Author’s response to the comments on “PROTEVS-MED field experiments: Very High-Resolution Hydrographic Surveys in the Western Mediterranean Sea”

Pierre Garreau et al.

December 15, 2019

General response

First we thank the two referees for their reviews and contributions. As these were minor revisions and as we are non native english speakers, we followed the recommendations of the referees in most cases. Hereafter, the detailed answers to the reviewer #1 and the reviewer #2.

The corrupted file (https://www.seanoe.org/data/00512/62352/data/66880.pdf) corresponding to the quicklooks of first leg of 2017 has been reprocessed, uploaded on the repository and is now downloadable. The full dataset has been also re-checked.

We were also contacted directly by the Seanoe administrator. He suggested to add the DOI of the GOSUD data repository in complement of the already cited paper; It has be added in the references.

Reviewer #1 :

Line 24 “(about 10000 Km)” could be replaced by (total length about 10000 Km)

Done.

Line 28 TermoSalinoGraph (TSG) “CTD casts” could be replaced by Classical full depth CTD stations have been realized.... Please define CTD acronym. I think that the manuscript would benefit of a clear distinction between a CTD (instrument that is included in the towed system as well as in the free fall profiler) and a classical CTD cast performed when the ship stops in a sampling station. At the moment, in this manuscript the term CTD is used for all the classical oceanographic stations and this could generate some confusion.

Done. Thank you for this remark, we tracked CTD in the whole manuscript and removed the confusion between the instrument, the cast and the stations.

Line 29 “objects” may be replaced by “structures”

done.

Line 30 “the aim of the survey. . ..” Please consider resentencing

As the main objectives of the surveys has been already defined few line above, this sentence has been removed. In there following statement 'nevertheless' has been also removed. We hope the text is now more fluent.
Line 32 “biological sensors. . . have been carried out” Please consider resentencing
The concerned sentence has been rephrased as follow :
“When available, biological sensors (Chlorophyll a, Turbidity, Dissolved Oxygen etc.) have been carried out. They provided useful complementary observations about the circulation”

Line 44 “chlorophyll a “ replace with chlorophyll a. Please be coherent throughout the paper
chlorophyll-a will be used for all the paper.

Line 47 “As the scales” might be replasec by “As all these scales” “to develop observations” please replace with“to develop an observation strategy”
done

Line 56-60 Please consider to move here the figure 1 also adding the geographical references mentioned in the text (up to section 3). I would also move to the very first lines the name of the study area.
The figure 1 has been split in two separate figures (figure 1 and figure 2) and a reference to the figure 1 has been added in this paragraph. Therefore the editor will probably put the figure 1 close to this paragraph. Crossed oceanographique features were added one the map

Line 57 “depths under” maybe “below”
done

Paragraph 2.1 Please consider to add a figure showing the Mediterranean Sea and the oceanographic features described in this paragraph, as well as the location of the study area. Please add a description of the deep layer properties, or alternatively rename the paragraph to focus on surface and intermediate circulation and main water masses
See comment above, the figure 1 has been split in two part and repositioned in, the MS.
The paragraph has been changed in “Surface and intermediate circulation” as we focuse on surface and sub-surface observations. If interested by the deeper water circulation, the reader can refer to the cited bibliography.

Line 101 “patchy ocean” maybe “patchy ocean areas”
Done. We agree, only the areas with strong scales interactions interactions exhibit possible patchy patterns.

Line 106 show
corrected

Line 112 because of
corrected

Line 121 high resolution in situ data by glider have also been compared to the new generation salinity products by SMOS satellite as in “Aulicino, G.; Cotroneo, Y.; Olmedo, E.;

Thank you for this recent reference. It has been added in the text and in the references list.

Line 129 What you mean with “turning radius”? Is the ability to change direction?

Yes. It is now precised in the sentence:

“... this towed vehicle can handle a turning radius of 2 nautical miles (i.e. gyration speed of 10 degree/min), when the ship change direction.”

Line 146 The parenthesis includes both oceanographic features that are described in the dataset and basins. Probably listing just one of the categories would be better.

Done, only basins or geographical areas are now quoted.

Line 148 “wedgies” have not been defined before

This unique reference to wedgies in our paper is replaced by the more explicit statement: “modal structures composed of WIW.

Line 155 “rapidcast” not mentioned or described before please add a description at lines 127-140 as for SeaSoar or MVP

The following sentence has been added in the abstract, close to the previous short description of the SeaSoar and the MVP:

“In 2018, another free fall profiler (a RapidCast) has been tested.”

Line 158 “CTD casts” maybe “classical CTD stations”

done

Line 160 “Shom” replace with “SHOM”

done

Line 165-166 Consider removing the inner parenthesis. i.e. “– VMADCP –”

done. Also corrected for (MVP) in the same way.

Line 192-195 NBF and NC have already been defined, please use the acronyms

done

Line 204 “...to a strong Mistral gust, part of the cruise. . . .”

Done, coma is added.

Line 212 “lagrangian”

corrected

Line 217 “Finite Singular Lyapunov Exponents” consider adding a reference

Instead adding a theoretical paper, the reader can found in Nencioli 2018 for instance, I suggest the following example of the use of FSLE in Med Sea:

This reference has been added in the text and in the reference list.

Line 244 “given” or “giving”?
Giving seems me better

Line 280 (latitude and longitude)
corrected

Line 292 “Shom” should be SHOM. Please check throughout the entire manuscript
Done and checked in the whole ms.

Line 294 in the case. . ..which is the more common”
corrected :

in the case. . ..which is the most common

Line 298 “SBE 35’s” maybe “SBE 3’s”?
Unchanged: SBE 35 is a temperature sensor ideal for use in calibration labs.

Line 319 “available for data” maybe “available for each dataset”
yes, thank you, we agree. And the sentence has been modified.

Line 320 “consists in” maybe “consists in the” “sensor” should be sensors”
done

Line 325 Are the gridded profiles averaged along depth only? The term gridded may confuse the reader
profiles are only vertically resampled and positioned as vertical profile at the mean geographical position of the considered record. The comment is now rewritten as :

“The third level (Level 2, L2) is proposed as gridded, controlled and resampled data in netcdf files (.nc). Gridded dataset for salinity and temperature have been vertically resampled every meter removing spike, spurious values, density inversion when they persist after the first process supplied by the sensor manufacturer. They are then positioned as vertical profiles at the mean geographical position of the considered up or down record”

Line 340 What you mean with “higher temporal resolution”? Please clarify. If the float is enveloped in a structure it would provide longer observations in time.
We hope this new text will be more clear.

“Few Argo floats were also dropped and experienced first Protevsmed dedicated mission with high temporal resolution (daily cycle) and a parking depth adjusted to the observations to maintain the drifters as long of possible in the targeted structures (typically 100 m deep). When the drifter left
the structure, it used the usual Argo standard procedure in the Mediterranean (i.e. a 5-day cycle and a parking depth of 350m)."

5. Overview of the observations As stated in the introduction, here a limited number of sample analysis of the collected data are offered to the reader. Please consider adding a sentence at the beginning of the chapter that clarify this.

In the introduction we replaced some “quicklooks” by “an overview”.

The chapter 5 has been changed:

“5 Overview of selected observations”

Please note that in the text and in the figure caption the availability of extensive quicklooks on the repository is quoted.

Line 356 “When deployed”
Corrected

Line 376 “frequently show”
Corrected

Line 379 ”CTD casts” should be “classical CTD stations”
Done.

Line 379-381 Please add the position of these casts on figure
The exact position of the casts are now given in the figure caption.

Figure 3 Please consider splitting this figure in order to obtain an higher definition for each plot
The aim of this figure and to provide an overview of the results at a glance. We have chosen to keep it. Nevertheless, a more higher resolution version will be proposed for the final version of the paper as the figure have to be uploaded separately.

Line 398-401 Please consider resentencing Line 404 “Some transects have been”
corrected
Reviewer #2:

L.25 missing ,
Corrected

L.29 "peculiar objects" prefer particular processes ; a MVP
Corrected following the first reviewer suggestion:
“peculiar structures”

L.30-32 ... to access even higher resolution the ocean physics (temperature, salinity, currents). Biological sensors were opportunistically used to provide ...

The concerned sentence has been rephrased as follow:
“When available, biological sensors (Chlorophyll a, Turbidity, Dissolved Oxygen etc.) have been carried out. They provided useful complementary observations about the circulation”

Throughout the paper : opportune ly -> opportunistically
Ok, all occurrence of “opportune ly” were checked and as opportunistically seems to be pejorative, I prefer to remove this adverb in the paper.

