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Abstract. Land surface temperature (LST) is a key variable for high temperature and drought monitoring and climate and 

ecological environment research. Due to the sparse distribution of ground observation stations, thermal infrared remote 15 

sensing technology has become an important means of quickly obtaining ground temperatures over large areas. However, 

there are many missing and low-quality values in satellite-based LST data caused by cloud coverage exceeding 60 % of the 

global surface every day. This article presents a unique LST dataset in China for 2003-2017, which filters and removes 

missing values and poor-quality LST pixel values contaminated by clouds from raw LST images and retrieves real surface 

temperatures under cloud coverage by a reconstruction model. We specifically describe the reconstruction model, which uses 20 

a combination of MODIS daily data, monthly data and meteorological station data to reconstruct the true LST under cloud 

coverage, and then the data performance is further improved by establishing a regression analysis model. The validation 

indicates that the new LST dataset is highly consistent with the in situ observations. For the six natural subregions with 

different climatic conditions in China, the RMSE ranges from 1.24 °C to 1.58 °C, the MAE varies from 1.23 °C to 1.37 °C, 

and the R2 ranges from 0.93 to 0.99. The new dataset adequately captures the spatiotemporal variations in LST at annual, 25 

seasonal and monthly scales. From 2003-2017, the overall annual mean LST in China shows a weak increase. Moreover, the 

warming trend was remarkably unevenly distributed over China. The most significant warming occurred in the central and 

western areas of the Inner Mongolia Plateau in the Northwest Region (slope>0.10, R>0.71, P<0.05), and a strong cooling 

trend was also observed in some parts of the Northeast Region. Seasonally, there was significant warming in the western part 

in winter, which was most pronounced in December. The reconstructed dataset exhibited significant improvements and can 30 

be used for the spatiotemporal evaluation of LST and high temperature and drought monitoring studies. The data are 

published in the Zenodo at https://doi.org/10.5281/zenodo.3378912 (Zhao et al., 2019). 
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1 Introduction 

Land surface temperature (LST), which is controlled by land–atmosphere interactions and energy fluxes, is an essential 

parameter for the physical processes of the surface energy balance and water cycle at regional and global scales (Li et al., 35 

2013; Wan et al., 2014; Benali et al., 2012). Accurate surface temperature datasets are not only required for high temperature 

and drought research over various spatial scales but also important elements for improving global hydrological and climate 

prediction models. In particular, temperature changes directly influence glacier reserves and water storage on the Qinghai-Tibet 

Plateau (Tibetan Plateau), which is known as the “World Water Tower”. In turn, these changes directly affect the living 

conditions of nearly 40 % of the world's population (Xu et al., 2008). Therefore, LST research at regional and global scales is 40 

crucial for further improving and refining global hydroclimatic and climate prediction models. LST, which is conventionally 

measured by meteorological stations or ground surveys, has the advantages of high reliability and long time series. However, 

the meteorological station data collected as point data with very limited spatial coverage are often sparsely and/or irregularly 

distributed, especially in remote and rugged areas (Neteler, 2010; Hansen et al., 2010; Gao et al., 2018). To obtain spatially 

continuous LST data, various geostatistical interpolation approaches are commonly applied to achieve spatialization, such as 45 

kriging interpolation and spline function methods. However, the smoothed spatial pattern obtained after interpolation may 

suffer from low reliability because the ground station density is far from sufficient in most regions. 

In contrast to the limited availability and discrete spatial information from ground-based observations, images captured by 

satellite thermal infrared instruments have become reliable alternative data sources with the advantages of detailed 

spatialized surfaces and near real-time data access (Vancutsem et al., 2010). For instance, for the study of uniform 50 

continuous surface temperatures over large-scale areas, such as over regional and global scales, satellite remote sensing is 

the only efficient and feasible method (Xu et al., 2013). Satellite remote sensing obtains global LST based on a variety of 

mature retrieval algorithms that have been proposed for use with data from thermal infrared channels, which dates back to 

the 1970s (McMillin, 1975). Due to the optimal temporal and spatial resolution throughout the world, the Moderate-

resolution Imaging Spectroradiometer (MODIS) sensor has become an excellent data source for satellite-derived LST data 55 

and is widely used in regional and global climate change and environmental monitoring models (Tatem et al., 2004; Wan et 

al., 2014). However, satellite-derived LST data are frequently and strongly affected by cloud cover, causing many data gaps 

and a great deal of poor-quality values from undetected cloud contamination pixels. In fact, cloud cover is frequent, and the 

locations of cloud cover are often uncertain. On average, at any one time, approximately 65 % of the global surface is 

obscured by clouds, which directly leads to missing values over large, unevenly distributed areas in an image (Crosson et al., 60 

2012; Mao et al., 2019). Although the integrity of the data has been greatly improved, the 8-day and monthly synthetic data 

still contain a number of low-quality pixels that are affected by the insufficient quantity of daily LST pixels. Cloud cover, 

which causes extensive amounts of missing and abnormal information, significantly reduces the usage rate of LST data and 

poses a problem to further applications. Thus, the reconstruction of noise-contaminated pixels, such as those contaminated 

by clouds, is necessary for LST applications. 65 
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Two categories of methods have commonly been applied to reconstruct cloud contamination pixels from satellite-derived 

data in previous studies. The first category includes methods that directly reconstruct missing and poor-quality values using 

neighboring information with high similarity over temporal and spatial scales. Most temporal interpolation methods 

reconstruct missing and poor-quality values of LST data based on the periodic behavior of data, such as time series harmonic 

analysis (HANTS), S-G filtering, and Fourier transform (Xu and Shen, 2013; Na et al., 2014; Scharlemann et al., 2008). 70 

Crosson (2012) used another temporal interpolation method to reconstruct the LST data from the Aqua platform (afternoon 

overpass) using LST data from the Terra platform (morning overpass). Regarding spatial interpolation methods, previous 

methods have focused on geostatistical interpolation, including kriging interpolation, spline interpolation and their variants. 

Some researchers have also carried out other attempts; for example, Yu et al. (2015) introduced a method using a transfer 

function with the most similar pixels to estimate null pixels. These methods, which estimate missing MODIS LST data using 75 

only LST data, take advantage of the similarity and interdependence of the available temporal/spatial attributes of 

neighboring pixels. Thus, these methods have the advantage of simplicity and reliability. The second category of methods 

solves these data gap problems by establishing correlation models for cloud contamination pixels and corresponding 

auxiliary data pixels. Neteler (2010) used a digital elevation model (DEM) as an auxiliary predictor to reconstruct MODIS 

LST data from nine years of data on temperature gradients, which achieved reliable results in mountainous regions. Ke et al. 80 

(2013) built a regression model that included many auxiliary predictors—latitude, longitude, elevation, and the normalized 

difference vegetation index (NDVI)—to estimate 8-day composite LST products. Fan et al. (2014) used multiple auxiliary 

maps, including land cover, NDVI, and MODIS band 7, to reconstruct LST data in flat and relatively fragmented landscape 

regions. Other similar algorithms have drawn support by employing many factors that affect LST, including elevation, NDVI, 

solar radiation, land cover, distance from the ocean, slope and aspect. Considering the complexity of the terrain and the 85 

nonuniformity of the spatial distribution of large-scale LST patterns, a reconstruction model with auxiliary data that provides 

rich information for missing pixels can improve the accuracy of the interpolation result. 

The above studies greatly improve the usability of MODIS LST data and further add value to long-term LST trend 

analyses. However, despite the use of various techniques to reconstruct the LST value, existing techniques focus on the 

retrieval of the LST value under the assumption of clear-sky conditions instead of cloudy conditions, which cannot fulfill the 90 

need to obtain the real situation at the land surface. To address this issue, some scholars have also used microwave 

temperature brightness (TB) data, which are mostly applied to high-frequency channels, to obtain the real LSTs under clouds 

(André et al., 2015; Prigent et al., 2016). Microwave remote sensing is capable of penetrating clouds and can obtain useful 

radiation information for the retrieval of LST under clouds. However, the physical mechanisms of the current microwave 

LST retrieval models are not very mature, and the models have low resolution (Mao et al. 2007, 2018). Moreover, due to the 95 

difference in the surface properties of the land, the depth of the radiation signal detected by the microwave will differ at 

different locations, and it will deviate from the retrieval results of thermal infrared remote sensing when used to estimate 

LST values. Thus, new reconstruction methods for LST data need to be proposed to compensate for this deficiency. 
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On this premise, China is used as an example due to its large coverage area, heterogeneous landscape and complex 

climatic conditions. This paper presents a new long-term spatially and temporally continuous MODIS land surface 100 

temperature dataset in China from 2003 to 2017 that filters out missing and poor-quality pixels and reconstructs them based 

on multisource data. We describe a data reconstruction process that is fully integrated with the benefits of the high reliability 

of surface observations, consistency and high accuracy of daily valid pixels and spatial autocorrelation of similar pixels. The 

process compensates for the insufficiency of reconstructing pixels under clear-sky conditions instead of under clouds in 

previous studies. The validation using data from the China Meteorological Administration observations indicates the 105 

robustness of the LST data after interpolation. The dataset is ultimately used to capture the annual, seasonal and monthly 

spatiotemporal variations in the LST in six natural subregions of China. It is envisaged that this dataset will help capture the 

changes in surface temperature and will be useful for high temperature and drought studies and food security. 

