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Abstract.  

The application of Soil and Water Assessment Tool (SWAT) for hydrological modelling in Asia Pacific region is immense. 

However, a robust modelling practice is often constrained by limited amount and quality of weather data. In such conditions, 

SWAT uses an inherent statistical weather generator to generate synthetic series of weather inputs for which, long-term precise 

weather statistics are needed. This study presents a high-resolution Asia Pacific Weather Statistics (APWS) dataset in a format 10 

ready to be used in SWAT simulations. 

The APWS dataset consists of rainfall statistics from Asian Highly Resolved Observational Data Integration Towards 

Evaluation of Water Resources (APHRODITE) project at 0.25o and remaining weather statistics from Climate Forecast System 

Reanalysis (CFSR) at 0.38o. The utility of APWS is evaluated by comparing it’s performance with established CFSR statistics 

and observed weather statistics (OBS) for daily flow simulation in two river basins of South Asia; Narayani in Nepal and 15 

Wangchhu in Bhutan. The comparison is done on different precipitation data availability scenarios, where for each scenario, 

a specified percentage of historical precipitation data is removed and replaced by synthetic precipitation data, generated by 

SWAT’s inherent weather generator with weather statistics from i) OBS, ii) APWS and  iii) CFSR independently.  

Results indicate that performance of APWS is comparable to OBS and better than CFSR dataset in rainfall reconstruction for 

hydrologic modelling, especially in the smaller sub-basins. Sensitivity analysis indicates that simulated hydrologic response 20 

of SWAT is highly sensitive to rainfall-based weather statistics like probability of wet day following wet day, mean monthly 

rainfall and number of rainy days. Hence, the use of highly accurate rainfall statistics is important for hydrologic modelling in 

data-scarce scenarios. These findings illustrate that APWS is a valuable dataset contribution for hydrological modelling using 

SWAT in the Asia Pacific region, and is publicly available at https://hydra-water.shinyapps.io/APWS/ or 

http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019). 25 
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1 Introduction 

The Asia Pacific region has been identified for its challenges in observed meteorological data quality and the sparse network 

of stations (Page et al., 2004;Martin et al., 2015;WMO, 2017), which has hindered robust agro-hydro modeling and climate 
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risk assessments. In such data constrained regions, weather generators are potential options to generate synthetic series of 30 

rainfall, temperature, humidity, and solar radiation (Semenov and Barrow, 1997). Weather generators are expected to 

reproduce the spatiotemporal dynamics of observed weather variables, their variability and persistence in a distribution (Ailliot 

et al., 2015). Their applications have been reported for energy demands (Kolokotroni et al., 2012), crop management (Supit et 

al., 2012), climate risk assessment (Steinschneider and Brown, 2013;Srivastav and Simonovic, 2015), agricultural (Jones and 

Thornton, 2013) and hydrological modelling (Dile and Srinivasan, 2014), among many others. 35 

Importance of weather generators in hydrological modeling is paramount in data sparse basins (Candela et al., 2012;Dile and 

Srinivasan, 2014), either to generate a new series of weather inputs (Eames et al., 2012;Caraway et al., 2014) or to fill the 

missing and dubious information (Aouissi et al., 2016;Lu et al., 2015) in measured data. Of the several hydrological models 

employing weather generator for such purposes, Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012) is, arguably, 

the most widely used. The application of SWAT for eco-hydrological modeling in Asia Pacific region has rapidly increased in 40 

last few years and is further likely to increase with the on-going developments in SWAT (Francesconi et al., 2016;Arnold et 

al., 2012). 

SWAT uses the WXGN weather generator (Sharpley, 1990) to generate or fill weather information using user specified 

statistics of rainfall, temperature, solar radiation, wind speed and dew point temperature (Aouissi et al., 2016). The WXGN 

weather generator is a statistical model that uses numerous core weather statistics (defined for each month) to generate 45 

synthetic weather data. Of the total 168 monthly weather statistics needed to run WXGN in SWAT, 84 pertain to rainfall, 

highlighting the importance of rainfall statistics in weather generation (Neitsch et al., 2011). WXGN (also sometimes referred 

as WGN or WGEN) primarily generates the probability of rainfall occurrence for a given day and its corresponding amount, 

followed by other weather variables like temperature and solar radiation depending on the rainfall status (Richardson, 

1981;Richardson and Wright, 1984). Thus, it is imperative that precise rainfall statistics must be defined for effective weather 50 

generation and robust hydrological modeling in river basins, where rainfall is the primary component of hydrological cycle. 

Currently, SWAT modelers have the option of manually providing weather statistics using observed weather data or using the 

publicly accessible Climate Forecast and System Reanalysis (CFSR) weather dataset (Saha et al., 2010), for hydrological 

simulation in basins located outside US (Neitsch et al., 2011). The SWAT development team has provided access to a few 

platforms to manually estimate the require weather statistics, e.g., “WGN Parameters Estimation Tool” and “WGN Excel 55 

macro” (SWAT, 2019) etc. However, the amount of weather data required and the calculation procedures of the desired 

statistics, can be overwhelming for many SWAT modelers. Hence, most SWAT modelers prefer to use the already developed 

weather statistics CFSR dataset. CFSR dataset’s extensive use for SWAT modeling has already been seen in developing 

countries around the world (Alemayehu et al., 2015;Dile and Srinivasan, 2014;Monteiro et al., 2016;Worqlul et al., 

2017;Daggupati et al., 2017). 60 

However, CFSR has been reported with higher biases in its weather variables compared to other gridded reanalysis products 

like MERRA, GLDAS, NCEP and ERA in various locations of North Western hemisphere (Decker et al., 2012). Even in Asian 

regions, CFSR has shown inferior performance in hydrological simulation in Three Georges Reservoir basin, China (Yang et 
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al., 2014), Mekong region (Lauri et al., 2014), Srepok basin in Vietnam (Thom and Khoi, 2017), Maharlu lake in Iran (Eini et 

al., 2019), Langcang basin in China (Tang et al., 2019) and many others, compared to other rainfall products. The resolution 65 

of CFSR (0.38o) dataset could be another reason for its inferior performance in the topographically complex Asia Pacific 

region, as for each sub-basin, SWAT assigns the weather statistics from a nearby location defined within the dataset. As rainfall 

is the primary driver of hydrological models in majority of river basins of Asia, rainfall statistics defined from a location within 

0.38o are likely to differ than that of sub-basin climatology and could yield deviations in reconstructing the rainfall and other 

weather series. Anders et al. (2006) reported that the rainfall differences within a 10 km spatial scale were as high as fivefold 70 

in the Himalayan region. Such significant variations in rainfall characteristics are likely to impact the generation of better 

weather sequences and their applications for impact assessments. 