L.33 the fine-scale processes
corrected

L.35 properly résolve
corrected

L.43 connecting ... to ; energy cascades to small scales and reversely
corrected

L.44 For instance in the northwestern Mediterranean ; chlorrophyll-a
corrected

L.46 vortices
done

L.50-55 partly fill these gaps between the large and finer scale dynamics. Since many years, remotely ... observe a large ... soon by the future Surface Water and Ocean ... mission (SWOT), expecting to provide ... small-scale processes ...

thank you for rephrasing

L.59 in a context of ocean physics I would use km instead of nautical miles.
done
following a request of the first reviewer, “quick looks” has been replaced by “overview”.

Oceanic context of the

is sometimes referred as a "lab-ocean"

unchanged : “pocket ocean” is also used.

"nearby" did you mean close to Land? Accessible?

Accessible seems the better word.

2.1 General circulation : you aren’t describing the thermohaline circulation very much...

Yes we focus only on the surface and intermediate circulation. The title has been changed as suggested by the first reviewer.

sub-basin circulation ; what to you mean about dominated? Please rephrase.

The new sentence is :

“The basin or sub-basin dynamics is largely driven by the thermohaline circulation.”

basin or sea, not both ; Light (fresh) Atlantic Water

corrected

generally circulates along the continental slope ... western and eastern basins

corrected as suggested

The slope ... Algerian coast

done

and throughout the paper, no caps for western basin etc

ok, we checked and corrected all occurrences

These lines fit better to 2.2

Yes, but we can’t evoke the Algerian current without is instabilities.

northern part

done

Ligurian Sea ; Northern Current is more often found (please modify consistently throughout the paper).

ok, we checked and corrected all occurrence
The generally accepted concept of the Northern Gyre flowing cyclonically around the doming of isopycnals of the deep convection area of the northwestern Mediterranean (please cite a ref about the general circulation). The existence, position and strength of the return flow of this gyre ...

ok we adopt your formulation:

“The generally accepted concept of the Northern Gyre flowing cyclonically around the doming of isopycnals of the deep convection area of the northwestern Mediterranean Sea. The existence, position and strength of the return flow of this gyre is still under debate.”

The well-established publications on circulation in the Western Mediterranean have already been widely cited in this paragraph and are not useful after all the statements.

L84 (LIW), a mode water basin entering the western...follows pattern (again please provide ref)

corrected and (Millot and Taupier Letage, 2005) ref is added.

L87 This important water mass is marked by a relative ...

modified as suggested

L93 indicator of; because the scale of surface-intensified eddies in geostrophic balance ranges a few ...

modified as suggested

L95-96 topography; whose size is close to the local; observed in the Western Mediterranean (also cite Testor and Gascard 2003, 2006; Bosse et al 2015, 2016)

citation added and text corrected.

L97 contrasted in terms of what? What’s the point of reference? Subtropical regions might not be comparable, while polar regions would tend to exhibit similar characteristics with density compensated contrasts.

Ok, this part of the sentence was not useful and lead to confusion, and has been removed

L99 Submesoscale (tends to be found in one word in the literature, please correct throughout the paper)

ok, submesoscale has been adopted for the whole paper (except in cited references)

L101 marked by frequent strong wind events...northern basin...with the NC and mesoscale structures and generate... (No need for PV acronym if not used afterward) ... please the relevant litterature: Bosse 2015, Estournel et al 2016, Giordani et al 2017, Testor et al 2018

references added

L104 a place; for a long time (cite for instance MEDOC group et al 1979, Schott et al 1996, Houpert et al 2016, Testor 2018)
L106 both models ... and observations ... show

L108 due to the deepening of the mixed layer

ok, “mixed layer” is more appropriate

L111-115 ... are only partially resolved by usual ... ; repeated glider lines (instead of glider fleet) ... in the Western Mediterranean, in particular as part of the multi-platform ... MOOSE (rather cite Coppola et al 2019). Intensive targeted ... the dynamics of the deep convection area in the northwestern Mediterranean Sea (Estournel et al 2016).

Thank you for this very recent synthetic publication about MOOSE.

Repeated glider lines are discussed below.

L116 glider lines
done

L117 opportune

removed ; see remark above (L30-32)

L121-122 please sort references in chronological order

Done

L126 prefer 15-30 km/day than nautical miles

Done

L130 sampling of

Done

Proposition of section/subsection titles: 3 The PROTEVS-MED field experiments 3.1 Objectives 3.2 Cruises

Unchanged; We prefer our organisation.

L146 key regions of the basin ; North Balearic Front

Done. We took also into account the remarks of the first reviewer.

L147 "assessments of numerical simulation" is not very clear... What kind of simulation? How?

The text has been re-sentenced as follow :

“The goal was the assessments of operational numerical simulation of the circulation performed for the Navy.”

L148 please avoid modal weddies which is not defined earlier ; surface and subsurface mode water eddies (including SCV)

Following also the comment of reviewer #1 the text has rephrased as follow :
"to identify and follow peculiar mesoscale structures such as surface eddies, modal structures composed of WIW, submesoscale coherent vortices (SCV) meanders and filaments and explore their signatures on the sea surface height (altimetry) and their acoustic impact (i.e. through their modulation of the sound propagation speed)."

L.149 meanders and filaments

Done, see above.

L.151 observe and characterize

Done

L.155 prefer platform to vectors... Also in other occurrences in the paper L158 across strong thermocline ; shipborne CTD casts.

Done and checked for the whole manuscript.

L.161 SHOM?

Caps are now used for SHOM in the whole manuscript (following also the comment of reviewer #1)

L.164 ship CTD

TSG is an appropriate term for ship CTD (see for example Gaillard et al., 2015). Nevertheless for this occurrence of the acronym in the MS, the sentence has been modified as follow :

“Ship board routinely acquired data (Vessel Mounted Acoustic Doppler Current Profiler - VMADCP- and ThermoSalinoGraph -TSG-) were also included in this database”

L.166)
corrected

L.168 dataset of all
corrected

L.171 to detect and track mesoscale structures during the cruises.

We agree, suggested precisions were added

L.178 paid to cross-slope transects

Corrected
please refer to table 2. Apparently surface drifters were deployed during every cruise. Since it is not only the case for the first one, it feels odd to mention it here and not for the others.

The use of surface and argo drifters is now quoted at the end of the previous paragraph. Therefore the mention is here removed.

Balearic Sea (please check capital letters for the rest for the rest of the paper).

Done

therefore led ; mostly carry out ship CTD casts

Corrected ; CTD casts has been replaced by CTD stations following the comment of reviewer #1

with caution, as they caused an excessive ...

corrected

origin of the NC where the flow through the Corsica Channel and the WCC join.

Modified as suggested

This latter ... current. I am not sure about what the authors are trying to say here.

We hope the following sentence is more clear:

The behaviour and the origin of the WCC was also explored along the western coast of Corsica.

in early spring

corrected

capture an Algerian Eddy

corrected

also provides insights about ; Northern Current

corrected

eddy tracking tool

corrected

consecutive to a strong Mistral gust, ...

corrected

(WIW) formation were ... ; A SCV was

corrected, WIW acronym is now defined above and the repetition of “water” also is removed.

release

corrected
L213 what is the acronym of SPASSO?

SPASSO acronym is quickly available on the associated web site. Moreover the SPASSO functions are described in the sentence. Therefore we remove SPASSO from the text.

L215 mushrooms-like structures -> do you mean dipolar structures ? ; fronts ; focus was given to the area south of Mallorca where
done (3 corrections)
L216 a front was detected ; Lagrangian diagnosis
corrected

L218 "A Lagrangian round-trip strategy" I don't know what this is...

Surface drifters were dropped at biological key points in the area and revisited few time a day by the ship in order to follow the phyto- and zooplankton during a diurnal cycle following the so marked water mass. As this strategy concern the biological part of the cruise, not included in this data paper we chose to simplify the sentence as follow :

A Lagrangian strategy was specifically set up in order to study the structure and growth rate (at 24 hours time scale) of the various phytoplankton groups as defined by flow cytometry measurements as in Marrec et al. (2018).

A full description of the strategy is expected in another paper devoted to the biological results.

L230 a RDI 150khz ... Was the LADCP profiles acquired by a pair of those instruments?

No, the rosette was equipped only with one ADCP. The text ins therefore unchanged

L232 LADCP data were processes following thé inversion method of Visbeck (2002).

Modified, thank you for the precision.

L236 The main instrument used was a SeaSoar ...

Already indicated in the §3. We prefer our redaction.

L238 a WET Labs WetStar chlorophyll-a fluorometer
corrected

L239 attached to ; profiled cable ?

