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Abstract.  

The application of Soil and Water Assessment Tool (SWAT) for hydrological modelling in Asia Pacific region is immense. 

However, a robust modelling practice is often constrained by limited amount and quality of weather data. In such conditions, 

SWAT uses an inherent statistical weather generator to generate synthetic series of weather inputs for which, long-term precise 

weather statistics are needed. This study presents a high-resolution Asia Pacific Weather Statistics (APWS) dataset in a format 10 

ready to be used in SWAT simulations. 

The APWS dataset consists of rainfall statistics from Asian Highly Resolved Observational Data Integration Towards 

Evaluation of Water Resources (APHRODITE) project at 0.25o and remaining weather statistics from Climate Forecast System 

Reanalysis (CFSR) at 0.38o. The utility of APWS is evaluated by comparing its performance with established CFSR statistics 

for daily flow simulation in two river basins of South Asia; Narayani in Nepal and Wangchhu in Bhutan. The comparison is 15 

done on different precipitation data availability scenarios, where for each scenario, a specified percentage of historical 

precipitation data is removed and replaced by synthetic precipitation data, generated by SWAT’s inherent weather generator 

with weather statistics from i) APWS and ii) CFSR independently.  

The results indicated a clear outperformance of APWS over CFSR dataset in rainfall reconstruction, especially in the smaller 

sub-basins. Statistics like probability of wet day following wet day, mean monthly rainfall and number of rainy days were 20 

found sensitive for better reconstruction of rainfalls series in the study river basins, inferring the advantage of using precise 

rainfall statistics. The APWS dataset is expected to contribute in better reconstruction of weather series needed for hydrological 

modeling using SWAT in the Asia Pacific region, and is publicly available at https://hydra-water.shinyapps.io/APWS/ or 

http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019). 

Keywords: Asia Pacific, SWAT, APHRODITE, CFSR, Weather generator statistic 25 

1 Introduction 

The Asia Pacific region has been identified for its challenges in observed meteorological data quality and the sparse network 

of stations (Page et al., 2004;Martin et al., 2015;WMO, 2017), which has hindered robust agro-hydro modeling and climate 

risk assessments. In such data constrained regions, weather generators are potential options to generate synthetic series of 
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rainfall, temperature, humidity, and solar radiation (Semenov and Barrow, 1997). Weather generators are expected to 30 

reproduce the spatiotemporal dynamics of observed weather variables, their variability and persistence in a distribution (Ailliot 

et al., 2015). Their applications have been reported for energy demands (Kolokotroni et al., 2012), crop management (Supit et 

al., 2012), climate risk assessment (Steinschneider and Brown, 2013;Srivastav and Simonovic, 2015), agricultural (Jones and 

Thornton, 2013) and hydrological modelling (Dile and Srinivasan, 2014), among many others. 

Importance of weather generators in hydrological modeling is paramount in data sparse basins (Candela et al., 2012;Dile and 35 

Srinivasan, 2014), either to generate a new series of weather inputs (Eames et al., 2012;Caraway et al., 2014) or to fill the 

missing and dubious information (Aouissi et al., 2016;Lu et al., 2015) in measured data. Of the several hydrological models 

employing weather generator for such purposes, Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012) is, arguably, 

the most widely used. The application of SWAT for eco-hydrological modeling in Asia Pacific region has rapidly increased in 

last few years and is further likely to increase with the on-going developments in SWAT (Francesconi et al., 2016;Arnold et 40 

al., 2012). 

SWAT uses the WXGN weather generator (Sharpley, 1990) to generate or fill weather information using user specified 

statistics of rainfall, temperature, solar radiation, wind speed and dew point temperature (Aouissi et al., 2016). The WXGN 

weather generator is a statistical model that uses numerous core weather statistics (defined for each month) to generate 

synthetic weather data. Of the total 168 monthly weather statistics needed to run WXGN in SWAT, 84 pertain to rainfall, 45 

highlighting the importance of rainfall statistics in weather generation (Neitsch et al., 2011). WXGN (also sometimes referred 

as WGN or WGEN) primarily generates the probability of rainfall occurrence for a given day and its corresponding amount, 

followed by other weather variables like temperature and solar radiation depending on the rainfall status (Richardson, 

1981;Richardson and Wright, 1984). Thus, it is imperative that precise rainfall statistics must be defined for effective weather 

generation and robust hydrological modeling in river basins, where rainfall is the primary component of hydrological cycle. 50 

Currently, SWAT modelers have the option of manually providing weather statistics using observed weather data or using the 

publicly accessible Climate Forecast and System Reanalysis (CFSR) weather dataset (Saha et al., 2010), for hydrological 

simulation in basins located outside US (Neitsch et al., 2011). The SWAT development team has provided access to a few 

platforms to manually estimate the require weather statistics, e.g., “WGN Parameters Estimation Tool” and “WGN Excel 

macro” (SWAT, 2019) etc. However, the amount of weather data required and the calculation procedures of the desired 55 

statistics, can be overwhelming for many SWAT modelers. Hence, most SWAT modelers prefer to use the already developed 

weather statistics CFSR dataset. CFSR dataset’s extensive use for SWAT modeling has already been seen in developing 

countries around the world (Alemayehu et al., 2015;Dile and Srinivasan, 2014;Monteiro et al., 2016;Worqlul et al., 

2017;Daggupati et al., 2017). 