Ideally, long term (more than 10 years) observed rainfall records at daily time-step are needed to define accurate rainfall 

statistics for the entire Asia Pacific region for better weather generation (Neitsch et al., 2011). However, the Asia Pacific region 

is sparsely gaged and long-term continuous weather records (WMO, 2017) are not publicly and readily available for many 75 

gaged locations. The Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) 

gridded rainfall is a publicly available dataset that addresses the above-mentioned rainfall data availability challenge for the 

Asia Pacific region. APHRODITE is an interpolated product of thousands of surface rainfall stations from Asia Pacific 

countries and additional WMO Global Telecommunication Systems (Yatagai et al., 2012;Xie et al., 2007) that provides gridded 

rainfall data at a 0.25o spatial resolution (which is better than CFSR’s 0.38o resolution). APHRODITE has been used in the 80 

Asia Pacific region as baseline rainfall series for drought analysis (Um et al., 2017;Sohn et al., 2012), climate model 

assessments (Khan et al., 2018;Cruz and Sasaki, 2017), climate change impact assessments (Apurv et al., 2015;Kulkarni et al., 

2013) and hydrological model setup (Lauri et al., 2014;Panday et al., 2014). Moreover, APHRODITE’s relative superiority 

over other rainfall products, including CFSR, is well-established in several countries in the Asia Pacific region, including Saudi 

Arabia (El Kenawy and McCabe, 2016), Greater Mekong (Chen et al., 2017), Bhutan (Awange and Forootan, 2016), China 85 

(Yang et al., 2014;Tang et al., 2019) and many others. The better performance of APHRODITE over CFSR and other products 

in the region suggests that rainfall statistics derived from APHRODITE data could be more precise, and hence, more effective 

in generating relatively accurate synthetic weather data and better flow simulations using SWAT in rainfall dominant basins 

of Asia. 

Thus, the objective of this study is two pronged; (1) development of a robust weather statistics dataset for effective weather 90 

generation in river basins of Asia Pacific using APHRODITE rainfall to use in SWAT models and (2) evaluation of 

effectiveness of the proposed weather statistics dataset against observed rainfall-based statistics dataset (OBS) and the CFSR 

statistics dataset, in the context of synthetic weather generation and subsequent flow simulation in selected test basins. A high-

resolution weather statistics dataset at 0.25o is generated (hereafter named APWS dataset, i.e., Asia Pacific Weather Statistics 

dataset) by combining rainfall statistics from APHRODITE and remaining weather statistics from nearest CFSR station at 95 

0.38o spatial resolution and is made publicly accessible at https://hydra-water.shinyapps.io/APWS/ or 

http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019) in SWAT ready format. Two river basins, Narayani in Nepal 

https://hydra-water.shinyapps.io/APWS/
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and Wangchhu in Bhutan are selected as test basins to compare the performance of APWS against OBS and CFSR dataset, in 

weather generation and flow simulation for different missing percentages of rainfall. The presented APWS warrants originality, 

since no other such weather statistics datasets are publicly available (that are designed for use within weather generators), 100 

where precipitation statistics are derived from observed rainfall at 0.25-degree resolution for entire Asia Pacific region in a 

SWAT-readable format. 

2 The SWAT weather generator statistics data structure 

SWAT is a semi-distributed hydrologic model that requires weather data input at the sub-basin level. Consequently, the weather 

generator embedded in SWAT (i.e., WXGN (Sharpley, 1990)) uses weather statistics inputs at the sub-basin level for 105 

generating synthetic weather data (if desired). Statistics for the weather generator are stored in SWAT’s structured access 

database (i.e., SWAT2012.mdb for SWAT2012) Moreover, these statistics are stored for point locations (WXGN uses the 

nearest location’s statistics to generate synthetic weather data, wherever required), and should be derived from long term (more 

than 10 years) weather data (Neitsch et al., 2011). 

While a default weather statistics data set (derived from US_First Order stations and US_COOP) is included in SWAT’s 110 

default database for the United States (US), SWAT modelers who are interested in developing models for basins outside the 

US, need to manually provide weather statistics parameters (defined as OBS in this study). These parameters, along with their 

description and their effect on weather generation using SWAT’s WXGN weather generator are delineated in Table 1 

[Table 1 about here] 

3 The APWS Dataset 115 

3.1 Need  

The only data product that readily provides the weather statistics parameters (in SWAT-ready format) listed in Table 1, for 

point locations in the Asia Pacific region, is the CFSR weather dataset (SWAT, 2014). CFSR is a reanalysis data product (Saha 

et al., 2010). Reanalysis data are generated (even in hind-cast scenarios) by performing data assimilation for a past period 

using historically available data from surface stations, satellites and airships and a current numerical weather prediction (NWP) 120 

model. For any pre-defined forecast (a hind-cast is used for generating weather statistics from CFSR) time period, NWP uses 

historical data (of the starting time of the hind-cast / forecast) as initial boundary condition of the atmosphere and generates 

the next first guess forecast (which for generating SWAT weather statistics, is a hind-cast) based on theoretical approximations 

of atmosphere and relationship between different parameters (Parker, 2016). Consequently, accuracy of reanalysis-based 

hindcast datasets relies heavily on calibration of algorithms that represent the state of atmosphere. Given there is high 125 

uncertainty associated with the calibration of such algorithms, hindcast results of reanalysis-type data sets can have 

significantly higher uncertainty than weather dataset products that primarily rely on historical observations. 
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Numerous past studies show that reanalysis-type climate models have a tendency to over-estimate sea surface temperature 

(Laprise et al., 2013), wind components (Brands et al., 2013), land temperature (Kim et al., 2014) and number of consecutive 

rainy days (more than 1 mm rainfall). Moreover, the effect of major cumulus parameterization closure scheme of climate 130 

models to simulate rainfall are found to largely affect the geographic distribution, frequency and intensity of rainfall (Qiao and 

Liang, 2016). Qiao and Liang (2016) discussed that such closure schemes also tend to overestimate number of rainy days in 

rainfall scenarios of such models. 

The overestimation tendency, especially for precipitation, is also prevalent in the CFSR dataset, for the Asia Pacific region 

(Hu et al., 2016). Hu et al. (2016) did a comprehensive analysis of multiple reanalysis precipitation datasets for Central Asia 135 

and reported that precipitation datasets based on spatially interpolated historical observations are more accurate than 

reanalysis-type data sets (including CFSR). Since, precipitation is a fundamental input for hydrologic models, it is imperative 

that if synthetic precipitation data (generated via weather generators) is used in hydrologic model development, this data is 

produced via weather generators employing relatively accurate precipitation statistics (e.g., statistics 10-16 in Table 1). A 

comparison of observed rainfall data derived from National Oceanic and Atmospheric Administration, CFSR and 140 

APHRODITE at 36 different locations across 15 countries of Asia Pacific over 1981-2007 also reveals the inferior performance 

of CFSR rainfall compared to APHRODITE (refer to Table S1, Fig. S1, Fig.S2 and Fig. S3). Similar outperformance of 

APHRODITE over CFSR is reported for other areas in the Asia Pacific region, e.g., Mekong (Lauri et al., 2014;Thom and 

Khoi, 2017), middle east (Eini et al., 2019;Sidike et al., 2016) and China (Tang et al., 2019) and many others. Hence, the focus 

of this study is on providing an alternate (to CFSR) weather statistics data set (in SWAT-ready format) for the Asia-Pacific 145 

region, where precipitation statistics are derived from observed historical APHRODITE data. This dataset, i.e., the Asia Pacific 

Weather Statistics (APWS) dataset, derives precipitation statistics from the APHRODITE data set (which is based on spatially 

interpolated historic data), and is described in detail in the next section. 

3.2 Preparation 

The methodology adapted to generate the high-resolution dataset proposed in this study, i.e., the Asia Pacific Weather Statistics 150 

(APWS), is presented in Fig. 1. 