The concerned sentence has been simplified as follow :

“The SeaSoar was trawled at 9 knots by a profiled cable””

L240 give scale in km
done 1 nautical mile ~2 km

L242 range of sampling ; real-time
L244 please provide km too; crossing numerous and various structures ... (see section 5), ...

fine-scale patterns
done 5500 nautical miles ~ 10,000 kilometres
modified following suggestions.
L248 Avoid the use of underscore while referring to cruise name in the text and be consistent throughout the paper; During the PROTEVS-MED 2017 cruise, a ...

Ok, checked for all the MS
L250 half a
corrected

L251 when the instrument is surfacing
corrected
L253 what is the conclusion of the comparison?
L258 allowed for real-time
corrected
L259 what is the horizontal resolution in km?

With a resolution similar to the seasoar (about 2 km)
L263 what do you mean by "induct"?; contributed

“induct” is not the correct word. “Inlet” is now used. See Gaillard et al (2015) for complement about the protocol.
Contributed: corrected
L271 on R/Vs Pourquoi pas?, Atalante, Beaufemps Beaupré; are 150kHz and 38kHz Ocean Surveyor by RDI Teledyne
corrected
L291-292 ship CTD and SeaSoar; SHOM? (please be consistent with capital letters); bath, whose temperature can ...

no, it’s mean all CTD used during the cruises, the “all” is added in the sentence.
Shom: corrected
bath, whose: corrected
L298 with SBE 35’s: do you mean by several SBE 35? In that case how many?

The “s” is removed. The SHOM labs is equipped with 2 baths and 3 SBE 35’s but the common protocol request only one SBE 35.
L304 tested against Autosal and Portasal salinometers.
Corrected as suggested

L310 the provider? You mean collaborators who provided the instruments? An easy process would be to compare in the TS space the data from MVP and RapidScan with calibrated ship CTD casts...

Unfortunately, we don’t have an access to any pre- or post-calibration for the MVP or the RapidCast sensors. The only one calibration we had was the one provided by the constructor. Of course a comparison with other measurement in the vicinity remain possible. Note, that as mentioned in the MS, we focus more on the structures than on absolute values.

The following sentence is now added:

but a comparison with the results of calibrated SBE sensors can be carried out..

L320 Level 0 (L0) consisting in ... Level 1 (L1) displaying ... standards units and corrected from eventual drift of sensors ... Level 2 (L2) proposed as ...

done

L334 and the corresponding author? Or provide an adresse/url to get the data. It would be nice to have a contact point without having to look for it.

An email address is provided: data-support@shom.fr

L338 also 100m

Right, 2 drifters with holey socks positioned at 100 m were dropped in 2018. modified in the MS

L339 Lagrangian

corrected

L340 deployed with dedicated sampling rate. Please specify the range of temporal sampling, of the parking depth, and for how long.

Done, information also requested by the reviewer #1; the new redaction is:

“Few Argo floats were also dropped and experienced first PROTEVS-MED dedicated mission with high temporal resolution (daily cycle) and a parking depth adjusted to the observations to maintain the drifters as long of possible in the targeted structures (typically 100 m deep). When the drifter left the structure, it used the usual Argo standard procedure in the Mediterranean (i.e. a 5-day cycle and a parking depth of 350m).”

L344 (see table 2)

modified as suggested

L356 provided ... It was also possible to simultaneously observe.

Corrected, thank you for the tense correction.

L357 "showing the predominance ... (few kilomètres)." Without further demonstration, I would remove that strong and general assessment. (In general, please use past tense for data description and present for interpretation.)
OK, the sentence is rephrased in a less strong and more general way. Nevertheless this observation is important in the framework of the future SWOT program. Even at relatively small scale (in the range of 10 km) the dynamics follow mainly the geostrophic (or cyclogeostrophic) balance. The new redaction is now:

... “showing the importance of the geostrophic balance even at small scale (in the range of 10 km)”

L358 were patchier
corrected
L360 appeared ... described and are actually made of
tense is now corrected. Commonly is preferred to actually in the new redaction.
L362 dual-core anticyclonic eddy was observed
corrected
L363 three-core eddy was also
modified as suggested
L364 remains to be investigated
modified as suggested
L365 pre-existing eddies
modified as suggested
L366 reveal filaments and layered structures due to submesoscale (ageostrophic) dynamics
We prefer our sentence; not modified.
L367 symmetric instabilities -> what about stirring by the mesoscale eddy field, frontogenesis ...
There is no evidence here of one prevalent process... Please draw instead a list of relevant potential mechanisms.
Frontogenesis is added. Stirring is evoked in the next sentence.
L369 Northern ; a SCV of LIW was observed south of Toulon. Do you have evidence of swirling currents by VMADCP?
Yes. The sentence are now :
“In the North Current, stirring appeared in both tracers and velocity fields and an SCV formed by LIW detached in front of Toulon (figure 3c) was observed as confirmed by observed swirling velocities on VMDCP records. It was also topped by a surface cyclonic gyre.“
L371 was paid to the NC
tense corrected
L372 SCVs generated in the deep convection area.
Ok we agree
L375 of the deep convection area
ok geographical position is not useful. removed

L376 showed small-scale structures likely formed by convection; the north to the south
corrected as suggested

L378 convection chimney
corrected as suggested

L380 double-diffusive processes; please cite existing references related to double-diffusion in the Western Mediterranean.
(Onken, R., Brambilla, 2003) is added

L382 Cap Creus
corrected as requested

L384 cold water originating from the Gulf of Lion’s shelf (please correct Gulf of Lion in future 1 too); The WIW was progressively entrained and mixed with the AW and LIW while flowing south; Please add a word and a reference to dense shelf water cascading (e.g. Durrieu de Madron et al, 2013).
modified as suggested
Clearly it is not shelf water cascading as described by Durrieu de Madron, but a density adjustment of a water masses that will probably form WIW. Nevertheless the suggested reference is added to highlight the differences in the processes.

L397 the fine-scale dynamics
modified as suggested, very is removed

L401 It also complements the repeated glider lines maintained in the framework of the MOOSE observatory (Coppola et al, 2019) and is useful to design future combined multi-platform experiments.
modified as suggested after typing errors corrections.

L403 different instruments to obtain high-resolution
modified as suggested

L404 transects have been
corrected

L405 has only been tested and used as …
modified as suggested
L409 perfect tool to identify mesoscale structures ...
ok, drive out is replaced by identify
L410 down to
modified as suggested
L411 describe important surface and subsurface dynamical features.
modified as suggested
L413 free-fall instrument, its setting is lighter
modified as suggested

L415 equation and hydrography.
modified as suggested,

L417 of the sensors ... , this experiment of fast and ... revealed ... (Garreau et al, 2018)
modified as suggested,
L429-430 and the back and forth ... fruitfull. Not clear, please rephrase.
May be synergy is more a more conceptual formulation. The new version of the sentence is now :
In situ observations of ageostrophic dynamics remain rare and the synergy between these observations and theory, and then between these observations and modelling, should be very fruitful.
Reference :
P Testor, JC Gascard : Large-scale spreading of deep waters in the Western Mediterranean Sea by submesoscale coherent eddies, Journal of physical oceanography 33 (1), 75-87, 2003
added
added
This PhD thesis is in french. We prefer citing the publications of the same author (5 citations)
Giordani et al, A PV-approach for dense water formation along fronts: Application to the Northwestern Mediterranean, JGR, 2017

added

Schott et al, Observations of deep convection in the Gulf of Lions, northern Mediterranean, during the winter of 1991/92, JPO 1996

added

added

DurrieudeMadronetal,Interactionofdenseshelfwaterecascadingandopen A Rsea convection in the northwestern Mediterranean during winter 2012, GRL 2013

added
PROTEVS-MED field experiments: Very High-Resolution Hydrographic Surveys in the Western Mediterranean Sea

Pierre Garreau¹, Franck Dumas², Stéphanie Louazel², Stéphanie Correard², Solenn Fercoq², Marc Le Menn², Alain Serpette², Valérie Garnier¹, Alexandre Stegner³, Briac Le Vu³, Andrea Doglioli⁴, Gerald Gregori⁴

¹ IFREMER, Univ. Brest, CNRS UMR 6523, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France
² SHOM, Service Hydrographique et Océanographique de la Marine, 13 rue de Chatellier, CS592803, 29228 Brest CEDEX 2, France
³ Laboratoire de Météorologie Dynamique (LMD), CNRS UMR 8539, Ecole Polytechnique, 91128 Palaiseau, France
⁴ Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France

Correspondence to: Pierre Garreau (pierre.garreau@ifremer.fr)