However, CFSR has been reported with higher biases in its weather variables compared to other gridded reanalysis products 60 

like MERRA, GLDAS, NCEP and ERA in various locations of North Western hemisphere (Decker et al., 2012). Even in Asian 

regions, CFSR has shown inferior performance in hydrological simulation in Three Georges Reservoir basin, China (Yang et 

al., 2014), Mekong region (Lauri et al., 2014), Srepok basin in Vietnam (Thom and Khoi, 2017), Maharlu lake in Iran (Eini et 
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al., 2019), Langcang basin in China (Tang et al., 2019) and many others, compared to other rainfall products. The resolution 

of CFSR (0.38o) dataset could be another reason for its inferior performance in the topographically complex Asia Pacific 65 

region, as for each sub-basin, SWAT assigns the weather statistics from a nearby location defined within the dataset. As rainfall 

is the primary driver of hydrological models in majority of river basins of Asia, rainfall statistics defined from a location within 

0.38o are likely to differ than that of sub-basin climatology and could yield deviations in reconstructing the rainfall and other 

weather series. Anders et al. (2006) reported that the rainfall differences within a 10 km spatial scale were as high as fivefold 

in the Himalayan region. Such significant variations in rainfall characteristics are likely to impact the generation of better 70 

weather sequences and their applications for impact assessments. 

Ideally, long term (more than 10 years) observed rainfall records at daily time-step are needed to define accurate rainfall 

statistics for the entire Asia Pacific region for better weather generation (Neitsch et al., 2011). However, the Asia Pacific region 

is sparsely gaged and long-term continuous weather records (WMO, 2017) are not publicly and readily available for many 

gaged locations. The Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) 75 

gridded rainfall is a publicly available dataset that addresses the above-mentioned rainfall data availability challenge for the 

Asia Pacific region. APHRODITE is an interpolated product of thousands of surface rainfall stations from Asia Pacific 

countries and additional WMO Global Telecommunication Systems (Yatagai et al., 2012;Xie et al., 2007) that provides gridded 

rainfall data at a 0.25o spatial resolution (which is better than CFSR’s 0.38o resolution). APHRODITE has been used in the 

Asia Pacific region as baseline rainfall series for drought analysis (Um et al., 2017;Sohn et al., 2012), climate model 80 

assessments (Khan et al., 2018;Cruz and Sasaki, 2017), climate change impact assessments (Apurv et al., 2015;Kulkarni et al., 

2013) and hydrological model setup (Lauri et al., 2014;Panday et al., 2014). Moreover, APHRODITE’s relative superiority 

over other rainfall products, including CFSR, is well-established in several countries in the Asia Pacific region, including Saudi 

Arabia (El Kenawy and McCabe, 2016), Greater Mekong (Chen et al., 2017), Bhutan (Awange and Forootan, 2016), China 

(Yang et al., 2014;Tang et al., 2019) and many others. The better performance of APHRODITE over CFSR and other products 85 

in the region suggests that rainfall statistics derived from APHRODITE data could be more precise, and hence, more effective 

in generating relatively accurate synthetic weather data and better flow simulations using SWAT in rainfall dominant basins 

of Asia. 

Thus, the objective of this study is two pronged; (1) development of a robust weather statistics dataset for effective weather 

generation in river basins of Asia Pacific using APHRODITE rainfall to use in SWAT models and (2) evaluation of 90 

effectiveness of the proposed weather statistics dataset over existing CFSR dataset in weather generation and subsequent flow 

simulation in selected test basins. A high-resolution weather statistics dataset at 0.25o is generated (hereafter named APWS 

dataset, i.e., Asia Pacific Weather Statistics dataset) by combining rainfall statistics from APHRODITE and remaining weather 

statistics from nearest CFSR station at 0.38o spatial resolution and is made publicly accessible at https://hydra-

water.shinyapps.io/APWS/ or http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019) in SWAT ready format. Two river 95 

basins, Narayani in Nepal and Wangchhu in Bhutan are selected as test basins to validate the better performance of APWS 

over CFSR dataset in weather generation and flow simulation for different missing percentages of rainfall. 
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2 The APWS Dataset: Need, Preparation and Dissemination 

2.1 The SWAT weather generator statistics data structure 100 

SWAT is a semi-distributed hydrologic model that requires weather data input at the sub-basin level. Consequently, the weather 

generator embedded in SWAT (i.e., WXGN (Sharpley, 1990)) uses weather statistics inputs at the sub-basin level for 

generating synthetic weather data (if desired). Statistics for the weather generator are stored in SWAT’s structured access 

database (i.e., SWAT2012.mdb for SWAT2012) Moreover, these statistics are stored for point locations (WXGN uses the 

nearest location’s statistics to generate synthetic weather data, wherever required), and should be derived from long term (more 105 

than 10 years) weather data (Neitsch et al., 2011). 

While a default weather statistics data set (derived from US_First Order stations and US_COOP) is included in SWAT’s 

default database for the United States (US), SWAT modelers who are interested in developing models for basins outside the 

US, need to manually provide weather statistics parameters. These parameters, along with their description and their effect on 

weather generation using SWAT’s WXGN weather generator are delineated in Table 1 110 

[Table 1 about here] 

2.2 Merits for the APWS dataset 

The only data product that readily provides the weather statistics parameters (in SWAT-ready format) listed in Table 1, for 

point locations in the Asia Pacific region, is the CFSR weather dataset (SWAT, 2014). CFSR is a reanalysis data product (Saha 

et al., 2010). Reanalysis data are generated (even in hind-cast scenarios) by performing data assimilation for a past period 115 

using historically available data from surface stations, satellites and airships and a current numerical weather prediction (NWP) 

model. For any pre-defined forecast (a hind-cast is used for generating weather statistics from CFSR) time period, NWP uses 

historical data (of the starting time of the hind-cast / forecast) as initial boundary condition of the atmosphere and generates 

the next first guess forecast (which for generating SWAT weather statistics, is a hind-cast) based on theoretical approximations 

of atmosphere and relationship between different parameters (Parker, 2016). Consequently, accuracy of reanalysis-based 120 

hindcast datasets relies heavily on calibration of algorithms that represent the state of atmosphere. Given there is high 

uncertainty associated with the calibration of such algorithms, hindcast results of reanalysis-type data sets can have 

significantly higher uncertainty than weather dataset products that primarily rely on historical observations. 

