mycorrhizae, and other micro-organisms in 45 

the rhizosphere directly relying on labile carbon component leaked from roots (Hanson et al., 2000; Tang et al., 2016; Wang 

and Yang, 2007). Thus, RA reflects the photosynthesis derived carbon respired back to the atmosphere by roots and regulates 

the net photosynthetic production allocation to belowground tissues (Högberg et al., 2002). RA is also one main component of 

soil respiration (Hanson et al., 2000), which and soil respiration represents the second largest source of carbon fluxes from soil 

to the atmosphere (after gross primary production, GPP) in the global carbon cycle (Raich and Schlesinger, 1992). Globally, 50 

RA could amount roughly up to 54 Pg C yr-1 (1 Pg = 1015 g, calculating RA as an approximate ratio of 0.5 of soil respiration, 

more details in Hanson et al., 2000) according to different estimates of global soil respiration  (Bond-Lamberty, 2018), which 

is almost 5 times of the carbon release from human activities (Le Quéré et al., 2018). RA contributed about 50% of total soil 

respiration on average, hHowever, this the contribution of RA to soil respiration varied greatly from 10% to 90% across biomes, 

climate zones and among years (Hanson et al., 2000), leading to the strong spatial and temporal variability in biomes and 55 

climate regionsRA. Thus, whether RA varies with ecosystem types or climate zones remains an open question at the global 

scale (Ballantyne et al., 2017). Thus global mean RA would amount from roughly 42 to 54 Pg C a-1 (1 Pg = 1015 g) according 

to recent estimates of soil respiration (Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017), which is almost 5 times of 

the carbon release from fossil fuel combustion from human activities (Le Quéré et al., 2018). ThereforeConsequently, an 

accurate estimate of RA and its spatial-temporally dynamics is are critical to understand the response of terrestrial ecosystems 60 

to global carbon cycling and climate change.  

Due to the difficulties of in separation and direct measurement of RA at varying spatial scales and its diurnal, seasonal and 

annual variabilities, RA becomes one of the largest but highly uncertain carbon flux components in terrestrial ecosystems. 

Although individual site measurements of RA have been widely conducted across ecosystem types and biomes, knowledge 

gap still remains even though with a large number of field measurements (Hashimoto et al., 2015). Consequently, the globally 65 

spatial and temporal patterns of RA haves not been explored and still acts as a “black box” in global carbon cycling (Ballantyne 

et al., 2017). This “black box” is not well constrained and validated, in because most terrestrial ecosystem models and earth 

system models were commonly calibrated and validated against eddy covariance measurements of net ecosystem carbon 

exchange (Yang et al., 2013). Such progress and uncertainty motivate a development of global RA dataset from observations 

and understand its spatial and temporal patterns, causes and responses to future climate change. Despite of the general 70 

agreement that global soil respiration increased during last several decades (Bond-Lamberty et al., 2018; Bond-Lamberty and 

Thomson, 2010b; Zhao et al., 2017), how global RA responding to climate change is far from certain because of different 

temperature sensitivities of RA across terrestrial ecosystems (Liu et al., 2016; Wang et al., 2014). Therefore, reducing RA 

uncertainty and clarifying its response to climate change, particularly to temperature and precipitation, is essential for global 



4 

carbon allocation and future projection of the impact of climate change’s effects on global terrestrial carbon cyclinge.  75 

Although several studies have globally estimated soil respiration and its response to climate variables (Bond-Lamberty and 

Thomson, 2010b; Hursh et al., 2017; Zhao et al., 2017), such efforts have not been conducted for global RA directly. Although 

Hashimoto et al. (2015) indirectly derived RA via the difference between total soil respiration and heterotrophic respiration, 

however, it probably might lead to uncertaintyies due to merely using the inclusion of the temperature and precipitation as the 

only model drivers and a low model efficiency (32%). Besides temperature and precipitation, other variables, e.g. soil water, 80 

carbon and nitrogen content, are additionally critical factors regulating RA, and those factors generally varied with biomes and 

climate zones. Consequently, Hashimoto et al. (2015) may not reflect the key processes affecting RA, such as soil nutrient 

limitationconstrains.  

On the other hand, the climate-derived models usually explain < 50% variability of soil respiration (Bond-Lamberty and 

Thomson, 2010b; Hashimoto et al., 2015; Hursh et al., 2017), which might be another uncertainty source. Recent studies have 85 

included more variables and field observations to promote improve the prediction ability of the linear of and non-linear models 

(Jian et al., 2018b; Zhao et al., 2017), yet however, it may propagate error because of the overfitting and autocorrelation among 

these variables (Long and Scott, 2006). Random Forest (RF, Breiman, 2001), a machine learning approach, could overcome 

these issues based on the hierarchical structure, and be insensitive to outliers and noise compared to single classifiers (Breiman, 

2001; Tian et al., 2017). RF uses a large number of ensemble regression trees but a random selection of predictive variables 90 

(Breiman, 2001). RF only requires two free parameter settings: the number of variables sampled as candidates for each split 

and the number of trees. The performance of the RF model usually is not sensitive to the number of trees and number of 

variables. Moreover, RF regression can deal with a large number of features, and which could help feature selection based on 

the variable importance and can avoid overfitting (Jian et al., 2018b). Consequently, RF it has been widely used for carbon 

fluxes modelling in recent years (Bodesheim et al., 2018; Jung et al., 2017). (Jung et al., 2017; Li et al., 2017; Zhao et al., 95 

2017). 

Therefore, this studywe firstly applied RF algorithm to retrieve global RA based on the updated RA field observations from 

the most updated Gglobal Ssoil Rrespiration Ddatabaseset (SRDB v4, Bond-Lamberty and Thomson, 2018) (SRDB v4, doi: 

10.5194/bg-7-1915-2010, Bond-Lamberty and Thomson, 2010a) with the linkage of other global variables (see “materials and 

methods” part) for the first time, aiming to: (1) develop a globally gridded RA product dataset using field observations across 100 

the globe (named data-derived RF-RA); (2) estimate RA’s the spatial and temporal patterns of RA at the global scale; (3) 

identify the main dominant driving factors of RA’sthe spatial and temporal variabilities of RA; (4) compare RF-RA dataset 

with the previous RA estimates from Hashimoto et al. (2015). The outcome of this studydeveloped RF-RA dataset will advance 

our understanding of global RA and its spatial and temporal variabilities. The proposed RA product RF-RA is expected to serve 

as a benchmark for global vegetation models and its role in global carbon cyclingfuture data-model comparison, which. It will 105 
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also further advance our knowledge of the co-variation of RA with climate, and soil and vegetation other environmental factors, 

further linking the empirical observations temporally and spatially to bridge the knowledge gap among local, regional and 

global scales. 