2 Study area 

Insert Figure 1 here 110 

Figure 1: The study area divided into six natural subregions (I, II, III, IV, V, VI), and the spatial patterns of the 

meteorological stations in the subregions. The red circles mark the key areas where the temperature changes significantly, 

and these areas are used to validate the accuracy of the new LST dataset (a, b, c, d, e, f). 

Our study area of China is a large agricultural country, and its agricultural products are responsible for feeding more than 22 % 

of the world's population (Liu et al. 2004). However, agricultural production activities are very sensitive to climate change. 115 

In recent years, global warming has directly affected the crop growth system, which in turn has affected many aspects such 

as food production, food security, farmers' income and rural social and economic development. In addition, the Qinghai-

Tibet Plateau, which is known as the “World Water Tower”, supplies water for life, agriculture, and industry for nearly 40 % 

of the world's population through extensive glacial snow (Xu et al., 2008, Gafurov and Bárdossy, 2009, United Nations 

Environment Programme (UNEP), 2007). In recent years, increasing temperatures have forced glaciers in many large 120 

mountains to melt at an accelerating rate (Oku et al., 2006). The water resources from the water tower will be rapidly 

reduced, which will bring a series of serious water and ecological security problems. Therefore, the generation of a complete 

set of datasets that reflect the spatiotemporal variations in temperature will be helpful to study the temperature changes in 

China, especially the Qinghai-Tibet Plateau, and will be of great significance to agricultural production and drinking water 

supplies in neighboring countries. 125 

Therefore, to explore the temporal and spatial characteristics of China's LST, the study area is divided into six natural 

subregions based on China's three major geographical divisions, climatic conditions, landform types and tectonic movement 

characteristics. The eastern region is characterized by the topographical features of plains and low mountains. This region 

has a variety of monsoon climate zones, which travel from south to north and include tropical, subtropical and temperate 

monsoon climate zones. Therefore, we divide the eastern region into the following four regions, as shown in Fig. 1. (I) The 130 
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Northeast Region, which mainly covers the area to the east of Daxing'anling. This region has a temperate monsoon climate 

with average annual precipitation of 400~1000 mm, and rain and heat are prevalent in the same period. This large vast plain 

(approximately 55.8 % of the land area in China) and good climatic conditions are very conducive to the growth of crops, 

making the Northeast Region one of China's most important grain-producing areas. (II) The North China Region includes the 

south of the Inner Mongolia Plateau, the north of the Qinling Mountains and Huaihe River, and the east of the Qinghai-Tibet 135 

Plateau. The region is dominated by a temperate monsoon climate and a temperate continental climate with four distinct 

seasons. This area is characterized by flat plains and plateau terrain. (III) The Central - South China Region that extends 

from the eastern part of the Qinghai-Tibet Plateau to the western parts of the East China Sea and South China Sea, south to 

the Huaihe River - Qinling Mountains, and north to the area where the daily average temperature is greater than or equal to 

10 °C. The accumulated temperature in this region is 7500 °C. This region is commonly dominated by a subtropical 140 

monsoon climate. (IV) The South China Region is located in the southernmost part of China and is characterized by a 

tropical and subtropical monsoon climate with hot and humid conditions. The area has abundant rainfall, and the average 

annual precipitation is approximately 1900 mm. 

The western region is divided into 2 natural subregions. (V) The Northwest Region, which includes the north of the Qilian 

Mountain-Altun Mountains-Kunlun Mountains, the Inner Mongolia Plateau and the western part of the Greater Khingan 145 

Range. This region is located inside the mainland with complex terrain conditions, and the topography is mostly plateau 

basins and mountainous areas. This region has a tropical dry continental climate with rare rainfall. This area has a wide range 

of barren land, with a desertified land area of 2.183 million km2, accounting for 81.6 % of China's desertified land area 

(Deng, 2018). Moreover, the Taklimakan Desert in this region is one of the top ten deserts in the world. (VI) The Qinghai-

Tibet Plateau Region is mainly located in the Qinghai-Tibet Plateau, which is the plateau with the highest altitude in the 150 

world. This region is mainly described to have an alpine plateau climate, with a relatively high temperature and a large 

grassland meadow. 

3 Data and methods 

3.1 MODIS data 

MODIS is a key sensor that was launched by the Earth Observing System (EOS) program and provides a unified grid 155 

product with global coverage of the land, atmosphere and oceans. Because MODIS covers 36 spectral bands from the visible, 

near-infrared and thermal infrared ranges (from 0.4 to 14.4 mm), it is extensively used to study global marine, atmospheric, 

and terrestrial phenomena (Wan et al., 1997). The MODIS instruments are aboard two NASA satellites, Terra and Aqua, 

which were launched in December 1999 and May 2002, respectively. As both the Aqua and Terra satellites are near-polar 

orbit satellites with a flying height of approximately 705 km in sun-synchronous orbit, they provide data with a temporal 160 

resolution of twice daily. The Terra satellite passes through the equator from north to south at approximately 10:30 am and 

10:30 pm local solar time and is called the morning star. However, the Aqua satellite passes through the equator in the 
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opposite direction from south to north at approximately 1:30 am and 1:30 pm and is called the afternoon satellite (Christelle 

and Ceccato, 2010). The two satellites collect repeated observations every 1-2 days and transmit observation data to the 

ground in real time. 165 

The MODIS LST is retrieved from two algorithms: the generalized split-window algorithm (Wan and Dozier, 1996; Wan 

et al., 2002) and the day/night algorithm (Wan and Li, 1997). The split-window algorithm is advantageous for removing 

atmospheric effects because the signal difference between the adjacent thermal and middle infrared channels (channel 31 

with a wavelength of 10.78–11.28 μm and channel 32 with a wavelength of 11.77–12.27 μm) is caused by the differential 

absorption of radiation in the atmosphere (Wan et al., 2002). The latest LST V006 version data used in this article is obtained 170 

by another important algorithm: the day/night algorithm. Due to the complexity of surface reflectance and atmospheric 

conditions, multichannel data are utilized in day/night image pairs to derive the LST, including radiation calibration data, 

atmospheric temperature and water vapor data, cloud masks and geolocation information and L1B data in seven thermal 

infrared bands (bands 20, 22, 23, 29, 31, 32, 33) from MOD07_L2 (Wan, 2007). Then, these day/night pairs of MODIS data 

are used to construct a physics-based day/night LST model based on nonlinear equations of 14 thermal infrared observations 175 

to retrieve the surface average emissivity and surface temperature values from the MODIS LST product without high-

accuracy atmospheric temperature and water vapor profiles (Wan and Li, 1997). 

The day/night LST algorithm used in the LST V006 version products exhibits great advantages in retrieving LST: it not 

only optimizes atmospheric temperature and water vapor profile parameters for optimal retrieval but also does not require 

complete reversal of surface variables and atmospheric profiles (Ma et al., 2000, 2002). A comprehensive sensitivity and 180 

error analysis was performed for the day/night algorithm, which showed that the accuracy was very high, with an error of 1–

2 K in most cases (0.4-0.5 K standard deviation over various surface temperatures for mid-latitude summer conditions) (Wan 

and Li, 1997, Wang and Liang, 2009; Wang et al., 2007). 

Here, two MODIS products were chosen for research: daily LST data (MOD11C1 and MYD11C1) and monthly LST data 

(MOD11C3 and MYD11C3), which were available for the period from 2003–2017. The datasets include daytime and 185 

nighttime surface temperature data provided by NASA. These data are the new collection 6 series data provided in 2017, 

which has been fixed and substantially improved compared to the collection 5 data used in many previous studies. In 

collection 6 data, the identified cloud-contaminated LST pixels were removed from the MODIS Level 2 and Level 3 

products, and the classification-based surface emissivity values were adjusted (Wan. 2014). Both datasets provide the global 

LSTs generated by the day/night algorithm with a spatial resolution of 0.05°×0.05° (approximately 5600 m at the equator), 190 

which is provided in an equal-area integerized sinusoidal projected coordinate system. The composited 8-day 

(MOD11C2/MYD11C2) and monthly (MOD11C3/MYD11C3) data are deduced from daily global data (MOD11C1/ 

MYD11C1) without cloud contamination. The global LST product MOD11C1/MYD11C1 (V006) was created by 

assembling daily MOD11B1/MYD11B1 tiles and resampling from 5600 m spatial resolution to a resolution of 7200 columns 

and 3600 rows of the latitude/longitude grid. 195 
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The preprocessing of the MODIS data mainly includes extraction of daytime and nighttime LST and the corresponding 

quality assessment (QA) data from 17 scientific datasets, projection conversion (reprojection of raw data from a sinusoidal 

projection (SIN) to an equal-area conical projection (Albers), WGS84 coordinate system), conversion of the data format 

(conversion from HDF to Geo-tiff), and clipping (selection of geographic subsets according to latitude and longitude 

position to improve the efficiency of the model). The brightness temperature is converted to real surface temperature by 200 

coefficient and offset correction. 