[Fig. 1 about here] 

APWS (see Fig. 1) derives rainfall statistics (at 0.25o resolution) from the historical observation-based APHRODITE dataset, 

and other weather statistics from CFSR. Numerous past studies have shown that the APHRODITE dataset is effective for 

hydrologic modeling in the Asia-Pacific region (Lauri et al., 2014;Panday et al., 2014), and hence it is chosen for deriving 155 

rainfall statistics for APWS. For preparing the APWS dataset, APHRODITE rainfall data for the period 1981-2007 is accessed 

from http://search.diasjp.net/en/dataset/APHRO_PR, and extracted for each grid center (at 0.25o resolution)  using customized 

scripts in R. The 27 year of rainfall data used in the study is expected to yield robust estimates of rainfall statistics, as suggested 

by other studies (Fodor et al., 2013;Jones et al., 2010). The rainfall statistics, i.e., mean monthly rainfall (PCPMM), standard 

deviation (PCPSTD), skewness (PCPSKW), average number of rainfall days (PCPD), probability of wet day following dry 160 

http://search.diasjp.net/en/dataset/APHRO_PR
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day (PR_W(1,n)), probability of wet day following wet day (PR_W(2,n)) and half hour maximum rainfall (RAINHHMX), 

needed for the weather generator in SWAT (see Table 1) are then estimated at each of these grid centers on the APHRODITE 

rainfall data (Liersch, 2003), using the executable provided by SWAT creators, i.e., pcpSTAT.exe. PcpSTAT.exe is a Fortran 

generated executable file provided by the SWAT development team to the potential SWAT modelers for the sole purpose of 

generating rainfall statistics using observed rainfall series (SWAT, 2019).  165 

Since APHRODITE only includes rainfall statistics, remaining weather statistics of APWS that are needed in SWAT’s weather 

generator (see Table 1), i.e., mean maximum temperature (TMPMX), mean minimum temperature (TMPMN), standard 

deviation of maximum temperature (TMPSTDMX), minimum temperature (TMPSTDMN), mean solar radiation 

(SOLARAV), wind speed (WNDAV) and dew point temperature (DEWPT) are estimated from nearby CFSR locations, and 

accessed from https://swat.tamu.edu/software/arcswat/. The Euclidean distance method is used to estimate the nearest CFSR 170 

stations for each grid center using customized R scripts. Finally, the hybrid weather statistics, which are collectively called 

APWS, are saved in an Excel file format which is compatible with SWAT’s structured access database (that also includes 

weather statistics for SWAT’s weather generator). The APWS dataset file has a size of approximately 50 MB and includes 

statistics of 48,000 weather locations across Asia Pacific region (Fig. S4). Improvements of the proposed APWS dataset over 

existing CFSR dataset are better spatial coverage (0.25o in APWS vs 0.38o in CFSR) and precise rainfall statistics estimated 175 

from gridded observed rainfall data, compared to reanalysis data of CFSR. Section 4 provides a detailed illustration of how 

APWS has similar performance to that of OBS and relatively superior performance over CFSR for hydrologic modeling in the 

Asia Pacific region under limited availability of precipitation data. 

3.3 Web-based dissemination  

Realizing the importance of ready access for finalized and SWAT usable weather statistics, a web application / portal is also 180 

created to easily access and filter the APWS statistics at country, basin or user defined levels. Figure 2 provides an overview 

of the interface of the APWS data access portal. As depicted in Fig. 2 (‘Selection Panel’ inside the interface), users of the 

portal may filter out statistics of a region of interest by either i) delineating a custom shape on the portal map (rectangle or 

drawn polygon), ii) uploading a custom shape file, or iii) choosing a country. After selecting an area of interest, weather 

statistics of all data points within the area of interest may be downloaded as a csv file and subsequently imported into the 185 

SWAT database (i.e., the WGEN_user table) for use as weather generation statistics (Neitsch et al., 2011). 

The APWS web-portal also has a basic visual analytics component that allows users to visualize time-series plots of rainfall 

and temperature statistics for selected grid centers of interest (that become active on the map, within the area of interest 

selected; see Fig. 2). The APWS portal is developed in R, can be accessed from https://hydra-water.shinyapps.io/APWS/. The 

dataset can also be accessed from http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019). 190 

[Fig. 2 about here] 

https://swat.tamu.edu/software/arcswat/
http://doi.org/10.5281/zenodo.3460766
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4 Performance evaluation of APWS dataset 

In order to evaluate the performance of APWS dataset in effective hydrological simulation using SWAT in the Asian region, 

we used APWS for synthetic weather data generation for SWAT models of two river basins: Narayani (NRB) in Nepal and 

Wangchhu (WRB) in Bhutan. Figure 3 provides an overview of the design of our performance evaluation experiment. Section 195 

4.1 presents the acquisition of data for selected river basins. Section 4.2 presents a brief comparison of monthly normals of 

observed, CFSR and APHRODITE rainfall. We then develop, calibrate and validate SWAT models of the Narayani and 

Wangchhu basins (see Sect. 4.3). The calibrated SWAT models use historical rainfall records at multiple stations during model 

development and calibration. In order to compare the performance (in the context of hydrologic modelling) of precipitation 

statistics of APWS, the default CFSR (normally used in SWAT) and statistics derived from observed rainfall (also called 200 

OBS), we develop alterations (also called ‘missing precipitation data’ scenarios) of the historical precipitation dataset where, 

in each scenario a specified percentage of historical data is missing (the missing days are randomly selected; discussed in Sect. 

4.4). The SWAT models are then run with ‘missing precipitation data’ scenarios using i) observed rainfall-based weather 

statistics (OBS), ii) CFSR and iii) APWS weather statistics (to generate synthetic precipitation records for missing precipitation 

days; also called reconstructed rainfall) and hydrological simulations using the reconstructed rainfall records are compared. 205 

The flows simulated using reconstructed rainfall (from OBS, APWS and CFSR) are compared (see Sect. 4.5 for details) with 

flows simulated with unaltered rainfall (i.e., 0% missing data), as presented in methodological framework of Fig. 3. The OBS 

statistics are included in this study for a scenario, when modeler can generate the required weather statistics from long-term 

observed daily weather information and use them in SWAT. This also provides a benchmark for the performance evaluation 

of gridded products like CFSR and APWS.  210 

[Fig. 3 about here] 

4.1 Data acquisition for selected basins 

The required rainfall, temperature and flow observations at daily timestep are acquired through Regional Integrated Multi 

Hazard Early Warning Systems (RIMES) center, Thailand and National Center of Meteorology and Hydrology (NCHM), 

Bhutan. Two river basins, Narayani (hereafter named NRB) in Nepal (36,000 sq.km) and Wangchhu (hereafter named WRB) 215 

in Bhutan (3,600 sq. km) are considered in this study to compare performance of APWS, CFSR and OBS statistics in weather 

generation. The location of NRB and WRB in south Asia, along with their topographical information and the flow stations 

considered in this study is presented in Fig. 4. 

[Fig. 4 about here] 

The NRB consists of 79 rainfall, 36 temperature and 3 flow stations as presented in Fig. S5. Similarly, the WRB has 7 rainfall, 220 

7 temperature and 3 flow stations, as presented in Fig. S6. The meteorological and flow data are available for the years 2008-

2014 in the NRB and 2000-2014 in the WRB respectively. 
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4.2 Comparison of rainfall normals 

As APHRODITE is found superior to CFSR when compared with observed rainfall at majority of locations in Asia Pacific 

(refer to Table S1, Fig. S1, Fig. S2 and Fig. S3 in supplementary section), a similar comparison is done within NRB and WRB 225 

for four meteorological stations each. For WRB, 1981-2007 is chosen to compare the gridded (i.e., APHRODITE) and 

reanalysis (i.e., CFSR) rainfall series with observe rainfall. For NRB, observed rainfall data at all stations is only available for 

2008-2014, thus the comparison is done for rainfall stations of Koshi river basin (i.e., another river basin in Nepal with climate 

attributes similar to NRB) with that of corresponding APHRODITE and CFSR datasets for the 1981-2007 period. A 

preliminary comparison of these three rainfall series for selected stations in the study basins suggested that CFSR significantly 230 

differs from the observed rainfall (see Fig. 5). Although differences in median rainfall are not significant at all stations, the 

distributions of monthly rainfall, depicted by violin-plots (over monthly precipitation data for years 1981-2007) in the top two 

rows of Fig. 5, illustrate that APHRODITE is more accurate, and thus more suitable, than CFSR for hydro-meteorological 

applications in the study basins.  