2 Material and methods 

2.1 Development of RA databaseobservational dataset development 110 

First, RA databaseobservational dataset was developed based on SRDB (v4) observations across the globe from SRDB (Bond-

Lamberty and Thomson, 2010a), which is publicly available at https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1578 

https://github.com/bpbond/srdb(Bond-Lamberty and Thomson, 2018). Then, we further updated the databasedataset using 

observations collected from Chinese peer-review literatures from China Knowledge Resource Integrated Database 

(www.cnki.net) up to March 2018, which followed the identical criteria applied in SRDB development. To control the data 115 

quality, Aannual RA observations were filtered that: (1) annual RA was directly reported in publications indicated by “years 

of data” of SRDB; (2) the start and end years were recorded in literatures or expanded from “years of data” of SRDB; (3) soil 

respiration measurements with Alkali absorption and soda lime were not included due to the potential underestimate of 

respiration rate with the increasing pressure inside chamber (Pumpanen et al., 2004); (4) observations with treatments of 

nitrogen addition, air/soil warming, and rain/litter exclusion were not included, except cropland; (5) potential problems 120 

observations (labelled by “Q10” (potential problem with data), “Q11” (suspected problem with data), “Q12” (known 

problem with data), “Q13” (duplicate) and “Q14” (inconsistency) were excluded. Finally, this study included a total of 449 

field observations (Fig. 1), including 68 observations from CNKI. RA observations were absolutely dominated by forest 

ecosystems (379 observations) with globally unevenly distributed, mainly from China, America and Europe. Although Tthere 

was a great lack of RA observations in Australia, Russia, and Africa, and South America, our dataset covered all major 125 

ecosystem types and climate zones across the globe.. 

http://www.cnki.net/
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Figure 1 Distribution of Oobservational sites used in this studyto develop the globally gridded RF-RA dataset 

2.2 Vegetation, climate and soil data 

A total of 11 environmental variables were used to model global RA (Table 1). Specifically, gGlobal land cover with a half 130 

degree resolution was obtained from MODIS land cover (https://glcf.umd.edu/data/lc/)(MCD12Q1 v5, Friedl et al., 2010). 

Monthly gridded data of temperature, precipitation, diurnal temperature range,  and potential evapotranspiration, and self-

calibrated Palmer Drought Severity Index (PDSI) at 0.5o resolution were obtained from Climatic Research Unit (CRU) time-

series (TS) Version 4.01 from 1901 to 2016 (https://crudata.uea.ac.uk) (Harris et al., 2014; van der Schrier et al., 2013). 

Monthly shortwave radiation (SWR) (SWR, Kalnay et al., 1996), Palmer Drought Severity Index (PDSI)  and soil water 135 

content (van den Dool et al., 2003) at 0.5o resolution were from NOAA/National Oceanic and Atmospheric 

Administration/Earth System Research Laboratory (NOAA/ESRL) at Physical Sciences Division (https://www.esrl.noaa.gov) 

(Kalnay et al., 1996). Soil organic carbon content with a resolution of 250 m was downloaded from soil grid data 

(https://soilgrids.org) (Hengl et al., 2017), and soil nitrogen content density was from S‘Global Soil Data Task’, the Program 

‘International Geosphere-Biosphere Programme (IGBP)’ (Global Soil Data, 2000)patial Data Access Tool 140 

(https://webmap.ornl.gov/ogc/index.jsp), while monthly nitrogen deposition data with a resolution of 0.5o were downloaded 

from the Earth System Models of GISS-E2-R, CCSM-CAM3.5 and GFDL-AM3, covering since 1850s 

(https://www.isimip.org) (Lamarque et al., 2013). The monthly global variables were first aggregated to year scale and then 

resampled to a 0.5o resolution using bilinear interpolation for those variables without a 0.5o resolution. These variables could 

represent different aspects controlling RA variability. For instance, temperature, precipitation and soil water content are most 145 

important variables controlling plant photosynthesis, which is the primary carbon source of RA (Högberg et al., 2002; Högberg 

et al., 2001). Finally, global variables of each given site extracted by coordinates corresponding with annual RA estimates from 
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the SRDB.  

Table 1 Global variables used for producing the global RH dataset 

2.3 Random Forest-based RA Modelling 150 

In this study, aA RF model was trained with the 11 variables listed in Table S1 by caret by linking RandomForest package in 

R 3.4.4 (Kabacoff, 2015), then the trained model was implemented to estimate grid RA at 0.5° × 0.5° resolution over 1980-

2012. The performance of RF was assessed by a 10-fold cross-validation (CV). A 10-fold CV suggested that the whole dataset 

was subdivided into 10 parts with approximately an equal number of samples. The target values for each of these 10 parts were 

predicted on the training using the remaining nine parts. Two statistics were employed in model assessment: modelling 155 

efficiency (R2) and root mean square error (RMSE) (Yao et al., 2018). The 10-fold CV result showed that RF performed well 

and could capture the spatial- and temporal-pattern of RA (Fig. S1 in supplementary materials). 

2.4 Temporal trend analysis 

This studyWe applied Theil-Sen linear regression to estimate temporal trend analysis of RA and its driving variables for each 

grid cell. The Theil-Sen estimator is a median-based non-parametric slope estimator, which has been widely used for spatial 160 

analysis of time series carbon flux analysis (Forkel et al., 2016; Zhang et al., 2017). Mann-Kkendall non-parametric test was 

applied for the significant change trend in RA and its driving factors for each grid cell (p < 0.05).  