3.2 Supplementary data 

The LST records in China for the hourly intervals from 2399 meteorological ground stations from 2003-2017 were used in 

this study, and they were provided and underwent strict quality control and evaluation by the China Meteorological 

Administration (CMA). Meteorological station data were randomly divided into two completely independent subsets by the 205 

jackknife method. Subset (1): the number of ground stations used for the reconstruction process was 1919, accounting for 80 % 

of the total number of ground stations. Subset (2): the number of sites used for verification was 480, accounting for 20 % of 

the total. Then, the data used for the reconstruction process in subset (1) were created by extracting meteorological station 

LST data at the overpass times of Terra and Aqua (01:30, 10:30, 13:30, and 22:30). For the verification process, six key 

areas where warming/cooling trends were the most significant (i.e., shown in the red ellipse a-f in Fig. 1 and Table 1) were 210 

selected for detailed verification to better reflect the accuracy of the LST data. All meteorological ground station data were 

tested for temporal and spatial consistency, which included identifying and rejecting extreme values and outliers. 

Table 1 Basic information for some of the meteorological stations in key zones 

Insert Table 1 here 

Elevation data with 1 km resolution are available from the NASA Space Shuttle Radar Terrain Mission (SRTM) V4.1 for 215 

reconstruction of cloud-contaminated data. 

3.3 LST data restoration method 

For satellite-derived LST data, due to the extensive and random distribution of missing and unreliable values caused by 

cloud contamination in the images, it is difficult to reconstruct the operational LST dataset under clear-sky conditions and on 

a daily scale, and it is even more difficult to retrieve the LSTs to identify the real performance of the LST reconstruction 220 

under cloud coverage. Therefore, we create a reconstruction model that combines meteorological station data and daily and 

monthly MODIS LST data to reconstruct a high-precision dataset that can reflect the true LST under cloud coverage. The 

reconstruction model effectively preserves the highly accurate pixels in the original daily data, reconstructs only the poor-

quality daily data, and finally, replaces low-quality pixels with the composite average pixel value in the monthly data. To 

better describe the data processing, Fig. 2 shows a summary flowchart for the reconstruction of MODIS monthly LST data. 225 

The reconstruction model we proposed is divided into two general steps: LST pixel filtering and LST data restoration. 

Contaminated pixel values were first identified and eliminated for all monthly LST images that were input based on pixel 
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quality filtering. After the contaminated pixels were determined, we traversed the corresponding daily pixels and 

reconstructed the daily pixels with poor quality in the month. We reconstructed all contaminated daily pixels via three 

substeps: 1) the in situ LST observations at the same location, which was judged by the longitude and latitude information, 230 

were used to fill the contaminated pixels at the same location. 2) the geographically weighted regression (GWR) method was 

employed to interpolate contaminated pixels based on similar pixels from multiple sources. 3) the remaining contaminated 

pixels were reconstructed based on regression of the elevation temperature gradient. Finally, the averages of the available 

daily LST pixels were calculated and filled using the corresponding monthly pixels. 

Insert Figure 2 here 235 

Figure 2: The summary flowchart for reconstructing MODIS monthly LST data. 

3.3.1 Filtering of MODIS LST 

MODIS LST data are retrieved by a thermal infrared band in clear-sky conditions, which will contain many missing values 

and poor-quality values caused by clouds and other atmospheric disturbances. Generally, the cold top surface of a thin or 

subpixel cloud is difficult to detect, and the LST retrieved under such conditions usually leads to an underestimation of the 240 

temperature values in the MODIS LST data (Neteler, 2010; Markus, 2010; Jin and Dickinson, 2010; Benali et al., 2012). 

Moreover, other factors can also contaminate the observation signal and cause the data to be unavailable, such as 

atmospheric disturbance, variable illumination, observation geometry and instrumental problems (Wan, 2014). In general, 

the abnormally low values in LST maps caused by undetected thin clouds, together with other poor-quality values, need to 

be identified and filtered because these values greatly reduce the accuracy of the LST data. 245 

Cloud cover is extensive and inevitable in daily weather conditions. Statistical calculations were performed, which 

showed that missing values for daily data reached approximately 50 % for Terra and Aqua satellites. Figure 3 shows an 

example representing the distribution of valid pixel values in the daytime for winter and summer. The coverage of pixels 

with missing data in the study area at 10:30 am during the daytime on January 1, 2017, and July 1, 2017, for the Terra 

platform reached 44.9 % and 51.7 %, respectively. The spatial gaps in the daily data are characterized by an arbitrary 250 

distribution and generally large aggregations. In fact, the emergence of a large number of missing values makes it difficult to 

reach a high-precision reconstruction result that represents real values under clouds using current techniques due to such a 

paucity of information, especially for areas with complex climates. 

However, the random occurrence of cloud-covered areas has a much smaller impact on monthly composite products, 

which makes these products a reliable source for building a high-precision LST dataset. Compared with daily and 8-day 255 

composite data, spatiotemporal integrity and consistency have been greatly improved in monthly composite LST data. 

However, for many regions, the lack of data or quality degradation caused by clouds is still common even in monthly 

composite data. It is necessary to identify and reconstruct cloud-contaminated pixels, which seriously affect the use and 

analysis of data. A reliable method for removing the poor-quality pixels is implemented using the data quality control 

information for MODIS LST data. The data quality control information is statistically calculated and stored in the 260 
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corresponding QA layer and is represented by an 8-bit unsigned integer and can be found in the original MODIS LST HDF 

files. Therefore, we use the quality control labels for daily and monthly files as mask layers to eliminate poor-quality pixels 

to ensure the quality of the LST data. Finally, pixels with QA layer labels of “the average LST error <=1 K”, “LST produced, 

good quality” and “the average emissivity error <=0.01” are considered to be high-quality data, and the remaining pixel 

values are rejected. Quality information is almost indicative; thus, sufficient information is provided for the filtering of low-265 

quality pixels (Benali et al., 2012). A summary flowchart of the process used to construct the LST data model is 

schematically illustrated in Fig. 2. 

The spatial distribution pattern of invalid Terra LST data after filtering by the QA layer is shown in Fig. 4. The low-

quality pixel coverage rates for January and July 2017 were 23.45 % and 19.68 %, respectively. There are more missing 

values in winter than in summer in the northeastern region, which may be affected by the confusion resulting from large 270 

areas of snow cover and clouds in the winter. However, the missing values are mainly concentrated in southern China in 

summer, which is closely related to the increased cloud cover in the hot summers in South China. 

Insert Figure 3 here 

Figure 3: Spatial distribution of valid data for daily MODIS LST data from Terra at 10:30 am (a) January 1, 2017, and (b) 

July 1, 2017. Areas of invalid data are in white. 275 

Insert Figure 4 here 

Figure 4: Spatial distribution of valid data for monthly MODIS LST data from Terra at 10:30 am in (a) January and (b) July. 

Areas of invalid data are in white. 

3.3.2 LST data restoration 

Missing values caused by cloud coverage have always been an important limitation of using LST from thermal infrared (TIR) 280 

data in a wide range of applications. For daily LST data, although many attempts have been made to reconstruct the LST 

data under clear-sky conditions, the widespread missing values make it difficult to reconstruct high-precision real LST 

values under clouds using the limited available information. To obtain a high-precision LST dataset that could retrieve the 

true temperature of the land surface under cloud cover instead of clear skies, we adopted another strategy to reconstruct the 

high-precision LST dataset. 285 

Given that monthly LST data are composited from the corresponding daily data, an insufficient amount of valid daily data 

and low availability for some pixels will lead to quality degradation in the monthly data. The contributions of multiple valid 

daily pixels 𝑃�𝑖, despite their good precision, are rejected along with the final poor-quality values in monthly pixels. Thus, 

considering the inheritance of these high-quality data, we believe that these valid daily pixels 𝑃�𝑖  can help to reconstruct high-

precision estimates for LST pixels under cloudy conditions. Therefore, in the reconstruction model, we first filter the 290 

monthly image, and the locations of the pixels that are contaminated by clouds (i.e., the missing and poor-quality monthly 

pixels) are determined. Then, we filter all the daily pixels for the month when the cloud-contaminated pixels occurred. The 

valid pixels 𝑃�𝑖  in the daily data are retained, the poor-quality daily data are reconstructed, and the low-quality pixels in the 
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monthly data are replaced with the corresponding averaged pixel values from the daily data (Fig. 2). The reconstruction 

process for the cloud-contaminated daily pixels, which are defined as the target pixels, is as follows. 295 

The real ground LST values in pixels obscured by clouds are usually lower than the values in the adjacent unaffected 

pixels, and the ground meteorological station values observed at the same time as the prediction result are the most reliable 

among all predictor factors, such as NDVI, longitude and latitude. Therefore, the latitude and longitude information of the 

target pixels was first used to search for the ground stations in the same location. Target pixels were filled using the values 

from valid ground-based LST data at the same location at the same time, and these filled pixels were marked. Then, for the 300 

target pixels without ground meteorological station data, we used a combination of two strategies to reconstruct the missing 

LST data to improve the accuracy of the result. The first strategy identified the most similar pixels by using adaptive 

thresholds and reconstructed them by using a GWR method. 