Numerous past studies show that reanalysis-type climate models have a tendency to over-estimate sea surface temperature 

(Laprise et al., 2013), wind components (Brands et al., 2013), land temperature (Kim et al., 2014) and number of consecutive 125 

rainy days (more than 1 mm rainfall). Moreover, the effect of major cumulus parameterization closure scheme of climate 

models to simulate rainfall are found to largely affect the geographic distribution, frequency and intensity of rainfall (Qiao and 
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Liang, 2016). Qiao and Liang (2016) discussed that such closure schemes also tend to overestimate number of rainy days in 

rainfall scenarios of such models. 

The overestimation tendency, especially for precipitation, is also prevalent in the CFSR dataset, for the Asia Pacific region 130 

(Hu et al., 2016). Hu et al. (2016) did a comprehensive analysis of multiple reanalysis precipitation datasets for Central Asia 

and reported that precipitation datasets based on spatially interpolated historical observations are more accurate than 

reanalysis-type data sets (including CFSR). Since, precipitation is a fundamental input for hydrologic models, it is imperative 

that if synthetic precipitation data (generated via weather generators) is used in hydrologic model development, this data is 

produced via weather generators employing relatively accurate precipitation statistics (e.g., statistics 10-16 in Table 1). Hence, 135 

the focus of this study is on providing an alternate (to CFSR) weather statistics data set (in SWAT-ready format) for the Asia-

Pacific region, where precipitation statistics are derived from observed historical data. This dataset, i.e., the Asia Pacific 

Weather Statistics (APWS) dataset, derives precipitation statistics from the APHRODITE data set (which is based on spatially 

interpolated historic data), and is described in detail in the next section. 

2.3 Preparation of APWS dataset 140 

The methodology adapted to generate the high-resolution dataset proposed in this study, i.e., the Asia Pacific Weather Statistics 

(APWS), is presented in Fig. 1. 

[Fig. 1 about here] 

APWS (see Fig. 1) derives rainfall statistics (at 0.25o resolution) from the historical observation-based APHRODITE dataset, 

and other weather statistics from CFSR. Numerous past studies have shown that the APHRODITE dataset is effective for 145 

hydrologic modeling in the Asia-Pacific region (Lauri et al., 2014;Panday et al., 2014), and hence it is chosen for deriving 

rainfall statistics for APWS. For preparing the APWS dataset, APHRODITE rainfall data for the period 1981-2007 is accessed 

from http://search.diasjp.net/en/dataset/APHRO_PR, and extracted for each grid center (at 0.25o resolution)  using customized 

scripts in R. The 27 year of rainfall data used in the study is expected to yield robust estimates of rainfall statistics, as suggested 

by other studies (Fodor et al., 2013;Jones et al., 2010). The rainfall statistics, i.e., mean monthly rainfall (PCPMM), standard 150 

deviation (PCPSTD), skewness (PCPSKW), average number of rainfall days (PCPD), probability of wet day following dry 

day (PR_W(1,n)), probability of wet day following wet day (PR_W(2,n)) and half hour maximum rainfall (RAINHHMX), 

needed for the weather generator in SWAT (see Table 1) are then estimated at each of these grid centers on the APHRODITE 

rainfall data (Liersch, 2003), using the executable provided by SWAT creators, i.e., pcpSTAT.exe. PcpSTAT.exe is a Fortran 

generated executable file provided by the SWAT development team to the potential SWAT modelers for the sole purpose of 155 

generating rainfall statistics using observed rainfall series (SWAT, 2019).  

Since APHRODITE only includes rainfall statistics, remaining weather statistics of APWS that are needed in SWAT’s weather 

generator (see Table 1), i.e., mean maximum temperature (TMPMX), mean minimum temperature (TMPMN), standard 

deviation of maximum temperature (TMPSTDMX), minimum temperature (TMPSTDMN), mean solar radiation 

(SOLARAV), wind speed (WNDAV) and dew point temperature (DEWPT) are estimated from nearby CFSR locations, and 160 
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accessed from https://swat.tamu.edu/software/arcswat/. The Euclidean distance method is used to estimate the nearest CFSR 

stations for each grid center using customized R scripts. Finally, the hybrid weather statistics, which are collectively called 

APWS, are saved in an Excel file format which is compatible with SWAT’s structured access database (that also includes 

weather statistics for SWAT’s weather generator). The APWS dataset file has a size of approximately 50 MB and includes 

statistics of 48,000 weather locations across Asia Pacific region (Fig. S1). Improvements of the proposed APWS dataset over 165 

existing CFSR dataset are better spatial coverage (0.25o in APWS vs 0.38o in CFSR) and precise rainfall statistics estimated 

from gridded observed rainfall data, compared to reanalysis data of CFSR. Section 3 provides a detailed illustration of how 

APWS has relatively superior performance over CFSR for hydrologic modeling in the Asia Pacific region under limited 

availability of precipitation data. 