 Variables Type 
Type of 

variability 
Sources 

Climate 

 

Mean annual temperature (oC) Split Yearly 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_

4.01/ (Harris et al., 2014)  

https://crudata.uea.ac.uk/cru/data/drought/ 

(van der Schrier et al., 2013) 

Mean annual precipitation (mm) Split Yearly 

Diurnal temperature range (oC) Split Yearly 

Potential evapotranspiration (mm) Split Yearly 

Palmer Drought Severity Index Split Yearly 

Nitrogen deposition  

(g N m-2 yr-1) 
Split Yearly 

https://www.isimip.org/gettingstarted/availab

ility-input-data-isimip2b/ (Lamarque et al., 

2013) 

Downward Shortwave radiation  

(W m-2) 

Split Yearly ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalys

is.derived/surface_gauss/dswrf.sfc.mon.mean

.nc (Kalnay et al., 1996) 

Soil 

Soil carbon content (g kg-1) - Static 
https://soilgrids.org/#!/?layer=TAXNWRB_2

50m (Hengl et al., 2017) 

Soil nitrogen density (g m-2) - Static 
https://webmap.ornl.gov/ogc/dataset.jsp?ds_i

d=569 (Global Soil Data, 2000) 

Soil water content (mm) Split Yearly 
https://www.esrl.noaa.gov/psd/data/gridded/d

ata.cpcsoil.html (van den Dool et al., 2003) 

Land 

cover 
MODIS land cover - Static 

https://glcf.umd.edu/data/lc/ (Friedl et al., 

2010) 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
https://crudata.uea.ac.uk/cru/data/drought/
https://www.isimip.org/gettingstarted/availability-input-data-isimip2b/
https://www.isimip.org/gettingstarted/availability-input-data-isimip2b/
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/dswrf.sfc.mon.mean.nc
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/dswrf.sfc.mon.mean.nc
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/dswrf.sfc.mon.mean.nc
https://soilgrids.org/#!/?layer=TAXNWRB_250m
https://soilgrids.org/#!/?layer=TAXNWRB_250m
https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=569
https://webmap.ornl.gov/ogc/dataset.jsp?ds_id=569
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://glcf.umd.edu/data/lc/
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2.5 Relationships between RA and climate variables 

In this study, mMean annual temperature, mean annual precipitation and mean annual shortwave radiation were considered as 

the most important proxies driving RA. The relationships between RA and temperature, precipitation and shortwave radiation 165 

were analyzed by partial correlation for each grid cell. The absolute value of the correlation coefficient of these three variables 

was used in RGB combination to indicate the dominant factors of RA.  

2.6 Cross comparisons with Hashimoto2015-RA The comparison map profile method 

To further compare the differences between RF-RA dataset and RA developed by Hashimoto et al. (2015) (termed as 

Hashimoto2015-RA), the comparison map profile (CMP) method was applied. Hashimoto developed a climate-driven 170 

model by updating Raich’s model, which stimulated soil respiration as a function of temperature and water (precipitation) 

at a monthly time step (Hashimoto et al., 2015; Raich et al., 2002). Therefore, to get a global estimate to soil respiration 

at a monthly scale, the globally gridded air temperature and precipitation with a spatial resolution of 0.5o were derived 

from University of East Anglia CRU 3.21 (Harris et al., 2014), and 1638 field observations were taken from SRDB (v3) 

for model parameterization (Hashimoto et al., 2015). Monthly soil respiration was summed to a yearly scale. Furthermore, 175 

annual soil respiration was divided into autotrophic and heterotrophic respiration using a global relationship between 

soil respiration and heterotrophic respiration derived from a meta-analysis (Bond-Lamberty et al., 2004). This global 

relationship can be expressed by:  

ln(𝑅𝐻) = 1.22 + 1.73 × ln⁡(𝑅𝑆)   (1) 

Where RH means annual heterotrophic respiration, and RS stands for annual soil respiration, expressed by g C m-2 yr-1.  180 

Therefore, global Hashimoto2015-RA was derived by the difference between soil respiration and heterotrophic 

respiration. The monthly or annual Hashimoto2015-RA dataset can be freely accessed from 

(http://cse.ffpri.affrc.go.jp/shojih/data/index.html, Hashimoto et al., 2015).  

In order to compare with the solely global RA product generated by Hashimoto et al. (2015), this study applied the comparison 

map profile (CMP) method. CMP was developed based on absolute distance (D) and cross-correlation coefficient (CC) through 185 

multiple scales (Gaucherel et al., 2008). D and CC reflect the similarity of data values and spatial structure of two images with 

the same size, respectively (Gaucherel et al., 2008). Low D and higher CC reflects goodness between the compared images, 

and vice versa. The D among moving windows of two compared images was calculated by equation (12) (Gaucherel et al., 

2008):  

D = abs(𝑥̅ − 𝑦̅)        (12) 190 

𝑥⁡̅̅ ̅and⁡ 𝑦̅ are averages calculated over two moving windows . This study( used 3×3 to 41×41 pixels in this study). Finally, the 
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mean D was averaged for different scales. 

The CC was calculated by equation (23) (Gaucherel et al., 2008):  

CC =
1

𝑁2
∑ ∑

(𝑥𝑖𝑗−𝑥̅)×(𝑦𝑖𝑗−𝑦̅)

𝜎𝑥×𝜎𝑦

𝑁
𝑗=1

𝑁
𝑖=1     (23) 

With 𝜎𝑥
2 =

1

𝑁2−1
∑ ∑ (𝑥𝑖𝑗 − 𝑥̅)𝑁

𝑗=1
𝑁
𝑖=1     (34) 195 

Where xij and yij are the pixel values at row i and column j of two moving windows of the two compared images, respectively. 

N represents the number of pixels for each moving window, while σx and σy are the standard deviation calculated from the two 

moving windows. Finally, like D calculations, CC were was calculated as the mean of different scales.  