Abstract: From 2015 to 2018 four field experiments (7 legs) have been performed in the Western Mediterranean Basin during winter or early spring. The main objectives were the assessment of high-resolution modelling, the observation of mesoscale structure and associated ageostrophic dynamics. Thanks to the intensive use of a towed vehicle undulating in the upper oceanic layer between 0 and 400 meter depth (a SeaSoar), a large amount of very high resolution hydrographic transects (total length about 10.000 km) have been performed, observing mesoscale dynamics (slope current and its instabilities, anticyclonic eddies, sub-mesoscale coherent vortices, frontal dynamics, convection events, strait outflows) and sub-mesoscale processes like stirring, mixed layer or symmetric instabilities. When available, the data were completed with velocities recorded by Vessel Mounted Acoustic Doppler Current Profiler (VMADCP) and by surface salinity and temperature recorded by ThermosalinoGraph (TSG). Classical full depth CTD (Conductivity, Temperature, Depth) station casts have also been performed giving the background hydrography of the deeper layers when focusing on peculiar structures. In 2017, a free fall profiler (an MVP-200) has been deployed to manage even higher horizontal resolution. The aim of the survey was the dynamics and attention were paid to temperature, salinity and currents. In 2018, another free fall profiler (a RapidCast) has been tested. Nevertheless—When available, biological sensors (chlorophyll-a, turbidity, dissolved oxygen etc.) have been carried out. They provided useful complementary observations about the circulation. Biological sensors (Chlorophyll a, Turbidity, Dissolved Oxygen etc.) have been opportunistically carried out as they are able to provide complementary observations about the circulation. This data set is an unprecedented opportunity to investigate the very fine scale processes as the Mediterranean Sea is known for its intense and contrasted dynamics. It should be useful for modellers (who reduce the grid size below a few hundred meters) and expect to properly resolve catch finer scale dynamics. Likewise, theoretical work could also be illustrated by in situ evidence embedded in this data set. The data are available through SEANOE repository (https://doi.org/10.17882/62352; Dumas et al., 2018).
1 Introduction

Progress in numerical modelling and conceptual approaches both emphasized the importance of fine scale processes in connecting the ocean interior with the atmosphere, driving the energy cascade to small scales and reversely (McWilliams, 2016) and shaping the biochemical cycles and biodiversity distribution (Lévy et al., 2012; Lévy et al., 2018). For instance, in the Northwestern Mediterranean Sea, coherent vortex may act efficiently both as biological barriers and drivers of plankton diversity (Bosse et al., 2017; Rousselet et al., 2019). As all these scales interactions are ubiquitous, it is of crucial importance to develop an observations strategy to get insight simultaneously of the large-scale, mesoscale and the sub-mesoscale processes. Unfortunately, it is not straightforward to reach this objective using conventional cruise strategies leading to a lack of in situ observations of fine scale processes. Due to their synoptic view, satellite observations partly fill the gap between large and finer scale dynamics and finer structures. Since many years, a large spectrum of processes with various cut off scale (from around 70 km for the altimetry down to some tens of meters for imagery). Some of these limits will be pushed back soon by the future SWOT (Surface Water and Ocean Topography) satellite, providing substantial improvement for small scales processes having a sea surface height signature.

The data presented hereafter are a contribution to very high-resolution observations of the top oceanic layer and are freely available on SEANOE repository: https://doi.org/10.17882/62352 (Dumas et al., 2018). Long transects of the first 400 m below depths under the surface was sampled with a horizontal resolution in the range of two kilometres one nautical mile in the Western Mediterranean Sea. The hydrographic and dynamic background of this region is given in section 2. The objectives and implementation of the surveys are presented in section 3. The details of the measurements (platforms, sensors, methodology, metrology, data control, ancillary data) are reported in section 4. To illustrate the potentiality of the dataset, an overview, some quick looks of the observed processes are displayed in section 5. Lessons learned during surveys and summary are displayed in section 6.
The Mediterranean Sea is often referred as a “pocket ocean” exhibiting many processes that are met pervasively and are of primary interest in the functioning of the global ocean (Robinson et al. 2001). It thus provides the opportunity to investigate a large panel of oceanic features in a relatively restrained and accessible area. Therefore, the PROTEVS-MED cruises potentially caught a multitude of physical processes in the North-Western Mediterranean Sea (figure 1).

2.1 Surface and intermediate Thermohaline circulation

The basin or sub-basin scale dynamics circulation is largely driven by the thermohaline circulation. The Mediterranean Sea is a semi enclosed evaporation basin including areas of intermediate to deep convection. Light (fresh) Less dense (and fresher) Atlantic Water (AW), inflowing through the Gibraltar Strait generally circulates along the continental slope roughly in cyclonic way in both Western and Levantine eastern basins (Millot and Taupier Letage, 2005). The slope current is unstable along the Algerian Coast and generates anticyclonic eddies called Algerian Eddies (AE) that spread AW in the southern half of the Western basin called Algerian Basin (Escudier et al., 2016a; Puillat et al.; 2002). In the northern part of the Western basin, the AW composed East Corsica Current (ECC) and West Corsica Current (WCC) join in the Ligurian sea to form the Northern Current (NC) that flows along the slope until the Balearic Sea (Millot et al., 1999; Send et al., 1999). The existence and the strength of a return branch of this current along the North Balearic Front (NBF) between Menorca Island and Corsica Island is still under debate despite the generally accepted concept of a Northern (cyclonic) Gyre, in agreement with the doming of isopycnals in the central part of this sub-basin. The Levantine Intermediate Water (LIW) which is a modal water formed in winter in the eastern basin and entering into the western basin through the Sicilian Strait, follows more or less the same cyclonic circulation pattern (Millot and Taupier Letage, 2005). It spreads out into the northern part of the western basin between 400 and 800 m depths and is found sporadically within the Algerian Basin. This important water mass is marked by a relative subsurface maximum of temperature and salinity.
2.2 Mesoscale structures

As in the global ocean the mesoscale dynamics is ubiquitous within the Mediterranean basin; it plays a major role in redistributing water masses and has been evidenced by remote sensing for a long time (Millot et al., 1990). In the Western Basin, the first internal radius of deformation spans in the range of 6 km in the Northern Gyre and of 16 km in the Algerian Basin (Escudier et al., 2016b). It is an indicator of the typical size of the mesoscale activity because the scale of surface intensified eddy in geostrophic balance ranges a range in few deformation radii. As a result of ocean-atmosphere exchanges, of large structures instabilities or of flow-topographies interactions, Submesoscale Coherent Vortices, hereafter named SCV (Mc Williams, 1985), whose with sizes are currently close to the local radius of deformation, have been observed in the Western Mediterranean (Testor and Gascard 2003; Bosse et al., 2015, 2016). Eddies, meanders, filaments and fronts are typically smaller and more contrasted than in the world ocean.
2.3 Sub mesoscale structures.

There are strong interactions between mesoscale structures thus generating intense stirring, layered structures and patchy ocean areas. Air-Sea exchanges are marked by frequent by a succession of strong events (Tramontane and Mistral gusts for instance in the northwestern b Basin); they interact with the NC and mesoscale structures and in generating sinks or sources of potential vorticity (PV), thus leading to ageostrophic dynamics (Bosse 2015; Estournel et al., 2016; Giordani et al., 2017; Testor et al., 2018).

Besides, the north western mediterranean basin is known to be the place of deep convection events which has been studied for a long time and even taken as one of the paradigms of deep oceanic convection (Medoc Group et al., 1970; Schott et al., 1996; Houpert et al., 2016; Testor et al., 2018) (Marshall and Schott 1999). Both modelling (Jones and Marshall, 1993, 1997) and observations (Bosse et al., 2016, Margirier et al., 2017) data shows that deep convection is highly favourable to the production of fine scale structures at submesoscale whether they are due to deepening of the mixed layer fronts during winter or to postconvection restratification.

2.4 Previous high-resolution observations

The finest part of the mesoscale dynamics often escapes the usual sampling strategy (CTD arrays, glider deployments) because of being short lived, small in size and quickly advected. The development in the last decade of gliders fleet revealed nevertheless the mesoscale variability in the Western Mediterranean Basin.