GWR is a common and reliable method for estimating missing pixels, which quantifies the contribution of each similar 

pixel to contaminated pixels. This method assumes that similar pixels that are spatially adjacent to the target pixel are close 305 

in the spectrum and should be given more weight. Therefore, the GWR method can be represented as follows 

𝑇 = ∑ 𝑊𝑖 ∙ 𝑇𝑖𝑛
𝑖=1  ,                                                                                  (1) 

where T is the reconstructed LST value of a target pixel, T𝑖 is the value for the similar pixel i,  W𝑖  is the weight coefficient, 

and the sum of all  W𝑖  values is 1. 

Due to the high temporal variability of thermal radiation emitted from the land surface and atmospheric state parameters, 310 

satellite sensors that measure the thermal radiation energy from different phase images at the same locations often produce 

different values even when the same thermal infrared sensor is used. Some of the most common regular changes in surface 

features, such as the vegetation spectrum changes due to seasonal changes, can be predicted using auxiliary information. 

However, multiple unpredictable changes that cause abrupt transformation in the thermal energy of infrared radiation are 

difficult to predict, such as wheat harvesting and the expansion of a city. Therefore, it is only possible to determine the most 315 

accurate similarity relationship for the target pixels by selecting the image from the nearest phase. Thus, for the target pixel i 

and a valid pixel j in the same image, the three images that are temporally closest at the same overpass time are determined 

as reference images, and a threshold is then used in the reference image to determine whether the pixels corresponding to 

pixels i and j are similar. If two pixels are judged to be similar in more than one image, the valid pixel j is identified as a 

similar pixel for the target pixel i. 320 

As the factors that influence surface temperature (vegetation cover, sun zenith angle, microrelief, etc.) vary greatly in 

different regions and seasons, the spectral differences of adjacent pixels in different areas may also vary greatly. Thus, there 

will be large deviations in the similar pixel decision criteria if a fixed similarity threshold is used. Here, we use an adaptive 

threshold φ𝜏 , which denotes the smoothness of the local area, to determine similar pixels for each null pixel (Eq. 3). For the 

jth valid pixel in the target image, it is determined to be a similar pixel of the target pixel i only when the relationship 325 

described in Eq. (2) is satisfied in the reference image τ. Simultaneously, similar pixels were determined based on all valid 
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pixels in the image rather than a sliding window because missing values are often arbitrarily clustered in a large area rather 

than scattered. 

|𝑃𝑠𝜏 − 𝑃𝑡𝜏| ≤ 𝜑𝜏 ,                                                                                           (2)  

𝜑𝜏 = �∑ (𝑃𝑠𝜏 − ɛ)2𝑛
𝑖=1 ,                                                                                       (3) 330 

Where P𝑠𝜏  and P𝑡𝜏  are the values of pixels corresponding to the position of the similar pixel and the target pixel in the 

reference image, respectively. φ𝜏 is the threshold used to determine similar pixels. ɛ is the mean value of the local pixels. τ is 

the reference image (value=1, 2, 3). Here, we set the range of the local area to 5 pixels by 5 pixels (Zeng et al., 2013). In this 

paper, the number of similar pixels should be greater than 4 to apply the GWR method to reduce the error due to an 

insufficient number of similar pixels.  335 

After determining similar pixels, the LST values of the pixels contaminated by clouds are determined through GWR. In 

theory, LST data from meteorological stations are the most reliable record, even in the case of thick cloud coverage. Thus, 

similar pixels obtained from ground stations are the most representative, which can better reflect the LST under clouds than 

in clear-sky conditions. In the process of reconstructing missing pixels, we assign a related weight multiplier to the marked 

ground station data based on the GWR. After selecting some of the marked pixels as experiments, it was found that the target 340 

pixels could be more accurately estimated when the relative multiweight values of the ground stations were set to 3 in this 

paper. Therefore, the weighting coefficients of similar pixels are determined by Eqs. (5) and (6). 

𝐷 = �(𝑥 − 𝑥𝑡)2 + (𝑦 − 𝑦𝑡)2,                                                                                                                                                     (4) 

𝑊𝑖 =
𝑀𝑐
𝐷𝑖

∑ 𝑀𝑐
𝐷𝑖
+∑

𝑀𝑔
𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

,                                                                                                                                                                   (5) 

𝑊𝑗 =
𝑀𝑔
𝐷𝑗

∑ 𝑀𝑐
𝐷𝑖
+∑

𝑀𝑔
𝐷𝑗

𝑛
𝑗=1

𝑚
𝑖=1

,                                                                                                                                                                   (6) 345 

where D represents the distance from the similar pixel to the target pixel t, x, y, x𝑡 and 𝑦𝑡  describe the locations of the similar 

pixel and target pixel. i and j represent similar pixels used to estimate the poor-quality LSTs, i is a pixel that is not 

contaminated by clouds, and j is a pixel assigned by the ground station. 𝑊𝑖  and 𝑊𝑗  describe the weight that similar pixels i 

and j contribute to the target pixels, respectively. m is the number of similar pixels that are not contaminated by clouds, and 

n is the number of similar pixels that are assigned by ground stations. Mc and Mg represent the weight coefficients of 350 

cloudless contaminated pixels and ground station assignment pixels, respectively. In this paper, Mc and Mg are set at 1 and 3, 

respectively. 

For another strategy, the elevation temperature gradient regression method was used to reconstruct the remaining 

contaminated pixels that did not have enough similar pixels. In general, the elevation factor has a particularly significant 

effect on the spatial variation at the regional scale. Elevation is recognized as the most important factor that characterizes the 355 

overall spatial trend of LST (Sun, 2016). DEM data and LST data are used to construct linear regression relationships for 
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null pixels based on the nonempty pixels in the neighborhood of a certain window size; these data are then used to predict 

the missing value pixels by linear interpolation. After several simulations of the experimental pixel window size, the noise 

was found to be minimized when a sliding window of 19 by 19 pixels was used, and this window size was considered to 

have the best complement value. 360 

𝑇𝑖 = 𝛼 × ℎ𝑖 + 𝛽,                                                                                                                                                                         ( 7 ) 

where T𝑖  is the surface temperature data after interpolation (units: °C); h𝑖 is the elevation value of pixel i (units: m); α is the 

influence coefficient of the elevation on the surface temperature, which is the regression coefficient; β is the estimated 

intercept. Finally, we accurately crop the image to a Chinese-wide image to ensure that the sliding pixel window reaches the 

edge of the study area. 365 

3.4 Analysis of the LST time series trend 

In this study, the slope of a linear regression describes the rate of LST cooling/warming, which is calculated by Eq. (8). The 

slope value and correlation coefficient (R) were selected to quantify the temporal and spatial patterns in the LST variations 

using Eq. (9). 

𝑆𝑙𝑜𝑝𝑒 =
∑ (𝑖𝑇𝑖)
𝑛
𝑖=1 −1𝑛∑ 𝑖 ∑ 𝑇𝑖

𝑛
𝑖=1

𝑛
𝑖=1

∑ 𝑖2𝑛
𝑖=1 −1𝑛(∑ 𝑖𝑛

𝑖=1 )2
 ,                                                                                                                                                 (8) 370 

𝑅 = 𝑛∑ (𝑖𝑇𝑖)
𝑛
𝑖=1 −∑ 𝑖 ∑ 𝑇𝑖

𝑛
𝑖=1

𝑛
𝑖=1

�𝑛∑ 𝑖2𝑛
𝑖=1 −(∑ 𝑖𝑛

𝑖=1 )2�𝑛∑ 𝑇𝑖2−(∑ 𝑇𝑖
𝑛
𝑖=1 )2𝑛

𝑖=1

 ,                                                                        (9) 

where i is the number of years, Ti is the average LST of year i, and n is the length of the LST image time series; here, n is 15. 

When slope>0, it indicates that LST shows a warming trend. When slope<0, it indicates that the surface temperature is 

cooling. The R values range from -1 to 1. An R value greater than 0 means that the LST is positively correlated with the time 

series, and an R value less than 0 means that the LST is negatively correlated with the time series. Meanwhile, the larger the 375 

absolute value of R is, the stronger the correlation with the time series changes. 

4 Results 

Temperature changes show significant differences at different time scales (day, night, month, season and year) and different 

spatial scales. Therefore, various QA methods were performed to validate the new data on the monthly and seasonal scales. 

Furthermore, to better understand the spatial and temporal variations in surface temperature and the reactions of different 380 

regions, we analyze the LST at yearly, seasonal and monthly scales and show the changes in temperature during the day and 

at night. 
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4.1 Annual change analysis 

4.1.1 Average change 

To obtain the overall LST trend, we averaged the LST for each year to remove seasonal effects. Fig. 5 shows the annual 385 

average LST change in China over the period from 2003-2017. The LST fluctuations in China exhibited a general weak 

warming trend. The sliding average of the 5-year unit also showed a weakly fluctuating warming trend. The lowest LST in 

China appeared in 2012 at 7.51 °C. The temperature reached its highest value in 2007 (9.25 °C), but after 2012, the LST 

remained high. This result coincides with the global warming stagnation period that was noticed from 1998-2012, and the 

LST increased significantly after 2012. After analyzing the LST on the seasonal and monthly scales, we found that the 390 

cooling in 2012 mainly occurred in the winter, as it was concentrated from January-February, and the cooling in the southern 

region was more significant than that in the other regions. In 2012, due to the abnormally strong East Asian winter monsoon, 

there was abnormal rainfall in the south in winter. We also observed a sudden decrease in LST in 2008 and a sudden increase 

in 2013. In 2008, severe persistent low-temperature snowstorm events in southern China in winter caused a decline in LST. 