3 Results 

3.1 Spatial patterns of RA 200 

 

 

XT
图章
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Figure 2 Spatial patterns of annual mean (a, b) and standard deviation (c, d) of belowground autotrophic respiration (RA) for 

this studyRF-RA (a, c) and Hashimoto RAHashimoto2015-RA (b, d) from 1980 to 2012 during 1980-2012, respectively. The 

standard deviation was applied to characterize the inter-annual variability following Yao et al. (2018). 205 

The data-derived RARF-RA dataset in this study presented a great globally spatial variability during 1980-2012 (Fig. 2a and 

Fig. 3). Largest RA fluxes commenced from tropical regions, particularly in Amazon tropical and Southeast areas, where 

generally have a high RA > 700 g C m-2 ayr-1 (gram carbon for per square meter per year). Following the tropical areas, 

subtropics, e.g. South China, East America, and humid temperate areas, e.g. North America, West and Middle Europe, had 

typical moderate RA fluxes of 400-600 g C m-2 ayr-1. By contrast, the relative low RA fluxes occurred in the areas with sparse 210 

vegetation cover, cold and dry climate, e.g. boreal and tundra, which had low temperature and short growing season. Besides, 

dry or semi-arid areas, e.g. Northwest China and Middle East, also had typical low RA fluxes below 200 g C m-2 ayr-1, where 

were often limited by water availability.  

 

 215 

Figure 3 Latitudinal pattern of belowground autotrophic respiration (RA) for this studyRF-RA and Hashimoto 

XT
图章
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RAHashimoto2015-RA. The grey area means 2.5 to 97.5 percentile ranges of the predicted RF-RA. 

The most significant RA inter-annual variability (expressed by standard deviation, Fig. 2c) was found in topical or subtropical 

regions with above 80 g C m-2 ayr-1, while most areas remained less variable with less than 40 g C m-2 ayr-1. Latitudinally, 

zonal mean RA increased from cold and dry biomes (Ttundra and semi-arid) to warm and humid biomes (temperate and tropical 220 

forests, Fig. 3), reflecting from more to less environmental limitations. RA varied from 112±21 g C m-2 ayr-1 at about 70oN to 

552±101 g C m-2 ayr-1 at equator. Within in 10oS -25oS and 15oN -20oN, due to the limitation of water, zonal mean RA 

experienced a slight decrease. Therefore, with the increase of water availability, RA led to a second peak in around 20oN and 

40oS, respectively.  

Compared to data-derived RARF-RA, Hashimoto RAHashimoto2015-RA presented a similarly spatial latitudinal pattern, with 225 

highest RA fluxes in tropical regions characterized by warm and humid climate, followed by subtropical regions, and lowest 

RA in boreal areas featured by in cold and dry climate (Fig. 2b). The most significant change occurred in tropical areas and 

middle Australia. However, it is worth noted that some clear differences between data-derived and Hashimoto 

RAHashimoto2015-RA existed (Fig. 4): specifically, there was a remarkable difference of above 300 g C m-2 ayr-1 for South 

Amazon and larger than 200 g C m-2 ayr-1 for subtropical China. Although most areas between data-derived RARF-RA and 230 

Hashimoto RAHashimoto2015-RA expressed high and positive correlations, some areas, such as Middle East, West Russia 

and East America and North Japan, showed negative correlations.  

 

 

Figure 4 Comparison of data-derived RARF-RA with Hashimoto RAHashimoto2015-RA based on absolute distance (a) and 235 

cross-correlation (b) 

3.2 | Spatial pattern of RA trend 

XT
图章
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Figure 5 Spatial patterns of the temporal trend for belowground autotrophic respiration (RA) for this studyRF-RA and 240 

Hashimoto RAHashimoto2015-RA during 1980-2012 

The trend of data-derived RARF-RA showed heterogeneous patterns in spatial (Fig. 5). A total of 58% of global areas 

experienced an increasing trend during 1980-2012 (calculating from cell areas), and 33% of these areas showed a significant 

change (p < 0.05). Generally, the change trend for the majority areas was within from -4 – to 4 g C m-2 ayr-21, while the most 

striking increasing change occurred in East Russia, and tropical, and Eastern regions in Africa with an increasing trend of 245 

above 5 g C m-2 ayr-21. Similarly, 77% of global areas of Hashimoto RAHashimoto2015-RA had an increasing trend, 46% of 

which were statistically significant (p < 0.05).  

3.4 | Total RA and its temporal trend 

 

XT
图章
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 250 

Figure 6 Inter-aAnnual variability (a and b) and total amount (c) of belowground autotrophic respiration (RA) for this studyRF-

RA (a) and Hashimoto RAHashimoto2015-RA (b) during from 1980- to 2012. The grey area represents 95% confidence 

interval. The error bars mean standard deviation.  

Mean global RA was 43.8±0.4 Pg C ayr-1 during 1980-2012 (Fig. 6c), varying from 42.9 Pg C ayr-1 in 1992 to 44.9 Pg C ayr-1 

in 2010, with a significant trend of 0.025±0.006 Pg C yr-2per year despite of high annual variabilities (0.06% ayr-1, p < 0.001, 255 

Fig. 6a). Similarly, a rising trend was also observed for Hashimoto RAHashimoto2015-RA, however, its annual increasing 

trend (0.073±0.009 Pg C ayr-21, p < 0.001, Fig. 6b), which was higher than that of data-derived RARF-RA. Annual mean of 

Hashimoto RAHashimoto2015-RA was 40.5±0.9 Pg C ayr-1 (Fig. 6c). 

 

XT
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 260 

Figure 7 Total amount of belowground autotrophic respiration (RA) for this studyRF-RA and Hashimoto RAHashimoto2015-

RA for three climate zones and eight biomes during 1980-2012. Three climate zones defined as boreal, temperature and tropical 

regions according to Peel et al. (2007), while eight biomes include boreal forest, cropland, grassland, savannas, shrubland, 

temperate forest, tropical forest and wetland. The error bars indicated standard deviation.  

 265 

RA and its trend was also evaluated for three climate zones (boreal, temporal and tropical areas based on Köppen-Geiger 

climate classification) and eight major biomes (boreal forest, cropland, grassland, savannas, shrubland, temperate forest, 

tropical forest and wetland, Fig. 7). Tropics had highest RA of 15.6±0.2 Pg C ayr-1, followed by temperate regions with 9.3±0.1 

Pg C ayr-1, and boreal areas represented the lowest RA of 6.7±0.1 Pg C ayr-1. These three climate zones were main contributors 

of global RA, accounting for 72%. Temporally, considerable RA inter-annual variability of these three climate zones existed 270 

(Fig. S2). Specifically, RA in tropical and boreal zones showed a significantly increasing trend from 1980 to 2012, with an 

increasing rate of 0.013±0.003 and 0.008±0.002 Pg C ayr-21, respectively.  However, RA in temperate zones presented a 

slightly decreasing trend of -0.003±0.001 Pg C ayr-21 (p = 0.048) although strong variability was observed.   