[Fig. 5 about here] 235 

The bottom two rows of Fig. 5 show plots of mean monthly rainfall for selected stations of the study basin. These plots illustrate 

that APHRODITE data is consistent with observed monthly rainfall distribution, albeit exhibiting some underestimations. The 

dominant rainfall seasonality (bottom two rows of Fig. 5) is also simulated well by APHRODITE, while CFSR has significant 

discrepancies in the study basins, which is expected to impact the hydrological application of CFSR statistics. The relatively 

better performance of APHRODITE over CFSR data series is not surprising, as the former is generated from the interpolation 240 

of ground rain gauges (Yatagai et al., 2012), while the latter is mostly a combination of satellite and observed data (Saha et al., 

2010). 

4.3 Hydrological model Setup  

The SWAT model setup for NRB and WRB includes a 90mx90m digital elevation model (DEM) required for terrain processing 

and basin delineation (accessed from HydroSHEDS website https://hydrosheds.cr.usgs.gov/dataavail.php), a 300mx300m land 245 

cover information (accessed from European Space Agency (ESA) Globcover project website 

http://due.esrin.esa.int/page_globcover.php), and a 1:5.000.000 scaled digital soil map of the world (DSMW) used to 

characterize soils in the study basins (accessed from https://worldmap.harvard.edu/data/geonode:DSMW_RdY). Since SWAT 

is a semi-distributed hydrologic model, the modeled basins are divided into sub-basins, and further into unique land units, also 

called Hydrologic Response Units (HRUs) based upon a combination of slope, land use and soil information. Also, as SWAT 250 

is a highly parameterized model, both the NRB and WRB SWAT models are calibrated via automatic multi-site calibration.  

The SWATCUP software, and the  Sequential Uncertainty Fitting (SUFI2) algorithm (Abbaspour, 2013), are used to calibrate 

models for both NRB and WRB satisfactorily at the selected six locations which is evident from the Nash Sutcliffe Efficiency 

(NSE) and Percentage Bias (PBIAS) values computed using daily flows (see Fig. 6). Results, as shown in the heat-maps of 

https://hydrosheds.cr.usgs.gov/dataavail.php
http://due.esrin.esa.int/page_globcover.php
https://worldmap.harvard.edu/data/geonode:DSMW_RdY
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Fig. 6, reveal that the calibrated SWAT models are able to capture annual variations in daily flows with reasonable accuracy 255 

(as depicted by NSE metric values). Moreover, volumetric error between simulated and observed flows are also reasonable 

during both calibration and validation periods (depicted by PBIAS values).  

[Fig. 6 about here] 

The consistency of model in simulating flows with satisfactory accuracy was observed for individual years, as can be seen in 

Fig. 6. Generally, the performance of SWAT in upper parts of basins (Jomsom, Haa) is relatively less accurate than in the 260 

middle (Sisaghat, Damchhu) and lower (Devghat, Chimakoti) parts. This trend has also been reported in other studies (Poncelet 

et al., 2017;Van Esse et al., 2013). 

 

4.4 Missing precipitation scenario analysis 

Since a primary premise of this study is to compare the performance of the proposed APWS weather generation statistics 265 

dataset against observation-based weather statistics (OBS) and CFSR statistics dataset for SWAT models developed for the 

Asia Pacific region, our dataset quality comparison experiment setup is based on generation of hydrologic modeling scenarios 

where precipitation records are missing (as depicted in Fig. 3). Eleven different precipitation scenarios are generated in this 

experiment setup where different percentages of rainfall data (i.e., 1, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 percent) are 

missing from the historical rainfall record time-series. For each scenario, say X-% missing data scenario, precipitation records 270 

of X% days are randomly (uniform) sampled (for each year of data record) and removed from the historical data set (Note: For 

each missing day, data of all rain gauges was removed from record). Since each precipitation scenario (say X-% missing data 

scenario) is stochastic, N different instances (N = 100 in our experiments) are generated for each scenario.  

Consequently, SWAT models with i) OBS, ii) APWS and iii) CFSR weather statistics are run for all scenarios and instances. 

The WXGEN weather generator built in SWAT is automatically invoked to fill missing rainfall values. Hence, when the OBS, 275 

APWS and CFSR weather statistics are applied in separate SWAT runs, for the same missing data scenarios and instances, we 

obtain separate hydrologic outputs (based on precipitation data filled by the weather generator using the different statistic sets). 

The hydrologic outputs generated via OBS, APWS and CFSR are subsequently compared against the ‘baseline’ SWAT 

hydrologic output, i.e., without any missing historical precipitation records. The criteria for quantifying the difference between 

OBS-based, APWS-based & CFSR-based hydrologic flows (under different missing precipitation scenarios), and baseline 280 

flows, are discussed in Sect. 4.5. 

4.5 Comparison of OBS, CFSR and APWS 

To provide equal weightage for low and high flows, the hydrologic flow values in this study are transformed initially using a 

Box-Cox transformation technique (Box and Cox, 1964) and then evaluated using the standard indices like NSE and PBIAS. 

For the transformation, a lambda value of 0.25 is assumed following Willems (2009). The NSE and PBIAS metrics are 285 

computed by comparing i) flows simulated from reconstructed rainfall using OBS, APWS and CFSR datasets (under different 



10 

 

missing precipitation scenarios discussed in Sect. 3.4) with ii) unaltered rainfall simulated flows (also called baseline flows as 

discussed in Sect. 4.4. The results of performance evaluation for the WRB is presented in Fig. 7, where the lines represent 

average NSE and PBIAS values and shaded areas represent their standard deviations, for each of OBS, APWS and CFSR 

simulated daily flows. 290 

[Fig. 7 about here] 

Results for WRB stations clearly show that accuracy of weather statistics is of paramount importance in filling the rainfall 

series and subsequently, in accurate simulation of hydrologic flows. The OBS and APWS datasets are found to have similar 

performance. Moreover, APWS clearly outperforms CFSR since both NSE and PBIAS values for APWS remain reasonable 

even with 50% missing precipitation data. Moreover, the difference in performance of the OBS, APWS and CFSR statistics is 295 

more significant in smaller sub-basins located in upper parts of the basin (e.g., represented by the Haa station in left-most 

panels of Fig. 7), compared to the lower parts. A reason for this difference could be the subsequent dampening of the missing 

rainfall events, as the flow progresses downstream. The smaller sub-basins located in the upper parts of the study basins are 

more flashy in nature compared to the lower sub-basins, which has been established to negatively impact the hydrological 

model performance (Poncelet et al., 2017). The performance of hydrological models is also generally better at the downstream 300 

locations and increases with size of basins (Merz et al., 2011;Van Esse et al., 2013) 

A significant deviation of NSE is observed for all flow stations in WRB, when CFSR weather statistics are used to fill the 

missing rainfall series in the WRB. The rainfall statistics of CFSR were significantly different than observed and APHRODITE 

data for the basin, as evident from Fig. 5. This is likely to yield large errors from the baseline simulated flows (i.e., without 

missing precipitation data) when CFSR is used to fill the missing rainfall series. The biased nature of CFSR in WRB is also 305 

evident from the PBIAS computed at its flow stations. The biases aggregate more than 50% in all stations, when 20% or less 

rainfall data is missing, and the weather generator with CFSR statistics is used to generate synthetic rainfall data for missing 

days. The APWS however is found to have almost similar performance to that of OBS, as the differences between the observed 

and APHRODITE rainfall were also minimal as evident in Fig. 5. A similar performance of APWS with OBS and overall 

relative superiority (of both datasets) over CFSR is also evident for NRB in Fig. 8, wherein NSE and PBIAS indices for APWS 310 

and OBS datasets are clearly better than the corresponding NSE and PBIAS indices for CFSR. 