The warming in 2013 was mainly affected by the abnormally high temperatures in the middle and lower reaches of the 395 

Yangtze River in summer. 

Insert Figure 5 here 

Figure 5: Annual mean LST changes in China from 2003 to 2017. 

Insert Figure 6 here 

Figure 6: Spatial dynamics of interannual change trends in LST from the slope (a) computed by Eq. (8), the correlation 400 

coefficient (b) computed by Eq. (9) and frequency distribution of the slope (c) during 2003-2017. In panel c, the different 

temperature trends (slope) are divided into 10 subinterval ranges corresponding to the ranges in panel a. The left side of the AB 

line represents the proportion of the area that experienced cooling, and the right side represents the proportion that experienced warming.  

For a more detailed understanding of the spatial patterns and regional differences in the LST changes in different areas, the 

rate of annual average LST change per pixel from 2003 to 2017 was calculated, and the slope (Fig. 6a), correlation 405 

coefficient (Fig. 6b) and frequency distribution of the slope (Fig. 6c) are shown. From 2003-2017, the annual average LST in 

China showed a weakly positive trend. The LST exhibited a strong warming trend in many regions of the north but negative 

trends in the south, and the positive trend in the west was greater than that in the east. Different regions showed significant 

regional variations. Most of China experienced a warming trend (slope>0), which accounted for 63.7 % of the study area 

(which corresponds to the pale yellow, yellow, light orange, orange, and red parts in Fig. 6c). Additionally, approximately 410 

20.80 % of the pixels underwent significant warming (slope>0.05, R>0.6). The areas with significant warming were mainly 

concentrated in the Mongolian Plateau and its southern areas in the northwestern region. In contrast, 36.25 % of the districts 

showed a cooling trend (slope<0, depicted in green and 4 shades of blue in Fig. 6c). The area with a significant cooling 

pattern (slope<-0.075, R>-0.6) covered 6.53 % of the study area, and these patterns were mainly concentrated in the 

northeast. The specific spatial variation characteristics of LST in different regions are summarized as follows. 415 
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In 2013, the Intergovernmental Panel on Climate Change (IPCC) noted that climate warming is clear (IPCC et al., 2013). 

However, some areas of the Northeast Region (I) showed a significant warming hiatus over the past 15 years, and these areas 

made the greatest contribution to China's cooling trend. We observed widespread and relatively strong cooling regimes in 

most areas (i.e., the slope value ranged from -0.06 to less than -0.12, see Fig. 6a, b for details) except for the northeastern 

part of the Greater Xing'an Mountains. The cooling trend in Northeast China in recent years may be related to the negative 420 

Arctic oscillations in the northeast, which are closely related to the Siberian high (SH) and the East Asian Trough (EAT) 

during this period (Sun et al., 2017). Attention should be paid to the Northeast Plain because it is China's most important 

region for commercial grain (corn, rice) and cash crops (soybeans, sugar beets, etc.), accounting for approximately 15 % of 

the country's total grain production (Yang et al., 2007). Intensified cold conditions will cause insufficient accumulated 

temperature in the crop growth period, which will cause large-scale crop yield reductions. In addition, if this rapid cooling 425 

continues in the Northeast Region, it will pose a great threat to agricultural production and the development of the regional 

economy. The possible impacts should be brought to the attention of the relevant agricultural sector, and appropriate 

preventive and regulatory measures should be taken. 

In the North China Region (II), we observed that the pattern of the spatial variations in LST has interesting characteristics: 

the trends were opposite on the two sides of the Taihang Mountains. There were warming trends in the western part of the 430 

Taihang Mountains but cooling trends in the eastern part of the Taihang Mountains. Furthermore, the western part of the 

Taihang Mountains is the Loess Plateau with a high elevation, and the eastern part is the North China Plain with a low 

elevation (Fig. 1). The North China Plain and the Yangtze River Delta in the south both exhibit obvious warming trends, 

both of which are densely populated areas. The relatively high warming trends may be attributed to the rapid increase in 

population and the generation of more greenhouse gas emissions during rapid urbanization in recent years. In addition, the 435 

Central China-Southwest Region (III) and the South China Region (IV) also showed negative trends, but the cooling trends 

were not significant. 

In the Northwest Region (V), it was discerned that some area in Tianshan Mountains and the Inner Mongolia Plateau 

experienced significant warming trends (slope>0.10, R>0.71, P<0.05), and this area exhibited the strongest warming trend in 

China over the past 15 years. Rapid warming has a significant impact on the local area. The Northwest Region (V) is an arid 440 

and semiarid area dominated by temperate and warm temperate climates. This region features plateaus, basins and deserts. 

Due to the lack of precipitation, the main water resource in the northwest is alpine ice and snowmelt, which is more 

susceptible to temperature changes. In the large-scale water-deficient areas in the Northwest Region, the impacts of climate 

warming on local water resources and the ecological environment are more significant than in other areas. On the one hand, 

increasing the frequency and intensity of drought causes the degradation of fragile local vegetation, the shrinkage of oasis 445 

areas, and an increase in the vulnerability of the ecological environment. On the other hand, high temperatures will release 

more alpine meltwater, increasing surface runoff, and greatly alleviating local water stress, although this is less helpful for 

areas with few ice reserves. However, the rapid degradation of glaciers as a result of rapid and sustained warming may bring 

more potential threats to the ecological environmental balance and biological survival. Finally, due to the sparse vegetation 
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in the Northwest Region (V), it is necessary to carry out and increase ecological engineering, such as the Three-North 450 

Shelterbelt Program. Furthermore, increased vegetation cover is conducive to increasing the soil water content, improving 

local land desertification and ever-expanding soil erosion. In addition, in terms of vegetation, the local regulation of 

greenhouse gases and evapotranspiration can be used to generate positive feedback on the stability of the surface temperature. 

In the Qinghai-Tibet Plateau Region (VI), the ecological environment is complex, and the unique plateau terrain and 

thermal properties of the surrounding areas play an important role in regulating the surrounding atmospheric circulation 455 

system. Because the Qinghai-Tibet Plateau is extremely sensitive to climate change, it is considered to be a key area of 

global climate change. Therefore, we have also paid close attention to the temperature changes on the Tibetan Plateau. As 

shown in Fig. 6a and b, an obvious positive trend was captured in the southern part of the Qinghai-Tibet region (slope>0.08), 

which should be emphasized. Meanwhile, the warming trend in the Qaidam Basin in the northeast is significantly higher 

(slope > 0.1) than that in the surrounding area. This result may be associated with the complex geological structure of the 460 

Qaidam Basin. There are many fault structures in the Qaidam Basin. When subjected to geostress, the rock movement 

increases, and the compression displacement between the rock layers releases energy during the process of mechanical 

friction. This process also provides good geothermal conductivity to the upper strata. The geological conditions lead to an 

abnormal increase in surface temperature. The Tanggula Mountains in the central part of the Qinghai-Tibet Plateau and the 

southern Tibetan Valley in the south exhibit a significant warming trend, while the northern part does not exhibit significant 465 

changes. This result may be due to the different effects of the monsoon circulation: Qinghai Province in the northern part of 

the Tanggula Mountain is mainly controlled by the East Asian monsoon, while the southern part of the southern Tibet Valley 

is affected by the South Asian monsoon. 

4.1.2 Day and night change analysis 

To more specifically assess the interannual changes in LST, we further analyzed the diurnal trends in LST. The spatial 470 

distribution of the average annual diurnal surface temperature in the time series is shown in Fig. 7. During the day, the 

warming trend mainly comes from the eastern part of North China, the central and western parts of the northwest, and the 

southern part of the Qinghai-Tibet Plateau. The annual daytime warming/cooling trends of surface temperature in almost all 

regions from 2003 to 2017 are significantly higher than those in the evening (-0.03<slope<0.03); thus, the average LST 

warming/cooling trends can be attributed to the changes during the daytime. The diurnal variation in LST also indicates that 475 

the trend of LST changes is more likely due to factors such as daytime human activities and sunshine hours. The effects of 

changes in solar radiation on the near-surface thermal conditions are the most pronounced. Among these changes, the 

warming trend in the southern part of the Qinghai-Tibet Plateau is obvious (slope>0.09). Duan and Xiao (2015) found that 

since 1998, the amount of daytime cloud cover in the southern part of the Qinghai-Tibet Plateau has decreased rapidly, 

resulting in an increase in sunshine hours. The increase in solar radiation during the day will directly lead to an increase in 480 

surface temperature, which is an important factor leading to an increase in daytime temperature. However, compared with 

the daytime, the interannual temperature change trend at night is relatively gentle and can be considered stable. 
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Insert Figure 7 here 

Figure 7: Spatial dynamics of interannual diurnal LST change trends from slope (a) and correlation coefficient (b). 