In terms of biomes, tropical forests had the highest RA, followed by the widely distributed cropland and savannas (Fig. 7), 

while wetland had the lowest RA due to its limited land cover. All the biomes, except temperate forest, savannas and wetland, 275 

RA showed a significantly increasing trend during 1980-2012 (ps < 0.015) in majority biomes, except temperate forests, 

savannas and wetland. RA in Ttropical forests, boreal forests and cropland had the highest increasing trend increased by of 

0.0076±0.0015, 0.0047±0.0016, 0.0036±0.0014 Pg C ayr-21, respectively. Compared to data-derived RARF-RA, Hashimoto 
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RAHashimoto2015-RA for the three climate zones and eight biomes generally produced similar change patterns, although the 

magnitude difference existed (Figs. 7, S2 and S3). However, there was awere significant increasing trends of total RA in 280 

temperate zones, temperate forests, savannas and wetland for of derived from Hashimoto RAHashimoto2015-RA, which were 

not observed in data-derived RARF-RA.  

 

 

Figure 8 The relationships between belowground autotrophic respiration (RA)RF-RA (a, b)/Hashimoto2015-RA (c, d) and the 285 

anomaly of temperature and /precipitation anomalies for this study (a, b) and Hashimoto (c, d) respectively. The anomaly was 

calculated as the difference between temperature or precipitation of corresponding year to that of the mean of 1980-2012. *** 

XT
图章
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means significant level at 0.001. 

  RA was significantly correlated with temperature anomaly (R2 = 0.59, p < 0.001) and precipitation anomaly (R2 = 0.50, p < 

0.001, Fig. 8). On average, RA increased by 0.85±0.13 Pg C ayr-21 for 1oC increment in mean annual temperature, and 290 

0.17±0.03 Pg C ayr-21 for 10 mm increase in mean annual precipitation. However, different biomes and climate zones showed 

uneven responses to the temperature and precipitation changes (Fig. S4 and S5). For example, no significant correlations were 

found between RA in temperate zone/savannas/wetland and temperature anomaly, while other climate zones and biomes were 

significantly correlated with temperature/precipitation anomaly.  

4. Dominant factors for RA variability 295 

 

Figure 9 Dominant driving factors for belowground autotrophic respiration (RA) for this studyRF-RA (a) and Hashimoto 

RAHashimoto2015-RA (b). MAT = mean annual temperature, MAP = mean annual precipitation; SWR = shortwave radiation. 

The dominant environmental factor was examined with partial regression coefficients when regressing RA against annual mean 

temperature, annual mean precipitation and shortwave radiation. Latitudinally, higher mean annual temperature, precipitation 300 

and shortwave radiation were associated with higher RA in the major latitudinal gradients (positive partial correlations, Fig. 

S6). Spatially, the dominant environmental factor varied greatly globally (Fig. 9). Precipitation was the most important 

dominant factor for the spatial pattern of RA among the three environmental controls, covering about 56% of global land areas 

(Fig. S710), which was widely distributed globally, particularly in dry or semi-arid areas, such as Northwest China, Southern 

Africa, Middle Australia and America. Temperature dominated about 19% of global land areas, which mainly occurred in 305 

tropical Africa, Southern Amazon rainforests, Siberia and partly tundra. The rest land area (25%) was dominated by shortwave 

radiation, primarily covering boreal areas above 50oN, Eastern America and middle and Eastern Russian. Similarly, 

precipitation was also the most important dominant factor for Hashimoto RAHashimoto2015-RA, dominating about 77% land 

areas, while temperature and shortwave radiation dominated 13% and 10% land areas. However, their spatial patterns varied 

greatly compared to data-derived RARF-RA. For example, temperature was the main dominant factor for most areas of in 310 

Australia for Hashimoto2015-RA, while data-derived RARF-RA indicated that precipitation and shortwave radiation 

dominated such areas (Fig. 9).  
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Figure 10 The percentage of land areas (calculated from cell areas) dominated by mean annual temperature (MAT), 

precipitation (MAP) and shortwave radiation (SWR) for RF-RA and Hashimoto2015-RA. 315 

4 Discussion 

4.1 Global RA 

Despite of great efforts to quantify global soil carbon fluxes and their spatial and temporal patterns (Bond-Lamberty and 

Thomson, 2010b; Hursh et al., 2017; Jian et al., 2018b), to our knowledge, no attempt tried to assess RA using machine learning 

approach by linking a large number of empirical measurements, and RA’s spatial and temporal patterns remain large 320 

uncertainties. Such uncertainties justify a development of global RA product dataset derived from observations to understand 

its spatial and temporal patterns, causes and responses to future climate change. Based on the most updated observations from 

SRDB released by the end of 2018(Bond-Lamberty and Thomson, 2018) and Chinese peer-review literatures, this studywe for 

the first time applied RF algorithm to develop RF-RA dataset and estimate the temporal and spatial variability of global RA 

and its response to environmental variables, which indeed can contribute to reduce RA uncertainties.  325 

Globally, mean annual RA amounted to 43.8±0.4 Pg C ayr-1 from 1980 to 2012 (Fig. 6). It was slightly higher than Hashimoto 

RAHashimoto2015-RA (40.5±0.9 Pg C ayr-1), and there was great divergence of spatial and temporal patterns (see discussion 

part in “Comparison with Hashimoto RAHashimoto2015-RA”). Due to no direct estimate on global RA, this studythe RF-RA 

dataset was compared with other RA estimates using total soil respiration multiplied by the proportion of RA or heterotrophic 

respiration. Bond-Lamberty et al. (2018) proposed that the global average proportion of heterotrophic respiration ranged from 330 