[Fig. 8 about here] 

Results of NRB, as presented in Fig. 8, also depict that the size and location of a sub-basin has a significant impact on 

performance of weather statistics in simulating hydrologic flows, i.e., smaller sub-basins that are located in upper parts of 

basins, and have no contributions from other tributaries, tend to be heavily reliant on accurate observed weather data for 315 

accurate hydrologic simulation. The Jomsom hydrological station located in the northernmost part of the NRB (Fig. 8, left-

most panels) is part of a small sub-basin of NRB and is devoid of contribution from other tributaries in the basin.  

Moreover, the sub-basin that Jomsom drains has an arid climatology, with a mean annual rainfall of around 350 mm (as 

presented in Fig. S7). Arid basins have been known to have lower model efficiency compared to wet basins (Poncelet et al., 

2017). Hence, the NSE and PBIAS values at Jomsom, become significantly worse (compared to the other stations located in 320 
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lower parts of the basin), as the percentage missing data value increases slightly. In arid and semi-arid sub-basins, total rainfall 

is mostly contributed by rainfall events rather than rainfall seasonality, due to which even a smaller percentage of missing data 

concentrated around such events is likely to deteriorate the hydrological model performance. The use of weather generator to 

reconstruct the missing rainfall is thus likely to change the rainfall sequence in such basins thus degrading the performance of 

weather generators significantly even for few missing events. Similarly, as the size of basin increases and as we approach the 325 

lower parts of NRB where rainfall volume is significant, the reduction in performance of the weather statistics is gradual. Both 

APWS and CFSR datasets perform adequately in NRB for stations located in the lower part of the river basin (see results for 

Sisaghat and Devghat in Fig. 8). However, performance of APWS is slightly better for these stations as well and almost 

matches to that of OBS. Overall, a consensus could be derived from both study basins that performance of APWS is similar to 

that of OBS and better than CFSR statistics, in terms of deriving synthetic rainfall data for missing days at observed weather 330 

stations and, subsequently, in simulating hydrologic flows under limited precipitation data availability scenarios. 

A preliminary analysis of six hydrological stations (3 in each basin) in this study suggests that smaller river basins (within few 

thousand square kilometers) are likely to benefit more from the developed APWS dataset (for e.g. refer to locations of Haa 

and Jomsom stations in Wangchhu and in Narayani river basins in Fig. 4 and check their performances in Fig. 7 and Fig. 8). 

First order river basins exhibit higher variability among the flows simulated by different weather statistics than the second and 335 

tertiary order river basins (again refer to Fig. 4 and Fig. 7 and Fig. 8). Hence, synthetic rainfall generation from a more accurate 

statistics dataset like APWS is recommended for first over basins.  

Our analysis also indicates that, for the two study basins, observed precipitation data gaps in the range of 0-30% are can be 

adequately filled with synthetic data using APWS. Performance of SWAT deteriorates significantly if more than 30% of 

observed precipitation data is missing. Hence, it is recommended that APWS be used in SWAT scenarios, where up to 30% 340 

observed rainfall data is missing (for larger basins, even 50% missing data scenarios may be acceptable). It should also be 

noted that this percentage threshold (i.e., 30%) may be an over-estimation for highly arid basins, where typically, the entire 

annual rainfall occurs within a day or two. 

5 Sensitivity of the rainfall statistics 

Sensitivity analysis aims to measure the impact of fluctuations in parameters of a model to its outputs or performance 345 

(Balaman, 2018). This study also aims to assess the sensitivity of synthetically generated precipitation data (via the SWAT 

weather generator) to the rainfall statistics used in SWAT’s weather generator, i.e., PCPMM, PCPSTD, PCPSKW, PR_W(1,n), 

PR_W(2,n), PCPD and RAINHHMX. The sensitivity assessment mechanism is initiated by first creating 100 random missing 

precipitation scenarios of 30% missing rainfall data. The SWAT weather generator, i.e., WXGEN, is then used to  generate 

precipitation data for the 30% missing days (for all 100 random scenarios), with the original APWS statistics dataset, and for 350 

selected precipitation stations in WRB, and subsequently the SWAT hydrologic model is run to generate simulated flows. The 

difference in simulated flows from generated weather data and actual weather data, i.e., without missing precipitation days 
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(computed for each random scenario and quantified via NSE and PBIAS metrics) is recorded as the baseline / unaltered 

hydrologic performance of weather statistics. Subsequently, individual rainfall statistics (i.e., PCPMM, PCPSTD, PCPSKW, 

PR_W(1,n), PR_W(2,n), PCPD and RAINHHMX) are changed by ±5, ±10 and ±25%, with one-at-a-time (OAT) approach 355 

(Cacuci et al., 2005), keeping other statistics fixed at their nominal values, and WXGEN is used to generate precipitation data 

for the 30% missing days (for all 100 random scenarios) with these altered rainfall statistics and used to drive the SWAT model 

for daily flow simulation. The sensitivity of rainfall statistics is finally shown in terms of Box-Cox transformed NSE and 

PBIAS indicators. These PBIAS estimated by comparing i) simulated flows from generated weather data (from OAT-altered 

rainfall statistics) and ii) simulated flows obtained after running SWAT with actual weather data for WRB is presented in Fig. 360 

9. 

[Fig. 9 about here] 

The results of sensitivity analysis of rainfall statistics of APWS done over WRB in Bhutan, suggests that probability of a wet 

day following wet day (PR_W (2, n) is most sensitive in altering the performance of daily flows simulated using reconstructed 

rainfall. Mean rainfall followed by number of rainy days (PCPD) are found to be second and third most sensitive rainfall 365 

statistics for precise rainfall generation in WRB, as presented in Fig. 9. This is expected as the identification of a day as 

rainy/non-rainy depends upon the probability values defined in the weather statistics. Only when the day is designated rainy, 

the weather generator makes use of the mean, standard deviation and skewness of monthly rainfall to estimate the rain amount. 

Similarly, probability of wet day following dry day (PR_W (1, n)) is expected to have less sensitivity in the WRB basin, as 

generation of rainfall values on a spell of dry days is unlikely to change the flow regime. Similarly, RAINHHMX is found 370 

insensitive to weather generation in the basin. The sensitivity of rainfall statistics on daily flow simulation is expected to vary 

with different climatology and basin characteristics. A similar sensitivity analysis of the rainfall statistics in specifying model 

performance in terms of NSE also confirms that PR_W(2, n), PCPMM and PCPD are most sensitive in rainfall reconstruction 

for the study basin (see Fig. S8). 