2.4 APWS dissemination portal development 170 

Realizing the importance of ready access for finalized and SWAT usable weather statistics, a web application / portal is also 

created to easily access and filter the APWS statistics at country, basin or user defined levels. Figure 2 provides an overview 

of the interface of the APWS data access portal. As depicted in Fig. 2 (‘Selection Panel’ inside the interface), users of the 

portal may filter out statistics of a region of interest by either i) delineating a custom shape on the portal map (rectangle or 

drawn polygon), ii) uploading a custom shape file, or iii) choosing a country. After selecting an area of interest, weather 175 

statistics of all data points within the area of interest may be downloaded as a csv file and subsequently imported into the 

SWAT database (i.e., the WGEN_user table) for use as weather generation statistics (Neitsch et al., 2011). 

The APWS web-portal also has a basic visual analytics component that allows users to visualize time-series plots of rainfall 

and temperature statistics for selected grid centers of interest (that become active on the map, within the area of interest 

selected; see Fig. 2). The APWS portal is developed in R, can be accessed from https://hydra-water.shinyapps.io/APWS/. The 180 

dataset can also be accessed from http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019). 

[Fig. 2 about here] 

3 Performance evaluation of APWS dataset 

In order to evaluate the performance of APWS dataset in effective hydrological simulation using SWAT in the Asian region, 

we used APWS for synthetic weather data generation for SWAT models of two river basins; Narayani (NRB) in Nepal and 185 

Wangchhu (WRB) in Bhutan (discussed in Sect. 3.1). Figure 3 provides an overview of the design of our performance 

evaluation experiment. We first develop, calibrate and validate SWAT models of the Narayani and Wangchhu basins (see Sect. 

3.1-3.3). The calibrated SWAT models use historical rainfall records at multiple stations during model development and 

calibration. In order to assess the performance of precipitation statistics of APWS (against the default CFSR dataset used in 

SWAT) in weather generation, we develop alterations (also called ‘missing precipitation data’ scenarios) of the historical 190 

precipitation dataset where, in each scenario a specified percentage of historical data is missing (the missing days are randomly 
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selected; discussed in Sect. 3.4). The SWAT models are then run with ‘missing precipitation data’ scenarios using i) APWS 

and ii) CFSR statistics (to generate synthetic precipitation records for missing precipitation days; also called reconstructed 

rainfall) and hydrological simulations using the reconstructed rainfall records are compared. The flows simulated using 

reconstructed rainfall (from APWS and CFSR) are compared (see Sect. 3.5 for details) with flows simulated with unaltered 195 

rainfall (i.e., 0% missing data), as presented in methodological framework of Fig. 3. Finally, the sensitivity of rainfall statistics 

for precise hydrological simulation is assessed in terms of NSE and PBIAS (see Sect. 3.6). 

[Fig. 3 about here] 

3.1 Data acquisition for selected basins 

The required rainfall, temperature and flow observations at daily timestep are acquired through Regional Integrated Multi 200 

Hazard Early Warning Systems (RIMES) center, Thailand and National Center of Meteorology and Hydrology (NCHM), 

Bhutan. Two river basins, Narayani (hereafter named NRB) in Nepal (36,000 sq.km) and Wangchhu (hereafter named WRB) 

in Bhutan (3,600 sq. km) are considered in this study to compare performance of APWS and CFSR statistics in weather 

generation. The location of NRB and WRB in south Asia, along with their topographical information and the flow stations 

considered in this study is presented in Fig. 4. 205 

[Fig. 4 about here] 

The NRB consists of 79 rainfall, 36 temperature and 3 flow stations as presented in Fig. S2. Similarly, the WRB has 7 rainfall, 

7 temperature and 3 flow stations, as presented in Fig. S3. The meteorological and flow data are available for the years 2008-

2014 in the NRB and 2000-2014 in the WRB respectively. 

3.2 Comparison of rainfall normals 210 

While the focus of this study is on analyzing the effectiveness of APWS in hydrologic modeling for the Asia Pacific region 

using SWAT, we have also compared rainfall normals of the APHRODITE (used to develop precipitation statistics of our 

APWS dataset) and CFSR datasets for the NRB and WRB catchments. The purpose here is to directly compare the quality of 

the two datasets against historical precipitation observations.  

A comparison of monthly cumulative rainfall amounts, their distribution and seasonality is done for selected rainfall stations 215 

in the NRB and WRB study basins. A common time period is established to compare the distribution and seasonality of 

precipitation at rainfall stations with APHRODITE and CFSR datasets. For WRB, 1981-2007 is chosen to compare the gridded 

(i.e., APHRODITE) and reanalysis (i.e., CFSR) rainfall series with observe rainfall. For NRB, observed rainfall data at all 

stations is only available for 2008-2014, thus the comparison is done for rainfall stations of Koshi river basin (i.e., another 

river basin in Nepal with climate attributes similar to NRB) with that of corresponding APHRODITE and CFSR datasets for 220 

the 1981-2007 period. 
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3.3 Hydrological model setup 

The SWAT model setup for NRB and WRB includes a 90mx90m digital elevation model (DEM) required for terrain processing 

and basin delineation (accessed from HydroSHEDS website https://hydrosheds.cr.usgs.gov/dataavail.php), a 300mx300m land 

cover information (accessed from European Space Agency (ESA) Globcover project website 225 

http://due.esrin.esa.int/page_globcover.php), and a 1:5.000.000 scaled digital soil map of the world (DSMW) used to 

characterize soils in the study basins (accessed from https://worldmap.harvard.edu/data/geonode:DSMW_RdY). Since SWAT 

is a semi-distributed hydrologic model, the modeled basins are divided into sub-basins, and further into unique land units, also 

called Hydrologic Response Units (HRUs) based upon a combination of slope, land use and soil information. Since SWAT is 

a highly parameterized model, both the NRB and WRB SWAT models are also calibrated a multi-site calibration. The 230 

SWATCUP software is used for calibration of both models, and the embedded Sequential Uncertainty Fitting (SUFI2) 

algorithm (Abbaspour, 2013) is used to optimize SWAT parameters to yield the best Nash Sutcliffe Efficiency (NSE). 