0.54 to 0.63 over 1990-2014 and global total soil respiration was 83 67 to 108 Pg C ayr-1 from according to different 

approachesestimates according to recent predictions(Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et 
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al., 2017; Jian et al., 2018b)  (Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017), thus global RA varied from 31 25 

to 51 Pg C ayr-1. RA estimate in this studyThe developed RF-RA dataset fell in this range. Similarly, during 1980-2012, RA 

increased by 0.025±0.006 Pg C ayr-12 during 1980-2012. Such increase, which may be related to the increasing photosynthesis 335 

due to global warming and CO2 fertilization effects, which could increase carbon availability in plant-derived substrate inputs 

into the soil (e.g. root exudates and biomass) for both root metabolism (Piñeiro et al., 2017; Zhou et al., 2016). Such annual 

increase accounted for about 25% of global soil respiration increase (0.09 and 0.1 Pg C ayr-21) (Bond-Lamberty and Thomson, 

2010b; Hashimoto et al., 2015), suggesting that about one quarter of the total soil respiration increment due to climate change 

came from RA.  340 

With 1 oC increase in global mean temperature, RA will increase by 0.85±0.13 Pg C ayr-21 and 0.17±0.03 Pg C ayr-21 for 10 

mm increase in precipitation, which indicatinged that carbon fluxes from RA might positively feedback to future global climate 

change, which was typically characterized by increasing temperature and changes in precipitation (IPCC, 2013). However, RA 

increment varied with climate zones and ecosystem types (Figs. S2 and S3), which was similar to previous findings that total 

soil respiration or RA varied with climate zones or ecosystem types (Ballantyne et al., 2017; Jian et al., 2018a). These 345 

differences may be related to regional heterogeneity and plant functional trait. For example, regional temperature significantly 

differed from global averages (Huang et al., 2012), with much faster change in high-latitude regions (Hartmann et al., 2014), 

and semi-arid dominated the trend and variability of global land CO2 sink (Ahlström et al., 2015). Therefore, the regionally 

uneven responses of RA to climatic variables highlight the urgent need to account for regional heterogeneity when studying 

the effects of climate change on ecosystem carbon dynamics in future.  350 

RA estimate in this study 

RF-RA also has important indications of carbon allocation from photosynthesis. The immediate carbon substrates for RA were 

primarily derived from recent photosynthesis (Högberg et al., 2001; Subke et al., 2011). Strong correlation between 

photosynthesis and RA demonstrated the evidence for their close coupling relationships (Chen et al., 2014; Kuzyakov and 

Gavrichkova, 2010). Globally, GPP was about 125 Pg C ayr-1 during last few decades (Bodesheim et al., 2018; Zhang et al., 355 

2017). Thus, roots respired more than one third carbon from GPP, suggesting that except the carbon used for constructing 

belowground tissues, a large proportion of carbon will be returned back to atmosphere respired by roots. However, it should 

be noted that through root respiration, soil nutrients for vegetation growth will be required, which may affect the RA flux.   

4.2 Dominant factors 

Spatially, the dominant driving factors for RA varied greatly. Temperature and shortwave radiation were the main driving 360 

factors for high latitudinal areas above 50oN (Figure 9a). This result was not surprising because RA was positively correlated 

with temperature or photosynthesis (indirectly reflecting the solar radiation) (Chen et al., 2014; Tang et al., 2016), and high 



19 

latitudinal regions was always limited by temperature or energy, leading to low RA as well (Fig. 3a).  

Globally, precipitation was the most important factor, covering about 56% of land area (Figs. 9a and S710). Precipitation 

was always considered as a proxy for soil water content (Hursh et al., 2017; Yao et al., 2018), and such wide dominance of 365 

precipitation on RA was related to the mechanisms of the soil water availability driving RA. First, soil water exists in form of 

ice when temperature is below zero, that plant and soil microbes could not directly use for growth or respiration. This could 

be observed in some boreal areas where precipitation was the dominant factor of RA (Fig. 9a). Second, too high or too low 

soil water content (e.g. flooding and drought) could limit the mobility of substrates and carbon input to belowground, which 

could affect RA. Yan et al. (2014) found that soil respiration decreased once soil water content was below a lower (14.8 %) or 370 

above an upper (26.2%) threshold in a poplar plantation. Similarly, Gomez-Casanovas et al. (2012) also found that RA 

decreased when soil water content was above 30%. These results seemed to support the our findings in this study. Third, the 

relationship between soil water content and RA or total soil respiration is more complex than the relationship between 

temperature and soil respiration. Numerous formula, such as linear (Tang et al., 2016), polynomial (Moyano et al., 2012), 

logarithmic (Schaefer et al., 2009), quadratic (Hursh et al., 2017) models have been widely applied to describe the relationship 375 

between soil water content and soil respiration. The multifarious relationships between soil water content and RA may occur 

because soil water content affect RA in multiple ways. Meanwhile, seasonal variability of precipitation and soil water content 

is often correlated with temperature (Feng and Liu, 2015), making the relationship between soil water content and RA more 

complex.  

Similarly, the dominance of precipitation in Hashimoto was also widely observed (Fig. 8), dominating 77% of land areas (Fig. 380 

S710). Although this percentage was 17% higher than data-derived RARF-RA, both results demonstrated that the global RA 

of in the majority land cover areas was dominated by precipitation. However, it is noticeable that dominant environmental 

factor controlling spatial carbon fluxes gradient may differ among different years (Reichstein et al., 2007), e.g. climate extreme 

and disturbance.  

4.3 Comparison with Hashimoto RAHashimoto2015-RA 385 

Globally, total data-derived RARF-RA was slightly higher than Hashimoto RAHashimoto2015-RA, however, great divergence 

was observed both spatially and temporally (Fig. 6), particularly in tropical regions, where data-derived RARF-RA was much 

lower than Hashimoto RAHashimoto2015-RA (Fig. 3). These differences could be attributed to several reasons. First, two RA 

products datasets had different land cover areas, especially in desert areas in North Africa, where existed very sparse or no 

vegetation. If data-derived RARF-RA was masked by Hashimoto RAHashimoto2015-RA, global RA was 39.6±0.4 Pg C ayr-390 

1, which was pretty close to Hashimoto RAHashimoto2015-RA (Fig. S8). Second, different predictors and algorithms were 

applied for data-derived RARF-RA and Hashimoto RAHashimoto2015-RA prediction. Besides temperature and precipitation, 