4.1.3 Analysis of the diurnal temperature difference 485 

Figure. 8 shows the spatial distribution of the average daytime LST, average nighttime LST, and day and night temperature 

differences. The LST shows significant spatial variation. During the day, the distribution of LST varies with surface 

insolation depending on the solar zenith angle (Jin and Liang, 2006). The highest LST during the day appears in the 

northwestern part of V and the desert area of the Tarim Basin in the Alashan Plateau (30 °C to more than 35 °C), rather than 

in the southern part of the low-latitude tropics, which is different from the patterns at night. Except for the Qinghai-Tibet 490 

Plateau, the nighttime LST decreases from the southern low-latitude areas to the northern high latitude areas, and the spatial 

variation is roughly consistent throughout the six subregions. This result also suggests that the temperature change is 

significantly related to the latitudinal range. 

As shown in Fig. 8c, the largest diurnal difference in LST is concentrated mainly in the mountainous area of the Qinghai-

Tibet Plateau; this difference is greater than 25 °C and is especially prominent in the Qaidam Basin. The lowest diurnal LST 495 

difference of less than 5 °C can be seen at low latitudes along the southeastern coast in South China. At the same time, 

affected by the height of the plateau, the temperature difference between day and night in the Yunnan-Guizhou Plateau in the 

western part of Central China is 11-15 °C, while that in the eastern area at the same latitude is only 6-11 °C. At the same 

time, compared with the inland areas at similar latitudes, the coastal areas (II and III in the eastern part of Central China and 

the central and eastern parts of the South China Region) usually have small diurnal LST differences. 500 

As shown in Fig. 8c, the average annual diurnal LST difference from 2003 to 2017 is characterized by the blue line AB, 

which indicates the boundary between the eastern China and western China. The blue line AB in the picture is the Hu Line, 

which was proposed by Hu Huanyong in 1938. The Hu Line is the connecting line between Heihe County in Heilongjiang 

Province in northern China and Tengchong in Yunnan Province. The Hu Line is not only the transition line for China's 

ecological environment but also the dividing line for China's population density. The east side of the Hu Line is dominated 505 

by geographical structures such as plains and hills, and its economy is developed. The east side is a densely populated area, 

accounting for 94 % of China's population. The west side is dominated by plateaus, mountains and basins. The western part 

is vast but accounts for only 6 % of China's population. Development is slow in this area. The temperature difference 

between day and night on the eastern side of the Hu Line is generally small (average at 11.8 °C), and the temperature 

difference between day and night on the western side is large (average at 21.9 °C). This distribution of day and night 510 

temperature differences is an interesting phenomenon. 

Insert Figure 8 here 

Figure 8. Spatial dynamics of average daytime LST(a), average nighttime LST (b)and difference between daytime and 

nighttime (c)from 2003 to 2017 
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4.2 Seasonal change analysis 515 

In addition to analyzing the characteristics of the interannual variation in LST, we also conducted an analysis of the seasonal 

variation characteristics to further reveal the LST variation patterns in detail (see Fig. 9). The variation characteristics are 

also described by the slope of the change and the correlation coefficient (R) proposed in Section 3.4.1. The results show that 

there is a significant spatial difference between the seasonal surface temperature trends, reflecting the effect of seasonal 

temperature changes on regional temperature changes. From 2003 to 2017, the trend of warming in the four seasons was 520 

most significant in winter, which exhibited the largest warming area (accounting for 70 %), followed by that in spring and 

summer, and the national average LST change in autumn basically did not change. Compared with the global warming hiatus 

that occurred from 1998 to 2002, the warming trends in China showed large differences in the four seasons (Li et al., 2015). 

Specifically, in spring, the warming area is concentrated in the northern areas (I, II, V), while the southern areas 

experienced a weak cooling trend. In the northern areas, the Northwest Region (V) and the Northeast Region (I) show 525 

dramatic warming trends where the slope is greater than 0.06 (see Fig. 9a2), with the Inner Mongolia Plateau and the 

northwestern part of the Greater Khingan Range exhibiting the most prominent warming trends. In addition, rapid warming 

also occurred in the North China Plain in the eastern part of the North China Region (II) (especially near Beijing and some 

areas of Hebei Province, slope=0.12, R=0.57, P<0.05), which may be unfavorable for crop growth in the North China Plain, 

especially for winter wheat. This impact occurs because the increase in temperature is an important factor in increasing the 530 

frequency and intensity of drought, which will greatly reduce the crop yield (He et al., 2016; Ayantobo et al., 2017). In the 

Northeast Region (I), spring exhibited the greatest warming, while a negative trend was detected in other seasons.  

As shown in Fig. 9, both summer and autumn showed nonsignificant warming trends throughout the country. In summer, 

there were slightly increasing trends almost everywhere in China, while negative trends were still observed in the Northeast 

Region (I) (details in Fig. 9). The slight warming trends might occur due to the weakening of the East Asian summer 535 

monsoon circulation caused by the tropical high-altitude composition of the easterly jet (TEJ) (Ding Y et al., 2008). The 

Chinese atmospheric circulation system is significantly affected by the East Asian summer monsoon. The location of the 

monsoon movement and the pattern of changes in monsoon velocity and intensity affect the change in surface temperature. 

At the same time, summer precipitation in the northwestern region has increased in recent years, which may have helped 

slow the rapid warming in the region (He et al., 2016). In autumn, the cooling trends mainly come from the Northeast 540 

Region (I) and the Northern Chinese Tianshan Mountains in the Qinghai-Tibet Plateau Region (VI). The Qinghai-Tibet 

Plateau was still controlled by the strong warming trends (near Lhasa city, slope=0.09, R=0.60, P<0.05), especially in the 

southern part of the Tanggula Mountains. 

In winter, 69.4 % of the areas are warming, which is significantly higher than that in other seasons; thus, winter is the 

most important source of interannual increases in the average LST. The most remarkable warming trend comes from the 545 

Northwest Region (V) and the Qinghai-Tibet Plateau Region (VI) in winter. In particular, these large-scale rapid warming 

patterns that occurred in winter are worthy of attention. This warming might occur due to excessive emissions of 
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atmospheric greenhouse gases and black carbon aerosols caused by human activities, which are most pronounced in winter 

(Hu, 2003; Stine et al., 2009). The LST in the central and western parts of the Northwest Region (V) increased significantly 

(in most areas, slope >0.080, R>0.71, P<0.05). This result might be attributed to the weakening of the Siberian high-pressure 550 

system in the region. The Siberian high-pressure system originates from the powerful high-pressure system in the cold 

Mongolian-Siberian region, which drives a large number of cold and dry air masses to move south to promote rapid cooling 

in the eastern part of Asia. Li et al. (2012) calculated the correlation between winter temperatures and the Siberian high-

pressure index: R = 0.715, P < 0.001, indicating that winter temperatures in northwestern China are significantly correlated 

with the Siberian high-pressure index. In addition, a large number of significant warming areas formed on both sides of the 555 

western Tianshan Mountains, which are oases. We believe that warming may be related to the increase in greenhouse gases 

generated by human activities during the expansion of urbanization. 

Insert Figure 9 here 

Figure 9: The interseasonal variability rates (slope) and correlation coefficients (R) of LST in spring (a), summer (b), autumn 

(c) and winter (d) from 2003 to 2017, a1, b1, c1 and d1 are the spatial distributions of the slopes at the four seasons, a2, b2, 560 

c2 and d2 are histograms of the slope of the four seasons, and a3, b3, c3 and d3 are the spatial distribution of the correlation 

coefficient (R) at the four seasons. 

4.3 Monthly average change analysis 

We further analyze the interannual variation in the LST for each month in the time series. As shown in Fig. 10, in the past 15 

years, the monthly average change in the LST was more significant than the seasonal and annual changes. Eight months 565 

showed warming trends (slope>0), which is obviously more than the number of months that showed cooling trends. The 

warming trends in the second half of the year (mainly concentrated in July, August, October, December) were significantly 

higher than those in the first half of the year. The largest warming trends were observed in July (slope=0.063), and 76 % of 

the areas showed warming trends. Relatively significant warming (slopemean>0.04) occurred in the Northwest Region (V), 

North China Region (II) and Qinghai-Tibet Plateau Region (VI). December also showed a relatively higher warming trend, 570 

accounting for 72 % of the area, and the significantly warmed areas were concentrated in the northwest and Qinghai Tibetan 

areas. However, no significant cooling trend (slope <0.05) occurred in the 12-month period. The widest cooling trend was 

found in the Northeast Region and South China. In the Northeast Region, the cooling trend was captured in February and 

October, while in South China, January and April contributed the most to cooling. 

Insert Figure 10 here 575 

Figure 10: The monthly variability rates from slope (a) and correlation coefficients (b) of LST from 2003 to 2017. 
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5 Verification and discussion 

MODIS exhibits good performance in retrieving LST data, which has been verified by various studies (Wan et al., 2004, 

Wan, 2008, Wan and Li, 2011, Wan, 2014). Furthermore, to better evaluate the accuracy of the new dataset, we performed 

verification for different regions using independent in situ data (subset (2) in Section 3.2) that was not used during the 580 

reconstruction process. Fig. 11 shows the statistical results of the difference between the two types of data in six natural 

subregions (shown in blue in the scatterplot). Three statistical accuracy measures are used to evaluate the accuracy of the 

calibration: the square root of the Pearson coefficient (R2), root mean squared error (RMSE) and mean absolute error (MAE). 