3.4 Missing precipitation data scenario generation 

Since a primary premise of this study is to compare the performance of the proposed APWS weather generation statistics 

dataset against the CFSR statistics dataset for SWAT models developed for the Asia Pacific region, our dataset quality 235 

comparison experiment setup is based on generation of hydrologic modeling scenarios where precipitation records are missing 

(as depicted in Fig. 3). Eleven different precipitation scenarios are generated in this experiment setup where different 

percentages of rainfall data (i.e., 1, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 percent) are missing from the historical rainfall 

record time-series. For each scenario, say X-% missing data scenario, precipitation records of X% days are randomly (uniform) 

sampled (for each year of data record) and removed from the historical data set (Note: For each missing day, data of all rain 240 

gauges was removed from record). Since each precipitation scenario (say X-% missing data scenario) is stochastic, N different 

instances (N = 100 in our experiments) are generated for each scenario.  

Consequently, SWAT models with i) APWS and ii) CFSR weather statistics are run for all scenarios and instances. The 

WXGEN weather generator built in SWAT is automatically invoked to fill missing rainfall values. Hence, when the APWS 

and CFSR weather statistics are applied in separate SWAT runs, for the same missing data scenarios and instances, we obtain 245 

separate hydrologic outputs (based on precipitation data filled by the weather generator using the different statistic sets). The 

hydrologic outputs generated via APWS and CFSR are subsequently compared against the ‘baseline’ SWAT hydrologic 

output, i.e., without any missing historical precipitation records. The criteria for quantifying the difference between APWS-

based & CFSR-based hydrologic flows (under different missing precipitation scenarios), and baseline flows, are discussed in 

Sect. 3.5. 250 
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3.5 Performance comparison 

To provide equal weightage for low and high flows, the hydrologic flow values in this study are transformed initially using a 

Box-Cox transformation technique (Box and Cox, 1964) and then evaluated using the standard indices like Nash Sutcliffe 

Efficiency (NSE). Percentage Bias (PBIAS) is also used as a metric for comparing performance of the two weather statistics. 

For the transformation, a lambda value of 0.25 is assumed following Willems (2009). The NSE and PBIAS metrics are 255 

computed by comparing i) flows simulated from reconstructed rainfall using APWS and CFSR datasets (under different 

missing precipitation scenarios discussed in Sect. 3.4) with ii) unaltered rainfall simulated flows (also called baseline flows as 

discussed in Sect. 3.4. 

3.6 Sensitivity assessment of rainfall statistics 

Sensitivity analysis aims to measure the impact of fluctuations in parameters of a model to its outputs or performance 260 

(Balaman, 2018). This study also aims to assess the sensitivity of synthetically generated precipitation data (via the SWAT 

weather generator) to the rainfall statistics used in SWAT’s weather generator, i.e., PCPMM, PCPSTD, PCPSKW, PR_W(1,n), 

PR_W(2,n), PCPD and RAINHHMX. The sensitivity assessment mechanism is initiated by first creating 100 random missing 

precipitation scenarios (see Sect. 3.4 for description) of 30% missing rainfall data. The SWAT weather generator, i.e., 

WXGEN, is then used to  generate precipitation data for the 30% missing days (for all 100 random scenarios), with the original 265 

APWS statistics dataset, and for selected precipitation stations in WRB, and subsequently the SWAT hydrologic model is run 

to generate simulated flows. The difference in simulated flows from generated weather data and actual weather data, i.e., 

without missing precipitation days (computed for each random scenario and quantified via NSE and PBIAS metrics) is 

recorded as the baseline / unaltered hydrologic performance of weather statistics. Subsequently, individual rainfall statistics 

(i.e., PCPMM, PCPSTD, PCPSKW, PR_W(1,n), PR_W(2,n), PCPD and RAINHHMX) are changed by ±5, ±10 and ±25%, 270 

with one-at-a-time (OAT) approach (Cacuci et al., 2005), keeping other statistics fixed at their nominal values, and WXGEN 

is used to generate precipitation data for the 30% missing days (for all 100 random scenarios) with these altered rainfall 

statistics and used to drive the SWAT model for daily flow simulation. The sensitivity of rainfall statistics is finally shown in 

terms of Box-Cox transformed NSE and PBIAS indicators. These indicators are estimated for each OAT-altered rainfall 

statistic scenario, by comparing i) simulated flows from generated weather data (from OAT-altered rainfall statistics) and ii) 275 

simulated flows obtained after running SWAT with actual weather data. 