RA was also affected by soil nutrient, carbon substrate supply, belowground carbon allocation, site disturbance and other 
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variables (Chen et al., 2014; Hashimoto et al., 2015; Tang et al., 2016; Zhou et al., 2016). Hashimoto RAHashimoto2015-RA 

was calculated from the difference between total soil respiration and heterotrophic respiration, which were predicted by a 395 

simple climate-driven model using temperature and precipitation only (Hashimoto et al., 2015). Thus, Hashimoto 

RAHashimoto2015-RA could not reflect its soil nutrient and other environmental constrains. To overcome such limitations, 

besides temperature and precipitation, this studywe included soil water content, soil nitrogen and soil organic carbon as proxies 

for environmental and nutrient constraints of RA and considered the interactions among these variables using RF, . This study 

indeed improved theachieving a model efficiency to 0.52 for RA prediction (Fig. S1), which was higher than that 0.32 for 400 

Hashimoto soil respiration with a model efficiency of 0.32 (Hashimoto et al., 2015). The simple climate-model for Hashimoto 

soil respiration could be its advantages and limitations (Hashimoto et al., 2015). Third, the empirical model (the relationship 

between total soil respiration and heterotrophic respiration) deriving Hashimoto RAHashimoto2015-RA originated from forest 

ecosystems (Bond-Lamberty et al., 2004; Hashimoto et al., 2015), which may bring uncertainties to other ecosystems. For 

example, the difference between data-derived RARF-RA and Hashimoto RAHashimoto2015-RA varied up to 350 g C ayr-1 in 405 

South, North Amazon areas and Madagascar, where the savannas widely distributed (Fig. 4), thus Hashimoto 

RAHashimoto2015-RA might not capture the spatial and temporal pattern of RA for non-forest ecosystems. Including more 

environmental variables and improving algorithm could be a good optiongreat advantage to reduce the uncertainty in modelling 

RA.  

4.4 Advantages, limitations and uncertainties 410 

Generally, this studythe developed RF-RA dataset had four main advantages to estimate global RA: first, this studythe RF-RA 

dataset, to our knowledge, was the first attempt to model RA using a large number of empirical field observations, and estimate 

the spatial and temporal patterns of RA were investigated globally. While most previous studies mainly focused on global total 

soil respiration, which was not partitioned into RA and heterotrophic respiration globally (Hursh et al., 2017; Jian et al., 2018b; 

Zhao et al., 2017). Second, this studywe used an up-to-date field observational databasedataset developed from SRDB up to 415 

the endNovember, 2018 (Bond-Lamberty and Thomson, 2018), and updated it by including 68 observations from Chinese 

peer-review literatures. This new updated databasedataset included a total of 449 field observations (Fig. 1). These observations 

had a wide coverage range of global terrestrial ecosystems and represented all major biomes and climate zones. Third, the 

global terrestrial ecosystems were separated into eight biomes, including boreal forest, cropland, grassland, savannas, 

shrubland, temperate forest, tropical forest and wetland. The total RA and its inter-annual variability were evaluated for each 420 

of the eight biomes (Fig. S3 and S4). Besides, total RA and its inter-annual variability was also assessed for three climate zones 

– boreal, temperate and tropical zones (Figs. S2 and S5), according to the Köppen-Geiger climate classification system (Peel 

et al., 2007). These were important climate zones, contributing 72% of global RA. Different temporal change trends across 

biomes and climate zones also further indicated an uneven responses of RA to climate change across the globe. Fourth, this 
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studywe used a RF algorithm to model and map global RA with the linkage of climate, and soil and other environmental 425 

predictors. The results showed that RF could well capture the spatial and temporal variability of accurately estimate the 

relationships between annual RA and predictors RA (Fig. S1). Compared to linear regressions for soil respiration prediction 

(because no global RA prediction before this study) with a model efficiency less than 35% (Bond-Lamberty and Thomson, 

2010b; Hashimoto et al., 2015; Hursh et al., 2017), RF algorithm achieved a much higher model efficiency to 52%, which 

indeed improved the RA modelling and reduced the uncertainties.  430 

Although data-derived global RA could serve as a benchmark for global carbon cycling modelling, and this studythe RF-RA 

had filled the data-gaps of global RA, limitations and uncertainties still remained in few aspects. First, although we conducted 

a data quality control to develop the RF-RA dataset, a lack of reliable approach to separate RA and heterotrophic respiration 

may lead to an important uncertainty of RA estimates. There are several approaches, e.g. trenching, stable or radioactive isotope, 

gridding, to partition soil respiration (Bond-Lamberty et al., 2004; Högberg et al., 2001; Hanson et al., 2000), however, each 435 

of these approaches has its own limitations. For example, trenching has been widely applied to partition RA and heterotrophic 

respiration due to easy operation and low cost, on the other hand, heterotrophic respiration may be increased due to the 

termination of water uptake by roots and the decomposition of remaining dead roots in trenching plots (Hanson et al., 2000; 

Tang et al., 2016). Commonly, RA was calculated from the difference between total soil respiration and heterotrophic 

respiration, thus the trenching approach might lead to an underestimation of RA. In our dataset, a total of 254 RA observations 440 

were estimated by trenching approach, while the rest RA observations were estimated by other separation approaches, e.g. 

isotope, radiocarbon, mass balance. Thus, inconsistent separation approaches could also be another source of uncertainty of 

RA values.  

Second, due to the limited observations of RA at a daily or monthly scale, the RF-RA dataset was produced at an annual scale. 

Although there was no direct study to compare the difference of RA upscaling from daily or monthly and annual scale, 445 

substantial differences of soil respiration upscaling from daily or monthly and annual scales (Jian et al., 2018b) indirectly 

illustrated the potential difference of RA upscaling from different timescales.  

Third, the effects of rising atmospheric CO2 on root growth was not explicitly represented in this studywhen developing the 

RF-RA dataset, although CO2 fertilization effects could partly be represented in the increase temperature. While the magnitude 

of CO2 fertilization effects on photosynthesis is still uncertain (Gray et al., 2016), RF or other machine learning approaches 450 

are encouraged to quantify the uncertainties due to CO2 fertilization.  