All subregions showed good agreements between MODIS LST and meteorological station data. The R2 values varied from 

0.93 to 0.99, with an average of 0.97. The RMSE ranged from 1.24 °C to 1.58 °C, with an average of 1.39 °C. A relatively 585 

large RMSE between the reconstructed LST and ground-based LST appeared in some sites in the Qinghai-Tibet Plateau 

Region, indicating that the temperature exhibited great spatial heterogeneity over the complex terrain. The MAE varied from 

1.23 °C to 1.37 °C, with an average of 1.30 °C. These results indicate that the reconstructed MODIS LST dataset is robust 

and accurate due to its high consistency with the in situ data. Therefore, we believe that the accuracy of LST data can be 

improved by this method. 590 

Insert Figure 11 here 

Figure 11: The scatter diagrams in six natural subregions (I, II, III, IV, V, VI) between the ground station data and the 

MODIS LST data. The blue scatter indicates the verification result of the reconstructed MODIS LST, and its statistical 

accuracy measures (R2, RMSE, MAE) are also indicated. The result of the linear model corrected corrected is indicated in 

gray. 595 

To further understand the credibility of the data and clarify the limitations of the use of this method, we further assess the 

performance in terms of the seasonal bias and compared it with the original seasonal LST data. Verification ground stations 

collected in representative areas are selected to help illustrate the distribution of the error in the reconstructed data (six key 

zones are identified, corresponding to the a, b, c, d, e, and f areas shown by the red circles in Fig. 1, an overview of the 

ground stations can be found in Table 1. The six key zones are selected, including the three most significant regions for 600 

warming (b, d, f), the two most significant regions for cooling (a, c) and the zone located in Xinjiang Province (see Fig. 6a 

for details). Two of the zones, zone (a) located in the Northeast Region and zone (b) located in the North China Region, 

experienced the strongest cooling trend and significant warming, respectively. Simultaneously, these two regions are 

important food-producing areas in China. The rapid changes in LST have a major impact on the stability of crop yields and 

the adjustment of crop planting systems. In addition, the Qinghai-Tibet Plateau, where key zone f is located, has a unique 605 

climate and is highly sensitive to climate change, which is of great significance for maintaining the ecological security of 

Asia (Xu et al., 2008). In particular, special attention was given to the Sahara Desert region (e) in Xinjiang, which has 

complex terrain and extensive heterogeneity. 
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Seasonal scale verification was evaluated using MODIS data (including the original LST and reconstructed LST) and 

ground-based LST RMSE for comparison in six key zones, as shown in Table 2. Compared with the original LST, the 610 

average RMSE decreased by 18 % from 1.79 °C to 1.46 °C. Both datasets exhibited the largest RMSE in summer and the 

smallest in autumn, indicating that the original and reconstructed LST data have highly consistent seasonal patterns. For the 

reconstructed LST data, we further found that the RMSE values at some sites in the summer were significantly higher than 

those at other sites. The regions that exhibited high RMSE values were mainly concentrated in the western regions (Xinjiang, 

Inner Mongolia and the Qinghai-Tibet Plateau), while the values in the other three regions were relatively small. The main 615 

reason for this difference may be the complex and diverse terrain and large climate differences in the western region. The 

average RMSE in autumn was the smallest at 1.07 °C. The winter RMSE ranged from 0.04 to 3.81, with an average of 

1.45 °C. 

For the reconstructed LST data, the distribution of the RMSE varied greatly between the eastern and western regions at the 

seasonal scale. The maximum RMSE values for all stations in the eastern typical zones (i.e., key zone a in the Northeast 620 

Region (I), key zone b in the North China Region (II)) occurred in the cold winter, while the highest values for most sites in 

the western region occurred during the hot summer months (i.e., the remaining four zones). At the same time, the 

comparison results show that the mean RMSE between the ground-based observation data and the LST data was 

significantly higher in the western region than in the eastern region (mean 1.04 °C in eastern regions I and II and 1.69 °C in 

western regions IV, V, and VI). The large spatial variations in temperature caused by the complex terrain in the western 625 

region may be the cause of large errors. At the same time, a large RMSE between the reconstructed LST and the ground-

based LST appeared in some locations in Inner Mongolia (i.e., key zone e) in the Northwest Region, further indicating that 

the temperature over complex terrain exhibited great spatial heterogeneity. 

We also note that the selected ground stations shown in Table 2 located in six key zones are examples where the local LST 

warming/cooling rate changed by more than the general rate, so the theoretical error rate is higher than that in other regions. 630 

Moreover, the examples indicate that the reconstruction model proposed here is effective even in the areas most likely to 

exhibit errors. As the temperature changes more smoothly and more in line with the trend of the general temperature changes, 

the accuracy will increase. 

According to the scatterplots of the ground station data and the reconstructed MODIS LST data shown in blue in Fig. 11, 

here we employed a correction model that uses the results of linear regression analysis between the two data to further 635 

improve the accuracy. The goal of the calibration model reduces or eliminates the combined error introduced by various 

variables, so six subregions with different climatic conditions are corrected separately to obtain better calibration results for 

the study area. At the same time, in order to eliminate the difference of the six regions edge boundary areas, smooth 

constraints are imposed on some of edge pixels with significant differences to guarantee the consistency of the regions. The 

comparisons of the corrected LST data with the ground station data are indicated by the gray points in Fig. 11. In this study, 640 

the main reason for adopting the regression analysis model is the reality that the robust reconstruction results have obtained 

through a large amount of work for which a linear model can further improve the results. The results show that the results of 
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model reconstruction are more consistent with the ground station data, which effectively improves the problem of 

underestimation of MODIS LST data in some areas. 

Table 2. RMSEs of seasonal LST between monthly LST (including the original LST and reconstructed LST) and ground-645 

based LST (Orig. indicates the original LST located at ground stations. Recon. indicates the reconstructed LST located at 

ground stations) 

Insert Table 2 here 

The verification results show that the dataset has reasonable consistency with the in situ measurements, indicating that the 

interference of cloud coverage is well eliminated. The dataset obtained after reconstruction is a large-scale, long-term, 650 

unique surface temperature dataset because it eliminates low-quality pixels caused by factors such as cloud disturbance and 

achieves complete coverage of the entire study region. The accuracy and spatiotemporal continuity of this dataset are greatly 

improved compared to those of the original MODIS monthly data. Moreover, in this dataset, the true ground surface 

temperatures under cloud coverage are retrieved instead of reconstructing the LST under clear-sky conditions, which is 

better than the methods used in many previous studies. 655 

At the same time, the reconstruction strategy that combines monthly data with daily data effectively solves the problem of 

reconstructing real LST data under cloud coverage with very limited information and improves the accuracy of the monthly 

data reconstruction results. The final linear correction model improves the consistency of the LST data with terrestrial data.  

We believe that these datasets can be applied to research regional agricultural ecological environments and to monitor 

agrometeorological disasters. In a small range of practical applications, such as urban heat island monitoring, our current 660 

data may not be suitable for monitoring in great detail due to the coarse resolution, which is something we need to improve 

in future work. 

6 Data availability  

The LST dataset in China is distributed under a Creative Commons Attribution 4.0 License. The data is freely available in 

the Zenodo repository https://doi.org/10.5281/zenodo.3378912 (Zhao et al., 2019).Vector files for six natural subregions can 665 

also be obtained from the same link. 

7 Summary and conclusions 

Based on the Terra and Aqua MODIS land surface temperature dataset and meteorological station data, a new LST dataset 

over China was established for the period from 2003-2017. This dataset effectively removed approximately 20 % of the 

missing pixels or poor-quality LST pixels contaminated by clouds in the original MODIS monthly image. A detailed 670 

comparison and analysis with the in situ measurements shows that the reconstruction results has high precision, the average 

RMSE is 1.39 °C, the MAE is 1.30 °C and R2 is 0.97. The data are freely available at 
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https://doi.org/10.5281/zenodo.3378912 (Zhao et al., 2019). We believe that this dataset will be of great use in research 

related to temperature, such as high temperature and drought studies, because it effectively overcomes the limitations of 

reconstructing the real LST under cloudy conditions in the past and achieves good spatiotemporal coverage. 675 

The constructed high-precision monthly LST dataset for China provides a detailed perspective of the patterns of the spatial 

and temporal changes in LST. The LST dataset was used to analyze the regional characteristics and capture the variations in 

LST at the annual, seasonal and monthly scales. Our results showed that the LST showed a slight upward trend with a slope 

of 0.011 (approximately 63.7 % and 20.80 % of the pixels underwent warming and significant warming, respectively). There 

were great regional differences in the climate warming trend. In the Northwest Region, the Qinghai-Tibet Plateau Region 680 

and the North China Plain experienced significant warming trends (i.e., the slope ranged from 0.025 to greater than 0.1). The 

impacts of human activities on warming, such as the increase in greenhouse gases and black carbon aerosol emissions from 

urbanization and industrial and agricultural development, are prominent. Greenhouse gases absorb infrared longwave 

radiation from the ground, which results in a positive feedback effect on warming. Moreover, the coupling of greenhouse 

gases and monsoons will result in changes in the energy budget in the monsoon region, which will affect the intensity of 685 

monsoon circulation. At the same time, the change in temperature in the short term may be affected by the increase in 

aerosols such as PM2.5 and black carbon emitted from atmospheric pollutants. Carbon aerosol pollution will heat the flow of 

air and reduce the cooling effect of solar radiation reaching the surface, affecting local or even global climate changes. 