4 Results of APWS evaluation 

4.1 Baseline rainfall comparison 

A preliminary comparison of observed, APHRODITE and CFSR rainfall series for selected stations in the study basins 

suggested that CFSR significantly differs from the observed rainfall (see Fig. 5). Although differences in median rainfall are 280 
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not significant at all stations, the distributions of monthly rainfall, depicted by violin-plots (over monthly precipitation data for 

years 1981-2007) in the top two rows of Fig. 5, illustrate that APHRODITE is more accurate, and thus more suitable, than 

CFSR for hydro-meteorological applications in the study basins. Similar outperformance of APHRODITE over CFSR is 

reported for other areas in the Asia Pacific region, e.g., Mekong (Lauri et al., 2014;Thom and Khoi, 2017), middle east (Eini 

et al., 2019;Sidike et al., 2016) and China (Tang et al., 2019) and many others. 285 

[Fig. 5 about here] 

The bottom two rows of Fig. 5 show plots of mean monthly rainfall (observed, APHRODITE and CFSR) for selected stations 

of the study basin. These plots illustrate that APHRODITE data is consistent with observed monthly rainfall distribution, albeit 

exhibiting some underestimations. The relatively better performance of APHRODITE over CFSR data series is not surprising, 

as the former is generated from the interpolation of ground rain gauges (Yatagai et al., 2012), while the latter is mostly a 290 

combination of satellite and observed data (Saha et al., 2010). The dominant rainfall seasonality (bottom two rows of Fig. 5) 

is also simulated well by APHRODITE, while CFSR has significant discrepancies in the study basins, which is expected to 

impact the hydrological application of CFSR statistics. A baseline comparison of mean annual rainfall computed using weather 

statistics of APHRODITE and CFSR shows significant differences in the volume of rainfall, mostly in the South East Asian 

and Pacific countries, as presented in Fig. 6. 295 

[Fig. 6 about here]. 

4.2 Hydrological model assessment 

As mentioned in Sect. 3.3, SWAT models for the study basins, i.e., NRB and WRB, are developed and subsequently calibrated 

using SWAT-CUP. The calibrated SWAT models are able to simulate daily flows at most of the observed locations in study 

basins with good accuracy (see Fig. 7). Nash Sutcliffe Efficiency (NSE) and Percentage Bias (PBIAS) are the metrics chosen 300 

to assess the daily flow simulation accuracy of SWAT for WRB and NRB. The NSE and PBIAS values computed from 

simulated and observed daily flows for each year in selected flow stations, representing top (Jomsom (NRB), Haa (WRB)), 

middle (Sisaghat, Damchhu) and lower parts (Devghat, Chimakoti) of the study basins are presented in Fig. 7. Results, as 

shown in the heat-maps of Fig. 7, reveal that that the calibrated SWAT models are able to capture variations in daily flows 

with reasonable accuracy (as depicted by NSE metric values). Moreover, volumetric error between simulated and observed 305 

flows are also reasonable during both calibration and validation periods (depicted by PBIAS values).  

[Fig. 7 about here] 

The consistency of model in simulating flows with satisfactory accuracy was observed for individual years, as can be seen in 

Fig. 7. Generally, the performance of SWAT in upper parts of basins is relatively less accurate than in the middle and lower 

parts. This trend has also been reported in other studies (Poncelet et al., 2017;Van Esse et al., 2013). 310 
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4.3 Performance of weather statistics: APWS and CFSR 

Sections 3.4 and 3.5 describe the experimental setup employed in comparing performance of the APWS and CFSR datasets, 

for hydrologic modeling using SWAT in scenarios where observed precipitation is unavailable/missing. Eleven such scenarios 

are compared, where X-% precipitation data is missing from historical records, and subsequently, the missing data is filled 315 

using statistics from APWS and CFSR statistics. Finally, SWAT models are run (with precipitation data filled using SWAT’s 

weather generator using APWS or CFSR statistics), and differences in SWAT model outputs of the missing-precipitation 

scenarios and baseline scenario (with no missing data) are compared for APWS and CFSR.  

The difference in hydrologic output (presented as NSE and PBIAS; the lines represent average NSE and PBIAS values over 

multiple missing precipitation data scenarios (for the same percentage missing data) and the shaded areas represent standard 320 

deviation) using either APWS or CFSR, at flow locations of WRB is presented in Fig. 8. Results for WRB stations clearly 

show that accuracy of weather statistics is of paramount importance in filling the rainfall series and subsequently, in accurate 

simulation of hydrologic flows. The APWS dataset clearly outperforms CFSR in this regard, since both NSE and PBIAS values 

for APWS remain reasonable even with 50% missing precipitation data. Moreover, the difference in performance of the APWS 

and CFSR statistics is more significant in smaller sub-basins located in upper parts of the basin (e.g., represented by the Haa 325 

station in left-most panels of Fig. 8), compared to the lower parts. A reason for this difference could be the subsequent 

dampening of the missing rainfall events, as the flow progresses downstream. The smaller sub-basins located in the upper parts 

of the study basins are more flashy in nature compared to the lower sub-basins, which has been established to negatively impact 

the hydrological model performance (Poncelet et al., 2017). The performance of hydrological models is also generally better 

at the downstream locations and increases with size of basins (Merz et al., 2011;Van Esse et al., 2013).  330 

[Fig. 8 about here] 

A significant deviation of NSE is observed for all flow stations in WRB, when CFSR weather statistics are used to fill the 

missing rainfall series in the WRB. The rainfall statistics of CFSR are significantly different than observed and APHRODITE 

data for the basin, as evident from Fig. 5. This is likely to yield large errors from the baseline simulated flows (i.e., without 

missing precipitation data) when CFSR is used to fill the missing rainfall series. The biased nature of CFSR in WRB is also 335 

evident from the PBIAS computed at its flow stations. The biases aggregate more than 50% in all stations, when 20% or less 

rainfall data is missing, and the weather generator with CFSR statistics is used to generate synthetic rainfall data for missing 

days.  