Recent field experiments based on the multi-platform integrated monitoring program MOOSE (Coppola et al. 2019; Houpert et al., 2016) or on intensive targeted experiment HYMEX (Estournel et al., 2016) have revisited the hydrography and the dynamics of the North-Western part of the Western Basin. A strategy of regular and repeated gliders lines routes as well as dedicated deployments allowed to characterize the variability of the dynamics and to describe crossed opportely sampled fine scale structures. Bosse et al. (2015; 2016) inventoried the Submesoscale Coherent Vortices (SCV) and their contributions to water mass redistribution. With data issued from the same strategy, Margirier et al. (2017) characterized the convection plumes in the Gulf of Lions. Testor et al. (2018) summarized the observations of convection during the dedicated experiment HYMEX. Multi-platform strategies including gliders, mooring, combined cruises (Ruiz et al., 2009; Pascual et al., 2017; Petrenko et al., 2017; Knoll et al., 2017; Onken et al., 2018; Paseual et al., 2017; Petrenko et al., 2017; Knoll et al., 2017; Ruiz et al., 2009; Troupin et al., 2019), or colocation with altimetric tracks (Borrione et al., 2016; Heslop et al., 2017; Aulicino et al., 2018; Aulicino et al., 2019; Carret et al., 2019) can provide part of the missing synoptic view.

The capability of changing the glider's trajectory at any time has not often been used in a small-scale context because its horizontal velocity remains low (in the range of 15-30 km per day), preventing any rapid assessment of a detected small structure. Despite this lack of synopticity,
Cotroneo et al. (2015; 2019) adapted a glider trajectory to a remote sensed observed Algerian Eddy and Current. Conversely the SeaSoar horizontal velocity is 10 times faster than the glider one—besides, this towed vehicle can handle a turning radius of 2 nautical miles (i.e. gyration speed of 10 degree/min) when the ship change direction. It allows a strategy based on long exploratory transects as the ship velocity is close to its transit velocity and of intensive sampling on particular detected structures. Due to heavy logistics involvement, the use of SeaSoar remained scarce in the Western Mediterranean Sea. Allen et al. (2001; 2008) observed an oblate lens of 20 km radius, 150 m thick, centred at 250 m depth during the OMEGA-2 field experiment in fall 1996. Salat et al. (2013) reported Seasoar transects in the Gulf of Lions after the convection in spring 2009. The Seasoar was also used during one leg of the ELISA field experiment devoted to the Algerian Eddies (Taupier-Letage et al., 2003) but only the mesoscale features have been reported.

A free fall recovered platform vector, the Moving Vessel Profiler (MVP-200) has a lighter logistics but requires a lower vessel velocity to reach depths equivalent to those reached with the SeaSoar: that is to say 2-4 knots to go down 400 meter depths. In the Western Mediterranean Sea, the MVP was deployed during OSCAHR cruise allowing a detailed study of a cyclonic structure in the Ligurian Sea (Rousselet et al., 2019) and in situ estimation of the sea surface height for a comparison with along track satellite data (Meloni et al., 2019).

3 Objectives and achievement of the field experiments.

The main scientific objectives of the cruises were threefold:

- to assess the large-scale circulation features of the Western Mediterranean Basin, evaluating the water masses and the fluxes at different key points in the basin (The Ligurian Sea, the Balearic Sea, North Current, The East and Western Tyrhenian Seas, Corsica currents, the North Balearic front area and, the Algerian Basin). The final goal was the some assessments of operational numerical simulation of the circulation performed for the Navy.
- to identify and follow peculiar mesoscale structures such as surface eddies, modal structures composed of Winter Intermediate Water (WIW), eddies, submesoscale coherent vortices (SCV) meanders and or filaments and explore their signatures on the sea surface height (altimetry) and their acoustic impact (i.e. through their modulation of the sound propagation speed).
- to observe and characterize interpret the submesoscale dynamics such as ageostrophic stirring, symmetric instabilities, mixed layer instabilities, subduction and convection.

Clearly, the main part of the present dataset is not devoted to track any climatic change in water mass properties; the SeaSoar, the MVP or the Rapidcast are rapid moving platform vectors leading to acquire less precise temperature, conductivity and above all deduced salinity data than standardized CTD’s protocol. MVP and RapidCAST are equipped with unpumped sensors and the three tools reach high ascending or descending velocity (above 2m/s) that leads to inescapable thermal lag issues across sharp fronts. Readers interested in this topic should only use the classical CTD stations casts data.
Four cruises were conducted between 2015 to 2018 by the “Service Hydrographique et Océanographique de la Marine” (SHOM) in the Western Mediterranean Basin, during winter or early spring, managing mainly the towed undulating vehicle SeaSoar to investigate the sub-surface (0-400m) layer. When the deployment of this vehicle was either unsafe (over shallow water) or even impossible (due to rough meteorological conditions, breakdown of winch or vehicle) or when complementary observations were requested (e.g. go below 400m or getting water samples for biochemical analysis), CTD casts were rather performed. *Ship board* routinely acquired data (Vessel Mounted Acoustic Doppler Current Profiler (VMADCP) and ThermoSalinoGraph (TSG)) were also included in this database.

We present here in a synthetic dataset all the data recorded during the cruises (figure 2; table 1). Complementary data used to the cruise design, to adapt on field the strategy or to interpret results (altimetric tracks, remote sensed sea surface temperature or chlorophyll-a) are available on CMEMS servers (http://marine.copernicus.eu). An eddy detection tools called AMEDA (Le vu et al., 2017) has also been used to detect and track structures during the cruises. Surface and Argo drifters were also dropped during the cruises and data are available on companion datasets (table 2).

<table>
<thead>
<tr>
<th>PROTEVS-MED</th>
<th>2015_leg1 07-01 / 24-01</th>
<th>2015_leg2 16-04 / 03-05</th>
<th>2016 22-03 / 04-04</th>
<th>2017_leg1 27-01 / 07-02</th>
<th>2017_leg2 11-02 / 23-02</th>
<th>swot_2018_leg1 23-04 / 26-03</th>
<th>swot_2018_leg2 30-04 / 18-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEASOAR</td>
<td>2290 km 1137 profiles</td>
<td>329 km 263 profiles</td>
<td>2090 km 1369 profiles</td>
<td>1858 km 706 profiles</td>
<td>620 km 1162 profiles</td>
<td>615 km 411 profiles</td>
<td>2830 km 2381 profiles</td>
</tr>
<tr>
<td>MVP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAPIDCAST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTD</td>
<td>62 profiles</td>
<td>151 profiles</td>
<td>47 profiles</td>
<td>17 profiles</td>
<td>27 profiles</td>
<td>1 profile</td>
<td>12 profiles</td>
</tr>
<tr>
<td>LADCP</td>
<td>56 profiles</td>
<td>137 profiles</td>
<td>47 profiles</td>
<td>18 profiles</td>
<td>26 profiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XBT</td>
<td>30 profiles</td>
<td>22 profiles</td>
<td></td>
<td>39 profiles</td>
<td>1 profile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMADCP 38kHz</td>
<td>2676 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMADCP 150kHz</td>
<td>3036 km</td>
<td>3688 km</td>
<td>2705 km</td>
<td>5384 km</td>
<td>1068 km</td>
<td>4128 km</td>
<td></td>
</tr>
<tr>
<td>TSG</td>
<td>3756 km</td>
<td>3861 km</td>
<td>3744 km</td>
<td>2999 km</td>
<td>3011 km</td>
<td>1212 km</td>
<td>4984 km</td>
</tr>
</tbody>
</table>

7
Table 1: Summary of performed transects, profiles and routinely acquired data. Cumulated length of transects and total numbers of vertical profiles are displayed.

The first cruise called PROTEVS-MEDrotevsmed_2015_leg1 took place from 7 to 24 January 2015 on board of the RV Pourquoi Pas? Its main objective was the dynamics of the North Current from the Ligurian Sea to the Gulf of Lions and the associated meso- and submeso-scale processes. Attention has been paid to cross-slope transects across the slope into the Gulf of Lions, in order to examine the behaviour of the North Current and the exchanges across the shelf break. An intensive survey of the North Current between Toulon and Nice was performed, completed by drifting buoys deployment.

The second leg, PROTEVS-MED_rotevsmed_2015_leg2, was carried out on the RV Beautemps-Beaupré from 16 April to 3 May 2015. It started in the Balearic Sea and investigated the slope current from Ligurian Sea to Balearic Sea. During this cruise, the SeaSoar trawl failed early, just after three transect acquisitions in the Balearic Sea describing the hydrology relative to the cyclonic circulation and its associated mesoscale structures. This has caused therefore led to carry out mostly CTD station casts and VMADCP 150 kHz records. In particular, a dense array of CTD casts was then performed within the North Current between Nice and Toulon. The PROTEVS-MED_rotevsmed_2015_leg2 survey was characterized by a proliferation of jellyfish, the CTD measurements are to be taken with caution as they caused an excessive smoothing of temperature and salinity. When too large differences appeared between the values at the ascent and descent, the profiles have been flagged 4 (bad value that can be corrected)

The second campaign, PROTEVS-MED_rotevsmed_2016, took place on the RV Beautemps-Beaupré from 22 March to 4 April 2016. It was designed to focus on the origin of the Northern Current where the flows through which is known to be fuelled by the Corsica Channel flow and the Western Corsica Current. The behaviour and the origin of the WCC was also explored along the western coast of Corsica. The latter is connected in a more or less clear manner to the North Balearic Front (NBF) and the continental slope current. Besides unveiling part of the complex hydrological structure of the NBF in the early spring, the PROTEVS-MED_rotevsmed_2016 survey allowed to capture an Algerian Eddy in interaction with the NBF. Garreau et al. (2018) described in details its original double core structure: a superposition of two water masses of different origin spinning together. The survey provides also scenes and insights about the way both components of the Northern Current merge together to the north of the Corsica Channel during the early spring.