Especially in rapidly expanding urban areas, such as North China and the Yangtze River Delta, the impact of human 

activities on temperature trends will be more pronounced. 690 

Meanwhile, a cooling trend was also observed in China: most areas of the Northeast Region became markedly colder, 

especially in the Songnen Plains in the middle of the region (i.e., slope=-0.11, R=0.61, P<0.05). South China also showed a 

slight cooling trend. The interannual temperature changes indicated that the daytime temperature changed more intensely 

than the nighttime temperature, which may be closely related to changes in solar radiation and the release of large amounts 

of greenhouse gases from human activities. Earth rotation is the factor that determines seasonal change, which is also 695 

affected by monsoon changes, ocean currents and other factors. The LST trends showed significant changes in the different 

seasons. The warming trend in winter was the most significant compared with that in the other three seasons, especially in 

the northwestern region of the arid and semiarid zone and the Qinghai-Tibet Plateau. As a key parameter for different 

research fields, such as simulating land surface energy and water balance systems, LST provides important information for 

monitoring and understanding high temperature and drought conditions, which must be taken into consideration for 700 

agricultural production and meteorological research. Therefore, we believe that the LST dataset produced in this study can 

be useful for drought research and monitoring and can be further used for agricultural production and climate change 

research. 
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Figure 1: The study area divided into six natural subregions (I, II, III, IV, V, VI), and the spatial patterns of the meteorological 
stations in the subregions. The red circles mark the key areas where the temperature changes significantly, and these areas are 845 
used to validate the accuracy of the new LST dataset (a, b, c, d, e, f). 

Table 1 Basic information for some of the meteorological stations in key zones 

Region key zone ID Latitude (°) Longitude (°) Altitude (m) 

I Northeast Region a 50758 47.10 125.54  249 

I Northeast Region a 50658 48.03 125.53  237 

I Northeast Region a 50756 47.26 126.58  239 

I Northeast Region a 50656 48.17 126.31  278 
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I Northeast Region a 50548 49.05 123.53  282 

II North China Region b 54525 117.28 39.73  5 

II North China Region b 54527 117.05 39.08  3 

II North China Region b 54518 116.39 39.17  8 

II North China Region b 54511 116.19 39.57  52 

II North China Region b 54624 117.21 38.22  7 

II North China Region b 54623 117.43 38.59  6 

IV South China c 59431 22.63 108.22  122 

IV South China c 59242 23.45 109.08  85 

IV South China c 59037 23.93 108.10  170 

IV South China c 59228 23.32 107.58  108 

IV South China c 59446 22.42 109.30  66 

V Northwest Region d 53336 41.40 108.48 1275 

V Northwest Region d 53446 40.34 109.50 1044 

V Northwest Region d 53602 38.52 105.34 1561 

V Northwest Region d 53513 40.48 107.30  1039 

V Northwest Region e 51730 40.33 81.19 1012 

V Northwest Region e 51716 39.48 78.34 1117 

V Northwest Region e 51810 38.56 77.40 1178 

V Northwest Region e 51811 38.26 77.16 1231 

VI Qinghai-Tibet Plateau Region f 55279 31.48 89.40 4700 

VI Qinghai-Tibet Plateau Region f 55591 29.42 91.08 3648 

VI Qinghai-Tibet Plateau Region f 55598 29.15 91.47 3560 

VI Qinghai-Tibet Plateau Region f 56106 31.53 93.48 4022 
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Figure 2: The summary flowchart for reconstructing MODIS monthly LST data. 

 850 
Figure 3: Spatial distribution of valid data for daily MODIS LST data from Terra at 10:30 am (a) January 1, 2017, and (b) July 1, 

2017. Areas of invalid data are in white. 

 
Figure 4: Spatial distribution of valid data for monthly MODIS LST data from Terra at 10:30 am in (a) January and (b) July. 

Areas of invalid data are in white. 855 
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Figure 5: Annual mean LST changes in China from 2003 to 2017. 
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 860 
Figure 6: Spatial dynamics of interannual change trends in LST from the slope (a) computed by Eq. (8), the correlation coefficient 

(b) computed by Eq. (9) and frequency distribution of the slope (c) during 2003-2017. In panel c, the different temperature trends 

(slope) are divided into 10 subinterval ranges corresponding to the ranges in panel a. The left side of the AB line represents the 

proportion of the area that experienced cooling, and the right side represents the proportion that experienced warming.  

 865 
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Figure 7: Spatial dynamics of interannual diurnal LST change trends from slope (a) and correlation coefficient (b). 870 
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Figure 8: Spatial dynamics of average daytime LST (a), average nighttime LST (b) and difference between daytime and nighttime 

LST (c) from 2003 to 2017. 875 
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Figure 9: The interseasonal variability rates (slope) and correlation coefficients (R) of LST in spring (a), summer (b), autumn (c) 

and winter (d) from 2003 to 2017, a1, b1, c1 and d1 are the spatial distributions of the slopes at the four seasons, a2, b2, c2 and d2 

are histograms of the slope of the four seasons, and a3, b3, c3 and d3 are the spatial distribution of the correlation coefficient (R) at 880 
the four seasons. 
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Figure 10: The monthly variability rates from slope (a) and correlation coefficients (b) of LST from 2003 to 2017. 
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 885 
Figure 11: The scatter diagrams in six natural subregions (I, II, III, IV, V, VI) between the ground station data and the MODIS 

LST data. The blue scatter indicates the verification result of the reconstructed MODIS LST, and its statistical accuracy measures 

(R2, RMSE, MAE) are also indicated. The result of the linear model corrected corrected is indicated in gray. 

Table 2. RMSEs of seasonal LST between monthly LST (including the original LST and reconstructed LST) and ground-based 

LST (Orig. indicates the original LST located at ground stations. Recon. indicates the reconstructed LST located at ground 890 
stations) 

Region key zone ID Spring Summer Autumn Winter 

   Orig. Recon. Orig. Recon. Orig. Recon. Orig. Recon. 

I Northeast Region a 50758 2.11 1.48 1.36 1.23 1.16 0.61 3.80 3.81 

I Northeast Region a 50658 2.33 1.03 1.61 0.63 0.29 0.27 4.32 3.20 

I Northeast Region a 50756 3.51 0.23 1.03 0.43 0.51 0.26 3.91 3.52 

I Northeast Region a 50656 0.65 0.65 0.90 0.92 0.42 0.04 3.63 3.67 

I Northeast Region a 50548 0.82 0.89 1.09 0.61 0.51 0.40 0.15 0.15 

II North China Region b 54525 3.11 2.26 3.30 2.23 2.11 1.51 2.11 0.94 

II North China Region b 54527 1.30 1.11 1.24 1.25 0.93 0.54 2.36 0.14 
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II North China Region b 54518 3.64 1.64 0.52 0.51 0.45 0.15 0.71 0.04 

II North China Region b 54511 1.06 1.26 0.33 0.32 0.50 0.66 1.07 1.27 

II North China Region b 54624 1.99 1.55 1.15 0.49 0.84 0.33 0.40 0.46 

II North China Region b 54623 0.13 0.06 0.48 0.17 1.31 1.06 2.65 2.02 

IV South China c 59431 1.71 2.73 0.12 0.06 1.05 1.02 2.91 2.91 

IV South China c 59242 2.0 1.08 2.52 1.86 0.03 0.09 2.91 2.59 

IV South China c 59037 1.08 0.73 1.26 0.94 0.78 0.78 1.00 1.01 

IV South China c 59228 0.92 0.38 1.99 1.75 1.61 0.84 0.75 0.28 

IV South China c 59446 2.01 1.30 0.97 0.78 0.49 0.49 2.40 2.39 

V Northwest Region d 53336 3.88 3.88 3.04 3.04 3.53 2.81 1.90 1.82 

V Northwest Region d 53446 2.00 2.01 3.78 3.18 1.96 1.65 0.35 0.35 

V Northwest Region d 53602 4.48 4.28 3.91 3.75 3.97 3.47 1.65 1.65 

V Northwest Region d 53513 1.55 1.48 5.33 5.15 5.01 4.93 2.04 2.24 

V Northwest Region e 51730 3.01 2.97 4.09 5.08 1.48 1.06 2.63 2.10 

V Northwest Region e 51716 0.80 0.75 0.47 0.15 0.74 0.09 0.66 0.32 

V Northwest Region e 51810 2.33 1.29 1.20 0.76 0.33 0.32 1.24 0.28 

V Northwest Region e 51811 0.57 0.57 0.52 0.90 0.62 0.36 1.34 0.39 

VI Qinghai-Tibet 

Plateau Region 
f 55279 3.63 3.44 1.37 1.74 1.83 1.45 0.99 0.99 

VI Qinghai-Tibet 

Plateau Region 
f 55591 1.76 1.79 5.56 4.08 2.99 2.59 1.95 0.41 

VI Qinghai-Tibet 

Plateau Region 
f 55598 0.85 0.85 4.37 4.62 2.95 2.91 0.63 0.69 

VI Qinghai-Tibet 

Plateau Region 
f 56106 0.52 0.58 1.44 1.44 0.88 0.68 2.11 1.99 

Average   1.92  1.51  1.96  1.72  1.40  1.12  1.88  1.49  
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