[Fig. 9 about here] 

Figure 9 compares the effectiveness of APWS and CFSR data sets in filling missing precipitation data for hydrologic modeling 340 

(using SWAT) of NRB. The relative superiority of the APWS dataset is also evident here. Results of NRB, as presented in 

Fig. 9, also depict that the size and location of a sub-basin has a significant impact on performance of weather statistics in 

simulating hydrologic flows, i.e., smaller sub-basins that are located in upper parts of basins, and have no contributions from 

other tributaries, tend to be heavily reliant on accurate observed weather data for accurate hydrologic simulation.  
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The Jomsom hydrological station located in the northernmost part of the NRB (Fig. 4, left-most panels) is part of a small sub-345 

basin of NRB and is devoid of contribution from other tributaries in the basin. Moreover, the sub-basin that Jomsom drains 

has an arid climatology, with a mean annual rainfall of around 350 mm (as presented in Fig. S4). Arid basins have been known 

to have lower model efficiency compared to wet basins (Poncelet et al., 2017). Hence, the NSE and PBIAS values at Jomsom, 

become significantly worse (compared to the other stations located in lower parts of the basin), as the percentage missing data 

value increases slightly. In arid and semi-arid sub-basins, total rainfall is mostly contributed by rainfall events rather than 350 

rainfall seasonality, due to which even a smaller percentage of missing data concentrated around such events is likely to 

deteriorate the hydrological model performance. The use of weather generator to reconstruct the missing rainfall is thus likely 

to change the rainfall sequence in such basins thus degrading the performance of weather generators significantly even for few 

missing events. Similarly, as the size of basin increases and as we approach the lower parts of NRB where rainfall volume is 

significant, the reduction in performance of the weather statistics is gradual. Both APWS and CFSR datasets perform 355 

adequately in NRB for stations located in the lower part of the river basin (see results for Sisaghat and Devghat in Fig. 9). 

However, performance of APWS is slightly better for these stations as well. Overall, a consensus could be derived from both 

study basins that performance of APWS over CFSR statistics is better, in terms of deriving synthetic rainfall data for missing 

days at observed weather stations and, subsequently, in simulating hydrologic flows under limited precipitation data 

availability scenarios. 360 

4.4 Sensitivity of the rainfall statistics 

The sensitivity analysis of rainfall statistics of APWS done over WRB in Bhutan, using One-at-a-time technique (see Sect. 3.6 

for description of sensitivity analysis experiment), suggests that probability of a wet day following wet day (PR_W(2, n) is 

most sensitive in altering the performance of daily flows simulated using reconstructed rainfall (see Fig. 10 for results). Mean 

rainfall followed by number of rainy days (PCPD) are found to be second and third most sensitive rainfall statistics for precise 365 

rainfall generation in WRB, as presented in Fig. 10. This is expected as the identification of a day as rainy/non-rainy depends 

upon the probability values defined in the weather statistics. Only when the day is designated rainy, the weather generator 

makes use of the mean, standard deviation and skewness of monthly rainfall to estimate the rain amount. Similarly, probability 

of wet day following dry day (PR_W (1, n)) is expected to have less sensitivity in the WRB basin, as generation of rainfall 

values on a spell of dry days is unlikely to change the flow regime. Similarly, RAINHHMX is found insensitive to weather 370 

generation in the basin. The sensitivity of rainfall statistics on daily flow simulation is expected to vary with different 

climatology and basin characteristics.  

[Fig. 10 about here] 

A similar sensitivity analysis of the rainfall statistics in specifying model performance in terms of NSE also confirms that 

PR_W(2,n), PCPMM and PCPD are most sensitive in rainfall reconstruction for the study basin (see Fig. S5). 375 
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5 Data availability 

The AWPS dataset is archived for long-term storage and visual analytics at https://hydra-water.shinyapps.io/APWS/. The file 

size of Excel dataset is around 50 MB, which is itself in SWAT-ready format and can be accessed from 

http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019). 

6 Conclusions 380 

SWAT is a semi-distributed hydrologic model that is immensely popular in the Asia-Pacific region. However, given its semi-

distributed nature, accuracy of SWAT is reliant on precipitation input data (that should be available at relatively high spatial 

and temporal resolutions). Since, availability of observed precipitation data is limited in river basins of Asia Pacific, a viable 

alternate is synthetic precipitation data, obtained from weather generators. The synthetic generation of precipitation data needs 

precise rainfall statistics and a weather generator capable of simulating synthetic weather data. 385 

The SWAT model includes a built-in weather generator (also called WXGN) that generates weather data wherever required 

(e.g., when data for some dates is missing in observed series), and SWAT modelers can use the readily available CFSR statistics 

dataset as input for WXGN. Even though CFSR statistics cover the entire globe, they are generated from combination of 

reanalysis data and satellite information, and CFSR’s precipitation-related statistics have reportedly low accuracy levels for 

the Asia Pacific region. The APHRODITE dataset can be a better alternative for estimating core precipitation statistics for the 390 

Asia Pacific region, as it was generated by interpolation of observed rainfall gages in the Asia Pacific region. 