The third campaign PROTEVS-MED_rotevsmed_2017 held from 27 January to 7 February (leg1) and from 11 February to 23 February (leg2) on board the R/V Atalante. This survey was devoted to explore eddies detected by altimetry in the North Balearic Front and to assess an eddy tracking tool (Le Vu et al., 2017). Transects across the North Balearic Front revealed the complexity of this transition zone. In order to escape rough sea state consecutive to a strong Mistral gust, part of the cruise was dedicated to the investigation of the Balearic Sea and the outflow of coastal fresher and colder water mass from the Gulf of Lions. Back to the deep-sea area, partial convection and Western Intermediate
Water (WIW) formation of water were recorded. An SCV was thoroughly observed, north of the Balearic front.

The fourth and last field experiment, PROTEVS-MED-SWOT_Protev_smed_swot_2018 was conducted in the framework of SWOT Preparatory Phase from 23 April to 26 April (leg1) and from 30 April to 18 May (leg2) south from Balearic Islands on board the R/V Beaupré. The first leg (leg1) performed a general overview of the oceanic situation followed by a more intensive survey (leg2) planned on the basis of daily releases of near real-time satellite imagery, altimetry, and Lagrangian analyses, performed on land by use of the SPASSO package (http://www.mio.univ-amu.fr/SPASSO/, as in Nencioli et al., 2011; de Verneil et al., 2017). Satellite data of altimetry, sea surface temperature and ocean colour revealed ubiquity throughout the cruise period of very fine oceanic structures such as dipolar mushrooms-like structures or tenuous fronts. A special focus was stressed on the South of Mallorca where a frontal zone has been detected by altimetry-derived currents and diagnosis (e.g. Finite Singular Lyapunov Exponents; d’Ovidio et al., 2004), by contrasted surface chlorophyll concentrations and confirmed by high frequency flow cytometry analyses of phytoplankton performed onboard (data not included in the present dataset). A Lagrangian round-trip strategy was specifically set up in order to study the structure and growth rate (at 24 hours time scale) of the various phytoplankton groups as defined by flow cytometry measurements as in Marrec et al. (2018). Last, it is noticeable that a companion campaign (PRE-SWOT) managed by IMDEA-SOCIB held in the same area and during the same period on board of RV Garcia Del Cid (not included in the present dataset, see Barceló-Lull et al., 2018).
4 Data, Methods and Quality Controls

4.1 CTD casts and LADCP

The CTD casts were performed with the Sea-Bird SBE-9 instrument mounted in a General Oceanics 12-places rosette frame fitted with 12 Niskin bottles. Sometimes a RDI 150 kHz current profiler was also implemented on the rosette and then LADCP (Lower Acoustic Doppler Current Profiler) performed measurements during the cast. Standard hydrographic procedures for CTD casts were applied. When available, LADCP recorded data were processed following the inversion method using the software developed by Visbeck (2002).

4.2 Seasoar deployments

The SeaSoar is a towed undulating vehicle designed and built by Chelsea Instruments. Two Sea-Bird SBE-9 (with SBE-3 temperature and SBE-4 conductivity sensors) instruments were mounted on either sides of the SeaSoar. When available, a WET Labs chlorophyll-a WetStar WET Labs chlorophyll-a fluorometer, both oxygen sensor (SBE-43) and optical properties sensor (WET Labs C-Star) were deployed. The SeaSoar was trawled at 9 knots linked to the board by a profiled cable. It was undulating between the surface and 400m below the surface under optimal conditions with a horizontal resolution in the range of 2 km-1 nautical mile. Rough sea states, lateral currents, strong vertical shears can degrade the performance of the vehicle and reduce the vertical range of exploration between 20 and 360m. As the software allows real on-time visualisation of the ongoing transect, it is a perfect tool to scan the upper oceanic layer where meso- and sub-mesoscale dynamics are the most intense. A total of 10,000 kilometres 5400 nautical miles of transects crossing numerous and various plenty of different structures has been yet recorded during the four-cruises, giving the unique opportunity to explore the fine scales patterns of the upper layer of the western basin.

4.3 MVP deployments

During the PROTEVS-MED _rotevsmed_2017 surveys a Moving Vessel Profiler (MVP200) - a computer controlled winching system that can deploy and recover a sensor from a ship that is underway - was deployed for finer transects. The sensor was an AML CTD embedded in a free fall fish. At 2-4 knots, it was possible to monitor the 0-400 m layer with a horizontal resolution less than 1 km of a half nautical mile. To remove spurious salinity values due to bubbles when the instrument fish is surfacing,
the minimum pressure for valid record was set to 1 decibar. A peculiar transect has been monitored using successively SEASOAR, MVP and CTD casts given the opportunity to compare the three techniques.

4.4 RapidCast deployments

During PROTEVS-MED 2018 a free fall CTD system, called rapidCast (Teledyne Marine; http://www.teledynemarine.com/rapidcast) was tested for three transects near Balearic Islands. It was equipped with the “rapidCTD - Underway Profiler” proposed by Valeport. A bluetooth communication allowed the real-time evaluation of each profile when the probe is surfacing near the ship deck. This system sampled the water layer from 0 to 400m with a navigation speed in the range of 5-6 knots and a resolution similar to the SeaSoar (about 2 km).

4.5 TSG

During the cruises, a Seabird SBE-21 ThermoSalinoGraph recorded the sea surface temperature and conductivity. The inlet was equipped with a SBE 38 thermometer. The recorded sea surface temperature and salinity contributed to the Global Ocean Surface Underway Data (GOSUD) program (Gosud, 2016). The metrological traceability and the data treatment are insured according to the procedures described in Gaillard et al. (2015) which explains the delayed mode processing of datasets and presents an overview of the resulting quality. The calibrations are complemented with rigorous adjustments on water samples leading to reach a salinity accuracy of about 0.01 or less.

4.6 VMADCP

The hardwares used, their configurations and the way they are carried out are similar on both R/V Pourquoi Pas ?, R/V L’Atalante and Beautemps Beaupré. The VMADCPs are 150 kHz and 38 kHz of the type Ocean Surveyor by RDI Teledyne; the R/V hull is equipped with two antennas one at 150 kHz and the other 38kHz. They are both monobloc antennas using beam forming process to form four beams oriented towards 30° from the vertical. Nominally, they emitted a ping per second from which ensemble are built to get a less noisy profiles. Two ensembles are routinely processed:

- a Short-Term Average (hereafter noted STA); which gathers and averages the pings of two-minute window. It makes ensemble of 120 pings at least,

- a Long-Term Average (noted LTA) made of 600 pings or averaged over ten minutes.

The series of geometric transformations necessary to pass from beam coordinate along beam data to absolute geographic coordinate and geophysical velocity are performed thanks to VMDAS software from RDI Teledyne. It combines the position (latitude and longitude) from the DGPS Aquarius and Octans central with the PHINS inertial navigation system form IXSEA (that provides vessels attitude data: pitch, roll, heaving) to provide synchronised single ping earth coordinates data (file .ENX) and short- and long-term ensemble (STA / LTA).
This native format (.STA/.LTA) were also processed with WinAdcp in order to extract and provide only significant (i.e. with a satisfactory signal/noise ratio) data that are additionally formatted to text file.

Note that data processed by CASCADE software can be requested on Sismer repository, collecting and processing progressively all VMADCP from French research vessels (https://sextant.ifremer.fr/record/60ad1de2-c3e1-4d33-9468-c7f28d200305/en/index.htm).

4.7 Data metrological traceability and calibration

SBE 9 temperature and conductivity sensors deployed on all CTD and Seasom were calibrated before and after each campaign or at least once a year in the SHOM’s thermo-regulated baths, whose temperature can be stabilized to less than 1 mK (peak to peak) during control and calibration operation. Such a procedure allows the monitoring of sensors drifts between calibrations and the detection of anomalies. In the cases sensors have kept a good linearity, which is the most common, data are corrected with offset-slope coefficients. Figure 32a shows the review of corrections applied on data at 15 °C, after the calibrations of SBE 3 sensors used for PROTEVS-MED campaigns. Figure 32b shows the review of corrections applied at 40 mS cm⁻¹ after the calibrations of SBE 4 sensors.