6 Data availability 375 

The AWPS dataset is archived for long-term storage and visual analytics at https://hydra-water.shinyapps.io/APWS/. The file 

size of Excel dataset is around 50 MB, which is itself in SWAT-ready format and can be accessed from 

http://doi.org/10.5281/zenodo.3460766 (Ghimire et al., 2019). 

7 Conclusions 

SWAT is a semi-distributed hydrologic model that is immensely popular in the Asia-Pacific region. However, given its semi-380 

distributed nature, accuracy of SWAT is reliant on precipitation input data (that should be available at relatively high spatial 

and temporal resolutions). Since, availability of observed precipitation data is limited in river basins of Asia Pacific, a viable 

https://hydra-water.shinyapps.io/APWS/
http://doi.org/10.5281/zenodo.3460766
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alternate is synthetic precipitation data, obtained from weather generators. The synthetic generation of precipitation data needs 

precise rainfall statistics and a weather generator capable of simulating synthetic weather data. 

The SWAT model includes a built-in weather generator (also called WXGN) that generates weather data wherever required 385 

(e.g., when data for some dates is missing in observed series), and SWAT modelers can use the readily available CFSR statistics 

dataset as input for WXGN. Even though CFSR statistics cover the entire globe, they are generated from combination of 

reanalysis data and satellite information, and CFSR’s precipitation-related statistics have reportedly low accuracy levels for 

the Asia Pacific region. The APHRODITE dataset can be a better alternative for estimating core precipitation statistics for the 

Asia Pacific region, as it was generated by interpolation of observed rainfall gages in the Asia Pacific region. 390 

Given the prior successful applications of APHRODITE in the region, this study proposes the APWS weather statistics dataset 

for the Asia Pacific region, that combines precipitation weather statistics from APHRODITE with other weather statistics from 

CFSR. The APWS dataset is specifically designed to work with SWAT for generation of synthetic weather data, wherever 

observed weather data is unavailable.  

A comprehensive experimental (model-based) comparison of APWS, observed surface rainfall station derived weather 395 

statistics (OBS) and CFSR is also conducted in this study, that shows that performance of APWS is comparable to OBS and 

better than CFSR, for simulating hydrologic flows with SWAT in scenarios where observed precipitation data is missing. Both 

APWS and CFSR statistics are applied to SWAT models of two river basins in Asia, i.e., Narayani and Wangchhu, along with 

the observed rainfall statistics. The APWS statistics clearly outperform CFSR in generating synthetic rainfall data (wherever 

observed data is missing) and subsequently simulating the daily flows in both river basins, particularly for smaller independent 400 

sub-basins.  

The APWS dataset is available via a web interface that has been developed for its public and easy access. Further investigations 

may be required to verify and improve the performance of APWS in other basins of region with contrasting climates. Hence, 

the authors encourage further testing of the APWS dataset in the Asia Pacific region, which has been prepared at a higher 

spatial resolution (0.25 *0.25o) than that of existing CFSR (0.38*0.38o) dataset. 405 

7 Author contribution 

UG and NS conceptualized the study. UG handled the APHRODITE data extraction and generation of weather statistics for 

entire Asia Pacific. NS developed the hydrological models for the study basins. TA developed the web platform and the 

automation of the hydrological models to check their performance using the weather statistics. UG drafted the manuscript and 

TA, NS and PD provided their comments and revision. 410 



14 

 

8 Acknowledgement 

The required rainfall, temperature and flow data for Narayani river basin were acquired from RIMES project on “Development 

of End to End Flood Forecasting System and Decision Support System in Nepal”, where the first author was working as a 

hydrologist previously. Special thanks go to Department of Hydrology and Meteorology, Nepal and Mr. Sangay Tenzin, Chief 

of Hydrology division, National Center for Hydrology and Meteorology, Bhutan. 415 

9 Competing interests 

The authors declare that they have no conflict of interest. 

References 

Abbaspour, K. C.: SWAT-CUP 2012, SWAT Calibration and Uncertainty Program—A User Manual, 2013. 

Ailliot, P., Allard, D., Monbet, V., and Naveau, P.: Stochastic weather generators: an overview of weather type models, Journal 420 

de la Société Française de Statistique, 156, 101-113, 2015. 

Alemayehu, T., Griensven, A. v., and Bauwens, W.: Evaluating CFSR and WATCH data as input to SWAT for the estimation 

of the potential evapotranspiration in a data-scarce Eastern-African catchment, Journal of Hydrologic Engineering, 21, 

05015028, 2015. 

Anders, A. M., Roe, G. H., Hallet, B., Montgomery, D. R., Finnegan, N. J., and Putkonen, J.: Spatial patterns of precipitation 425 

and topography in the Himalaya, Special Papers-Geological Society of America, 398, 39, 2006. 

Aouissi, J., Benabdallah, S., Chabaâne, Z. L., and Cudennec, C.: Evaluation of potential evapotranspiration assessment 

methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia, Agricultural Water 

Management, 174, 39-51, 2016. 

Apurv, T., Mehrotra, R., Sharma, A., Goyal, M. K., and Dutta, S.: Impact of climate change on floods in the Brahmaputra 430 

basin using CMIP5 decadal predictions, Journal of Hydrology, 527, 281-291, 2015. 

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R., Van 

Griensven, A., and Van Liew, M. W.: SWAT: Model use, calibration, and validation, Transactions of the ASABE, 55, 

1491-1508, 2012. 

Awange, J., and Forootan, E.: An evaluation of high‐resolution gridded precipitation products over Bhutan (1998–2012), 435 

International Journal of Climatology, 36, 1067-1087, 2016. 

Balaman, S. Y.: Decision-making for Biomass-based Production Chains: The Basic Concepts and Methodologies, Academic 

Press, 2018. 

Box, G. E., and Cox, D. R.: An analysis of transformations, Journal of the Royal Statistical Society: Series B (Methodological), 

26, 211-243, 1964. 440 



15 

 

Brands, S., Herrera, S., Fernández, J., and Gutiérrez, J. M.: How well do CMIP5 Earth System Models simulate present climate 

conditions in Europe and Africa?, Climate dynamics, 41, 803-817, 2013. 

Cacuci, D. G., Ionescu-Bujor, M., and Navon, I. M.: Sensitivity and uncertainty analysis, volume II: applications to large-scale 

systems, CRC press, 2005. 

Candela, L., Tamoh, K., Olivares, G., and Gomez, M.: Modelling impacts of climate change on water resources in ungauged 445 

and data-scarce watersheds. Application to the Siurana catchment (NE Spain), Science of the total environment, 440, 253-

260, 2012. 

Caraway, N. M., McCreight, J. L., and Rajagopalan, B.: Multisite stochastic weather generation using cluster analysis and k-

nearest neighbor time series resampling, Journal of hydrology, 508, 197-213, 2014. 

Chen, C. J., Senarath, S. U., Dima‐West, I. M., and Marcella, M. P.: Evaluation and restructuring of gridded precipitation data 450 

over the Greater Mekong Subregion, International Journal of Climatology, 37, 180-196, 2017. 

Cruz, F. T., and Sasaki, H.: Simulation of present climate over Southeast Asia using the non-hydrostatic regional climate 

model, Sola, 13, 13-18, 2017. 

Daggupati, P., Srinivasan, R., Dile, Y. T., and Verma, D.: Reconstructing the historical water regime of the contributing basins 

to the Hawizeh marsh: Implications of water control structures, Science of the Total Environment, 580, 832-845, 2017. 455 

Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and Bosilovich, M. G.: Evaluation of the reanalysis products 

from GSFC, NCEP, and ECMWF using flux tower observations, Journal of Climate, 25, 1916-1944, 2012. 