Given the prior successful applications of APHRODITE in the region, this study proposes the APWS weather statistics dataset 

for the Asia Pacific region, that combines precipitation weather statistics from APHRODITE with other weather statistics from 

CFSR. The APWS dataset is specifically designed to work with SWAT for generation of synthetic weather data, wherever 

observed weather data is unavailable.  395 

A comprehensive experimental (model-based) comparison of APWS and CFSR is also conducted in this study, that shows that 

APWS outperforms CFSR, to simulate hydrologic flows with SWAT in scenarios where observed precipitation data is missing. 

Both APWS and CFSR statistics are applied to SWAT models of two river basins in Asia, i.e., Narayani and Wangchhu. The 

APWS statistics clearly outperform CFSR in generating synthetic rainfall data (wherever observed data is missing) and 

subsequently simulating the daily flows in both river basins, particularly for smaller independent sub-basins.  400 

The APWS dataset is available via a web interface that has been developed for its public and easy access. Further investigations 

may be required to verify and improve the performance of APWS in other basins of region with contrasting climates. Hence, 

the authors encourage further testing of the APWS dataset in the Asia Pacific region, which has been prepared at a higher 

spatial resolution (0.25 *0.25o) than that of existing CFSR (0.38*0.38o) dataset. 
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Table 1 Weather statistics used by SWAT model to generate or fill missing weather inputs 

No. Variable name Description 
How does it affect weather generation 

in SWAT? 

1 TITLE Name of the weather station Does not affect 

2 WLATITUDE 
Latitude of weather station in 

decimal degrees 

Each subbasin in SWAT is assigned with 

closest weather generator based on 

latitude and longitude which changes all 

weather statistics 3 WLONGITUDE 
Longitude of weather station in 

decimal degrees 

4 WELEV 
Elevation of the weather station 

in meters 

Rainfall and temperatures are defined 

accordingly for each elevation band 

depending upon the elevation of weather 

station and elevation of the weather 

statistics 

5 RAIN_YRS 

Number of years of weather 

data used to generate weather 

statistics 

Maximum 0.5 hourly rainfall for the sub-

basins are defined based upon the 

number of years 

6 TMPMX 

Average daily maximum 

temperature for a given month 

of all years 

Needed to generate mean temperature at 

the center of basins when TLAPS 

parameter is considered for elevation 

bands. They are also used to estimate 

potential evapotranspiration and other 

weather variables 

7 TMPMN 

Average daily minimum 

temperature of a month for all 

years 

8 TMPSTDMX 

Standard deviation of daily 

maximum temperature for a 

month in all years 

The mean and standard deviation of 

temperatures are also used to find the 

amount of temperature to fill given the 

status of day (rainy/non-rainy) 9 TMPSTDMN 

Standard deviation of daily 

minimum temperature for a 

month in all years 
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10 PCPMM 
Total precipitation for a month 

averaged for all years 
The mean, standard deviation and 

skewness parameter are used to 

determine the amount of precipitation to 

fill for a rainy day 

11 PCPSTD 
Standard deviation of daily 

rainfall in a month for all years 

12 PCPSKW 
Skew coefficient of daily 

rainfall in a month 

13 PR_W(1,n) 

Probability of a wet day 

following dry day in "n" month 

for all years 
Based upon the probabilities of a missing 

day, it will determine whether the day 

will be rainy or not for each month 
14 PR_W(2,n) 

Probability of wet day 

following wet day in "n" month 

for all years 

15 PCPD 
Average number of rainfall days 

in a month 

Used in PLAPS parameter to generate 

rainfall at each elevation band 

16 RAINHHMX 
Maximum half hour rainfall in a 

month for all years 
 Unknown 

17 SOLARAV 
Average solar radiation for a 

month for all years Used in generation of series of solar 

radiation, dew point and wind speed to 

use for evapotranspiration calculation 

using Penman Monteith method 

18 DEWPT 
Average dew point temperature 

for a month for all years 

19 WNDAV 
Average wind speed for a month 

for all years 
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Fig. 1 Generation of APWS dataset for Asia Pacific region 
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Fig. 2 Web platform designed to disseminate APWS data in Asia Pacific basins 
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Fig. 3 Performance evaluation of APWS for selected river basins of Asia 575 
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Fig. 4 Location of the test basins in Asia Pacific region and their elevational information 

  580 
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Fig. 5 Comparison of distribution (top two rows; plotted over monthly rainfall time-series from years 1981-2007) and seasonality 

(bottom two rows) of mean monthly observed (Obs) rainfall (mm) with APHRODITE (APHRO) and CFSR rainfall series at selected 

stations of the study basins 

  585 
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Fig 6 Mean annual rainfall (mm) generated from APHRODITE and CFSR data for Asia Pacific region 
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Fig. 7 NSE (left column) and PBIAS (right column) computed from daily simulated and observed flows for each year in top, middle 590 
and lower parts (left to right of each plot) in WRB (top row) and NRB (bottom row) 
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Fig. 8 NSE and PBIAS in WRB computed using reference flows and simulated flows using weather statistics from APWS and CFSR 595 
for different scenarios of missing data (bands here represent the NSE and PBIAS values computed for 100 bootstraps) in WRB 
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Fig. 9 NSE and PBIAS in NRB computed using reference flows and simulated flows using weather statistics from APWS and CFSR 600 
for different scenarios of missing data (bands here represent the NSE and PBIAS values computed for 100 bootstraps) in NRB 
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Fig. 10 Sensitivity analysis of rainfall statistics in simulating daily flows at Haa, Damchu and Chimakoti flow stations in the 605 
Wangchhu river basin, Bhutan 
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