SecondFourth, this studywe did not consider the effects of human activities and historical changes in biomes on RA. However, 

important changes may occur in tropical forest, grassland and cropland during last several decades due to human activities 

(Hansen et al., 2013; Klein Goldewijk et al., 2011). Thus, changes in biomes should be included in future global RA and carbon 
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cycling modelling. However, the lack of such data is the main constrain of detecting the effects of biome change on RA. Third 455 

Finally, uneven coverage of observations in the updated databasedataset would be another source of uncertainties. Although 

our dataset had a wide range of land cover, the observational sites mainly distributed in China, Europe and North America and 

were dominated by forests. There was a great lack of observations in areas, such as Africa, Austria and Russia, and biomes, 

such as tropical forest, shrubland, wetland and cropland. However, our dataset covered all major ecosystem types and climate 

zones across the globe. RA observations caused bias of RF model toward the regions with more observations. Therefore, 460 

including more observationss in these areas and biomes without observations should largely increase our capability to assess 

the spatial and temporal patterns of global RA and contribute to improve the global carbon cycling modelling to future climate 

change.  

5 Data availability 

The developed RF-RA datasets are is freely downloadable from https://doi.org/10.6084/m9.figshare.7636193 (Tang et al., 465 

2019), named as “Respiration_autotrophic_belowgroud_glob_1980_2012_yr_half_dgree_TangX.nc”, which is a 

globally gridded RA dataset from 1980 to 2012 with a spatial resolution of 0.5 degree at an annual scale, expressed by g 

C m-2 yr-1 (gram carbon for per square meter per year).. The RA dataset is provided in Netcdf format (Network Common 

Data Form).  

6 Conclusions  470 

Although data-derived global RA may serve as a benchmark for ecosystem models, no such study has assessed the global 

variability in RA with a large number of empirical observations that can help bridge the knowledge gap between local, regional, 

and global scales. This studyThe RF-RA dataset has filled this knowledge gap by linkingage of field observations and globally 

gridded environmental  variables using RF algorithm, providing an annual global RF-RA product dataset at a spatial 

resolution  of 0.5o × 0.5o (longitude  latitude) resolution at an annual scale from 1980 to 2012. Currently, robust findings 475 

include: (1) Annual mean RA was 43.8±0.4 Pg C ayr-1 with a temporally increasing trend of 0.025±0.006 Pg C ayr-12 over 

1980-2012, indicating an increasing carbon return from the roots to the atmosphere; (2) unevenly temporal and spatial 

variabilities in varying climate zones and biomes indicated their uneven temperature sensitivitiesresponses to future climate 

change, challenging the perspective that the parameters of global carbon stimulation independent on climate zones and biomes; 

(3) precipitation dominated RA for most of the spatial variabilities of RAland areas globally.; (4) The RF-RA dataset could 480 

serve as a has great potentials to serve as a benchmark for future data-model comparisons to understand the mechanisms of 

belowground vegetation carbon allocation and its dynamics. However, further improvements in the approachmodelling 

algorithms and including more observations in areas without field measurements should overcome shortcomings from reduced 

data availability and the mismatch in spatial resolution between covariates and in situ RA. 

https://doi.org/10.6084/m9.figshare.7636193
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Table S1 Global variables used for predicting the spatial and temporal RA 

  Variables1 Type 

Type of 

variability 

Sources 

Climate 

 

 

Mean annual temperature Split Yearly https://crudata.uea.ac.uk/cru/data/

hrg/cru_ts_4.01/, (Harris et al. 

2014)  

 

 

Mean annual precipitation Split Yearly 

Diurnal temperature range Split Yearly 

Potential evaportransporation Split Yearly 

Palmer Drought Severity Index Split Yearly 

https://www.esrl.noaa.gov/psd/dat

a/gridded/data.pdsi.html(Dai et al. 

2004) 

Downward Shortwave 

radiation 

Split Yearly https://www.esrl.noaa.gov 

 Nitrogen deposition Split Yearly 

https://www.isimip.org/gettingstar

ted/availability-input-data-

isimip2b/ 

Soil 

Soil carbon content  - Static 

https://soilgrids.org/#!/?layer=TA

XNWRB_250m(Hengl et al. 

2017) 

Soil nitrogen content - Static 

https://webmap.ornl.gov/ogc/inde

x.jsp 

Soil water content Split Yearly  

https://www.esrl.noaa.gov/psd/dat

a/gridded/data.cpcsoil.html 

Vegetation MODIS land cover - Static https://glcf.umd.edu/data/lc/ 

1Although this study tried to link some variables relating to plant activities, such as Normalized Difference Vegetation Index 

(NDVI), Leaf Area Index (LAI), however, these variables could not help to improve the model efficiency. Due to the lack of 

fully land cover of these products, and the plant activities could be indirectly reflected by temperature, precipitation, potential 

evaportransporation, soil nutrients, etc., therefore, this study did not use NDVI or LAI for spatial and temporal modelling of 

RA.  



Figures 

 

Fig. S1. Comparison between data-derived belowground autotrophic respiration (RA) and observed RA using a 10-fold cross-

validation.   



 

Fig. S2. Inter-annual variability of belowground autotrophic respiration (RA) for this studyRF-RA (a) and Hashimoto 

RAHashimoto2015-RA (b) for boreal, temporal and tropical areas 

  



 

 

Fig. S3. Inter-annual variability of belowground autotrophic respiration (RA) for this studyRF-RA (a) and Hashimoto 

RAHashimoto2015-RA (b) for boreal forest, cropland, grassland, savannas, shrubland, temperate forest, tropical forest and 

wetland.  

 



 

Fig. S4. The relationships between total belowground autotrophic respiration (RA) and temperature/precipitation anomaly for 

this studyRF-RARF-RA (a) and Hashimoto RAHashimoto2015-RA (b) for boreal, temperate and tropical areas. 

  



 

 

Fig. S5. The relationships between total belowground autotrophic respiration (RA) and temperature/precipitation anomaly for 

this studyRF-RA (a) and Hashimoto RAHashimoto2015-RA (b) for eight biomes 



 

 

 

 

 

Fig. S6. Latitudinal patterns of partial correlation coefficient between RF-RA and mean annual temperature (MAT), mean 

annual precipitation (MAP) and shortwave radiation (SWR). 

  



 

Fig. S7. The percentage of dominant factor for global RA (calculated from cell areas).  

 

  



 

Fig. S8. Total belowground autotrophic respiration (RA) for this study and Hashimoto after masking with a same land area.  
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