Dile, Y. T., and Srinivasan, R.: Evaluation of CFSR climate data for hydrologic prediction in data‐scarce watersheds: an 

application in the Blue Nile River Basin, JAWRA Journal of the American Water Resources Association, 50, 1226-1241, 

2014. 460 

Eames, M., Kershaw, T., and Coley, D.: A comparison of future weather created from morphed observed weather and created 

by a weather generator, Building and Environment, 56, 252-264, 2012. 

Eini, M. R., Javadi, S., Delavar, M., Monteiro, J. A., and Darand, M.: High accuracy of precipitation reanalyses resulted in 

good river discharge simulations in a semi-arid basin, Ecological engineering, 131, 107-119, 2019. 

El Kenawy, A. M., and McCabe, M. F.: A multi‐decadal assessment of the performance of gauge‐and model‐based rainfall 465 

products over Saudi Arabia: climatology, anomalies and trends, International Journal of Climatology, 36, 656-674, 2016. 

Fodor, N., Dobi, I., Mika, J., and Szeidl, L.: Applications of the MVWG multivariable stochastic weather generator, The 

Scientific World Journal, 2013, 2013. 

Francesconi, W., Srinivasan, R., Pérez-Miñana, E., Willcock, S. P., and Quintero, M.: Using the Soil and Water Assessment 

Tool (SWAT) to model ecosystem services: A systematic review, Journal of Hydrology, 535, 625-636, 2016. 470 

Ghimire, U., Akhtar, T., Shrestha, N., and Daggupati, P.: drkupi/APWS: APWS Web Portal (Version v1.0), Zenodo. 

http://doi.org/10.5281/zenodo.3460766, 2019. 

Hu, Z., Hu, Q., Zhang, C., Chen, X., and Li, Q.: Evaluation of reanalysis, spatially interpolated and satellite remotely sensed 

precipitation data sets in central Asia, Journal of Geophysical Research: Atmospheres, 121, 5648-5663, 2016. 

http://doi.org/10.5281/zenodo.3460766


16 

 

Jones, P., Harpham, C., Kilsby, C., Glenis, V., and Burton, A.: UK Climate Projections science report: Projections of future 475 

daily climate for the UK from the Weather Generator, 2010. 

Jones, P. G., and Thornton, P. K.: Generating downscaled weather data from a suite of climate models for agricultural 

modelling applications, Agricultural Systems, 114, 1-5, 2013. 

Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., and Son, M.: Performance assessment of general circulation model 

in simulating daily precipitation and temperature using multiple gridded datasets, Water, 10, 1793, 2018. 480 

Kim, J., Waliser, D. E., Mattmann, C. A., Goodale, C. E., Hart, A. F., Zimdars, P. A., Crichton, D. J., Jones, C., Nikulin, G., 

and Hewitson, B.: Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors, Climate dynamics, 

42, 1189-1202, 2014. 

Kolokotroni, M., Ren, X., Davies, M., and Mavrogianni, A.: London's urban heat island: Impact on current and future energy 

consumption in office buildings, Energy and buildings, 47, 302-311, 2012. 485 

Kulkarni, A., Patwardhan, S., Kumar, K. K., Ashok, K., and Krishnan, R.: Projected climate change in the Hindu Kush-

Himalayan region by using the high-resolution regional climate model PRECIS, Mt Res Dev, 33, 142-151, 2013. 

Laprise, R., Hernández-Díaz, L., Tete, K., Sushama, L., Šeparović, L., Martynov, A., Winger, K., and Valin, M.: Climate 

projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5), 

Climate Dynamics, 41, 3219-3246, 2013. 490 

Lauri, H., Räsänen, T., and Kummu, M.: Using reanalysis and remotely sensed temperature and precipitation data for 

hydrological modeling in monsoon climate: Mekong River case study, Journal of Hydrometeorology, 15, 1532-1545, 

2014. 

Liersch, S.: The Program pcpSTAT: user’s manual, Berlin, August 2003, 5, 2003. 

Lu, Y., Qin, X., and Mandapaka, P.: A combined weather generator and K‐nearest‐neighbour approach for assessing climate 495 

change impact on regional rainfall extremes, International Journal of Climatology, 35, 4493-4508, 2015. 

Martin, D. J., Howard, A., Hutchinson, R., McGree, S., and Jones, D. A.: Development and implementation of a climate data 

management system for western Pacific small island developing states, Meteorological Applications, 22, 273-287, 2015. 

Merz, R., Parajka, J., and Blöschl, G.: Time stability of catchment model parameters: Implications for climate impact analyses, 

Water Resources Research, 47, 2011. 500 

Monteiro, J. A., Strauch, M., Srinivasan, R., Abbaspour, K., and Gücker, B.: Accuracy of grid precipitation data for Brazil: 

application in river discharge modelling of the Tocantins catchment, Hydrological processes, 30, 1419-1430, 2016. 

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and water assessment tool theoretical documentation 

version 2009, Texas Water Resources Institute, 2011. 

Page, C. M., Nicholls, N., Plummer, N., Trewin, B., Manton, M., Alexander, L., Chambers, L. E., Choi, Y., Collins, D. A., 505 

and Gosai, A.: Data rescue in the southeast Asia and south Pacific region: challenges and opportunities, Bulletin of the 

American Meteorological Society, 85, 1483-1490, 2004. 



17 

 

Panday, P. K., Williams, C. A., Frey, K. E., and Brown, M. E.: Application and evaluation of a snowmelt runoff model in the 

Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach, 

Hydrological Processes, 28, 5337-5353, 2014. 510 

Parker, W. S.: Reanalyses and observations: What’s the difference?, Bulletin of the American Meteorological Society, 97, 

1565-1572, 2016. 

Poncelet, C., Merz, R., Merz, B., Parajka, J., Oudin, L., Andréassian, V., and Perrin, C.: Process‐based interpretation of 

conceptual hydrological model performance using a multinational catchment set, Water Resources Research, 53, 7247-

7268, 2017. 515 

Qiao, F., and Liang, X. Z.: Effects of cumulus parameterization closures on simulations of summer precipitation over the 

United States coastal oceans, Journal of Advances in Modeling Earth Systems, 8, 764-785, 2016. 

Richardson, C. W.: Stochastic simulation of daily precipitation, temperature, and solar radiation, Water resources research, 17, 

182-190, 1981. 

Richardson, C. W., and Wright, D. A.: WGEN: A model for generating daily weather variables, 1984. 520 

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., and Behringer, D.: The 

NCEP climate forecast system reanalysis, Bulletin of the American Meteorological Society, 91, 1015-1058, 2010. 

Semenov, M. A., and Barrow, E. M.: Use of a stochastic weather generator in the development of climate change scenarios, 

Climatic change, 35, 397-414, 1997. 

Sharpley, A. N.: EPIC-erosion/productivity impact calculator: 1, Model Documentation, USDA Techn. Bull. 1759, 235, 1990. 525 

Sidike, A., Chen, X., Liu, T., Durdiev, K., and Huang, Y.: Investigating alternative climate data sources for hydrological 

simulations in the upstream of the Amu Darya River, Water, 8, 441, 2016. 

Sohn, S. J., Tam, C. Y., Ashok, K., and Ahn, J. B.: Quantifying the reliability of precipitation datasets for monitoring large‐

scale East Asian precipitation variations, International Journal of Climatology, 32, 1520-1526, 2012. 