The temperature of the thermo-regulated bath is monitored with SBE 35's which are used as laboratory reference temperature sensors. They are linked to the International Temperature Scale of 1990 (ITS-90) thanks to calibrations performed once a year in a triple point of water cell and in a melting point of Gallium. These reference cells are regularly calibrated by the French National Metrology Institute (NMI) LNE-CNAM. The calibration expanded uncertainty of SBE 3 sensors is between 1.8 and 2.3 mK according to the residual linearity errors of SBE 3’s.

Conductivity calibration of SBE 4 sensors is made in the same bath during the temperature calibration. Seawater samples are taken in the bath and tested against with one Autosal and one Portasal salinometers. The calibration procedure and the propagation of uncertainties to the calculated salinities from SBE 9 data are described in Le Menn (2011). Practical salinity expanded uncertainty varies from 0.0032 to 0.0034. In 2015, the SHOM laboratory took part in the JCOMM intercomparison for seawater salinity measurements (JCOMM, 2015) showing that Autosal and Portasal measurements are within ± 0.001 compared to other participating laboratories. Note that the same process was done, in the framework of an international network, for the TSG data of the French Research Vessel (see §4.5 and table 2). Unfortunately, the MVP and the RapidCast sensors were not available for such a common process and were calibrated directly by the constructor, but a comparison with the in situ records with calibrated SBE sensors can be carried out. As the optical properties and oxygen concentration were used as tracer only, no calibration process was performed.
Figure 32 (a) review of corrections applied on data at 15 °C, after the calibrations of SBE 3 sensors. (b) review of corrections applied on data at 40 mS cm\(^{-1}\), after the calibrations of SBE 4 sensors.

4.8 Data processing levels

Three levels of processing are available for each dataset:

- **The first one** (Level 0; L0) consists in the direct output of sensors at full temporal resolution;
- **The second level** (Level 1; L1) displaying data in ascii (.csv) or netcdf (.nc) files are only processed from the software of the constructor, keeping the full resolution and computing the derived variables into standard units. Recent instrumental system (AML and Valport probes) directly provides level 1 files. L1 files are corrected from eventual drift of sensors;
- **The third level** (Level 2; L2) is proposed as gridded, controlled and resampled data in netcdf files (.nc). Gridded dataset for salinity and temperature have been resampled vertically every meter removing spikes, spurious values, density inversions when they persist after the first process supplied by the sensor manufacturer. They are then positioned as vertical profiles at the mean geographical position of the considered up or down record.

Temperature and salinity data were also compared to the historical data in the neighbourhood of the profiles or transects using the validated CORA database distributed by the Copernicus Marine and Environment Service (Cabanne et al., 2013; Szekely et al., 2017). PROTEVS-MED Protevsmed data are not yet included in this database but will be transmitted for a future release.

All gridded profiles or transects have been plotted for a visual quality check and are available as “quick looks” on the repository. Level 1 (L1) and (or) level 2 (L2) dataset are released in the present database. Level 0 (L0) remain available in constructor format upon request to the data providing institution (SHOM; data-support@shom.fr).
4.9 Companion datasets.

During the field experiments, surface drifters with holey socks located at 100m, 75m, 50m or 15 m depth were deployed given the opportunity at the beginning of their track to perform a Lagrangian survey of observed structures.

Few Argo floats were also dropped and experienced first PROTEVS-MED dedicated mission with high temporal resolution (daily cycle) and parking depths adjusted to the observations to maintain the drifters as long as possible within the targeted structures (typically 100 m deep). After the drifter left the structure, it used the usual Argo standard procedure in the Mediterranean (i.e. a 5-day cycle and a parking depth of 350 m). Few Argo floats were also dropped and experienced Protevsmed dedicated profile (higher temporal resolution, parking depth into the targeted structure, etc.) at the beginning of their mission before shifting to the usual Argo standard procedure in Mediterranean Sea (i.e. 5 days cycle and parking depth set to 350m). Already stored in dedicated and accessible stable repositories, they can be found using their WMO identifiers (World Meteorological Organisation) (see table 2). Ancillary data can be found on different repositories selecting date and locations corresponding to PROTEVS-MED Protevsmed surveys.

<table>
<thead>
<tr>
<th>ARGO float WMO identifier</th>
<th>SVP surface drifter WMO identification number (holey sock depth)</th>
<th>TSG ThermoSalinoGraph (platform identifier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTEVS-MED protevsmed_2015_leg1</td>
<td>PROTEVS-MED protevsmed_2015_leg1</td>
<td>PROTEVS-MED protevsmed_2015_leg1</td>
</tr>
<tr>
<td>6901707 6901708</td>
<td>6100536 (50m) 6100537 (50m) 6100538 (50m) 6100539 (50m) 6100540 (50m)</td>
<td>FMCY</td>
</tr>
<tr>
<td>PROTEVS-MED protevsmed_2015_leg2</td>
<td>PROTEVS-MED protevsmed_2015_leg2</td>
<td>PROTEVS-MED protevsmed_2015_leg2</td>
</tr>
<tr>
<td></td>
<td>6100863 (50m) 6100864 (50m) 6100865 (50m) 6100866 (50m) 6100867 (50m)</td>
<td>FABB</td>
</tr>
<tr>
<td></td>
<td>6101525 (75m) 6101526 (75m) 6101527 (75m) 6101528 (75m) 6101529 (50m) 6101530 (50m) 6101531 (50m) 6101532 (50m) 6101533 (50m) 6101534 (50m) 6101535 (50m) 6101536 (50m) 6101537 (50m) 6101538 (50m)</td>
<td>FABB</td>
</tr>
<tr>
<td>Table 2: WMO index of Argo-float and surface drifters (SVP) dropped during PROTEVS-MED Protevsmed surveys. Surface temperature and salinity recorded by ThermoSalinoGraph (TSG) are tagged by ship identifier. All data are available from the CORIOLIS website http://www.coriolis.eu.org/Data-Products/Data-Delivery/Data-selection by entering the WMO numbers in the field 'Platform codes', adjusting the time period of interest (e.g., 01/01/2018 to 30/06/2019), and clicking on 'refresh'. The web interface displays the trajectories of the buoys, profilers or TSG and can be used to find additionally opportunity data. The data can then be downloaded in NetCDF format.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PROTEVS-MED protevsmed–2017_leg1</td>
<td>6902764 6902765 6902767</td>
<td>6101634 (50m) 6101639 (50m) 6101635 (50m) 6101637 (50m) 6101636 (50m) 6101643 (50m) 6101641 (50m) 6101647 (50m) FNCM</td>
</tr>
<tr>
<td>PROTEVS-MED protevsmed–2017_leg2</td>
<td>6101648 (50m) 6101633 (50m) 6101638 (50m) 6101640 (50m) 6101632 (50m) 6101642 (50m) FNCM</td>
<td></td>
</tr>
<tr>
<td>PROTEVS-MED–SWOT swot–2018_leg1</td>
<td>6902844</td>
<td>6101669 (50m) 6102612 (50m) 6101677 (100m) 6102613 (100m) FABB</td>
</tr>
<tr>
<td>PROTEVS-MED–SWOT protevsmed–swot–2018_leg2</td>
<td>6101671 15m 6101678 15m 6101672 15m 6102615 15m 6101670 50m 6101674 50m FABB</td>
<td></td>
</tr>
</tbody>
</table>

5 Overview of the **selected** observations

When deployed together, VMADCP and SeaSoar provided a unique synoptic view along of a transects. It was also possible to observe simultaneously the density and the velocity fields in the sub-surface layer, showing the importance of the geostrophy even at fine scale (in the range of 10 km−few−kilometres). The temperature and salinity fields were patchier than expected but the thermal expansion and the saline contraction coefficient of sea water often compensate and lead to a smoother density (and thus dynamical) field. The structure of observed anticyclonic eddies appeared also more complex than formerly described and were commonly currently composed of many
different water masses. Eddies with similar altimetric or surface thermal signatures can be very different hydrographically. For instance, a dual-core anticyclonic eddy has been observed east of Menorca Island in March 2016 (figure 43a), was composed of a superposition of Winter Intermediate Water and Atlantic Water and, in May 2018, a three-cores levels eddy has been detected (figure 43b). The exact process of their formation remains to be investigated still debated. One can invoke the coalescence of pre-existing eddies, the extraction of water masses from neighbouring structures or ageostrophic processes. Measurements reveal submesoscale (ageostrophic) dynamics both in the eddy cores (upwelling/downwelling) and at eddy edges (symmetric instabilities, frontogenesis). Intra-pycnocline structures, subducted, stirred or locally formed were commonly observed at the edge of gyres.