Srivastav, R. K., and Simonovic, S. P.: Multi-site, multivariate weather generator using maximum entropy bootstrap, Climate 530 

Dynamics, 44, 3431-3448, 2015. 

Steinschneider, S., and Brown, C.: A semiparametric multivariate, multisite weather generator with low‐frequency variability 

for use in climate risk assessments, Water resources research, 49, 7205-7220, 2013. 

Supit, I., Van Diepen, C., De Wit, A., Wolf, J., Kabat, P., Baruth, B., and Ludwig, F.: Assessing climate change effects on 

European crop yields using the Crop Growth Monitoring System and a weather generator, Agricultural and Forest 535 

Meteorology, 164, 96-111, 2012. 

ArcSWAT CFSR_World Weather Database: https://swat.tamu.edu/software/arcswat/, 2014. 

SWAT: Soil and Water Assessment Tool: https://swat.tamu.edu/software/, 2019. 

Tang, X., Zhang, J., Wang, G., Yang, Q., Yang, Y., Guan, T., Liu, C., Jin, J., Liu, Y., and Bao, Z.: Evaluating Suitability of 

Multiple Precipitation Products for the Lancang River Basin, Chinese geographical science, 29, 37-57, 2019. 540 



18 

 

Thom, V. T., and Khoi, D. N.: Using gridded rainfall products in simulating streamflow in a tropical catchment–A case study 

of the Srepok River Catchment, Vietnam, Journal of Hydrology and Hydromechanics, 65, 18-25, 2017. 

Um, M. J., Kim, Y., and Kim, J.: Evaluating historical drought characteristics simulated in CORDEX East Asia against 

observations, International Journal of Climatology, 37, 4643-4655, 2017. 

Van Esse, W., Perrin, C., Booij, M. J., Augustijn, D. C., Fenicia, F., Kavetski, D., and Lobligeois, F.: The influence of 545 

conceptual model structure on model performance: a comparative study for 237 French catchments, Hydrology and earth 

system sciences, 17, 4227-4239, 2013. 

Willems, P.: A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models, Environmental 

Modelling & Software, 24, 311-321, 2009. 

WMO: Regional Association II (Asia): Sixteenth session Abu Dhabi, World Meteorological Organization, Geneva, 550 

Switzerland, 2017. 

Worqlul, A. W., Yen, H., Collick, A. S., Tilahun, S. A., Langan, S., and Steenhuis, T. S.: Evaluation of CFSR, TMPA 3B42 

and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, 

Ethiopia, Catena, 152, 242-251, 2017. 

Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., and Liu, C.: A gauge-based analysis of daily 555 

precipitation over East Asia, Journal of Hydrometeorology, 8, 607-626, 2007. 

Yang, Y., Wang, G., Wang, L., Yu, J., and Xu, Z.: Evaluation of gridded precipitation data for driving SWAT model in area 

upstream of three gorges reservoir, PLoS One, 9, e112725, 2014. 

Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: Constructing a long-term 

daily gridded precipitation dataset for Asia based on a dense network of rain gauges, Bulletin of the American 560 

Meteorological Society, 93, 1401-1415, 2012 

  



19 

 

Table 1 Weather statistics used by SWAT model to generate or fill missing weather inputs 

No. Variable name Description 
How does it affect weather generation 

in SWAT? 

1 TITLE Name of the weather station Does not affect 

2 WLATITUDE 
Latitude of weather station in 

decimal degrees 

Each subbasin in SWAT is assigned with 

closest weather generator based on 

latitude and longitude which changes all 

weather statistics 3 WLONGITUDE 
Longitude of weather station in 

decimal degrees 

4 WELEV 
Elevation of the weather station 

in meters 

Rainfall and temperatures are defined 

accordingly for each elevation band 

depending upon the elevation of weather 

station and elevation of the weather 

statistics 

5 RAIN_YRS 

Number of years of weather 

data used to generate weather 

statistics 

Maximum 0.5 hourly rainfall for the sub-

basins are defined based upon the 

number of years 

6 TMPMX 

Average daily maximum 

temperature for a given month 

of all years 

Needed to generate mean temperature at 

the center of basins when TLAPS 

parameter is considered for elevation 

bands. They are also used to estimate 

potential evapotranspiration and other 

weather variables 

7 TMPMN 

Average daily minimum 

temperature of a month for all 

years 

8 TMPSTDMX 

Standard deviation of daily 

maximum temperature for a 

month in all years 

The mean and standard deviation of 

temperatures are also used to find the 

amount of temperature to fill given the 

status of day (rainy/non-rainy) 9 TMPSTDMN 

Standard deviation of daily 

minimum temperature for a 

month in all years 
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10 PCPMM 
Total precipitation for a month 

averaged for all years 
The mean, standard deviation and 

skewness parameter are used to 

determine the amount of precipitation to 

fill for a rainy day 

11 PCPSTD 
Standard deviation of daily 

rainfall in a month for all years 

12 PCPSKW 
Skew coefficient of daily 

rainfall in a month 

13 PR_W(1,n) 

Probability of a wet day 

following dry day in "n" month 

for all years 
Based upon the probabilities of a missing 

day, it will determine whether the day 

will be rainy or not for each month 
14 PR_W(2,n) 

Probability of wet day 

following wet day in "n" month 

for all years 

15 PCPD 
Average number of rainfall days 

in a month 

Used in PLAPS parameter to generate 

rainfall at each elevation band 

16 RAINHHMX 
Maximum half hour rainfall in a 

month for all years 
 Unknown 

17 SOLARAV 
Average solar radiation for a 

month for all years Used in generation of series of solar 

radiation, dew point and wind speed to 

use for evapotranspiration calculation 

using Penman Monteith method 

18 DEWPT 
Average dew point temperature 

for a month for all years 

19 WNDAV 
Average wind speed for a month 

for all years 

 
  565 



21 

 

 

 

Fig. 1 Generation of APWS dataset for Asia Pacific region 
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Fig. 2 Web platform designed to disseminate APWS data in Asia Pacific basins 
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 575 

Fig. 3 Performance evaluation of APWS for selected river basins of Asia 
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Fig. 4 Location of the test basins in Asia Pacific region and their elevational information 580 
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Fig. 5 Comparison of distribution (top two rows; plotted over monthly rainfall time-series from years 1981-2007) and seasonality 

(bottom two rows) of mean monthly observed (Obs) rainfall (mm) with APHRODITE (APHRO) and CFSR rainfall series at selected 

stations of the study basins 585 
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Fig. 6 NSE (left column) and PBIAS (right column) computed from daily simulated and observed flows for each year in top, middle 

and lower parts (left to right of each plot) in WRB (top row) and NRB (bottom row) 590 
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Fig. 7 NSE and PBIAS in WRB computed using reference flows and simulated flows using weather statistics from OBS, APWS and 

CFSR for different scenarios of missing data (bands here represent the NSE and PBIAS values computed for 100 bootstraps) in 595 
WRB 
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Fig. 8 NSE and PBIAS in NRB computed using reference flows and simulated flows using weather statistics from OBS, APWS and 600 
CFSR for different scenarios of missing data (bands here represent the NSE and PBIAS values computed for 100 bootstraps) in 

NRB 
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 605 

Fig. 9 Sensitivity analysis of rainfall statistics in simulating daily flows at Haa, Damchu and Chimakoti flow stations in the Wangchhu 

river basin, Bhutan 