In the Northern Current, stirring appeared in both tracers and velocity fields and an SCV formed by LIW detached in front of Toulon (figure 43c) was observed as confirmed by observed swirling velocities on VAMDCP records. It Note that the anticyclonic SCV was also topped by a surface cyclonic gyre as confirmed by VMADCP record (not shown here). Currents were routinely recorded and a particular attention was paid to the Northern Current dynamics as shown (figure 43d).

The fine structure of the NBF showed the interaction between the front and the SCV’s generated in the deep convection area Northern part of the Basin. In the NBF, a shift between a surface layer front and a deep front is revealed. As long as most of the experiments presented here were performed during late winter or early spring in the vicinity of deep the north western convection area, they frequently showed small scale structures that are likely formed by convection post convective. For instance, from the North to the South on figure 43e one can observe successively the - probably partial - convection area, the formation of SCVs composed of WIW in the mesoscale adjustment area around the convection chimney, the surface thermal front and finally a deeper front at 40.6° N.

Over the abyssal plain next near to the bottom, classical CTD stations highlighted different Western Mediterranean Deep Waters (WMDW); besides, under the LIW layer, where the profiles foster double diffusion process, staircases in temperature and salinity were commonly observed (Onken and Brambilla 2003) (figure 43f).

MVP transects performed in February 2017, in front of Cap Creus, across the Blanes Canyon, and off Barcelona showed cold water diving along the Catalan shelf and slope (figure 43g). The WIW observed existing along the Catalan slope was relatively fresh and cold water originating in flowing from the Gulf of Lion’s shelf.

The WIW was progressively entrained and mixed with the AW and LIW while flowing southwards, in a less intense way than dense water cascading described by Durrieu de Madron et al. 2013. The WIW took progressively place between the Atlantic Waters (AW) and the LIW as they flowed southwards.

Similar and extensive quick looks of all Seasoar, MVP, or Rapidcast transects and XBT, CTD profiles are plotted and available as additional resources on the data repository.
Figure 4: Overview of some transects or profiles recorded during the PROTEVS-MED fields experiments: (a) Dual core eddy in NBF in 2016 (39.96N:4.74E – 39.93N:6.20E), (b) Three layered eddy in Algerian Bassin (38.5N:4.87E – 38.75N:5.88E; 2018), (c) SCV of LIW front of Toulon (42.17N:6.14E – 42.78N:6.10E; 2015), (d) North Current position and intensity (2015), (e) cross frontal (NBF) transect (40.35N:6.43E - 41.92:4.01E; 2017), (f) staircase in temperature front of Sardinia (2016), vein of cold water from the Gulf of Lion on Catalan sea (40.68N:7.5E; 2017). The reader will find similar quick looks of the transects for all the surveys into the data repository.

6 Conclusions
The PROTEVS-MED dataset available through an unrestricted unique repository is an unprecedented opportunity for the community to approach the very fine-scale dynamics in the Western Mediterranean Sea and more largely the sub-mesoscale dynamics associated with strong mesoscale dynamics. In the framework of the high-resolution altimetry this dataset can help to characterize the scales of fine structures in the Western Mediterranean Sea and to design combined experiments using high resolution in-situ measurements (SeaSoar or MVP) and altimetry with the future SWOT satellite (d'Ovidio et al., 2019). It also complements the repeated glider lines maintained in the framework of the MOOSE observatory (Coppola et al, 2019) and is useful to design future combined multi-platform experiments. It should be complementary data set to usual glider one and useful to design future combined surveys.

During these campaigns, one we had the opportunity to deploy different instruments devices to obtain temperature, salinity and possibly other parameters profiles. Some transects have been performed successively using CTD and SeaSoar (all surveys) or using CTD, SeaSoar and MVP-200 (PROTEVS-MED Protevsmed–2017). Easy to manage, the Rapidcast has only been only tested and used used for test and as instant spare in 2018 when the SeaSoar failed. It produced a similar result to the SeaSoar in temperature and salinity. The SeaSoar is heavy to manage, needs a consequent research vessel for the winch system, a constant watch on its navigation and calm sea state for water-launching and recovery. Once deployed, the machine can stay at sea for days. Thanks to the required ship velocity (about 9 knots), the SeaSoar remains a perfect platform machine to identify drive out mesoscale structures before examining them in detail. It explores the oceanic surface layer down up to 400 m deep which is sometimes a little bit too short in Mediterranean context, missing deeper part of AEs or deep SCVs but sufficient to describe the important surface and subsurface dynamical features main part of the dynamics. For the same depth range an MVP-200 requires a ship velocity about 2–4 knots and is then more devoted to short transect with higher horizontal resolution. As it is a free-fall platform vector, its setting up is lighter, despite regular inspection of the cable and winch every 10 hours. In any case, when exploring a structure in detail, a CTD network remains necessary, at least to have a valid reference level for the thermal wind equation and hydrography.

Despite the suspected lack of accuracy of the sensors due to the velocity of the platforms (SeaSoar, MVP, RapidCast), this experiment of it is demonstrated in these datasets that fast and high-resolution sampling revealed fine oceanic patterns never described before in the Western Mediterranean. In situ observations of ageostrophic dynamics remain rare and the synergy between these observations and theory, and then between these observations and modelling, should be very fruitful. In situ observations of ageostrophic dynamics remain scarce and the back and forth between these observations and theory, then between these observations and modelling should be very fruitful. These data should contribute to the knowledge of small scales and fill some of the gaps in observing system in the Mediterranean Sea (Tintore et al., 2019). As numerical modelling gain in resolution (in the range of until a few hundred meters), the simulation of sub-mesoscale processes (layering, subduction, stirring, vertical velocities) is therefore expected and this dataset, providing data at similar scales, is an opportunity to validate the secondary simulated circulation.
Authors contributions

Louazel S., Correard S., Garreau P., and Dumas F. designed and conducted the field experiments as PI. Marc Le Menn managed the calibration and the metrological traceability of SBE sensors. Valerie Garnier has carefully checked the dataset. All co-authors carried them out, participated to the cruise or processed the data. Garreau P. and Dumas F. prepared the manuscript and the data with contributions from all co-authors.

Competing interests.

The authors declare that they have no conflict of interest.

Acknowledgements

The authors acknowledge that the French Government Defense procurement and technology agency (Délegation Générale de l’Armement) funded extensively through Protevs and Protevs II “programme d’étude amont” all the campaigns reported here. They thank the technical team at the French Naval Hydrologic and Oceanographic Service (SHOM), the crews of the French Navy ship Beaufemps-Beaupré, of the RV Pourquoi Pas ? and the RV L’Atalante for their contribution to the field experiments.

Data Availability and Repository

Data are freely available on SEANOE repository (https://doi.org/10.17882/62352; Dumas 2018). Some parts of the data are already under investigations or publications; the authors would appreciate collaboration proposals. For a first overview quick looks of all Seasoar, MVP, or Rapidcast transects and XBT, CTD profiles are available in catalogues on the repository.

Seasoar, MVP, RapidCast, CTD, LADCP and XBT data are stored in both CSV (ASCII) and Netcdf files for “L1” (directly extracted from the instrument or constructor software), in Netcdf for “L2” (resampled every meter) files;
For TSG, the present database provides only L1 files; L2 (validated and resampled data) are available on dedicated repository (see table 2).
For the sake of simplicity, VMADCP files were concatenated over each cruise duration to provide a single file per cruise; for a given cruise, the data are a function of time and depth within the single file dedicated to the cruise.

Data are displayed by cruises and instruments and the syntax is:

```
instrument_data-type_cruises_starting-date-of-record_index_file-type
```

Where

- `instruments` = ctd, seaaro, ladcp, xbt, rapidcast, mvp, vmadcp_xxx
- `data-type` = “L1” or “L2”
- `cruises` = cruise and leg name
- `date` = the date of the first record in the file.
- `index` = sequential index of this kind of profile recorded during the cruise.
- `file-type` = csv(.csv) or netcdf(.nc)

Additionally, data extracted from on-board automatic acquisition are provided in Netcdf file for the ship navigation. Future PROTEVS-MED experiments are scheduled and results will be added to the repository.

References

Lévy, M., Franks, P. J., & Smith, K. S.: The role of submesoscale currents in structuring marine ecosystems. Nature communications, 9(1), 4758., 2018

